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Symbolic Math Toolbox Product Description
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Perform symbolic math computations

Symbolic Math Toolbox provides functions for solving, plotting, and manipulating
symbolic math equations. You can create, run, and share symbolic math code using the
MATLAB Live Editor. The toolbox provides functions in common mathematical areas such
as calculus, linear algebra, algebraic and ordinary differential equations, equation
simplification, and equation manipulation.

Symbolic Math Toolbox lets you analytically perform differentiation, integration,
simplification, transforms, and equation solving. You can perform dimensional
computations and conversions using SI and US unit systems. Your computations can be
performed either analytically or using variable-precision arithmetic, with the results
displayed in mathematical typeset.

You can share your symbolic work with other MATLAB users as live scripts or convert
them to HTML or PDF for publication. You can generate MATLAB functions, Simulink®
function blocks, and Simscape™ equations directly from symbolic expressions.

Key Features

* Symbolic integration, differentiation, transforms, and linear algebra
» Algebraic and ordinary differential equation (ODE) solvers
* Simplification and manipulation of symbolic expressions

» Unit systems for specifying, converting, and computing using SI, US, and custom unit
systems

* Plotting of analytical functions in 2D and 3D

* Symbolic expression conversion to MATLAB, Simulink, Simscape, C, Fortran, and
LaTeX code

* Variable-precision arithmetic



Create Symbolic Numbers, Variables, and Expressions

Create Symbolic Numbers, Variables, and Expressions

This page shows how to create symbolic numbers, variables, and expressions. To learn
how to work with symbolic math, see “Perform Symbolic Computations” on page 1-13.

Create Symbolic Numbers

You can create symbolic numbers by using sym. Symbolic numbers are exact
representations, unlike floating-point numbers.

Create a symbolic number by using sym and compare it to the same floating-point
number.

sym(1/3)
1/3

ans

1/3

ans =
0.3333

The symbolic number is represented in exact rational form, while the floating-point
number is a decimal approximation. The symbolic result is not indented, while the
standard MATLAB result is indented.

Calculations on symbolic numbers are exact. Demonstrate this exactness by finding
sin(pi) symbolically and numerically. The symbolic result is exact, while the numeric
result is an approximation.

sin(sym(pi))
sin(pi)

ans =

0

ans =
1.2246e-16

To learn more about symbolic representation of numbers, see “Numeric to Symbolic
Conversion” on page 2-132.

1-3



1 Getting Started

Create Symbolic Variables

You can create symbolic variables using either syms or sym. Typical uses of these
functions include:

* sym - Create numbered symbolic variables or create symbolic variables in MATLAB
functions.

* syms - Create fresh symbolic variables for interactive symbolic workflows, that is, for
symbolic variable creation at the MATLAB command line or in MATLAB live scripts. A
fresh symbolic variable does not have any assumptions.

The syms command is shorthand for the sym syntax, but the two functions handle
assumptions differently. For more details, see “Reuse Names of Symbolic Objects” on
page 1-7.

Create the symbolic variables x and y using syms and sym, respectively.
syms X
y = sym('y")

The first command creates a symbolic variable x in the MATLAB workspace with the value
x assigned to the variable x. The second command creates a symbolic variable y with the
value y.

With syms, you can create multiple variables in one command. Create the variables a, b,
and c.

syms a b ¢

If you want to create a MATLAB array of numbered symbolic variables, the syms syntax is
inconvenient. Therefore, use sym instead to create an array of many numbered symbolic
variables.

Clear the workspace. Create a row vector containing the symbolic variables al, ...,
a20 and assign it to the MATLAB variable A. Display the variable in the MATLAB
workspace.

clear all
A =sym('a', [1 20])
whos

A =
[ al, a2, a3, a4, a5, a6, a7, a8, a9, alo,...

1-4
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all, al2, al3, al4, al5, al6, al7, al8, al9, a20]
Name Size Bytes C(lass Attributes
A 1x20 8 sym

Ais a 1-by-20 array of 20 symbolic variables.

By combining sym and syms, you can create many fresh symbolic variables with
corresponding variables name in the MATLAB workspace.

Clear the workspace. Create the fresh symbolic variables al, ..., al0 and assign
them the MATLAB variable names al, ..., alo, respectively. Display the variables in
the MATLAB workspace.
clear all
syms(sym('a', [1 10]))
whos

Name Size Bytes C(lass Attributes

al 1x1 8 sym

alo 1x1 8 sym

a2 1x1 8 sym

a3 1x1 8 sym

a4 1x1 8 sym

ab 1x1 8 sym

ab 1x1 8 sym

a7 1x1 8 sym

a8 1x1 8 sym

a9 1x1 8 sym

The MATLAB workspace contains 10 MATLAB variables that are symbolic variables.

The syms command is a convenient shorthand for the sym syntax, and its typical use is to
create fresh symbolic variables for interactive symbolic workflows. Use the sym syntax to
create the following:

* Symbolic variables in MATLAB functions

* Many numbered symbolic variables

» Symbolic variable whose value differs from its name in the MATLAB workspace

* Symbolic number, such as sym(5)

1-5
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* Symbolic variable that inherits the assumptions from a previously used symbolic
variable having the same name

Create Symbolic Expressions

Suppose you want to use a symbolic variable to represent the golden ratio

1+.5

=

The command
phi = (1 + sqrt(sym(5)))/2;

achieves this goal. Now you can perform various mathematical operations on phi. For
example,

f = phi~2 - phi - 1

returns

f =
(57(1/2)/2 + 1/2)72 - 57~(1/2)/2 - 3/2

Now suppose you want to study the quadratic function f = ax? + bx + c. First, create the
symbolic variables a, b, ¢, and x:

syms a b c x
Then, assign the expression to f:

f = a*x"2 + b*x + c;

Tip To create a symbolic number, use the sym command. Do not use the syms function to
create a symbolic expression that is a constant. For example, to create the expression
whose value is 5, enter f = sym(5). The command f = 5 does not define f as a
symbolic expression.




See Also

Reuse Names of Symbolic Objects

If you set a variable equal to a symbolic expression, and then apply the syms command to
the variable, MATLAB software removes the previously defined expression from the
variable. For example,

syms a b
f=a+b

returns
£
a b

+ 1

If later you enter

syms f
f

then MATLAB removes the value a + b from the expression f:

f:
f

You can use the syms command to clear variables of definitions that you previously
assigned to them in your MATLAB session. syms clears the assumptions of the variables:
complex, real, integer, and positive. These assumptions are stored separately from the
symbolic object. However, recreating a variable using sym does not clear its assumptions.
For more information, see “Delete Symbolic Objects and Their Assumptions” on page 1-
30.

See Also

More About

. “Create Symbolic Functions” on page 1-8

. “Create Symbolic Matrices” on page 1-10

. “Perform Symbolic Computations” on page 1-13

. “Use Assumptions on Symbolic Variables” on page 1-29

1-7
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Create Symbolic Functions

1-8

Symbolic functions represent math functions. Use symbolic functions for differentiation,
integration, solving ODEs, and other math operations. Create symbolic functions by using
syms.

Create a symbolic function f with variables x and y by using syms. Creating f
automatically creates x and y.

syms f(x,y)
Assign a mathematical expression to f.
f(x,y) = x"2*y

f(x, y) =
X"2*y

Find the value of f at (3,2).
f(3,2)

ans =
18

Symbolic functions accept array inputs. Calculate f for multiple values of x and y.

xVal = 1:5;
yval = 3:7
f(xVal,yVal)

~-

ans =
[ 3, 16, 45, 96, 175]

You can differentiate symbolic functions, integrate or simplify them, substitute their
arguments with values, and perform other mathematical operations. For example, find the
derivative of f(x,y) with respect to x. The result dfx is also a symbolic function.

dfx = diff(f,x)

dfx(x,y) =
2*x*y

Calculate df(x,y) atx =y + 1.



See Also

dfx(y+1,y)
ans =
2*¥y*(y + 1)

If you are creating a constant function, such as f(x,y) = 1, you must first create
f(x,y). If you do not create f(x,y), then the assignment f(x,y) = 1 throws an error.

See Also

More About

. “Create Symbolic Numbers, Variables, and Expressions” on page 1-3
. “Create Symbolic Matrices” on page 1-10

. “Perform Symbolic Computations” on page 1-13

. “Use Assumptions on Symbolic Variables” on page 1-29
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Create Symbolic Matrices

In this section...

“Use Existing Symbolic Variables” on page 1-10
“Generate Elements While Creating a Matrix” on page 1-11
“Create Matrix of Symbolic Numbers” on page 1-11

Use Existing Symbolic Variables

A circulant matrix has the property that each row is obtained from the previous one by
cyclically permuting the entries one step forward. For example, create the symbolic
circulant matrix whose elements are a, b, and ¢, using the commands:

syms a b ¢

A=[abc, cab; bcal
A =

[ a, b, c]

[ c, a, b]

[ b, c, al

Since matrix A is circulant, the sum of elements over each row and each column is the
same. Find the sum of all the elements of the first row:

sum(A(1,:))

an
a

o

S
+b+c

To check if the sum of the elements of the first row equals the sum of the elements of the
second column, use the isAlways function:

isAlways(sum(A(1,:)) == sum(A(:,2)))
The sums are equal:
ans =
logical
1

From this example, you can see that using symbolic objects is very similar to using
regular MATLAB numeric objects.

1-10
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Generate Elements While Creating a Matrix

The sym function also lets you define a symbolic matrix or vector without having to define
its elements in advance. In this case, the sym function generates the elements of a
symbolic matrix at the same time that it creates a matrix. The function presents all
generated elements using the same form: the base (which must be a valid variable name),
a row index, and a column index. Use the first argument of sym to specify the base for the
names of generated elements. You can use any valid variable name as a base. To check
whether the name is a valid variable name, use the isvarname function. By default, sym
separates a row index and a column index by underscore. For example, create the 2-by-4
matrix A with the elements A1 1, ..., A2 4:

A = sym('A', [2 4])

A =

[ A1 1, A1 2, Al 3, Al 4]
[ A2 1, A2 2, A2 3, A2 4]

To control the format of the generated names of matrix elements, use %d in the first
argument:

A = sym('A%d%d', [2 4])

All, Al12, Al13, Al4]

A —
[
[ A21, A22, A23, A24]

Create Matrix of Symbolic Numbers

A particularly effective use of sym is to convert a matrix from numeric to symbolic form.
The command

A = hilb(3)
generates the 3-by-3 Hilbert matrix:
A =

1.0000 0.5000 0.3333

0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

By applying sym to A
A = sym(A)

1-11
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you can obtain the precise symbolic form of the 3-by-3 Hilbert matrix:

A

[ 1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

For more information on numeric to symbolic conversions, see “Numeric to Symbolic
Conversion” on page 2-132.

See Also

More About

. “Create Symbolic Numbers, Variables, and Expressions” on page 1-3
. “Create Symbolic Functions” on page 1-8

. “Perform Symbolic Computations” on page 1-13

. “Use Assumptions on Symbolic Variables” on page 1-29
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Perform Symbolic Computations

In this section...

“Differentiate Symbolic Expressions” on page 1-13
“Integrate Symbolic Expressions” on page 1-14
“Solve Equations” on page 1-16

“Simplify Symbolic Expressions” on page 1-18
“Substitutions in Symbolic Expressions” on page 1-19

“Plot Symbolic Functions” on page 1-23

Differentiate Symbolic Expressions

With the Symbolic Math Toolbox software, you can find

* Derivatives of single-variable expressions
+ Partial derivatives

* Second and higher order derivatives

* Mixed derivatives

For in-depth information on taking symbolic derivatives see “Differentiation” on page 2-
48.

Expressions with One Variable

To differentiate a symbolic expression, use the diff command. The following example
illustrates how to take a first derivative of a symbolic expression:

syms X
f = sin(x)"2;
diff(f)

ans =
2*cos(x)*sin(x)

Partial Derivatives

For multivariable expressions, you can specify the differentiation variable. If you do not
specify any variable, MATLAB chooses a default variable by its proximity to the letter x:
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syms X y
f = sin(x)"2 + cos(y)"2;
diff(f)

ans =
2*cos(x)*sin(x)

For the complete set of rules MATLAB applies for choosing a default variable, see “Find a
Default Symbolic Variable” on page 2-4.

To differentiate the symbolic expression f with respect to a variable y, enter:
syms X y

f = sin(x)*2 + cos(y)”"2;

diff(f, y)

ans =
-2*cos(y)*sin(y)

Second Partial and Mixed Derivatives

To take a second derivative of the symbolic expression f with respect to a variable y,
enter:

syms X y

f = sin(x)~2 + cos(y)"2;
diff(f, y, 2)

ans =

2*¥sin(y)”2 - 2*cos(y)”"2

You get the same result by taking derivative twice: diff (diff(f, y)). To take mixed
derivatives, use two differentiation commands. For example:

syms X y
f = sin(x)"2 + cos(y)"2;
diff(diff(f, y), x)

ans =
0

Integrate Symbolic Expressions

You can perform symbolic integration including:
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* Indefinite and definite integration
* Integration of multivariable expressions

For in-depth information on the int command including integration with real and
complex parameters, see “Integration” on page 2-64.

Indefinite Integrals of One-Variable Expressions

Suppose you want to integrate a symbolic expression. The first step is to create the
symbolic expression:

syms X
f = sin(x)"2;

To find the indefinite integral, enter
int(f)

ans =
Xx/2 - sin(2*x)/4

Indefinite Integrals of Multivariable Expressions

If the expression depends on multiple symbolic variables, you can designate a variable of
integration. If you do not specify any variable, MATLAB chooses a default variable by the
proximity to the letter x:

syms X y n
f =x"n + y™n;
int(f)

ans =
x*y™*n + (x*x”™n)/(n + 1)

For the complete set of rules MATLAB applies for choosing a default variable, see “Find a
Default Symbolic Variable” on page 2-4.

You also can integrate the expression f = x™“n + y”n with respect to y
Syms X y n

f =x"n + y™n;

int(f, y)

ans =
x*n*y + (y*y™n)/(n + 1)
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If the integration variable is n, enter
syms X y n

f = Xx*n + y™n;

int(f, n)

ans =
x*n/log(x) + y”~n/log(y)

Definite Integrals

To find a definite integral, pass the limits of integration as the final two arguments of the
int function:

syms X y n

f = Xx*n + y™n;

int(f, 1, 10)

ans =

piecewise(n == -1, log(10) + 9/y, n ~= -1,...
(160*¥10”n - 1)/(n + 1) + 9*y™n)

If MATLAB Cannot Find a Closed Form of an Integral

If the int function cannot compute an integral, it returns an unresolved integral:

syms X
int(sin(sinh(x)))

ans =
int(sin(sinh(x)), Xx)

Solve Equations

You can solve different types of symbolic equations including:

* Algebraic equations with one symbolic variable
* Algebraic equations with several symbolic variables
» Systems of algebraic equations

For in-depth information on solving symbolic equations including differential equations,
see “Equation Solving”.

1-16



Perform Symbolic Computations

Solve Algebraic Equations with One Symbolic Variable

Use the double equal sign (==) to define an equation. Then you can solve the equation
by calling the solve function. For example, solve this equation:

syms x
solve(x™3 - 6*x™2 == 6 - 11*x)

If you do not specify the right side of the equation, solve assumes that it is zero:

syms x
solve(x™3 - 6*x™2 + 11*x - 6)

Solve Algebraic Equations with Several Symbolic Variables

If an equation contains several symbolic variables, you can specify a variable for which
this equation should be solved. For example, solve this multivariable equation with
respect to y:

syms X y
solve(6*x"2 - 6*x"2*y + x*y"2 - x¥y + y*3 - y*2 == 0, vy)

ans

=l

2*x
-3*X

If you do not specify any variable, you get the solution of an equation for the
alphabetically closest to x variable. For the complete set of rules MATLAB applies for
choosing a default variable see “Find a Default Symbolic Variable” on page 2-4.

Solve Systems of Algebraic Equations

You also can solve systems of equations. For example:
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Syms X y z
[x, y, z] = solve(z == 4*x, x ==y, z == X2 + y"2)

X =
0
2

Simplify Symbolic Expressions

Symbolic Math Toolbox provides a set of simplification functions allowing you to
manipulate the output of a symbolic expression. For example, the following polynomial of
the golden ratio phi

phi = (1 + sqrt(sym(5)))/2;
f = phi®2 - phi -1

returns

ESi(l/Z)/Z + 1/2)"2 - 57(1/2)/2 - 3/2
You can simplify this answer by entering
simplify(f)

and get a very short answer:

ans =
0

Symbolic simplification is not always so straightforward. There is no universal
simplification function, because the meaning of a simplest representation of a symbolic
expression cannot be defined clearly. Different problems require different forms of the
same mathematical expression. Knowing what form is more effective for solving your
particular problem, you can choose the appropriate simplification function.
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For example, to show the order of a polynomial or symbolically differentiate or integrate a
polynomial, use the standard polynomial form with all the parentheses multiplied out and
all the similar terms summed up. To rewrite a polynomial in the standard form, use the
expand function:

syms X
f=(x"2- 1)*(x™M + x™3 + X2+ X+ 1)*¥(x™ - x™3 + x™2 - x+ 1);
expand ()

ans =
x~10 - 1

The factor simplification function shows the polynomial roots. If a polynomial cannot be
factored over the rational numbers, the output of the factor function is the standard
polynomial form. For example, to factor the third-order polynomial, enter:

syms x
g = x"3 + 6*x™2 + 11*Xx + 6;
factor(g)

ans =
[ x + 3, x+ 2, x + 1]

The nested (Horner) representation of a polynomial is the most efficient for numerical
evaluations:

syms X
h =X + x™ + X3 + X™2 + X;
horner(h)

ans =
XF(x*(x*(x*(x +1) +1) +1) + 1)

For a list of Symbolic Math Toolbox simplification functions, see “Choose Function to
Rearrange Expression” on page 2-101.

Substitutions in Symbolic Expressions
Substitute Symbolic Variables with Numbers

You can substitute a symbolic variable with a numeric value by using the subs function.
For example, evaluate the symbolic expression f at the point x = 1/3:
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syms X
f = 2¥x"2 - 3*x + 1;
subs(f, 1/3)

ans =
2/9

The subs function does not change the original expression f:
.f:

f =
2*¥x"2 - 3*x + 1

Substitute in Multivariate Expressions

When your expression contains more than one variable, you can specify the variable for
which you want to make the substitution. For example, to substitute the value x = 3 in the
symbolic expression

syms X y
f = x™2*y + S5*x*sqrt(y);

enter the command
subs(f, x, 3)

ans =
9%y + 15%y~(1/2)

Substitute One Symbolic Variable for Another

You also can substitute one symbolic variable for another symbolic variable. For example
to replace the variable y with the variable X, enter

subs(f, y, x)

ans =
X3 + 5*x™(3/2)

Substitute a Matrix into a Polynomial

You can also substitute a matrix into a symbolic polynomial with numeric coefficients.
There are two ways to substitute a matrix into a polynomial: element by element and
according to matrix multiplication rules.
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Element-by-Element Substitution
To substitute a matrix at each element, use the subs command:

syms X

f = x"3 - 15%x™2 - 24*x + 350;
A=1[123; 456];

subs(f,A)

ans =
[ 312, 250, 170]
[ 78, -20, -118]

You can do element-by-element substitution for rectangular or square matrices.

Substitution in a Matrix Sense

If you want to substitute a matrix into a polynomial using standard matrix multiplication
rules, a matrix must be square. For example, you can substitute the magic square A into a
polynomial f:

1 Create the polynomial:

syms X
f = x*3 - 15%x"2 - 24*x + 350;

2  Create the magic square matrix:

A = magic(3)

A =
8 1 6
3 5 7
4 9 2

3  Get a row vector containing the numeric coefficients of the polynomial f:

b

sym2poly(f)

b =
1 -15 -24 350

4 Substitute the magic square matrix A into the polynomial f. Matrix A replaces all
occurrences of x in the polynomial. The constant times the identity matrix eye (3)
replaces the constant term of f:

A~3 - 15*A"2 - 24*A + 350*eye(3)
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ans =
-10 0 0
0 -10 0
0 0 -10

The polyvalm command provides an easy way to obtain the same result:

polyvalm(b,A)

ans =
-10 0 0
0 -10 0
0 0 -10

Substitute the Elements of a Symbolic Matrix

To substitute a set of elements in a symbolic matrix, also use the subs command. Suppose
you want to replace some of the elements of a symbolic circulant matrix A

syms a b ¢
A=[abc;, cab; bcal

A
[
[
[

To replace the (2, 1) element of A with beta and the variable b throughout the matrix
with variable alpha, enter

alpha = sym('alpha');
beta = sym('beta');
A(2,1) = beta;

A = subs(A,b,alpha)

The result is the matrix:

A =

[ a, alpha, cl
[ beta, a, alpha]
[ alpha, c, al

For more information, see “Substitute Elements in Symbolic Matrices” on page 2-116.
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Plot Symbolic Functions

Symbolic Math Toolbox provides the plotting functions:

+ fplot to create 2-D plots of symbolic expressions, equations, or functions in Cartesian
coordinates.

+ fplot3 to create 3-D parametric plots.

* ezpolar to create plots in polar coordinates.

» fsurf to create surface plots.

+ fcontour to create contour plots.

+ fmesh to create mesh plots.

Explicit Function Plot

Create a 2-D line plot by using fplot. Plot the expression x3 — 6x2 + 11x — 6.

syms X
f =x"3 - 6*%x™2 + 11*x - 6;
fplot(f)
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-100 / 1
-150 / .
200 | / 1
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Add labels for the x- and y-axes. Generate the title by using texlabel(f). Show the grid
by using grid on. For details, see “Add Title and Axis Labels to Chart” (MATLAB).

xlabel('x")
ylabel('y")
title(texlabel(f))
grid on
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Mx-6x2+x°-86

-100 7 1
= -150 7 1
200 | / |
250 / i

300 F ;" .

Implicit Function Plot
Plot equations and implicit functions using fimplicit.

2

Plot the equation (X% + y2)* = (2 — y?)? over -1 < x < 1.

syms x y

eqn = (X™2 + y"2)™4 == (x"2 - y"2)"2;
fimplicit(eqn, [-1 1])
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3-D Plot
Plot 3-D parametric lines by using fplot3.
Plot the parametric line

X = tzsin(10t)

y= tzcos(IOt)
z=t.

syms t
fplot3(t"2*sin(10*t), t"2*cos(1lO*t), t)
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Create Surface Plot

Create a 3-D surface by using fsurf.

Plot the paraboloid z = x? + y2.

syms Xx vy
fsurf(x"2 + y"2)
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See Also

More About

“Create Symbolic Numbers, Variables, and Expressions” on page 1-3
“Create Symbolic Functions” on page 1-8

“Create Symbolic Matrices” on page 1-10

“Use Assumptions on Symbolic Variables” on page 1-29
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Use Assumptions on Symbolic Variables

In this section...

“Default Assumption” on page 1-29

“Set Assumptions” on page 1-29

“Check Existing Assumptions” on page 1-30

“Delete Symbolic Objects and Their Assumptions” on page 1-30

Default Assumption

In Symbolic Math Toolbox, symbolic variables are complex variables by default. For
example, if you declare z as a symbolic variable using

syms z

then MATLAB assumes that z is a complex variable. You can always check if a symbolic
variable is assumed to be complex or real by using assumptions. If z is complex,
assumptions(z) returns an empty symbolic object:

assumptions(z)
ans =

Empty sym: 1-by-0

Set Assumptions

To set an assumption on a symbolic variable, use the assume function. For example,
assume that the variable x is nonnegative:

syms x
assume(x >= 0)

assume replaces all previous assumptions on the variable with the new assumption. If you
want to add a new assumption to the existing assumptions, use assumeAlso. For
example, add the assumption that x is also an integer. Now the variable x is a
nonnegative integer:

assumeAlso(x, 'integer"')
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assume and assumeAlso let you state that a variable or an expression belongs to one of
these sets: integers, positive numbers, rational numbers, and real numbers.

Alternatively, you can set an assumption while declaring a symbolic variable using sym or
syms. For example, create the real symbolic variables a and b, and the positive symbolic
variable c:

a =sym('a', 'real');
b = sym('b', 'real');
c = sym('c', 'positive');

or more efficiently:

syms a b real
syms c positive

The assumptions that you can assign to a symbolic object with sym or syms are real,

rational, integer and positive.

Check Existing Assumptions

To see all assumptions set on a symbolic variable, use the assumptions function with the
name of the variable as an input argument. For example, this command returns the
assumptions currently used for the variable x:

assumptions(x)

To see all assumptions used for all symbolic variables in the MATLAB workspace, use
assumptions without input arguments:

assumptions

For details, see “Check Assumptions Set On Variables” on page 3-72.

Delete Symbolic Objects and Their Assumptions

Symbolic objects and their assumptions are stored separately. When you set an
assumption that x is real using

syms X
assume(x, 'real')
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you actually create a symbolic object x and the assumption that the object is real. The
object is stored in the MATLAB workspace, and the assumption is stored in the symbolic
engine. When you delete a symbolic object from the MATLAB workspace using

clear x

the assumption that x is real stays in the symbolic engine. If you declare a new symbolic
variable x later using sym, it inherits the assumption that x is real instead of getting a
default assumption. If later you solve an equation and simplify an expression with the
symbolic variable X, you could get incomplete results.

Note If you declare a variable using syms, existing assumptions are cleared. If you
declare a variable using sym, existing assumptions are not cleared.

For example, the assumption that x is real causes the polynomial x? + 1 to have no roots:
syms X real

clear x

X = sym('x");

solve(x™2 + 1 == 0, X)

ans =
Empty sym: 0-by-1

The complex roots of this polynomial disappear because the symbolic variable x still has
the assumption that x is real stored in the symbolic engine. To clear the assumption, enter

syms X

After you clear the assumption, the symbolic object stays in the MATLAB workspace. If
you want to remove both the symbolic object and its assumption, use two commands:

1 To clear the assumption, enter

syms X

2 To delete the symbolic object, enter

clear x

For details on clearing symbolic variables, see “Clear Assumptions and Reset the
Symbolic Engine” on page 3-70.
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See Also

More About

“Create Symbolic Numbers, Variables, and Expressions” on page 1-3
“Create Symbolic Functions” on page 1-8

“Create Symbolic Matrices” on page 1-10

“Perform Symbolic Computations” on page 1-13
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* “Find Symbolic Variables in Expressions, Functions, Matrices” on page 2-3
* “Add Subscripts, Superscripts, and Accents to Symbolic Variables” on page 2-5
* “Change Output Display Format of Symbolic Results” on page 2-10

* “Units of Measurement Tutorial” on page 2-14

* “Units and Unit Systems List” on page 2-21

* “Unit Conversions and Unit Systems” on page 2-39

+ “Differentiation” on page 2-48

* “Functional Derivatives Tutorial” on page 2-54

* “Limits” on page 2-61

* “Integration” on page 2-64

* “Symbolic Summation” on page 2-72

* “Taylor Series” on page 2-75

* “Padé Approximant” on page 2-77

+ “Find Asymptotes, Critical and Inflection Points” on page 2-86

* “Simplify Symbolic Expressions” on page 2-93

* “Abbreviate Common Terms in Long Expressions” on page 2-99

* “Choose Function to Rearrange Expression” on page 2-101

» “Extract Numerators and Denominators of Rational Expressions” on page 2-112
* “Substitute Variables in Symbolic Expressions” on page 2-114

* “Substitute Elements in Symbolic Matrices” on page 2-116

* “Substitute Scalars with Matrices” on page 2-118

+ “Evaluate Symbolic Expressions Using subs” on page 2-120

* “Choose Symbolic or Numeric Arithmetic” on page 2-121

* “Increase Precision of Numeric Calculations” on page 2-123
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“Recognize and Avoid Round-Off Errors” on page 2-125

“Increase Speed by Reducing Precision” on page 2-130

“Numeric to Symbolic Conversion” on page 2-132

“Basic Algebraic Operations” on page 2-136

“Linear Algebraic Operations” on page 2-138

“Eigenvalues” on page 2-143

“Jordan Canonical Form” on page 2-148

“Singular Value Decomposition” on page 2-150

“Solve Algebraic Equation” on page 2-152

“Solve a Second-Order Differential Equation Numerically” on page 2-158
“Select Numeric or Symbolic Solver” on page 2-161

“Solve System of Algebraic Equations” on page 2-163

“Troubleshoot Equation Solutions from solve Function” on page 2-174
“Solve System of Linear Equations” on page 2-179

“Solve Equations Numerically” on page 2-182

“Solve Differential Equation” on page 2-193

“Solve a System of Differential Equations” on page 2-197

“Solve Differential Algebraic Equations (DAEs)” on page 2-203

“Solve Semilinear DAE System” on page 2-215

“Solve DAEs Using Mass Matrix Solvers” on page 2-223

“Fourier and Inverse Fourier Transforms” on page 2-230

“Solve Differential Equations Using Laplace Transform” on page 2-235
“Solve Difference Equations Using Z-Transform” on page 2-243

“Create Plots” on page 2-250

“Generate C or Fortran Code from Symbolic Expressions” on page 2-262
“Generate MATLAB Functions from Symbolic Expressions” on page 2-264
“Generate MATLAB Function Blocks from Symbolic Expressions” on page 2-268
“Generate Simscape Equations from Symbolic Expressions” on page 2-270
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Find Symbolic Variables in Expressions, Functions,
Matrices

To find symbolic variables in an expression, function, or matrix, use symvar. For example,
find all symbolic variables in symbolic expressions f and g:

syms a b nt x

f = x*n;

g = sin(a*t + b);
symvar(f)

ans =
[ n, x]

Here, symvar sorts all returned variables alphabetically. Similarly, you can find the
symbolic variables in g by entering:

symvar(g)
ans =
[ a, b, t]

symvar also can return the first n symbolic variables found in a symbolic expression,
matrix, or function. To specify the number of symbolic variables that you want symvar to
return, use the second parameter of symvar. For example, return the first two variables
found in symbolic expression g:

symvar(g, 2)

ans =
[ b, t]

Notice that the first two variables in this case are not a and b. When you call symvar with
two arguments, it finds symbolic variables by their proximity to x before sorting them
alphabetically.

When you call symvar on a symbolic function, symvar returns the function inputs before
other variables.

Syms X y w z

f(w, z) = X*w + y*z;
symvar(f)
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ans =
[ w, z, x, y]

When called with two arguments for symbolic functions, symvar also follows this
behavior.

symvar(f, 2)

ans =
[ w, z]

Find a Default Symbolic Variable

If you do not specify an independent variable when performing substitution,
differentiation, or integration, MATLAB uses a default variable. The default variable is
typically the one closest alphabetically to x or, for symbolic functions, the first input
argument of a function. To find which variable is chosen as a default variable, use the
symvar(f, 1) command. For example:

syms s t
f=s+t;
symvar(f, 1)

ans =
t

syms sx tx
f = sx + tx;
symvar(f, 1)

ans =
tx

For more information on choosing the default symbolic variable, see symvar.
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Add Subscripts, Superscripts, and Accents to Symbolic
Variables

This example shows how to add subscripts, superscripts, and accents to symbolic
variables. MATLAB® Live Editor displays symbolic variables with subscripts,
superscripts, and accents in standard mathematical notation.

Add Subscripts and Superscripts

To add subscripts to symbolic variables in live scripts, append the corresponding index to
the variable using one underscore (_). For example, create two symbolic variables with
subscripts using syms. Use these variables in an expression.

syms F_

F_
Ftot a

+ T

a
Fa+Fob

Ftot = F,+Fj,

You can also use sym to create a symbolic variable with a subscript and assign the
variable to a symbolic expression.

Fa = sym('F a')

Fa = Fq4

To add superscripts to symbolic variables, append the corresponding index to the variable

using two underscores (). For example, create two symbolic variables with
superscripts.

syms F aF b
Ftot =F _a+ F_ b

Ftot = F9+ FP

When you assign symbolic variables to an expression, the symbolic expression is
displayed in ASCII format.

Add Accents
To add accents to symbolic variables in live scripts, append the corresponding suffix to

the variable using the underscore (_). For example, create symbolic variables with one
dot and two dots over the symbol x. Use these variables in an equation.
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syms x x dot x ddot c m k
eql = m*x ddot - c*x dot + k*x ==

eql = kx—cx+mx=0

When you compute the complex conjugate of a symbolic variable with an accent, a bar
notation is added above the variable. For example, find the complex conjugate of x_dot
using the conj function.

xConj = conj(x_dot)

X

xConj
The supported accent suffixes for symbolic variables follow.

suffix = ["ast"; "hat"; "tilde"; "vec"; "bar";
Ilubarll; Ildotll; Ilddo.tll; Il.tdotll; Ilqdotll;
"prime"; "dprime"; "tprime"; "qprime"];

accentList = [suffix, sym("x " + suffix)]

accentlList =
ast x*
hat X
tilde X
vec X
bar X
ubar x
dot x
ddot X
tdot x
gdot  x
prime X’
dprime x”
tprime x”
gprime x””

When you compute the complex conjugate transpose of a matrix containing symbolic
variables, a bar notation is also added above each variable. For example, find the
conjugate transpose of the symbolic variables in accentList(:,2) using the
ctranspose or ' function.
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conjVar = accentList(:,2)"
conjVar =
FIXXXXKE X X XX X X7

When you compute the nonconjugate transpose of a matrix containing symbolic variables,
the display output is unchanged. For example, find the nonconjugate transpose of the
symbolic variables in accentList(:,2) using the transpose or . ' function.

nonconjVar = accentlList(:,2)."'
nonconjVar =
(X* RXXXXxXX x x X X' x~ X)
Add Multiple Subscripts, Superscripts, and Accents

You can create symbolic variables with multiple subscripts, superscripts, and accents. The
multiple suffixes are assigned to the symbolic variables from left to right.

Create symbolic variables with multiple subscripts and superscripts. If you add multiple
subscripts and superscripts, then the input indices are separated with a comma sign and
displayed from left to right.

x1 =sym('x b1 a 1)

x1

a,l
Xb,1
X2 =sym('x b 1la 1)

_ b1
X2 = X|'q

Now create symbolic variables with multiple accents. If you add multiple accents, then
the input accents are assigned from left to right to the closest preceding variable or
index. Some examples follow.

vl = sym('v prime vec')

vl =

v

v2 sym('v vec prime')

v2
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-
va = sym('v__a bar prime')
va = v
vb = sym('v _bar b prime')
b

vb %

Adding suffixes to the symbolic variables can produce similar output. However, the
variables are equal only if their suffixes are also in the same order. For example, create
three symbolic variables that produce similar output.

syms F t a
F1=Ft a

F1 = Ff
F2 = sym('F t a')
F2 = F{
F3 = sym('F _a t')
F3 = Ff

Determine if the symbolic variables are equal to each other using the isequal function.

TF 12 = isequal(F1,F2)
TF 12 = logical

1
TF 23 = isequal(F2,F3)
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TF 23 = logical
0

See Also

Related Examples

. “Create Symbolic Numbers, Variables, and Expressions” on page 1-3
. “Find Symbolic Variables in Expressions, Functions, Matrices” on page 2-3
. “Use Assumptions on Symbolic Variables” on page 1-29
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2-10

This example shows how to modify the output display format of symbolic results in
Symbolic Math Toolbox™ by using the sympref function. To demonstrate the use of the
function, this example uses a third-degree polynomial.

Modify Output Order of Third-Degree Polynomial

Create a third-degree polynomial consisting of one variable and three coefficients. Define
the variable and coefficients as symbolic variables by using the syms command.

syms x a b c
f(x) = (a*x™2 + b)*(b*x - a) + c

f(x) =c—@m2+bﬂa—bm

Symbolic preferences persist through successive MATLAB® sessions. Restore all
symbolic preferences to the default values. Expand the polynomial and return the output
in the default order.

sympref('default');
poly = expand(f)

poly(x) = ~a®>x2+abx®-ab+b*x+c

The default output format displays the terms of a symbolic polynomial in alphabetical
order, without distinguishing the different symbolic variables in each monomial term.

To change the output order of a polynomial, set the 'PolynomialDisplayStyle'
preference. The 'ascend' option sorts the output in an ascending order based on the
standard mathematical notation for polynomials. Here, the variable x with the highest
order in a monomial term is displayed last.

sympref('PolynomialDisplayStyle', 'ascend');
poly

poly(x) = c—cd)+b2x—a2x2+abx3
Modify Output Display of Polynomial Roots

By default, symbolic results in Live Scripts are typeset in standard mathematical notation,
long expressions are abbreviated, and matrices are set in parentheses (round brackets).
You can modify the output display format by setting the symbolic preferences.
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Find the roots or zeros of the third-degree polynomial using solve. In Symbolic Math
Toolbox, the root function represents the roots of a polynomial.

sols = solve(poly,x)

sols =
root(oq,z,1)

root(o1, 2, 2)
root(oq, z, 3)

where
01 =abB-a?22+b*z-ab+c
To display the results without being abbreviated, set 'AbbreviateOutput' preference
to false.

sympref('AbbreviateQutput', false);
sols

sols =

2z2+b22—ab+c,z,l)

root(a b2 —a
Hm%abz3—azz2+bzz—ab+cg:ﬂ
root(ab23 _0222 +b22—ab +c,z,3)
To display the symbolic matrix with square brackets, rather than parentheses, set
'MatrixWithSquareBrackets' preference to true.

sympref('MatrixWithSquareBrackets', true);
sols

sols =
root(asz—azzz+bzz—ab+c,z,1)

2

root(abz3—a z2+b22—ab+c,z,2)

root(abz3—azz2+b22—ab+c,z,3)

To display the results in ASCII characters instead of in typeset mathematical notation, set
'TypesetOutput' preference to false.
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sympref('TypesetOutput', false);
sols

sols =

root(a*b*z”"3 - an2*z"2 + b"2*z - a*b + ¢, z, 1)
root(a*b*z”"3 - an2*z"2 + b"2*z - a*b + ¢, z, 2)
root(a*b*z”"3 - a”2*z"2 + b™2*z - a*b + ¢, z, 3)

The preferences you set using sympref persist through your current and future
MATLAB® sessions. Restore the symbolic preferences to the default values for the next
step.

sympref('default');
Display Floating-Point Output of Symbolic Numbers

Replace the polynomial coefficients with symbolic numbers using subs. The function
returns the solutions without any approximation.

numSols

subs(sols,[a b c],[sqrt(2) pi 0.001])

numSols =
root(oq,z, 1)
root(oq, z, 2)

root(oq, z, 3)
where

o1 = 1000 /2 23 - 2000 22 + 1000 z 1% — 1000 /2 + 1

To display the results in floating-point format, set 'FloatingPointOQutput' preference
to true. This option displays symbolic numbers in fixed-decimal format with 4 digits after
the decimal point. For a complex result of class 'sym', this preference affects the real
and imaginary parts independently.

sympref('FloatingPointOutput', true);
numSols

numSols =
0.4501
4.6427e—05—1.4904 i
4.6427e—05+ 1.4904 i
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The display preferences you set do not affect the computation of symbolic results. You can
use the vpa function to approximate symbolic numbers in floating-point precision with 4
significant digits.

vpaSols = vpa(numSols,4)

vpaSols =
0.4501

-1.4904 i
1.4904 i
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Units of Measurement Tutorial

2-14

Use units of measurement with Symbolic Math Toolbox. This page shows how to define
units, use units in equations (including differential equations), and verify the dimensions
of expressions.

Define and Convert Units

Load units by using symunit.
u = symunit;

Specify a unit by using u.unit. For example, specify a distance of 5 meters, a weight of
50 kilograms, and a speed of 10 kilometers per hour. In displayed output, units are placed
in square brackets [].

d = 5*%u.m

w = 50*u.kg

s = 10*u.km/u.hr
d =

5*%[m]

W =

50*[kg]

S =
10*([km]/[h])

Tip Use tab expansion to find names of units. Type u., press Tab, and continue typing.

Units are treated like other symbolic expressions and can be used in any standard
operation or function. Units are not automatically simplified, which provides flexibility.
Common alternate names for units are supported. Plurals are not supported.

Add 500 meters and 2 kilometers. The resulting distance is not automatically simplified.
d = 500*%u.m + 2*u.km

d =
2%[km] + 500*[m]
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Simplify d by using simplify. The simplify function automatically chooses the unit to
simplify to.

d = simplify(d)
d:
(5/2)*[km]

Instead of automatically choosing a unit, convert d to a specific unit by using
unitConvert. Convert d to meters.

d = unitConvert(d,u.m)
d =
2500*[m]

There are more unit conversion and unit system options. See “Unit Conversions and Unit
Systems” on page 2-39.

Find the speed if the distance d is crossed in 50 seconds. The result has the correct units.

t = 50*u.s;
s = d/t

S =
50*%([m]/[s])

Use Temperature Units in Absolute or Difference Forms

By default, temperatures are assumed to represent differences and not absolute
measurements. For example, 5*u.Celsius is assumed to represent a temperature
difference of 5 degrees Celsius. This assumption allows arithmetical operations on
temperature values.

To represent absolute temperatures, use kelvin, so that you do not have to distinguish an
absolute temperature from a temperature difference.

Convert 23 degrees Celsius to kelvin, treating it first as a temperature difference and
then as an absolute temperature.

symunit;
23*u.Celsius;
K

iffK = unitConvert(T,u.K)
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diffK =
23*[K]

absK = unitConvert(T,u.K, 'Temperature', 'absolute")

absK =
(5923/20)*[K]

Verify Dimensions

In longer expressions, visually checking for units is difficult. You can check the
dimensions of expressions automatically by verifying the dimensions of an equation.
First, define the kinematic equation v2 = vy2 + 2as, where v represents velocity, a
represents acceleration, and s represents distance. Assume s is in kilometers and all
other units are in SI base units. To demonstrate dimension checking, the units of a are
intentionally incorrect.

syms v v0 a s
u = symunit;

eqn = (v*u.m/u.s)”2 == (vO*u.m/u.s)”2 + 2*a*u.m/u.s*s*u.km
eqn =
vi2*¥([m]~2/[s]172) == vO7™2*([m]"~2/[s]172) + (2*a*s)*(([km]*[m])/[s])

Observe the units that appear in eqn by using findUnits. The returned units show that
both kilometers and meters are used to represent distance.

findUnits(eqn)

ans =

[ [km], [m], [s]]

Check if the units have the same dimensions (such as length or time) by using
checkUnits with the 'Compatible' input. MATLAB assumes symbolic variables are
dimensionless. checkUnits returns logical 0 (false), meaning the units are
incompatible and not of the same physical dimensions.

checkUnits(eqgn, 'Compatible')
ans =

logical
0
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Looking at eqn, the acceleration a has incorrect units. Correct the units and recheck for
compatibility again. eqn now has compatible units.

egn = (v*u.m/u.s)”™2 == (vO*u.m/u.s)”2 + 2*a*u.m/u.s"2*s*u.km;
checkUnits(eqgn, 'Compatible')

ans =

logical
1

Now, to check that each dimension is consistently represented by the same unit, use
checkUnits with the 'Consistent' input. checkUnits returns logical 0 (false)
because meters and kilometers are both used to represent distance in eqn.

checkUnits(eqn, 'Consistent')
ans =

logical
0

Convert eqn to SI base units to make the units consistent. Run checkUnits again. eqn
has both compatible and consistent units.

egn = unitConvert(eqgn, 'SI")

eqn =
V2% ([m]”2/[s]172) == vO™2*([m]~2/[s]172) + (2000*a*s)*([m]~2/[s]1"2)

checkUnits(eqgn)

ans =
struct with fields:

Consistent: 1
Compatible: 1

After you finish working with units and only need the dimensionless equation or
expression, separate the units and the equation by using separateUnits.

[egn,units] = separateUnits(eqgn)
eqn =
v"2 == v0"2 + 2000%*a*s

units =
1¥([m]"2/[s172)
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You can return the original equation with units by multiplying eqn with units and
expanding the result.

expand(eqn*units)

ans =
v2*¥([m]"2/[s]172) == vO™2*([m]"~2/[s]"2) + (2000*a*s)*([m]"2/[s]"2)

To calculate numeric values from your expression, substitute for symbolic variables using
subs, and convert to numeric values using double or vpa.

Solve eqn for v. Then find the value of v where v = 5,a = 2.5,and s = 10. Convert
the result to double.

lve(eqgn,v);

2); % choose the positive solution
subs(v,[vO a s],[5 2.5 10]);
double(vSol)

nn—o

vSol
223.6627

Use Units in Differential Equations

Use units in differential equations just as in standard equations. This section shows how
to use units in differential equations by deriving the velocity relations v = v, + at and

v2 = vy2 + 2as starting from the definition of acceleration a = %
Represent the definition of acceleration symbolically using SI units. Given that the
velocity V has units, V must be differentiated with respect to the correct unitsas T =
t*u.s and not just t.

syms V(t) a

u = symunit;

T = t*u.s; % time in seconds

A = a*u.m/u.s"2; % acceleration in meters per second
egqnl = A == diff(V,T)

eqnl(t) =

a*([m]/[s]"2) == diff(V(t), t)*(1/[s])

Because the velocity V is unknown and does not have units, eqnl has incompatible and
inconsistent units.
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checkUnits(eqnl)

ans =
struct with fields:

Consistent: 0
Compatible: 0

Solve eqnl for V with the condition that the initial velocity is v,. The result is the equation
v(t) = vy + at.

syms vO

cond = V(0) == vO*u.m/u.s;
egn2 = V == dsolve(eqnl,cond)
egn2(t) =

V(t) == vO*([m]/[s]) + a*t*([m]/[s])

Check that the result has the correct dimensions by substituting rhs (eqn2) into eqnl
and using checkUnits.

checkUnits(subs(eqnl,V,rhs(eqn2)))

ans =
struct with fields:

Consistent: 1
Compatible: 1

Now, derive v2 = vy2 + 2as. Because velocity is the rate of change of distance, substitute V

with the derivative of distance S. Again, given that S has units, S must be differentiated
with respect to the correct units as T = t*u.s and not just t.

syms S(t)
egqn2 = subs(eqn2,V,diff(S,T))

eqn2(t) =
diff(s(t), t)*(1/[s]) == vO*(Im]/[s]) + a*t*([m]/[s])

Solve eqn2 with the condition that the initial distance covered is 0. Get the expected form
of S by using expand.

cond2 = S(0) == 0;
egn3 = S == dsolve(eqn2,cond2);
eqn3 = expand(eqn3)
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egn3(t) =
S(t) == t*xvO*[m] + ((a*t™2)/2)*[m]

You can use this equation with the units in symbolic workflows. Alternatively, you can
remove the units by returning the right side using rhs, separating units by using
separateUnits, and using the resulting unitless expression.

[S units] = separateUnits(rhs(eqgn3))

S(t) =
(a*t"2)/2 + vO*t

units(t) =
[m]

When you need to calculate numeric values from your expression, substitute for symbolic
variables using subs, and convert to numeric values using double or vpa.

Find the distance traveled in 8 seconds where vO = 20 and a = 1.3. Convert the result
to double.

S = subs(S,[v0 al,[20 1.3]1);
dist S(8);
dist double(dist)

dist =
201.6000

See Also

checkUnits | findUnits | isUnit | newUnit | separateUnits | symunit2str |
unitConversionFactor | unitConvert

More About

. “Unit Conversions and Unit Systems” on page 2-39
. “Units and Unit Systems List” on page 2-21

External Websites
. The International System of Units (SI)


https://www.bipm.org/en/publications/si-brochure/

Units and Unit Systems List

Units and Unit Systems List

List of units, SI unit prefixes, and unit systems in Symbolic Math Toolbox. For details, see
“Units of Measurement Tutorial” on page 2-14. Common alternate names for units are
supported and map to the name listed here. Plurals are not supported.

In this section...

“Units List” on page 2-21
“SI Unit Prefixes List” on page 2-35
“Unit Systems List” on page 2-36

Units List

Length

* Ao - angstrom

* a_0-Bohrradius

* au - astronomical unit

* ch-chain

o ft-foot

« ft US-U.S. survey foot
« ftm- fathom

o fur - furlong

* g9 -gauge
* hand
e in-inch

e 1inm - international nautical mile
* land - league

+ 1i-link

* line

* 1y - light-year

* m - meter (SI)
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* mi-mile

* mi_US-U.S. survey mile

 mil

* nmile - British imperial nautical mile
* pC - parsec

* pt-point
* rod
* Span

* XU -Xunit

* xu_Cu - x unit (copper)

* XxXu_Mo - x unit (molybdenum)
* yd-yard

Mass

* Mt - metric megaton

e ct-carat

* cwt - U.S. customary short hundredweight
* cwt UK - British imperial short hundredweight
* dalton - atomic mass constant

* dr-dram

* g-gram

* gr-grain

* hyl

* Kkt - metric kiloton

* 1bm - pound mass

* m_e - electron mass

* 0z -ounce

* quarter
* slug
* stone
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* 1 - metric ton

* tn-U.S. customary short ton
* ton_ UK - British imperial ton
Time

* d-day

+ fortnight - 14 days

* h-hour

* min - minute

* month 30 - 30-day month

e s -second (SI)

* week - 7-day week

* year 360 - 360-day year

* year Julian - Julian year

* year Gregorian - Gregorian year

Absorbed Dose or Dose Equivalent

* Gy - gray (SI)
* Rad - absorbed radiation dose
e Sv -sievert (SI)

* rem-roentgen equivalent man

Acceleration

* Gal-gal
* g n - earth gravitational acceleration

Activity

* Bq - becquerel (SI)

* Ci-curie
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Amount of Substance

e item - number of items
* mol - mole (SI)
* molecule - number of molecules

Angular Momentum

* Nms - newton meter second
* h_bar -reduced Planck constant
* h_c - Planck constant

Area

* a-are

* ac-U.S. survey acre

* barn

* circ_mil - circular mil

* circ_inch - circular inch
* ha - metric hectare

* ha US-U.S. survey hectare
* ro-rood

* twp - township

Capacitance

e F -farad (SI)
* abF - abfarad
e statF - statfarad

Catalytic Activity
* kat - katal (SI)
Conductance

* S -siemens (SI)
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e abs - absiemens

e statS - statsiemens

Data Transfer Rate

* Bd - baud

* bps - bit per second
Digital Information

* B-byte

* bit - basic unit of information

Dose Equivalent

e Sv -sievert (SI)
Dynamic Viscosity
* P -poise

* reyn - reynolds
Electric Charge

e C-coulomb (SI)

* Fr - franklin

* abC - abcoulomb

* e -elementary charge
+ statC - statcoulomb

Electric Current

* A-ampere (SI)

* Bi - biot

* abA - abampere

* statA - statampere
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Electric Dipole Moment
* debye
Electric Potential

e V-volt (SI)
e abV - abvolt
* statV - statvolt

Electric Potential or Electromotive Force

oV -volt (SI)
e abV -abvolt
e statV - statvolt

Energy or Work or Heat

* Btu IT - British thermal unit (International Table)
* Btu_th - British thermal unit (thermochemical)
* E_h - Hartree energy

* J-joule (SI)

* Nm - newton meter

* Wh - watt hour

* Ws - watt second

* cal 4 - calorie (4 degree Celsius)

* cal 20 - calorie (20 degree Celsius)

* cal 15 - calorie (15 degree Celsius)

* cal _IT - calorie (International Table)

* cal th - calorie (thermochemical)

* cal mean - calorie (mean)

* eV - electronvolt

* erg

* kcal 4 -kilocalorie (4 degree Celsius)

+ kcal 20 - kilocalorie (20 degree Celsius)
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* kcal 15 - kilocalorie (15 degree Celsius)
* kcal IT -kilocalorie (International Table)
* kcal th -kilocalorie (thermochemical)

* kcal mean - kilocalorie (mean)

* kpm - kilopond meter

* therm

Energy Per Temperature

* Kk B - Boltzmann constant

European Currency

* Cent -cent
* EUR- Euro

Magnetic Field Strength

e Qe - oersted

Flow Rate

» gpm - U.S. customary gallon per minute
* gpm_UK - British imperial gallon per minute

* 1lpm - liter per minute
Force

* N - newton (SI)

* dyn-dyne

* Kkgf - kilogram force
+ kip

* kp - kilopond

* 1bf - pound force

* ozf - ounce force

* p-pond
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* pdl - poundal
* sn-sthene
e tonf - short ton force

Former European Currency

* ATS - Austrian Schilling
* BEF - Belgian Franc

* DM - German Mark

* ESP - Spanish Peseta

* FIM- Finnish Markka

* FRF - French Franc

* IEP - Irish Pound

e ITL - Italian Lire

* LUF - Luxembourgian Franc
* NLG - Dutch Gulden

* PTE - Portuguese Escudo
Frequency

* Hz - hertz (SI)
Frequency of Rotation

* rpm - revolution per minute
* rps - revolution per second

Fuel Consumption

* 1 100km - liter per 100 km
Fuel Economy

* mpg - mile per gallon
Gravity

* G_c - Newtonian constant of gravitation
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Heat

e Btu IT - British thermal unit (International Table)
* Btu_ th - British thermal unit (thermochemical)
* cal 4 - calorie (4 degree Celsius)

* cal 20 - calorie (20 degree Celsius)

* cal 15 - calorie (15 degree Celsius)

* cal IT - calorie (International Table)

* cal_th - calorie (thermochemical)

* cal mean - calorie (mean)

» kcal 4 -kilocalorie (4 degree Celsius)

* kcal 20 - kilocalorie (20 degree Celsius)

* kcal 15 - kilocalorie (15 degree Celsius)

* kcal IT -kilocalorie (International Table)

* kcal th -kilocalorie (thermochemical)

* kcal mean - kilocalorie (mean)

* therm

Illuminance

e 1x-lux (SI)

* NX-nox
* ph-phot
Inductance

* H- henry (SI)
* abH - abhenry
* statH - stathenry

lonising Dosage

* R-roentgen
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Kinematic Viscosity

* St -stokes
* newt

Luminance

* asb - apostilb
* sb-stilb

Luminous Flux
* 1m-lumen (SI)
Luminous Intensity

* cd - candela (SI)
* cp - candlepower

Magnetic Flux

*  Mx - maxwell

* Wb - weber (SI)

* abWb - abweber

* statWb - statweber

Magnetic Flux Density

* G- gauss

e T-tesla(SI)

* abT - abtesla

+ statT - stattesla

Magnetic Force
* Gb - gilbert
Mass Per Length

e den - denier
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* tex - filament tex

Particle Per Amount of Substance

* N_A- Avogadro constant

Plane Angle

* arcsec - arcsecond
* arcmin - arcminute
* deg - degree

* rad - radian (SI)

* rev - revolution

Power

* HP_E - electrical horsepower

* HP_I - mechanical horsepower

* HP_UK - British imperial horsepower

* HP_DIN - metric horsepower (DIN 66036)
* PS_SAE - net horsepower (SAE J1349)

* PS DIN - horsepower (DIN 70020)

* poncelet

Power

* HP_E - electrical horsepower

* HP_I - mechanical horsepower

* HP_UK - British imperial horsepower

* HP_DIN - metric horsepower (DIN 66036)
* PS_SAE - net horsepower (SAE J1349)

* PS DIN - horsepower (DIN 70020)

* W - watt (SI)

* poncelet
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Pressure

Ba - barye

Pa - pascal (SI)

Torr - torr

at - technical atmosphere

atm - standard atmosphere

bar

cmHg - centimeter of mercury (conventional)
cmH20 - centimeter of water (conventional)
ftHg - foot of mercury (conventional)
ftH20 - foot of water (conventional)

inHg - inch of mercury (conventional)
inH20 - inch of water (conventional)

ksf - kip per square foot

ksi - kip per square inch

mH20 - meter of water (conventional)

mHg - meter of mercury (conventional)
mmHg - millimeter of mercury (conventional)
mmH20 - millimeter of water (conventional)
psT - pound force per square foot

psi - pound force per square inch

pz - pieze

Pressure or Stress

Ba - barye

Pa - pascal (SI)

Torr - torr

at - technical atmosphere
atm - standard atmosphere
bar
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cmHg - centimeter of mercury (conventional)

cmH20 - centimeter of water (conventional)

» TftHg - foot of mercury (conventional)
* ftH20 - foot of water (conventional)

* 1inHg - inch of mercury (conventional)
* 1nH20 - inch of water (conventional)

* ksf - kip per square foot

* ksi - kip per square inch

* mH20 - meter of water (conventional)
* mHg - meter of mercury (conventional)

* mmHg - millimeter of mercury (conventional)

* mmH20 - millimeter of water (conventional)
* psT - pound force per square foot

* psi - pound force per square inch

* pz-pieze

Radiation
* lan - langley
Radioactivity

* Bq - becquerel (SI)
e (i - curie

Reciprocal Length

* kayser

Refractive Power of Lenses
* dpt - diopter

Resistance

e Ohm - ohm (SI)
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e abOhm - abohm
 statOhm - statohm

Solid Angle

* sr -steradian (SI)
Substance Per Volume
* molarity
Temperature

* Celsius - degree Celsius (SI)

* Fahrenheit - degree Fahrenheit
* K- kelvin (SI)

* Rankine - degree Rankine

* Reaumur - degree Reaumur

Velocity

* Kyne - kyne

* C_0 - speed of light in vacuum
+ fpm - foot per minute

+ fps - foot per second

* kmh - kilometer per hour

* knot UK - British imperial knot
* kts - international knot

* mach - speed of sound

* mph - mile per hour
Volume

* barrel
* bbl-U.S. customary dry barrel
* bu_ UK - British imperial bushel
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chaldron

dry bu - U.S. customary dry bushel
dry pk-U.S. customary dry peck
dry pt-U.S. customary dry pint
dry qt- U.S. customary dry quart

dry gal - U.S. customary dry gallon
fldr - U.S. customary fluid dram

fldr UK - British imperial fluid drachm (dram)

floz - U.S. customary fluid ounce
floz UK - British imperial fluid ounce
gal - U.S. customary liquid gallon
gal UK - British imperial gallon
gill - U.S. customary fluid gill
gill UK - British imperial gill

igal - British imperial gallon

1 - liter

liqg pt - U.S. customary liquid pint
lig gt - U.S. customary liquid quart
minim - U.S. customary minim
minim UK - British imperial minim
pint - U.S. customary liquid pint
pint UK - British imperial pint
pk_UK - British imperial peck
pottle - British imperial pottle

gt UK - British imperial quart
quart - U.S. customary liquid quart

SI Unit Prefixes List

SI unit prefixes in Symbolic Math Toolbox. Every unit marked by SI in the units list
accepts SI prefixes. For example, m accepts nm, mcm, mm, cm, km and so on.
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Prefix Input Forms Example using meters
u.m where u = symunit

Yotta 1024 Y, yotta u.Ym, u.yottam

Zetta 1021 Z, zetta u.zZm, u.zettam

Exa 1018 E, exa u.Em, u.exam

Peta 101 P, peta u.Pm, u.petam

Tera 1012 T, tera u.Tm, u.teram

Giga 10° G, giga u.gigam, u.Gm

Mega 106 M, mega u.Mm, u.megam

Kilo 103 k, kilo u.km, u.kilom

Hecto 102 h, hecto u.hm, u.hectom

Deka 10! da, deka, deca u.dam, u.dekam, u.decam

Deci 10! d, deci u.dm, u.decim

Centi 102 c, centi u.cm, u.centim

Milli 10-3 m, milli u.m u.millim

Micro 106 mc, micro, u u.mcm, u.microm, u.um

Nano 10-° n, nano u.nm, u.nanom

Pico 10-12 p, pico u.pm, u.picom

Femto 10-1° f, femto u.fm, u. femtom

Atto 10-18 a, atto u.am, u.attom

Zepto 10-21 z, zepto u.zm, u.zeptom

Yocto 1024 y, yocto u.ym, u.yoctom

Unit Systems List

Available units systems in Symbolic Math Toolbox are listed below. For details, see “Unit
Conversions and Unit Systems” on page 2-39.

Unit System

Base Units

Derived Units

ST units ('SI")

As defined.

As defined.




See Also

Unit System

Base Units

Derived Units

CGS units ('CGS")

baseUnits('CGS")

ans =

[ [em], [g], [s], [KII

derivedUnits('CGS")

ans =
[ [Gall, [dyn], [erg], [H

US units ('US")

baseUnits('US"')

ans =
[ [tbm], [s], [ft], [AI],

derivedUnits('US"')

ans =
[cdFl,[n&l], [BK1] [H], [V]
[Wl, [psfl, [Ohm], [TI,
[sr], [Fahrenheit], [gal

Electrostatic units ('ESU")

baseUnits('ESU"')

ans =
[ [cm]l, [g], [s], [K], [5

derivedUnits('ESU")

ans =
tafGall, [dyn], [ergl, [H
[statH], [statS], [stat(

Gaussian units ('GU")

baseUnits('GU")

ans =
[ [em]l, [g], [s], [K], [H

derivedUnits('GU"')

ans =
f1IGal], [dyn], [erg]l, [H
[Bil, [Mx], [Oe], [debys

Electromagnetic units

baseUnits('EMU"')

derivedUnits('EMU")

("EMU")
ans = ans =
[ [cm], [gl, [s], [K]l, [g4AIGall, [dyn], [erg], [H
[abF], [abH], [abS], [ahb
See Also

checkUnits | isUnit | newUnit | rewrite | separateUnits | symunit |
symunit2str | unitConversionFactor

See Also

Related Examples

. “Units of Measurement Tutorial” on page 2-14

. “Unit Conversions and Unit Systems” on page 2-39

al, [P], IS

, [Btu_IT],
[Gy]l, [Bal,
11

al, [P], [¢
hm], [stat

al, [P], [S
1]

al, [P], [¢
Ohm], [abT.
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External Websites
. The International System of Units (SI)
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Unit Conversions and Unit Systems

Unit Conversions and Unit Systems

Convert between units with Symbolic Math Toolbox. This page shows conversions
between units and between systems of units, such as SI, CGS, or a user-defined unit
system.

Convert Units
Convert between units by using unitConvert.

Convert 1.2 meters to centimeters.

u = symunit;

len = 1.2*u.m;

len = unitConvert(len,u.cm)
len =

120*[cm]

Convert len to inches. The result is in exact symbolic form. Separate units and convert to
double.

len unitConvert(len,u.in)

len =
(6000/127)*[in]

[len units] = separateUnits(len);
len = double(len)

len =
47.2441

Calculate the force needed to accelerate a mass of 5 kg at 2 m/s?.

m = 5*u.kg;

a = 2*u.m/u.s"2;
F = m*a

F =

10*%(([kgl*[m])/[s]1"2)

Convert the result to newton.
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F = unitConvert(F,u.N)
F:
10*[N]

Tip Use tab expansion to find names of units. Type u., press Tab, and continue typing.

Calculate the energy when force F is applied for 3 meters. Convert the result to joule.

d = 3*u.m;

E = F*d

E =

30*[N]*[m]

E = unitConvert(E,u.J)
E =

30%[J]

Convert E to kilowatt-hour.
E = unitConvert(E,u.kWh)
E =
(1/120000)*[kWh]

Temperature Unit Conversion

Temperatures can represent either absolute temperatures or temperature differences. By
default, temperatures are assumed to be differences. Convert temperatures assuming
temperatures are absolute by specifying the 'Temperature' input as 'absolute'.

Convert 23 degrees Celsius to degrees Kelvin, first as a temperature difference and then
as an absolute temperature.

u symunit;
T = 23*u.Celsius;
relK = unitConvert(T,u.K, 'Temperature', 'difference')

relk =
23*[K]
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absK = unitConvert(T,u.K, 'Temperature', 'absolute')
absK =
(5923/20) *[K]

Because the value 0 is dimensionless and 0 degrees cannot be represented, convert 0
degrees between temperature units by using cell input.

Convert 0 degrees Celsius to degrees Fahrenheit.

tC = {0,u.Celsius};
tF = unitConvert(tC,u.Fahrenheit, 'Temperature', 'Absolute')
tF =

32*[Fahrenheit]

Convert to Sl, CGS, or US Unit Systems

Automatically convert to the correct units by converting to a unit system. Further,
converting to the derived units of a unit system attempts to select convenient units.
Available unit systems include SI, CGS, and US. For all unit systems, see “Unit Systems
List” on page 2-36. In addition, you can define custom unit systems.

Calculate the force due to a 5 kg mass accelerating at 2 m/s?. The resulting units are hard
to read. Convert them to convenient units by specifying the SI and Derived options.
unitConvert automatically chooses the correct units of newton.

u = symunit;

m = 5*u.kg;

a = 2*u.m/u.s"2;
F = m*a

F -

10*(([kgl*[m])/[s]172)
F = unitConvert(F,'SI', 'Derived"')

F =
10*[N]

Convert F to US units. By default, the converted units are base units. For convenience,

also convert into derived units by specifying the Derived option. The derived units are
easier to read.
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Il

unitConvert(F, 'US"')

(1250000000000/17281869297)*(([ft]*[1lbm])/[s]1"2)

F

F

Convert F to CGS derived units.

unitConvert(F,'US"', 'Derived')

(20000000000000/8896443230521) *[ 1bf]

F = unitConvert(F, 'CGS', 'Derived"')
F:
1000000*[dyn]

Convert a specification in SI to US derived units. Specify the temperatures as absolute.

loadCell = [ 3*u.kg;
50*u.mm;
15*%u.mm;
10*u.mm;
-10*u.Celsius;
40*u.Celsius;

1;

0° d° o° o o° o°

capacity

length

width

height

minimum temperature
maximum temperature

loadCell = unitConvert(loadCell, 'US', 'derived', 'Temperature', 'absolute')

loadCell =
(300000000/45359237)*[1bm]
(125/762)*[ft]
(25/508) *[ft]
(25/762)*[ft]
14*[Fahrenheit]
104*[Fahrenheit]

If unitConvert does not choose your preferred unit, then adjust the result with further
unitConvert commands. Here, inches are more convenient than feet. Convert the result

to inches.

loadCell = unitConvert(loadCell,u.inch)

loadCell =
(300000000/45359237)*[1bm]
(250/127)*[in]
(75/127)*[in]
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(50/127)*[in]
14*[Fahrenheit]
104*[Fahrenheit]

The exact symbolic values are hard to read. Separate the units and convert to double.

[loadCellDouble loadCellUnits] = separateUnits(loadCell);
loadCellDouble = double(loadCellDouble)

loadCellDouble =
6.6139
1.9685
0.5906
0.3937
14.0000
104.0000

Alternatively, approximate the result to high precision by using vpa. The vpa function
also keeps the symbolic units because it returns symbolic output.

loadCell

vpa(loadCell)

loadCell =
6.6138678655463274216892140403508* [ Lbm]
1.968503937007874015748031496063*[in]
0.5905511811023622047244094488189*[1in]
0.3937007874015748031496062992126*[in]
14.0*[Fahrenheit]
104.0*[Fahrenheit]

Convert five acres (ac), whose unit is a U.S. survey acre, to metric area.

u = symunit;

area = 5*u.ac;
area = unitConvert(area,'SI"')
area =

(313632000000/15499969) * [m] ~2

Define Custom Unit System from Existing System

Custom unit systems provide flexibility in converting units. You can easily define a custom
unit system by modifying a default unit system. Alternatively, you can define the system
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directly. For definitions of unit system, base units, and derived units, see “Unit System
Definition” on page 2-46.

In photonics, commonly used units are nanosecond (ns), electron volt (eV), and
nanometer (nm). Define a unit system with these units by modifying the SI unit system.
Get SI base and derived units by using baseUnits and derivedUnits. Modify the units
by using subs.

u = symunit;

bunits = baseUnits('SI');
bunits = subs(bunits,[u.m u.s],[u.nm u.ns])
bunits =

[ [kal, [ns], [nm], [A], [cd], [mol], [K]]

dunits = derivedUnits('SI');
dunits = subs(dunits,u.J,u.eV)
dunits =

( [FI, [CI, [S], [H], [Vv], [evl, [N], [ix], [im], [wWb], [W], [Pa],...
[Ohm], [T], [Gyl, [Bql, [Svl, [Hz], [kat], [rad], [sr], [Celsius]]

Note Do not define variables called baseUnits and derivedUnits because the
variables prevent access to the baseUnits and derivedUnits functions.

Define the new unit system by using newUnitSystem.

phSys newUnitSystem('photonics',bunits,dunits)

phSys =
"photonics”

Calculate the energy of a photon of frequency 1 GHz and convert the result to derived
units of the phSys system. The result is in electron volts.

f = 1*u.GHz;

E = u.h _c*f;

E = unitConvert(E,phSys, 'Derived"')
E —

0.0000041356676623401643884479280999879* [eV]

The exact symbolic result is hard to read. Separate the units and convert to double.
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[E Eunits] = separateUnits(E);
E = double(E)
E =

4.1357e-06

After completing calculations, remove the unit system.
removeUnitSystem(phSys)
Define Custom Unit System Directly

Define a custom unit system for atomic units (au).

Define these base units:

Dimension Unit Implementation

Mass Electron rest mass u.m e

Elementary charge Electron charge u.e

Length Bohr radius (ag) u.Bohr

Time h/E}, Define by using newUnit.
u = symunit;

t au = newUnit('t au',u.hbar/u.E _h);

bunits = [u.m e u.e u.Bohr u.t au]
bunits =
[ [m_el, [e]l, [a_0], [t aull]

Define these derived units:

Dimension Unit Implementation
Angular momentum Reduced Planck's constant |u.hbar

Energy Hartree u.E h

Electric dipole moment ed Define by using newUnit.
Magnetic dipole moment 2 Bohr Magneton = eh/2m, |Define by using newUnit.
Electric potential Eyle Define by using newUnit.

newUnit('edm au',u.e*u.bohr);
newUnit('mdm au', u.e*u.hbar/(2*u.me));

edm_au
mdm_au
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ep au = newUnit('ep au', u.E _h/u.e);
dunits = [u.hbar u.E h u.edm au u.mdm au u.ep aul
dunits =

[ [h bar]l, [E_h], [edm au], [mdm au], [ep aull
Define the unit system.
auSys = newUnitSystem('atomicUnits',bunits,dunits)

ausSys =
"atomicUnits"

Convert the properties of a proton to atomic units.

mass

charge

electric dipole moment
magnetic dipole moment

proton = [ 1.672624898e-27*u.kg;
1.6021766208e-19*u.C;
5.4e-24*u.e*u.cm;
1.4106067873e-26*u.J/u.T;

o® o o o°

1;
proton = unitConvert(proton,auSys, 'Derived')

proton
1836.1559670674356174696928918542*[m_e]
1.0000000000000000578208778346486*[e]
0.0000000000000010204521077472272506008435148061*[edm_au]
0.0015210322058038370229109632800588* [mdm_au]

After completing calculations, remove the unit system and the added units.

removeUnitSystem(auSys)
removeUnit([u.t au u.edm au u.mdm au u.ep au]l)

Unit System Definition

A unit system is a collection of base units and derived units that follows these rules:

* Base units must be independent in terms of the dimensions mass, time, length, electric
current, luminous intensity, amount of substance, and temperature. Therefore, a unit
system has up to 7 base units. As long as the independence is satisfied, any unit can be
a base unit, including units such as newton or watt.

* A unit system can have less than 7 base units. For example, mechanical systems need
base units only for the dimensions length, mass, and time.



See Also

» Derived units in a unit system must have a representation in terms of the products of
powers of the base units for that system. Unlike base units, derived units do not have
to be independent.

* Derived units are optional and added for convenience of representation. For example,
kg m/s? is abbreviated by newton.

* An example of a unit system is the SI unit system, which has 7 base units: kilogram,
second, meter, ampere, candela, mol, and kelvin. There are 22 derived units found by
calling derivedUnits('SI").

See Also

baseUnits | derivedUnits | newUnitSystem | removeUnit | removeUnitSystem |
symunit | unitConvert

More About

. “Units of Measurement Tutorial” on page 2-14
. “Units and Unit Systems List” on page 2-21

External Websites
. The International System of Units (SI)
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Differentiation

To illustrate how to take derivatives using Symbolic Math Toolbox software, first create a
symbolic expression:

syms X
f = sin(5*x);

The command
diff(f)
differentiates f with respect to x:

ans =
5*%cos (5*x)

As another example, let
g = exp(x)*cos(x);

where exp (x) denotes e*, and differentiate g:

y = diff(qg)
y:
exp(x)*cos(x) - exp(x)*sin(x)

To find the derivative of g for a given value of x, substitute x for the value using subs and
return a numerical value using vpa. Find the derivative of g at x = 2.

vpa(subs(y,x,2))

ans =
-9.7937820180676088383807818261614

To take the second derivative of g, enter
diff(g,2)

ans =
-2*exp (x)*sin(x)

You can get the same result by taking the derivative twice:

diff(diff(g))
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ans =
-2*exp (x)*sin(x)

In this example, MATLAB software automatically simplifies the answer. However, in some
cases, MATLAB might not simplify an answer, in which case you can use the simplify
command. For an example of such simplification, see “More Examples” on page 2-50.

Note that to take the derivative of a constant, you must first define the constant as a
symbolic expression. For example, entering

c =sym('5");
diff(c)

returns

ans =
0

If you just enter
diff(5)
MATLAB returns

ans =

[]

because 5 is not a symbolic expression.

Derivatives of Expressions with Several Variables

To differentiate an expression that contains more than one symbolic variable, specify the
variable that you want to differentiate with respect to. The diff command then
calculates the partial derivative of the expression with respect to that variable. For
example, given the symbolic expression

syms s t
f = sin(s*t);

the command
diff(f,t)

calculates the partial derivative af/adt. The result is
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ans =
s*cos(s*t)

To differentiate  with respect to the variable s, enter
diff(f,s)
which returns:

ans =
t*cos(s*t)

If you do not specify a variable to differentiate with respect to, MATLAB chooses a default
variable. Basically, the default variable is the letter closest to x in the alphabet. See the
complete set of rules in “Find a Default Symbolic Variable” on page 2-4. In the preceding
example, diff (f) takes the derivative of f with respect to t because the letter t is
closer to x in the alphabet than the letter s is. To determine the default variable that
MATLARB differentiates with respect to, use symvar:

symvar(f, 1)

ans =
t

Calculate the second derivative of f with respect to t:
diff(f, t, 2)
This command returns

ans =
-s™2*sin(s*t)

Note that diff(f, 2) returns the same answer because t is the default variable.

More Examples

To further illustrate the diff command, define a, b, X, n, t, and theta in the MATLAB
workspace by entering

syms a b x n t theta

This table illustrates the results of entering diff (f).



Differentiation

f diff(f)
Syms X n diff(f)
f = x™n;
ans =
n*x™(n - 1)
syms a b t diff(f)
f = sin(a*t + b);
ans =
a*cos(b + a*t)
syms theta diff(f)
f = exp(i*theta);
ans =
exp(theta*1li)*1i

To differentiate the Bessel function of the first kind, besselj (nu, z), with respect to z,
type

syms nu z
b = besselj(nu,z);
db = diff(b)

which returns

db =
(nu*besselj(nu, z))/z - besselj(nu + 1, z)

The diff function can also take a symbolic matrix as its input. In this case, the
differentiation is done element-by-element. Consider the example

syms a X
A = [cos(a*x),sin(a*x);-sin(a*x),cos(a*x)]

which returns

cos(a*x), sin(a*x)

A =
[
[ -sin(a*x), cos(a*x)

]
]
The command

diff(A)

returns
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ans =
[ -a*sin(a*x)
[ -a*cos(a*x)

a*cos (a*x)
-a*sin(a*x)

[E—p—

’
’

You can also perform differentiation of a vector function with respect to a vector
argument. Consider the transformation from Euclidean (x, y, z) to spherical (r, 4, ¢)
coordinates as given by x = rcosAcosg, y = rcosAsing, and z = rsinA. Note that A
corresponds to elevation or latitude while ¢ denotes azimuth or longitude.

iy

(x,y,2)

|
|
|
!
|

LP =l
To calculate the Jacobian matrix, J, of this transformation, use the jacobian function.

The mathematical notation for J is

_xy 2)
J=arae)

For the purposes of toolbox syntax, use 1 for A and f for ¢. The commands

syms r L f

x = r*xcos(l)*cos(f);

y = r*cos(l)*sin(f);

z = r*sin(l);

J = jacobian([x; y; zl, [r 1 f])

return the Jacobian

J:

[ cos(f)*cos(l), -r*cos(f)*sin(l), -r*cos(l)*sin(f)]
[ cos(l)*sin(f), -r*sin(f)*sin(l), r*cos(f)*cos(1l)]
[ sin(l), rxcos(1l), 0]



Differentiation

and the command
det] = simplify(det(J))
returns

det] =
-r~2*cos (1)

The arguments of the jacobian function can be column or row vectors. Moreover, since
the determinant of the Jacobian is a rather complicated trigonometric expression, you can
use simplify to make trigonometric substitutions and reductions (simplifications).

A table summarizing diff and jacobian follows.

Mathematical Operator MATLAB Command

daf diff(f) ordiff(f, x)

dx

df diff(f, a)

da

d_Zf diff(f, b, 2)

db*

J= ar,t) J = jacobian([r; t1,[u; vl])
“a(u,v)
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Functional Derivatives Tutorial

2-54

This example shows how to use functional derivatives in the Symbolic Math Toolbox™
using the example of the wave equation. The wave equation for a string fixed at its ends is
solved using functional derivatives. A functional derivative is the derivative of a functional
with respect to the function that the functional depends on. The Symbolic Math Toolbox™
implements functional derivatives using the functionalDerivative function.

Solving the wave equation is one application of functional derivatives. It describes the
motion of waves, from the motion of a string to the propagation of an electromagnetic
wave, and is an important equation in physics. You can apply the techniques illustrate in
this example to applications in the calculus of variations from solving the Brachistochrone
problem to finding minimal surfaces of soap bubbles.

Consider a string of length L suspended between the two points x = @ and x = L. The
string has a characteristic density per unit length and a characteristic tension. Define the
length, density, and tension as constants for later use. For simplicity, set these constants
to 1.

Length =1
Density

’
1;
Tension 1;

If the string is in motion, the string's kinetic and potential energies are a function of its
displacement from rest S (x, t), which varies with position x and time t. If d is the
density per unit length, the kinetic energy is

_(Ld(d 2
T = ["5|&S0 0] ax.
The potential energy is
V= £L£ iS(x t) de
b 2(dxT ’

where ris the tension.

Enter these equations in MATLAB™. Since length must be positive, set this assumption.
This assumption allows simplify to simplify the resulting equations into the expected
form.
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syms S(x,t) d r v L
assume(L>0)

T(x,t) int(d/2*diff(S,t)
V(x,t) int(r/2*diff(S,x)

);
);

~2,x,0,L
~2,x,0,L

The action A is T-V. The Principle of Least Action states that action is always minimized.
Determine the condition for minimum action, by finding the functional derivative of A with
respect to S using functionalDerivative and equate it to zero.

A=T-V;
eqn = functionalDerivative(A,S) ==
egqn(x, t) =

2

d

2
Sot)-Ld 2= S t)=0

Lr
ot

ax2

Simplify the equation using simplify. Convert the equation into its expected form by
substituting for r/d with the square of the wave velocity v.

eqn = simplify(eqn)/r;
egn = subs(eqn,r/d,v"*2)
eqn(x, t) =
02
5 S(x, t) 2
W =TSk
v2 ax2 '

Solve the equation using the method of separation of variables. Set S(x,t) =
U(x)*V(t) to separate the dependence on position x and time t. Separate both sides of
the resulting equation using children.

syms U(x) V(t)
eqn2 = subs(eqgn,S(x,t),U(x)*V(t));
eqn2 = eqn2/(U(x)*V(t))

egn2(x, t) =

V2 V() Ux)

tmp = children(eqn2);
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Both sides of the equation depend on different variables, yet are equal. This is only
possible if each side is a constant. Equate each side to an arbitrary constant C to get two
differential equations.

syms C
eqn3 = tmp(1l) == C

eqn3 =
02
5 V(1)
at
2 =C
v4 V(L)
egqnd4 = tmp(2) == C
eqnd =
a2
Zlﬂx)
ax -c
U(x)

Solve the differential equations using dsolve with the condition that displacement is 0 at
x = 0and t = 0. Simplify the equations to their expected form using simplify with
the Steps option set to 50.

V(t) = dsolve(eqn3,V(0)==0,t);
U(x) = dsolve(eqn4,U(0)==0,x);
V(t) = simplify(V(t), 'Steps',50)
V(t) = —2Cssinh(/Ctv)

U(x) = simplify(U(x), 'Steps',50)

c
X
|

= 2 Cgsinh(/Cx)

Obtain the constants in the equations.

pl = setdiff(symvar(U(x)),sym([C,x]))
pl = Cg

p2 = setdiff(symvar(V(t)),sym([C,v,t]))
p2 = Cs
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The string is fixed at the positions x = 0 and x = L. The condition U(0) = 0 already
exists. Apply the boundary condition that U(L) = 0 and solve for C.

egn_bc = U(L) == 0;
[solC,param,cond] = solve(eqn bc,C, 'ReturnConditions',true)

solC =
B k2 2
LZ
param = k

cond = Cg#0Al<knkeZ
assume(cond)

The solution S(x, t) is the product of U(x) and V(t). Find the solution, and substitute
the characteristic values of the string into the solution to obtain the final form of the
solution.

S(x,t) = U(x)*V(t);
S = subs(S,C,solC);
S = subs(S,[L v],[Length sqrt(Tension/Density)]);

The parameters pl and p2 determine the amplitude of the vibrations. Set p1 and p2 to 1
for simplicity.

S
S

subs (S, [pl p21,[1 11);
simplify(S, 'Steps',50)

S(x, t) = 4sin(mkt)sin(mkx)

The string has different modes of vibration for different values of k. Plot the first four
modes for an arbitrary value of time t. Use the param argument returned by solve to
address parameter k. Prior to R2016a, use ezplot instead of fplot.

Splot(x) = S(x,0.3);

figure(1)

hold on

grid on

ymin = double(coeffs(Splot));

for i = 1:4
yplot = subs(Splot,param,i);
fplot(yplot, [0 Lengthl)
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end

ylim([-ymin ymin])

legend('k = 1','k = 2','k = 3",'k = 4',"'Location', 'best")
xlabel('Position (x)")

ylabel('Displacement (S)")

title('Modes of a string')

Modes of a string

-

A

ar S

-

[/
i
S
/ /
S/
L7
1 V /

/
o) /

. e

S

Displacement (S)

k=2 \ ,
-3 k=3 \ /

k=4 Ny
_4 1 1 1 1 1

0 01 02 03 04 05 06 07 08 09 1
Position (x)

The wave equation is linear. This means that any linear combination of the allowed modes
is a valid solution to the wave equation. Hence, the full solution to the wave equation with
the given boundary conditions and initial values is a sum over allowed modes

F(x, t) =
k

[N \YE!

Agsin(mkt)sin(mkx),
n

2-58



Functional Derivatives Tutoria

Displacement (S)

where Ay denotes arbitrary constants.

Use symsum to sum the first five modes of the string. On a new figure, display the
resulting waveform at the same instant of time as the previous waveforms for comparison.

figure(2)

S5(x) = 1/5*symsum(S,param,1,5);
fplot(subs(S5,t,0.3),[0 Length])
ylim([-ymin ymin])

grid on

xlabel('Position (x)")
ylabel('Displacement (S)")
title('Summation of first 5 modes')

Summation of first 5 modes
4 T T T T T T T T T

_4 i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Position (x)
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The figure shows that summing modes allows you to model a qualitatively different
waveform. Here, we specified the initial condition is S(x,t = 0) = 0 for all x.

m
You can calculate the values Ay in the equation F(x, t) = E Agsin(mkt)sin(mkx) by
k=n
specifying a condition for initial velocity
u(x, t =0) = F(x, 0).

The appropriate summation of modes can represent any waveform, which is the same as
using the Fourier series to represent the string's motion.
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Limits

The fundamental idea in calculus is to make calculations on functions as a variable “gets
close to” or approaches a certain value. Recall that the definition of the derivative is given
by a limit

f(x) = lim fix+h) - f(x)
h—0 h

’

provided this limit exists. Symbolic Math Toolbox software enables you to calculate the
limits of functions directly. The commands

syms h n x
limit((cos(x+h) - cos(x))/h, h, 0)

which return

ans =
-sin(x)

and
limit((1 + x/n)”n, n, inf)
which returns

ans =
exp(x)

illustrate two of the most important limits in mathematics: the derivative (in this case of
cos(x)) and the exponential function.

One-Sided Limits

You can also calculate one-sided limits with Symbolic Math Toolbox software. For
example, you can calculate the limit of x/|x|, whose graph is shown in the following figure,
as x approaches 0 from the left or from the right.

syms X
fplot(x/abs(x), [-1 1], 'ShowPoles', 'off'")
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To calculate the limit as x approaches 0 from the left,
X
oI

enter

syms x
limit(x/abs(x), x, 0, 'left')

ans =
-1

To calculate the limit as x approaches 0 from the right,
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enter

syms X
limit(x/abs(x), x, 0, 'right')

ans =
1

Since the limit from the left does not equal the limit from the right, the two- sided limit
does not exist. In the case of undefined limits, MATLAB returns NaN (not a number). For
example,

syms X
limit(x/abs(x), x, 0)

returns

ans =
NaN

Observe that the default case, limit (f) is the same as limit(f,x,0). Explore the
options for the 1imit command in this table, where f is a function of the symbolic object
X.

Mathematical MATLAB Command
Operation
lim f(x) limit(f)
x—0
lim f(x) limit(f, x, a) or
X—a
limit(f, a)
lim f(x) limit(f, x, a, 'left')
X—da-—-
lim f(x) limit(f, x, a, 'right')
X—a-+
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Integration
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If f is a symbolic expression, then

int(f)

attempts to find another symbolic expression, F, so that diff(F) = f. Thatis, int(f)
returns the indefinite integral or antiderivative of f (provided one exists in closed form).

Similar to differentiation,

int(f,v)

uses the symbolic object v as the variable of integration, rather than the variable
determined by symvar. See how int works by looking at this table.

Mathematical Operation

MATLAB Command

log(x) ifn= -1
x"dx ={yn+1

int(x™n) or int (x™n, x)

— otherwise.
/2 int(sin(2*x), 0, pi/2) orint(sin(2*x),
fsm(zx)dx:l x, 8, pi/2)
0

g = cos(at + b)

f g()dt = sin(at + b)/a

g = cos(a*t + b) int(g) orint(g, t)

[n@dz = - fo)

int(besselj(l, z)) orint(besselj(1l, z),
z)

In contrast to differentiation, symbolic integration is a more complicated task. A number
of difficulties can arise in computing the integral:

* The antiderivative, F, may not exist in closed form.

* The antiderivative may define an unfamiliar function.

* The antiderivative may exist, but the software can't find it.

* The software could find the antiderivative on a larger computer, but runs out of time
or memory on the available machine.
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Nevertheless, in many cases, MATLAB can perform symbolic integration successfully. For

example, create the symbolic variables

syms a b theta x y nu z

The following table illustrates integration of expressions containing those variables.

f int(f)
Syms X n int(f)
f = x™n;
ans =
piecewise(n == -1, log(x), n ~= -1,...
Xx*(n + 1)/(n + 1))
syms y int(f)
f=y~(-1);
ans =
Llog(y)
syms X n int(f)
f = n"x;
ans =
n~x/log(n)
syms a b theta int(f)
f = sin(a*theta+b);
ans =
-cos(b + a*theta)/a
syms u int(f)
f =1/(1+u"2);
ans =
atan(u)
syms X int(f)
f = exp(-x"2);
ans =
(pi~(1/2)*erf(x))/2

In the last example, exp (-x"2), there is no formula for the integral involving standard
calculus expressions, such as trigonometric and exponential functions. In this case,

MATLAB returns an answer in terms of the error function erf.

If MATLAB is unable to find an answer to the integral of a function f, it just returns

int(f).

Definite integration is also possible.
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Definite Integral Command
b :
F(0dx int(f, a, b)
b :
F(w)dv int(f, v, a, b)

Here are some additional examples.

f a, b int(f, a, b)
syms X a=0; int(f, a, b)
f = x*7; b =1;

ans =

1/8
syms X a=1,; int(f, a, b)
f = 1/x; b =2;

ans =

log(2)
syms X a=0; int(f, a, b)
f = log(x)*sqrt(x); |b = 1;

ans =

-4/9
syms X a=0; int(f, a, b)
f = exp(-x72); b = inf;

ans =

pi~(1/2)/2
syms z a=0; int(f, a, b)
f = besselj(1,z)"2; |b = 1;

ans =

hypergeom([3/2, 3/2]1,...
[21 5/21 3]: '1)/12

For the Bessel function (besselj) example, it is possible to compute a numerical
approximation to the value of the integral, using the double function. The commands

syms z
a = int(besselj(1,z)"2,0,1)

return

a =
hypergeom([3/2, 3/2]1, [2, 5/2, 31, -1)/12
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and the command
a = double(a)
returns

-

0.0717

Integration with Real Parameters

One of the subtleties involved in symbolic integration is the “value” of various
parameters. For example, if a is any positive real number, the expression

—ax2
e~ ax

is the positive, bell shaped curve that tends to 0 as x tends to £«. You can create an
example of this curve, for a = 1/2.

syms X

a = sym(1/2);

f = exp(-a*x™2);
fplot(f)
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However, if you try to calculate the integral

o)

2
f e~ X dx
without assigning a value to a, MATLAB assumes that a represents a complex number,
and therefore returns a piecewise answer that depends on the argument of a. If you are

only interested in the case when a is a positive real number, use assume to set an

assumption on a:

syms a
assume(a > 0)
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Now you can calculate the preceding integral using the commands
syms X

f = exp(-a*x"2);

int(f, x, -inf, inf)

This returns

ans =

pi~(1/2)/a"~(1/2)

Integration with Complex Parameters

To calculate the integral

o]

fazj-xzdx

— 00

for complex values of a, enter

syms a x
f 1/(a”™2 + x"2);
F int(f, x, -inf, inf)

Use syms to clear the all assumptions on variables. For more information about symbolic
variables and assumptions on them, see “Delete Symbolic Objects and Their Assumptions”
on page 1-30.

The preceding commands produce the complex output

F =
(pi*signIm(1li/a))/a

The function signIm is defined as:

1 ifIm(z) >0, orIm(z) =0andz<0
signim(z) =10 if =0
-1 otherwise.
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signim =0

signim = -1 signlm = -1

To evaluate Fata = 1 + i, enter

g = subs(F, 1 + i)
g =

pi*(1/2 - 1i/2)
double(qg)

ans =

1.5708 - 1.5708i1

High-Precision Numerical Integration Using Variable-Precision
Arithmetic

High-precision numerical integration is implemented in the vpaintegral function of the
Symbolic Math Toolbox. vpaintegral uses variable-precision arithmetic in contrast to
the MATLAB integral function, which uses double-precision arithmetic.

Integrate besseli(5,25*u) . *exp(-u*25) by using both integral and
vpaintegral. The integral function returns NaN and issues a warning while
vpaintegral returns the correct result.

syms u
f = besseli(5,25*x).*exp(-x*25);
fun = @(u)besseli(5,25*u).*exp(-u*25);

usingIntegral = integral(fun, 0, 30)
usingVpaintegral = vpaintegral(f, 0, 30)
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Warning: Infinite or Not-a-Number value encountered.
usingIntegral =
NaN

usingVpaintegral =
0.688424

For more information, see vpaintegral.
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Symbolic Summation

2-72

Symbolic Math Toolbox provides two functions for calculating sums:

* sum finds the sum of elements of symbolic vectors and matrices. Unlike the MATLAB
sum, the symbolic sum function does not work on multidimensional arrays. For details,
follow the MATLAB sum page.

* symsum finds the sum of a symbolic series.

In this section...

“Comparing symsum and sum” on page 2-72
“Computational Speed of symsum versus sum” on page 2-73

“Output Format Differences Between symsum and sum” on page 2-73

Comparing symsum and sum

You can find definite sums by using both sum and symsum. The sum function sums the
input over a dimension, while the symsum function sums the input over an index.

10
Consider the definite sum S = E % First, find the terms of the definite sum by
k=1
substituting the index values for k in the expression. Then, sum the resulting vector using
sum.

syms k
f = 1/k™2;
V = subs(f, k, 1:10)

S sum = sum(V)

Vv
[ 1, 1/4, 1/9, 1/16, 1/25, 1/36, 1/49, 1/64, 1/81, 1/100]

S sum =

1968329/1270080

Find the same sum by using symsum by specifying the index and the summation limits.
sum and symsum return identical results.

S symsum = symsum(f, k, 1, 10)
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S symsum =
1968329/1270080

Computational Speed of symsum versus sum

For summing definite series, symsum can be faster than sum. For summing an indefinite
series, you can only use symsum.

You can demonstrate that symsum can be faster than sum by summing a large definite
100000

seriessuchas S = > k2.
k=1

To compare runtimes on your computer, use the following commands.

syms k

tic

sum(sym(1:100000) .72);

toc

tic

symsum(k~2, k, 1, 100000);
toc

Output Format Differences Between symsum and sum

symsum can provide a more elegant representation of sums than sum provides.
Demonstrate this difference by comparing the function outputs for the definite series

10
S= > xK . To simplify the solution, assume x > 1.
k=1

syms x
assume(x > 1)

S sum = sum(x.”(1:10))

S symsum = symsum(x"k, k, 1, 10)

S sum =

X*10 + X™9 + X™8 + X + X™6 + X5 + XM + X3 + X2 + X
S _symsum =

x*1/(x - 1) - x/(x - 1)

Show that the outputs are equal by using isAlways. The isAlways function returns
logical 1 (true), meaning that the outputs are equal.
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isAlways(S sum == S symsum)
ans =

logical
1

For further computations, clear the assumptions.

assume(x, 'clear')
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Taylor Series

The statements

syms X

f =1/(5 + 4*cos(x));

T = taylor(f, 'Order', 8)

return

T:

(49*%x76) /131220 + (5*x™4)/1458 + (2*x"2)/81 + 1/9

which is all the terms up to, but not including, order eight in the Taylor series for f(x):

® ()
> x-aro@
n=0 :

Technically, T is a Maclaurin series, since its expansion pointisa = 0.

These commands

syms X
g = exp(x*sin(x));
t taylor(g, 'ExpansionPoint', 2, 'Order', 12);

generate the first 12 nonzero terms of the Taylor series for g about x = 2.

t is a large expression; enter
size(char(t))

ans =
1 99791

to find that t has about 100,000 characters in its printed form. In order to proceed with
using t, first simplify its presentation:

t = simplify(t);
size(char(t))

ans =
1 6988
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Next, plot these functions together to see how well this Taylor approximation compares to
the actual function g:

xd 1:0.05:3;

yd subs(g,x,xd);

fplot(t, [1, 31)

hold on

plot(xd, yd, 'r-.")

title('Taylor approximation vs. actual function')
legend('Taylor', 'Function')

Taylor approximation vs. actual function
T T T T o | T T T T

Taylar

————— Function

5.5

25 =f’f

1'5_ i i i i i

Special thanks is given to Professor Gunnar Backstrgm of UMEA in Sweden for this
example.
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Padé Approximant

The Padé approximant of order [m, n] approximates the function f(x) around x = x, as
ag+ a1(x —xg) + ... + am(x — Xo)m
1+ by(x = Xg) + ... + bp(x = xo)"

The Padé approximant is a rational function formed by a ratio of two power series.
Because it is a rational function, it is more accurate than the Taylor series in
approximating functions with poles. The Padé approximant is represented by the
Symbolic Math Toolbox function pade.

When a pole or zero exists at the expansion point x = x,, the accuracy of the Padé
approximant decreases. To increase accuracy, an alternative form of the Padé
approximant can be used which is

(x = x0)P(ao + a1(x = Xp) + ... + apm(x = x0)")
14 by(x = Xg) + ... + by(x = x)" ‘

The pade function returns the alternative form of the Padé approximant when you set the
OrderMode input argument to Relative.

The Padé approximant is used in control system theory to model time delays in the
response of the system. Time delays arise in systems such as chemical and transport
processes where there is a delay between the input and the system response. When these
inputs are modeled, they are called dead-time inputs. This example shows how to use the
Symbolic Math Toolbox to model the response of a first-order system to dead-time inputs
using Padé approximants.

The behavior of a first-order system is described by this differential equation

W0 4 yt) = axo).

Enter the differential equation in MATLAB.

syms tau a x(t) y(t) xS(s) yS(s) H(s) tmp
F = tau*diff(y)+y == a*x;

Find the Laplace transform of F using laplace.
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F

laplace(F,t,s)
F

laplace(y(t), t,s) — T (y(0) — s laplace(y(t), t, s)) = alaplace(x(t), t, s)

Assume the response of the system at t = 0is 0. Use subs to substitute for y(0) = 0.
F = subs(F,y(0),0)

F = laplace(y(t), t,s) + s Tlaplace(y(t), t, s) = alaplace(x(t), t, s)

To collect common terms, use simplify.

F

simplify(F)
F

(s T+ 1)laplace(y(t), t, s) = alaplace(x(t), £, s)

For readability, replace the Laplace transforms of x (t) and y(t) with xS(s) and yS(s).
F = subs(F,[laplace(x(t),t,s) laplace(y(t),t,s)],[xS(s) yS(s)])

F = yS(s)(sT+ 1) = axS(s)

The Laplace transform of the transfer function is yS(s)/xS(s). Divide both sides of the
equation by xS(s) and use subs to replace yS(s)/xS(s) with H(s).

F = F/xS(s);
F = subs(F,yS(s)/xS(s),H(s))
F=HS)(st+1)=a

Solve the equation for H(s). Substitute for H(s) with a dummy variable, solve for the
dummy variable using solve, and assign the solution back to H(s).

F = subs(F,H(s),tmp);
H(s) = solve(F,tmp)

H(s) =
_a
st+1

The input to the first-order system is a time-delayed step input. To represent a step input,
use heaviside. Delay the input by three time units. Find the Laplace transform using
laplace.

step
step

heaviside(t - 3);
laplace(step)
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step =

e—35

S

Find the response of the system, which is the product of the transfer function and the
input.

y = H(s)*step
y =
a 8_35

s(st+1)

To allow plotting of the response, set parameters a and tau to their values. For a and
tau, choose values 1 and 3, respectively.

subs(y,[a tau],[1 3]);
ilaplace(y,s);

y
y

Find the Padé approximant of order [2 2] of the step input using the Order input
argument to pade.

stepPade22 = pade(step, 'Order',[2 2])

stepPade22 =

3s2—45+2
2s(s+1)

Find the response to the input by multiplying the transfer function and the Padé
approximant of the input.

yPade22 = H(s)*stepPade22

yPade22
a@52—4s+2)
2s(st+1)(s+1)

Find the inverse Laplace transform of yPade22 using ilaplace.
yPade22 = ilaplace(yPade22,s)

yPade22 =
_S 2
9q =S aea?(ZT +4T+ﬂ

ator—7 - T271=2)
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To plot the response, set parameters a and tau to their values of 1 and 3, respectively.
yPade22 = subs(yPade22,[a taul,[1l 3])
yPade22 =

w|»n

9e 5 11e”

7 7 +1

Plot the response of the system y and the response calculated from the Padé approximant
yPade22.

hold on
grid on
fplot([y yPade22],[0 20])
title('Pade Approximant for dead-time step input')
legend('Response to dead-time step input',...
'Pade approximant [2 2]',...
'Location', 'Best')
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Pade Approximant for dead-time step input

0.4 F

0.2 [ /f

| ! Response to dead-time step input
Pade approximant [2 2]

The [2 2] Padé approximant does not represent the response well because a pole exists
at the expansion point of 0. To increase the accuracy of pade when there is a pole or zero

at the expansion point, set the OrderMode input argument to Relative and repeat the
steps. For details, see pade.

stepPade22Rel = pade(step, 'Order',[2 2], 'OrderMode', 'Relative')
stepPade22Rel =
3s2-6s+4
S 352+-63+ZQ
yPade22Rel = H(s)*stepPade22Rel
yPade22Rel
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a(352—65+4)
s(sT+1)(3s%+65+4)

yPade22Rel = ilaplace(yPade22Rel)

yPade22Rel =
a_a<fé'MT2+6T+3)+1ZGTe_t@o#é?)—J§$41§Q(%¥%géﬁl+1”
01 o1
where

01=4T2—6T+3

yPade22Rel = subs(yPade22Rel, [a tau],[1 3])
yPade22Rel =
2,/3sin @)
-t V3t ( 3
12 e cos(T)+ —3 ” Tt
— e 3
Vi 5 +1

fplot(yPade22Rel, [0 20], 'DisplayName', 'Relative Pade approximant [2 2]")
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Pade Approximant for dead-time step input
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The accuracy of the Padé approximant can also be increased by increasing its order.
Increase the order to [4 5] and repeat the steps. The [n-1 n] Padé approximant is
better at approximating the response at t = 0 than the [n n] Padé approximant.

stepPade45 = pade(step, 'Order',[4 5])

stepPaded45 =
27s% - 1803 + 54052 — 840 s + 560
s (27 s*+180s3 + 54052 + 840 + 560)

yPade45 = H(s)*stepPade45

yPade45
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a(27s* - 1805 + 540 5% - 8405 + 560)
s(st+1)(275%+180s% + 54052 + 840 s + 560)

yPade45 = subs(yPade45,[a taul,[1 3])

yPade45
27s% - 1803 + 540 52 — 840 s + 560
s(3s+1)(27s* + 180> + 540 5% + 840 s + 560)

yPade45 = ilaplace(yPade45)
yPade45

et 92 gy3

4

top 2
294120(221 oz

¢ 46440(3k = 1
_221e73 .
1001 1001 1001 143

top
172560 (2;(1: 1 e ) 101520
+

01

where

01 =12(902 +45 0% + 90 07 + 70)

20553 280s
02=root554+ 0 +20552+75+560,s5,k
9 27
yPade45 = vpa(yPade45)
yPade45 = 3.2418384981662546679005910164486 e~ 1-930807068546914778929595950184

c0s(0.57815608595633583454598214328008 t) — 2.7182817182817182817182817182817
e—0.33333333333333333333333333333333t —1.5235567798845363861823092981669

e~ 1.4025262647864185544037373831494 ¢ 45(1,7716120279045018112388813990878 t)
+11.595342871672681856604670597166 ¢~ 1-930807068546914778929595950184 ¢
sin(0.57815608595633583454598214328008 t) — 1.7803798379230333426855987436911
e~ 1.4025262647864185544037373831494 ¢ gin(1.7716120279045018112388813990878 t) + 1.0

fplot(yPade45,[0 20], 'DisplayName', 'Pade approximant [4 5]")
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Pade Approximant for dead-time step input

—

Response to dead-time step input
Pade approximant [2 2]

Relative Pade approximant [2 2]
J Pade approximant [4 5]

2 4 G 8 10 12 14 16 18 20

The following points have been shown:

Padé approximants can model dead-time step inputs.

The accuracy of the Padé approximant increases with the increase in the order of the
approximant.

When a pole or zero exists at the expansion point, the Padé approximant is inaccurate
about the expansion point. To increase the accuracy of the approximant, set the
OrderMode option to Relative. You can also use increase the order of the
denominator relative to the numerator.
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Find Asymptotes, Critical and Inflection Points

This example describes how to analyze a simple function to find its asymptotes, maximum,
minimum, and inflection point.

Define a Function
The function in this example is

3x% +6x— 1

) =—F——F—
! X2 +x-3
To create the function, enter the following commands:
syms X
num = 3*x"2 + 6*x -1;
denom = x"2 + x - 3;
f = num/denom
f —3
(3*x™2 + 6*x - 1)/(x™2 + x - 3)

Plot the function f by using fplot. The fplot function automatically shows horizontal
asymptotes.

fplot(f)
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30 I 4

Find Asymptotes

To mathematically find the horizontal asymptote of f, take the limit of f as x approaches
positive infinity:

limit(f, inf)

ans =
3

The limit as x approaches negative infinity is also 3. This result means the line y = 3 is a
horizontal asymptote to f.
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To find the vertical asymptotes of f, set the denominator equal to 0 and solve by entering
the following command:

roots = solve(denom)

roots =
- 137°(1/2)/2 - 1/2
137(1/2)/2 - 1/2

Note MATLAB does not always return the roots to an equation in the same order.

roots indicates that the vertical asymptotes are the lines

_=-1+y13
X =—=2=
2
and
_—-1-4y13
X——2 .

Find Maximum and Minimum

You can see from the graph that f has a local maximum between the points x = -2 and x =
0, and might have a local minimum between x = -6 and x = -2. To find the x-coordinates
of the maximum and minimum, first take the derivative of f:

fl = diff(f)
fl =
(6*X + 6)/(x™2 + x - 3) - ((2*x + 1)*(3*x™2 + 6*x - 1))/(x™2 + x - 3)"2

To simplify this expression, enter
f1 = simplify(f1)

fl =
-(3*x™2 + 16*x + 17)/(x™2 + x - 3)°2

Next, set the derivative equal to 0 and solve for the critical points:

crit pts = solve(fl)
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crit pts =
- 137(1/2)/3 - 8/3
13~(1/2)/3 - 8/3

It is clear from the graph of f that it has a local minimum at

_ 8- |13
=—73

X1

and a local maximum at

-8+4/13

You can plot the maximum and minimum of f with the following commands:

fplot(f)

hold on

plot(double(crit pts), double(subs(f,crit pts)),'ro")
title('Maximum and Minimum of f')

text(-4.8,5.5, 'Local minimum"')

text(-2,4, 'Local maximum')

hold off
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Maximum and Minimum of f

30 I 4

| |
| |
fl |
Local eminimuLn_/H Local maximum '

|

— |

D B |Ir/-'_ _----\"\-\. | T
|
|
|

10r

0

Find Inflection Point

To find the inflection point of f, set the second derivative equal to 0 and solve.

f2 = diff(fl);
inflec pt = solve(f2, 'MaxDegree',3);
double(inflec_pt)

This returns
ans =
-5.2635 + 0.00001

-1.3682 - 0.85111
-1.3682 + 0.85111
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In this example, only the first element is a real number, so this is the only inflection point.
The order of the roots can vary.

Rather than selecting the real root by indexing into inter pt, identify the real root by
determining which roots have a zero-valued imaginary part.

idx = imag(double(inflec pt)) == 0;
inflec pt = inflec pt(idx);

To obtain the value of the inflection point, enter
vpa(inflec pt)

ans =

-5.2635217342053210183437823783747

Plot the inflection point. The extra argument, [-9 6], in fplot extends the range of x
values in the plot so that you see the inflection point more clearly, as shown in the
following figure.

fplot(f, [-9 6])

hold on

plot(double(inflec pt), double(subs(f,inflec pt)),'ro")
title('Inflection Point of f')

text(-7,1, 'Inflection point"')

hold off
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Inflection Point of f
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Simplify Symbolic Expressions

Simplification of a mathematical expression is not a clearly defined subject. There is no
universal idea as to which form of an expression is simplest. The form of a mathematical
expression that is simplest for one problem turns out to be complicated or even
unsuitable for another problem. For example, the following two mathematical expressions
present the same polynomial in different forms:

(x + 1)(x - 2)(x + 3)(x - 4),
x4 - 2x3 - 13x? + 1l4x + 24.

The first form clearly shows the roots of this polynomial. This form is simpler for working
with the roots. The second form serves best when you want to see the coefficients of the
polynomial. For example, this form is convenient when you differentiate or integrate
polynomials.

If the problem you want to solve requires a particular form of an expression, the best
approach is to choose the appropriate simplification function. See “Choose Function to
Rearrange Expression” on page 2-101.

Besides specific simplifiers, Symbolic Math Toolbox offers a general simplifier, simplify.

If you do not need a particular form of expressions (expanded, factored, or expressed in
particular terms), use simplify to shorten mathematical expressions. For example, use
this simplifier to find a shorter form for a final result of your computations.

simplify works on various types of symbolic expressions, such as polynomials,
expressions with trigonometric, logarithmic, and special functions. For example, simplify
these polynomials.

syms X y
simplify((1 - x~2)/(1 - x))
simplify((x - 1)*(x + 1)*(x™2 + x + 1)*(x™2 + 1)*(x™2 - x + 1)¥(x™ - x*2 + 1))

an
X

=l

S
+
ans =

x*12 - 1

Simplify expressions involving trigonometric functions.
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simplify(cos(x)™(-2) - tan(x)"2)
simplify(cos(x)”"2 - sin(x)"2)

ans =
1

ans =
cos (2*x)

Simplify expressions involving exponents and logarithms. In the third expression, use
log(sym(3)) instead of Log(3). If you use Log(3), then MATLAB calculates log(3)
with the double precision, and then converts the result to a symbolic number.

simplify(exp(x)*exp(y))
simplify(exp(x) - exp(x/2)"2)
simplify(log(x) + log(sym(3)) - log(3*x) + (exp(x)

ans =
exp(x + vy)

ans =
0

ans =
exp(x/2) - 1

Simplify expressions involving special functions.

simplify(gamma(x + 1) - x*gamma(x))
simplify(besselj (2, x) + besselj(0, x))

ans =
0

ans =
(2*besselj (1, x))/x

You also can simplify symbolic functions by using simplify.
syms f(x,y)

f(x,y) = exp(x)*exp(y)

f = simplify(f)

f(x, y) =
exp(x)*exp(y)

- 1)/(exp(x/2) + 1))
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f(x, y) =
exp(x + vy)

Simplify Using Options

By default, simplify uses strict simplification rules and ensures that simplified
expressions are always mathematically equivalent to initial expressions. For example, it
does not combine logarithms.

syms x
simplify(log(x~2) + log(x))

ans =
log(x”2) + log(x)

You can apply additional simplification rules which are not correct for all values of
parameters and all cases, but using which simplify can return shorter results. For this
approach, use IgnoreAnalyticConstraints. For example, simplifying the same
expression with IgnoreAnalyticConstraints, you get the result with combined
logarithms.

simplify(log(x~2) + log(x), 'IgnoreAnalyticConstraints',true)

ans =
3*log(x)

IgnoreAnalyticConstraints provides a shortcut allowing you to simplify expressions
under commonly used assumptions about values of the variables. Alternatively, you can
set appropriate assumptions on variables explicitly. For example, combining logarithms is
not valid for complex values in general. If you assume that x is a real value, simplify
combines logarithms without IgnoreAnalyticConstraints.

assume(x, 'real')
simplify(log(x~2) + log(x))

ans =
log(x”3)

For further computations, clear the assumption on x by recreating it using syms.
syms X

Another approach that can improve simplification of an expression or function is the
syntax simplify(f, 'Steps',n), where n is a positive integer that controls how many
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steps simplify takes. Specifying more simplification steps can help you simplify the

expression better, but it takes more time. By default, n = 1. For example, create and

simplify this expression. The result is shorter than the original expression, but it can be

simplified further.

syms X

y = (cos(x)”"2 - sin(x)"2)*sin(2*x)*(exp(2*x) - 2*exp(x) + 1)/...
((cos(2*x)"2 - sin(2*x)"2)*(exp(2*x) - 1));

simplify(y)

ans =
(sin(4*x)*(exp(x) - 1))/ (2*cos(4*x)*(exp(x) + 1))

Specify the number of simplification steps for the same expression. First, use 25 steps.
simplify(y, 'Steps',25)

ans =
(tan(4*x)*(exp(x) - 1))/ (2*(exp(x) + 1))

Use 50 steps to simplify the expression even further.
simplify(y, 'Steps',50)

ans =
(tan(4*x)*tanh(x/2))/2

Suppose, you already simplified an expression or function, but want to simplify it further.
The more efficient approach is to simplify the result instead of simplifying the original
expression.

syms X

y = (cos(x)"2 - sin(x)"2)*sin(2*x)*(exp(2*x) - 2*exp(x) + 1)/...
((cos(2*x)7"2 - sin(2*x)"2)*(exp(2*x) - 1));

y = simplify(y)

y:

(sin(4*x)*(exp(x) - 1))/(2*cos(4*x)*(exp(x) + 1))

y = simplify(y, 'Steps',25)

y:

(tan(4*x)*(exp(x) - 1))/(2*(exp(x) + 1))

y = simplify(y, 'Steps',50)
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y =
(tan(4*x)*tanh(x/2))/2
Simplify Using Assumptions

Some expressions cannot be simplified in general, but become much shorter under
particular assumptions. For example, simplifying this trigonometric expression without
additional assumptions returns the original expression.

syms n
simplify(sin(2*n*pi))

ans =
sin(2*pi*n)

However, if you assume that variable n represents an integer, the same trigonometric
expression simplifies to 0.

assume(n, 'integer"')
simplify(sin(2*n*pi))

ans =
0

For further computations, clear the assumption.

syms n

Simplify Fractions

You can use the general simplification function, simplify, to simplify fractions. However,
Symbolic Math Toolbox offers a more efficient function specifically for this task:
simplifyFraction. The statement simplifyFraction(f) represents the expression
f as a fraction, where both the numerator and denominator are polynomials whose
greatest common divisor is 1. For example, simplify these expressions.

syms X y
simplifyFraction((x"3 - 1)/(x - 1))

ans =
X2 + x + 1

simplifyFraction((x"3 - x"2*y - x*y"2 + y*3)/(x"3 + y~3))
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ans =
(X2 - 2%x*y + y"2) /(X2 - x*y + y"2)

By default, simplifyFraction does not expand expressions in the numerator and
denominator of the returned result. To expand the numerator and denominator in the
resulting expression, use the Expand option. For comparison, first simplify this fraction
without Expand.

simplifyFraction((1 - exp(x)™4)/(1 + exp(x))™4)

ans =
(exp(2*x) - exp(3*x) - exp(x) + 1)/(exp(x) + 1)"3

Now, simplify the same expressions with Expand.
simplifyFraction((1 - exp(x)"4)/(1 + exp(x))™4, ' 'Expand',true)

ans =
(exp(2*x) - exp(3*x) - exp(x) + 1)/(3*exp(2*x) + exp(3*x) + 3*exp(x) + 1)
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Abbreviate Common Terms in Long Expressions

Often, long expressions contain several instances of the same subexpression. Such
expressions look shorter if you replace the subexpression with an abbreviation. For
example, solve this equation.

syms X
s = solve(sqrt(x) + 1/x == 1, x)

S =

(1/(18*(25/54 - (237(1/2)*108"(1/2))/108)"~(1/3)) -...
(3~(1/2)*(1/(9*(25/54 - (237(1/2)*168"(1/2))/108)"(1/3)) -...
(25/54 - (237(1/2)*1087(1/2))/108)"~(1/3))*1i)/2 +...

(25/54 - (237(1/2)*1068"(1/2))/108)"~(1/3)/2 + 1/3)"2
(37(1/2)*(1/(9*%(25/54 - (237(1/2)*108"7(1/2))/168)"~(1/3)) -...
25/54 - (237(1/2)*1087(1/2))/168)"(1/3))*1i)/2 + 1/(18*(25/54 -...
237(1/2)*1087(1/2))/108)"~(1/3)) +...

25/54 - (237(1/2)*1087(1/2))/108)"~(1/3)/2 + 1/3)"2

—_— e~ o~ —~

The returned result is a long expression that might be difficult to parse. To represent it in
a more familiar typeset form, use pretty. When displaying results, the pretty function
can use abbreviations to shorten long expressions.

pretty(s)
/ / 1 #2 11\2\
| | ----- #1 + -- + ||
| \ 18 #2 2 37 |
I I
| / 1 #2 11\2 |
| | #1 + ----- + -- + |
\ O\ 18 #2 2 3/ /
where
/ 1 \
sqrt(3) | ---- #2 | 11
\ 9 #2 /
#1 e e e e e T

/ 25 sqrt(23) sqrt(108) \1/3
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pretty uses an internal algorithm to choose which subexpressions to abbreviate. It also
can use nested abbreviations. For example, the term #1 contains the subexpression
abbreviated as #2. This function does not provide any options to enable, disable, or
control abbreviations.

subexpr is another function that you can use to shorten long expressions. This function
abbreviates only one common subexpression and, unlike pretty, it does not support
nested abbreviations. It also does not let you choose which subexpressions to replace.

Use the second input argument of subexpr to specify the variable name that replaces the
common subexpression. For example, replace the common subexpression in s by variable
t.

[s1,t] = subexpr(s,'t")

sl =

(1/(18%t~(1/3)) - (3~(1/2)*(1/(9%t~(1/3)) -...
t8(1/3))%1i) /2 + t~(1/3)/2 + 1/3)~2
((37(1/2)*(1/(9%t~(1/3)) - t~(1/3))*1i)/2 +...
1/(18%t~(1/3)) + t~(1/3)/2 + 1/3)"2

t:
25/54 - (237(1/2)*1087(1/2))/108

For the syntax with one input argument, subexpr uses variable sigma to abbreviate the
common subexpression. Output arguments do not affect the choice of abbreviation
variable.

[s2,sigma] = subexpr(s)

s2 =

(1/(18*sigma~(1/3)) - (3°(1/2)*(1/(9*sigma™~(1/3)) -...
sigma~(1/3))*1i)/2 + sigma™(1/3)/2 + 1/3)"2
((3~(1/2)*(1/(9*sigma~(1/3)) - sigma™(1/3))*1i)/2 +...
1/(18*sigma”~(1/3)) + sigma™~(1/3)/2 + 1/3)"2

sigma =
25/54 - (237(1/2)*108"~(1/2))/108
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Choose Function to Rearrange Expression

Type of Transformation Function
“Combine Terms of Same Algebraic combine
Structures” on page 2-101

“Expand Expressions” on page 2-103 expand
“Factor Expressions” on page 2-104 factor
“Extract Subexpressions from Expression” |children
on page 2-106

“Collect Terms with Same Powers” on page |collect
2-107

“Rewrite Expressions in Terms of Other rewrite
Functions” on page 2-108

“Compute Partial Fraction Decompositions |partfrac
of Expressions” on page 2-109

“Compute Normal Forms of Rational simplifyFraction
Expressions” on page 2-110

“Represent Polynomials Using Horner horner

Nested Forms” on page 2-110

Combine Terms of Same Algebraic Structures

Symbolic Math Toolbox provides the combine function for combining subexpressions of
an original expression. The combine function uses mathematical identities for the
functions you specify. For example, combine the trigonometric expression.

syms X y
combine(2*sin(x)*cos(x), 'sincos"')

ans =
sin(2*x)

If you do not specify a target function, combine uses the identities for powers wherever

these identities are valid:

. abac=ab+c
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* a°b¢ = (ab)

° (ab)c = abc

For example, by default the function combines the following square roots.
combine(sqrt(2)*sqrt(x))

ans =
(2*¥x)~(1/2)

The function does not combine these square roots because the identity is not valid for
negative values of variables.

combine(sqrt(x)*sqrt(y))

ans =
X~ (1/2)*y~(1/2)

To combine these square roots, use the IgnoreAnalyticConstraints option.
combine(sqrt(x)*sqrt(y), 'IgnoreanalyticConstraints',true)

ans =
(x*y)~(1/2)

IgnoreAnalyticConstraints provides a shortcut allowing you to combine expressions
under commonly used assumptions about values of the variables. Alternatively, you can
set appropriate assumptions on variables explicitly. For example, assume that x and y are
positive values.

assume([x,y], 'positive')
combine(sqrt(x)*sqrt(y))

ans =
(x*y)~(1/2)

For further computations, clear the assumptions on x and y by recreating them using
syms.

syms X vy

As target functions, combine accepts atan, exp, gamma, int, log, sincos, and
sinhcosh.
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Expand Expressions

For elementary expressions, use the expand function to transform the original expression
by multiplying sums of products. This function provides an easy way to expand
polynomials.

expand((x - 1)*(x - 2)*(x - 3))

ans =
X"3 - 6*x"2 + 11*x - 6

expand(x*(x*(x - 6) + 11) - 6)

ans =
X*3 - 6*x™2 + 11*x - 6

The function also expands exponential and logarithmic expressions. For example, expand
this expression containing exponentials.

expand(exp(x + y)*(x + exp(x - y)))

ans =
exp(2*x) + x*exp(x)*exp(y)

Expand this logarithm. Expanding logarithms is not valid for generic complex values, but
it is valid for positive values.

syms a b c positive
expand(log(a*b*c))

ans =
log(a) + log(b) + log(c)

For further computations, clear the assumptions.
syms a b ¢

Alternatively, use the IgnoreAnalyticConstraints option when expanding
logarithms.

expand(log(a*b*c), 'IgnoreAnalyticConstraints', true)

ans =
log(a) + log(b) + log(c)

expand also works on trigonometric expressions. For example, expand this expression.
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expand(cos(x + y))

ans =
cos(x)*cos(y) - sin(x)*sin(y)

expand uses mathematical identities between the functions.
expand(sin(5*x))

ans =
sin(x) - 12*cos(x)”"2*sin(x) + 16*cos(x)”™4*sin(x)

expand(cos(3*acos(x)))

ans =
4¥x~3 - 3%x

expand works recursively for all subexpressions.
expand((sin(3*x) + 1)*(cos(2*x) - 1))

ans =
2*¥sin(x) + 2*cos(x)”2 - 10*cos(x)"2*sin(x) + 8*cos(x)™4*sin(x) - 2

To prevent the expansion of all trigonometric, logarithmic, and exponential
subexpressions, use the option ArithmeticOnly.

expand(exp(x + y)*(x + exp(x - y)), 'ArithmeticOnly', true)

ans =
exp(x - y)*exp(x + y) + x*exp(x + y)

expand((sin(3*x) + 1)*(cos(2*x) - 1), 'ArithmeticOnly',true)
ans =

cos(2*x) - sin(3*x) + cos(2*x)*sin(3*x) - 1

Factor Expressions

To return all irreducible factors of an expression, use the factor function. For example,
find all irreducible polynomial factors of this polynomial expression. The result shows that
this polynomial has three roots: x = 1, x = 2,and x = 3.

syms X
factor(x™3 - 6*x™2 + 11*x - 6)
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ans =
[ x - 3, x -1, x - 2]

If a polynomial expression is irreducible, factor returns the original expression.
factor(x”®3 - 6*x™2 + 11*x - 5)

ans =
X"3 - 6*x™2 + 11*x - 5

Find irreducible polynomial factors of this expression. By default, factor uses
factorization over rational numbers keeping rational numbers in their exact symbolic
form. The resulting factors for this expression do not show polynomial roots.

factor(x™6 + 1)

ans =
[ x*2 + 1, x - x™2 + 1]

Using other factorization modes lets you factor this expression further. For example,
factor the same expression over complex numbers.

factor(x”6 + 1, 'FactorMode', 'complex')

ans
[ .86602540378443864676372317075294 + 0.51,...
.86602540378443864676372317075294
.01, ...
.01, ...
.86602540378443864676372317075294 + 0.51,...

.86602540378443864676372317075294 - 0.51]

+ + + 1l
.
©
(O]
e

X X X X X X
'
[ocNoN TN SNoNo)

factor also works on expressions other than polynomials and rational expressions. For
example, you can factor the following expression that contains logarithm, sine, and cosine
functions. Internally, factor converts such expressions into polynomials and rational
expressions by substituting subexpressions with variables. After computing irreducible
factors, the function restores original subexpressions.

factor((log(x)”2 - 1)/(cos(x)"2 - sin(x)"2))

ans =
[ Llog(x) - 1, log(x) + 1, 1/(cos(x) - sin(x)), 1/(cos(x) + sin(x))]

Use factor to factor symbolic integers and symbolic rational numbers.
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factor(sym(902834092))
factor(1l/sym(210))

ans =
[ 2, 2, 47, 379, 12671]

ans =
[ 1/2, 1/3, 1/5, 1/7]

factor also can factor numbers larger than flintmax that the MATLAB factor cannot.
To represent a large number accurately, place the number in quotation marks.

factor(sym('41758540882408627201"))
ans =

[ 479001599, 87178291199]

Extract Subexpressions from Expression
The children function returns the subexpressions of an expression.

Define an expression f with several subexpressions.

syms X y
f = exp(3*x)*y"3 + exp(2*x)*y"2 + exp(x)*y;

Extract the subexpressions of f by using children.
expr = children(f)

expr =
[ y*2*exp(2*x), y~3*exp(3*x), y*exp(x)]

You can extract lower-level subexpressions by calling children repeatedly on the
results.

Extract the subexpressions of expr (1) by calling children repeatedly. When the input
to children is a vector, the output is a cell array.

exprl = children(expr(1l))
expr2 = children(exprl)
exprl =

[ y°2, exp(2*x)]

expr2 =
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1x2 cell array
{1x2 sym} {1x1 sym}

Access the contents of the cell array expr2 using braces.

expr2{1}
expr2{2}
ans =
[y, 2]
ans =
2*X

Collect Terms with Same Powers

If a mathematical expression contains terms with the same powers of a specified variable
or expression, the collect function reorganizes the expression by grouping such terms.
When calling collect, specify the variables that the function must consider as
unknowns. The collect function regards the original expression as a polynomial in the
specified unknowns, and groups the coefficients with equal powers. Group the terms of an
expression with the equal powers of x.

syms X y z

expr = x*y™ + x*z + 2*¥X"3 + X"2*¥y*z +...
3¥XN3kYyN4*kzN2 + y*zh2 + SXxry*z,

collect(expr, x)

ans =
(3*y"4%z72 + 2)*X™3 + y*z*¥x™2 + (y™4 + 5%z*y + z)*x + y*z"2

Group the terms of the same expression with the equal powers of y.

collect(expr, y)

ans =
(3*x7"3*z72 + X)*¥y™ + (x"2*z + 5*x*¥z + z72)*y + 2*x"3 + z*X

Group the terms of the same expression with the equal powers of z.
collect(expr, z)
ans =

(3*x™3*y™4 + y)*z™2 + (X + 5¥x*y + x™2*y)*z + 2*x"3 + x*y™4
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If you do not specify variables that collect must consider as unknowns, the function
uses symvar to determine the default variable.

collect(expr)

ans =
(3*y™4*z72 + 2)*X"3 + y*z*x"2 + (y"4 + S5¥z*y + z)*x + y*z"2

Collect terms of an expression with respect to several unknowns by specifying those
unknowns as a vector.

collect(expr, [y,z])
ans =

EXNIRYNG*RZN2 + xRy + y*¥zh2 + (X2 + 5FX)*y*z + x*¥z + 2*¥x”3

Rewrite Expressions in Terms of Other Functions

To present an expression in terms of a particular function, use rewrite. This function
uses mathematical identities between functions. For example, rewrite an expression
containing trigonometric functions in terms of a particular trigonometric function.

syms X
rewrite(sin(x), 'tan')

ans =
(2*tan(x/2))/(tan(x/2)"2 + 1)

rewrite(cos(x), 'tan')

ans =
-(tan(x/2)72 - 1)/(tan(x/2)"2 + 1)

rewrite(sin(2*x) + cos(3*x)”"2,'tan')

ans =
(tan((3*x)/2)72 - 1)72/(tan((3*x)/2)"2 + 1)72 +...
(2*tan(x))/(tan(x)"2 + 1)

Use rewrite to express these trigonometric functions in terms of the exponential
function.

rewrite(sin(x),'exp"')

ans =
(exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2
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rewrite(cos(x),'exp')

ans =
exp(-x*1i)/2 + exp(x*1i)/2

Use rewrite to express these hyperbolic functions in terms of the exponential function.
rewrite(sinh(x), 'exp"')

ans =
exp(x)/2 - exp(-x)/2

rewrite(cosh(x), 'exp"')

ans =
exp(-x)/2 + exp(x)/2

rewrite also expresses inverse hyperbolic functions in terms of logarithms.

rewrite(asinh(x), 'log"')

log(x + (x - 1)™(1/2)*(x + 1)7(1/2))

Compute Partial Fraction Decompositions of Expressions

The partfrac function returns a rational expression in the form of a sum of a polynomial
and rational terms. In each rational term, the degree of the numerator is smaller than the
degree of the denominator. For some expressions, partfrac returns visibly simpler
forms.

syms X
n = x"6 + 15%x™5 + 94*x™4 + 316*x™3 + 599*x"2 + 602*x + 247;
d = x*6 + 14*x™5 + 80*x"™4 + 238*x"3 + 387*x"2 + 324*x + 108;
partfrac(n/d, x)

ans =
1/(x + 1) + 1/(x + 2)™2 + 1/(x + 3)"3 + 1

The denominators in rational terms represent the factored common denominator of the
original expression.
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factor(d)

ans =
[ x+1, x+2, x+2, x+3, x+ 3, x+ 3]

Compute Normal Forms of Rational Expressions

The simplifyFraction function represents the original rational expression as a single
rational term with expanded numerator and denominator. The greatest common divisor of
the numerator and denominator of the returned expression is 1. This function is more
efficient for simplifying fractions than the simplify function.

syms X y
simplifyFraction((x"3 + 3*y"2)/(x"2 - y*2) + 3)

ans =
(X3 + 3*x72)/(x"2 - y"2)

simplifyFraction cancels common factors that appear in numerator and denominator.
simplifyFraction(x"2/(x + y) - y*2/(x + y))

ans =
X -y

simplifyFraction also handles expressions other than polynomials and rational
functions. Internally, it converts such expressions into polynomials or rational functions
by substituting subexpressions with identifiers. After normalizing the expression with
temporary variables, simplifyFraction restores the original subexpressions.

simplifyFraction((exp(2*x) - exp(2*y))/(exp(x) - exp(y)))

ans =
exp(x) + exp(y)

Represent Polynomials Using Horner Nested Forms

The Horner, or nested, form of a polynomial expression is efficient for numerical
evaluation because it often involves fewer arithmetical operations than other
mathematically equivalent forms of the same polynomial. Typically, this form of an
expression is numerically stable. To represent a polynomial expression in a nested form,
use the horner function.
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syms X
horner(x”3 - 6*x™2 + 11*x - 6)

ans =
x*¥(x*(x - 6) + 11) - 6

If polynomial coefficients are floating-point numbers, the resulting Horner form
represents them as rational numbers.

horner(1l.1 + 2.2*%x + 3.3*x"2)

ans =
x*((33*x)/10 + 11/5) + 11/10

To convert the coefficients in the result to floating-point numbers, use vpa.
vpa(ans)

ans =
x*¥(3.3*x + 2.2) + 1.1
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Extract Numerators and Denominators of Rational
Expressions
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To extract the numerator and denominator of a rational symbolic expression, use the
numden function. The first output argument of numden is a numerator, the second output
argument is a denominator. Use numden to find numerators and denominators of symbolic
rational numbers.

[n,d] = numden(1/sym(3))

n =
1

d =
3

Use numden to find numerators and denominators of a symbolic expressions.

syms X y
[n,d] = numden((x"*2 - y*2)/(x*2 + y*2))

X~2 - y"2

d_
X2 + y"2

Use numden to find numerators and denominators of symbolic functions. If the input is a
symbolic function, numden returns the numerator and denominator as symbolic functions.

syms f(x) g(x)
f(x) = sin(x)/x"2;
g(x) = cos(x)/x;
[n,d] = numden(f)

n(x) =
sin(x)

d(x) =
X"2

[n,d] = numden(f/qg)

n(x) =
sin(x)
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d(x) =
x*cos (x)

numden converts the input to its one-term rational form, such that the greatest common
divisor of the numerator and denominator is 1. Then it returns the numerator and
denominator of that form of the expression.

[n,d] = numden(x/y + y/x)

n =
X2 + y"2

d:
xX*y

numden works on vectors and matrices. If an input is a vector or matrix, numden returns
two vectors or two matrices of the same size as the input. The first vector or matrix
contains numerators of each element. The second vector or matrix contains denominators
of each element. For example, find numerators and denominators of each element of the
3-by-3 Hilbert matrix.

H = sym(hilb(3))
H —3

[ 1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

[n,d] = numden(H)

n =

[ 1, 1, 1]
[ 1, 1, 1]
[ 1, 1, 1]
d =

[ 1, 2, 3]
[ 2, 3, 4]
[ 3, 4, 5]
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Substitute Variables in Symbolic Expressions
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Solve the following trigonometric equation using the ReturnConditions option of the
solver to obtain the complete solution. The solver returns the solution, parameters used in
the solution, and conditions on those parameters.

syms x
egn = sin(2*x) + cos(x) == 0;
[solx, params, conds] = solve(egn, x, 'ReturnConditions', true)

solx =
pi/2 + pi*k
2*¥pi*k - pi/6
(7*pi)/6 + 2*pi*k

params =
k

conds =

in(k, 'integer')
in(k, 'integer')
in(k, 'integer')

Replace the parameter k with a new symbolic variable a. First, create symbolic variables
k and a. (The solver does not create variable k in the MATLAB workspace.)

syms k a

Now, use the subs function to replace k by a in the solution vector solx, parameters
params, and conditions conds.

solx = subs(solx, k, a)
params = subs(params, k, a)
conds = subs(conds, k, a)

solx =
pi/2 + pi*a
2*pi*a - pi/6
(7*pi)/6 + 2*pi*a
params =
a
conds =
in(a, 'integer')
in(a, 'integer')
in(a, 'integer')
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Suppose, you know that the value of the parameter a is 2. Substitute a with 2 in the
solution vector solx.

subs(solx, a, 2)

ans =
(5*pi)/2
(23*pi)/6
(31*pi)/6

Alternatively, substitute params with 2. This approach returns the same result.

subs(solx, params, 2)

ans =
(5%pi)/2
(23*pi)/6
(31%pi)/6

Substitute parameter a with a floating-point number. The toolbox converts numbers to
floating-point values, but it keeps intact the symbolic expressions, such as sym(pi),
exp(sym(1l)), and so on.

subs(solx, params, vpa(2))

ans =
2.5%pi
3.8333333333333333333333333333333*pi
5.1666666666666666666666666666667*pi

Approximate the result of substitution with floating-point values by using vpa on the
result returned by subs.

vpa(subs(solx, params, 2))
ans =
7.8539816339744830961566084581988

12.042771838760874080773466302571
16.231562043547265065390324146944
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Substitute Elements in Symbolic Matrices

2-116

Create a 3-by-3 circulant matrix using the backward shift.

syms a b ¢
M=1[abc;, bca; cabl]
M:

[ a, b, c]

[ b, c, al

[ c, a, b]

Replace variable b in this matrix by the expression a + 1. The subs function replaces all
b elements in matrix M with the expression a + 1.

M = subs(M, b, a + 1)
M =

[ a, a + 1, c]
[ a + 1, c, al
[ c, a, a + 1]

You also can specify the value to replace by indexing into matrix. That is, to replace all
elements whose value is ¢, you can specify the value to replace as ¢, M(1,3) orM(3,1).

Replace all elements whose value is M(1,3) = c with the expressiona + 2.

M = subs(M, M(1,3), a + 2)

a
a

—_———

Tip To replace a particular element of a matrix with a new value while keeping all other
elements unchanged, use the assignment operation. For example, M(1,1) = 2 replaces
only the first element of the matrix M with the value 2.

Find eigenvalues and eigenvectors of the matrix.
[V,E] = eig(M)

V =

[ 1, 3(1/2)/2 - 1/2, - 3°(1/2)/2 - 1/2]
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[ 1, - 37(1/2)/2 - 1/2, 37(1/2)/2 - 1/2]
[ 1, 1, 1]
E =

[ 3*a + 3, 0, 0]

[ 0, 37(1/2), 0]

[ 0, 0, -37(1/2)]

Replace the symbolic parameter a with the value 1.

subs(E, a, 1)

ans =
[ 6, o,
[ 0, 37(1/2),
[ 0, o,

-37(1/2)]
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Substitute Scalars with Matrices
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Create the following expression representing the sine function.

syms w t
f = sin(w*t);

Suppose, your task involves creating a matrix whose elements are sine functions with
angular velocities represented by a Toeplitz matrix. First, create a 4-by-4 Toeplitz matrix.

W = toeplitz(sym([3 2 1 0]))
W =

[ 3, 2, 1, 0]

[ 2, 3, 2, 1]

[ 1, 2, 3, 2]

[0, 1, 2, 3]

Next, replace the variable w in the expression f with the Toeplitz matrix W. When you
replace a scalar in a symbolic expression with a matrix, subs expands the expression into
a matrix. In this example, subs expands f = sin(w*t) into a 4-by-4 matrix whose
elements are sin(w*t). Then it replaces w in that matrix with the corresponding
elements of the Toeplitz matrix W.

F = subs(f, w, W)

F =

[ sin(3*t), sin(2*t), sin(t), 0]
[ sin(2*t), sin(3*t), sin(2*t), sin(t)]
[ sin(t), sin(2*t), sin(3*t), sin(2*t)]
[ 0, sin(t), sin(2*t), sin(3*t)]

Find the sum of these sine wavesatt = m,t = n/2,t = n/3,t = n/4,t = /5, and

t = n/6. First, find the sum of all elements of matrix F. Here, the first call to sum returns
a row vector containing sums of elements in each column. The second call to sum returns

the sum of elements of that row vector.

S = sum(sum(F))

S:
6*sin(2*t) + 4*sin(3*t) + 4*sin(t)

Now, use subs to evaluate S for particular values of the variable t.

subs(S, t, sym(pi)./[1:6])
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[ O,...
0,...
5*¥37(1/2), 4*2~(1/2) + 6,...
27(1/2)*%(5 - 57(1/2))~(1/2) + (5*27~(1/2)*(5"~(1/2) + 5)~(1/2))/2,...
3*37(1/2) + 6]

You also can use subs to replace a scalar element of a matrix with another matrix. In this
case, subs expands the matrix to accommodate new elements. For example, replace zero
elements of the matrix F with a column vector [1;2]. The original 4-by-4 matrix F
expands to an 8-by-4 matrix. The subs function duplicates each row of the original
matrix, not only the rows containing zero elements.

F = subs(F, 0, [1;2])

F =

[ sin(3*t), sin(2*t), sin(t), 1]
[ sin(3*t), sin(2*t), sin(t), 2]
[ sin(2*t), sin(3*t), sin(2*t), sin(t)]
[ sin(2*t), sin(3*t), sin(2*t), sin(t)]
[ sin(t), sin(2*t), sin(3*t), sin(2*t)]
[ sin(t), sin(2*t), sin(3*t), sin(2*t)]
[ 1, sin(t), sin(2*t), sin(3*t)]
[ 2, sin(t), sin(2*t), sin(3*t)]
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Evaluate Symbolic Expressions Using subs
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When you assign a value to a symbolic variable, expressions containing the variable are
not automatically evaluated. Instead, evaluate expressions by using subs.

Define the expressiony = x"2.

syms X
y = X*2;

Assign 2 to Xx. The value of y is still x"2 instead of 4.

X
y

If you change the value of x again, the value of y stays x"2. Instead, evaluate y with the
new value of x by using subs.

subs(y)

ans =
4

The evaluated result is 4. However, y has not changed. Change the value of y by
assigning the result to y.

y = subs(y)

y:
4

Show that y is independent of x after this assignment.
X =5;
subs(y)
ans =

4
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Choose Symbolic or Numeric Arithmetic

Symbolic Math Toolbox operates on numbers by using either symbolic or numeric
arithmetic. Numeric arithmetic is either variable precision or double precision. The
following information compares symbolic, variable-precision, and double-precision

arithmetic.

Symbolic Variable Precision |(Double Precision
Example: Find sin(m) |a = sym(pi) b = vpa(pi) pi

sin(a) sin(b) sin(pi)

a = b = ans =

pi 3.1415926535897932384628433882795

ans = ans = ans =

0 -3.2101083013100396069342246883668¢€ - 4(
Functions Used sym vpa double

digits

Round-Off Errors

No, finds exact
results

Yes, magnitude
depends on precision
used

Yes, has 16 digits of
precision

on precision used

Speed Slowest Faster, depends on  |Faster
precision used
Memory Usage Greatest Adjustable, depends |Least

Symbolic Arithmetic

By default, Symbolic Math Toolbox uses exact numbers, such as 1/3, sqrt(2), or pi, to
perform exact symbolic computations on page 1-13.

Variable-Precision Arithmetic

Variable-precision arithmetic using vpa is the recommended approach for numeric
calculations in Symbolic Math Toolbox. For greater precision, increase the number of
significant digits on page 2-123. For faster computations and decreased memory usage,
decrease the number of significant digits on page 2-130.
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Double-Precision Arithmetic

Double-precision, floating-point arithmetic uses the same precision as most numeric
computations in MATLAB. This arithmetic is recommended when you do not have
Symbolic Math Toolbox or are using functions that do not accept symbolic input.
Otherwise, exact symbolic numbers and variable-precision arithmetic are recommended.
To approximate a value with double precision, use the double function.

2-122



Increase Precision of Numeric Calculations

Increase Precision of Numeric Calculations

By default, MATLAB uses 16 digits of precision. For higher precision, use the vpa
function in Symbolic Math Toolbox. vpa provides variable precision which can be
increased without limit.

When you choose variable-precision arithmetic, by default, vpa uses 32 significant
decimal digits of precision. For details, see “Choose Symbolic or Numeric Arithmetic” on
page 2-121. You can set a higher precision by using the digits function.

Approximate a sum using the default precision of 32 digits. If at least one input is
wrapped with vpa, all other inputs are converted to variable precision automatically.

vpa(l/3) + 1/2

ans =
0.83333333333333333333333333333333

You must wrap all inner inputs with vpa, such as exp(vpa(200) ). Otherwise, the inputs
are automatically converted to double by MATLAB.

Increase the precision to 50 digits by using digits and save the old value of digits in
digitsO0ld. Repeat the sum.

digitsOld = digits(50);
sum50 = vpa(l/3) + 1/2

sum50 =
0.83333333333333333333333333333333333333333333333333

Restore the old value of digits for further calculations.

digits(digitsOld)

Note vpa output is symbolic. To use symbolic output with a MATLAB function that does
not accept symbolic values, convert symbolic values to double precision by using double.

Check the current digits setting by calling digits.
digits

Digits = 32
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Change the precision for a single vpa call by specifying the precision as the second input
to vpa. This call does not affect digits. For example, approximate pi with 100 digits.

vpa(pi, 1l00)

ans =
3.14159265358979323846264338327950288419716939937510582097494
4592307816406286208998628034825342117068

digits % digits remains 32
Digits = 32
Variable precision can be increased arbitrarily. Find pi to 500 digits.

digitsOld = digits(500);
vpa(pi)
digits(digitsOld)

ans =
3.1415926535897932384626433832795028841971693993751058209749
445923078164062862089986280348253421170679821480865132823066
470938446095505822317253594081284811174502841027019385211055
596446229489549303819644288109756659334461284756482337867831
652712019091456485669234603486104543266482133936072602491412
737245870066063155881748815209209628292540917153643678925903
600113305305488204665213841469519415116094330572703657595919
530921861173819326117931051185480744623799627495673518857527
248912279381830119491

digits and vpa control the number of significant decimal digits. For example,
approximating 1/111 with four-digit accuracy returns six digits after the decimal point
because the first two digits are zeros.

vpa(1/111,4)

ans =
0.009009

Note If you want to increase performance by decreasing precision, see “Increase Speed
by Reducing Precision” on page 2-130.
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Recognize and Avoid Round-Off Errors

When approximating a value numerically, remember that floating-point results can be
sensitive to the precision used. Also, floating-point results are prone to round-off errors.
The following approaches can help you recognize and avoid incorrect results.

In this section...
“Use Symbolic Computations When Possible” on page 2-125
“Perform Calculations with Increased Precision” on page 2-126

“Compare Symbolic and Numeric Results” on page 2-128

“Plot the Function or Expression” on page 2-128

Use Symbolic Computations When Possible

Performing computations symbolically on page 2-121 is recommended because exact
symbolic computations are not prone to round-off errors. For example, standard
mathematical constants have their own symbolic representations in Symbolic Math
Toolbox:

pi
sym(pi)

ans =
3.1416

ans =
pi

Avoid unnecessary use of numeric approximations. A floating-point number approximates
a constant; it is not the constant itself. Using this approximation, you can get incorrect
results. For example, the heaviside special function returns different results for the sine
of sym(pi) and the sine of the numeric approximation of pi:

heaviside(sin(sym(pi)))
heaviside(sin(pi))

ans =

1/2

ans =

1

2-125



2 Using Symbolic Math Toolbox Software

Perform Calculations with Increased Precision

The Riemann hypothesis states that all nontrivial zeros of the Riemann Zeta function {(z)
have the same real part R(z) = 1/2. To locate possible zeros of the Zeta function, plot its
absolute value |C(1/2 + iy)|. The following plot shows the first three nontrivial roots of the

Zeta function |C(1/2 + iy)|.

syms y
fplot(abs(zeta(1/2 + i*y)), [0 30])
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Use the numeric solver vpasolve to approximate the first three zeros of this Zeta

function:
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vpasolve(zeta(l/2 + i*y), y, 15)
vpasolve(zeta(l/2 + i*y), y, 20)
vpasolve(zeta(l/2 + i*y), y, 25)

ans =
14.134725141734693790457251983562

ans =
21.022039638771554992628479593897

ans =
25.010857580145688763213790992563

. . . . 1000000001 | .
Now, consider the same function, but slightly increase the real part, 2000000000 T V-
According to the Riemann hypothesis, this function does not have a zero for any real
value y. If you use vpasolve with the 10 significant decimal digits, the solver finds the

following (nonexisting) zero of the Zeta function:

old = digits;
digits(10)
vpasolve(zeta(1000000001/2000000000 + i*y), y, 15)

ans =
14.13472514

Increasing the number of digits shows that the result is incorrect. The Zeta function
1000000001

C 2000000000 T iy| does not have a zero for any real value 14 < y < 15:

digits(15)
vpasolve(zeta(1000000001/2000000000 + i*y), y, 15)
digits(old)

ans =
14.1347251417347 + 0.0000000004999892073063451

For further computations, restore the default number of digits:

digits(old)
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2-128

Compare Symbolic and Numeric Results

Bessel functions with half-integer indices return exact symbolic expressions.
Approximating these expressions by floating-point numbers can produce very unstable
results. For example, the exact symbolic expression for the following Bessel function is:

B = besselj(53/2, sym(pi))

B =

(351*%27(1/2)*(119409675/pi~4 - 20300/pi~2 - 315241542000/pi”6...

+ 445475704038750/pi”8 - 366812794263762000/pi”~10 +...
182947881139051297500/pi~12 - 55720697512636766610000/pi~14. ..

+ 10174148683695239020903125/pi”16 - 1060253389142977540073062500/pi”~18. ..

+ 57306695683177936040949028125/pi~20 - 1331871030107060331702688875000/pi~22. ..

+ 8490677816932509614604641578125/pi"~24 + 1))/pi~2

Use vpa to approximate this expression with the 10-digit accuracy:
vpa(B, 10)

ans =
-2854.225191

Now, call the Bessel function with the floating-point parameter. Significant difference
between these two approximations indicates that one or both results are incorrect:

besselj(53/2, pi)

ans =
6.9001e-23

Increase the numeric working precision to obtain a more accurate approximation for B:
vpa(B, 50)
ans =

0.000000000000000000000069001456069172842068862232841396473796597233761161

Plot the Function or Expression

Plotting the results can help you recognize incorrect approximations. For example, the
numeric approximation of the following Bessel function returns:

B = besselj(53/2, sym(pi));
vpa(B, 10)
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ans =
-2854.225191

Plot this Bessel function for the values of x around 53/2. The function plot shows that the
approximation is incorrect:

syms X
fplot(besselj(x, sym(pi)), [26 27])

« 1072

26 261 262 263 264 265 266 267 2648 269 27

2-129



2 Using Symbolic Math Toolbox Software

Increase Speed by Reducing Precision

Increase MATLAB's speed by reducing the precision of your calculations. Reduce
precision by using variable-precision arithmetic provided by the vpa and digits
functions in Symbolic Math Toolbox. When you reduce precision, you are gaining
performance by reducing accuracy. For details, see “Choose Symbolic or Numeric
Arithmetic” on page 2-121.

For example, finding the Riemann zeta function of the large matrix C takes a long time.
First, initialize C.

[X,Y] = meshgrid((0:0.0025:.75),(5:-0.05:0));
C =X+ Y*i;

Then, find the time taken to calculate zeta(C).
tic

zeta(C);

toc

Elapsed time is 340.204407 seconds.

Now, repeat this operation with a lower precision by using vpa. First, change the
precision used by vpa to a lower precision of 10 digits by using digits. Then, use vpa to
reduce the precision of C and find zeta(C) again. The operation is significantly faster.

digits(10)
vpaC = vpa(C);
tic
zeta(vpaC);
toc

Elapsed time is 113.792543 seconds.

Note vpa output is symbolic. To use symbolic output with a MATLAB function that does
not accept symbolic values, convert symbolic values to double precision by using double.

For larger matrices, the difference in computation time can be even more significant. For
example, consider the 1001-by-301 matrix C.

[X,Y] = meshgrid((0:6.0025:.75),(5:-0.005:0));
C = X+ Y*i;
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Running zeta(vpa(C)) with 10-digit precision takes 15 minutes, while running
zeta(C) takes three times as long.

digits(10)
vpaC = vpa(C);
tic
zeta(vpaC);
toc

Elapsed time is 886.035806 seconds.
tic

zeta(C);

toc

Elapsed time is 2441.991572 seconds.

Note If you want to increase precision, see “Increase Precision of Numeric Calculations”
on page 2-123.
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Numeric to Symbolic Conversion

2-132

This topic shows how Symbolic Math Toolbox converts numbers into symbolic form. For
an overview of symbolic and numeric arithmetic, see “Choose Symbolic or Numeric
Arithmetic” on page 2-121.

To convert numeric input to symbolic form, use the sym command. By default, sym
returns a rational approximation of a numeric expression.

t=0.1;
sym(t)

ans =
1/10

sym determines that the double-precision value 0.1 approximates the exact symbolic
value 1/10. In general, sym tries to correct the round-off error in floating-point inputs to
return the exact symbolic form. Specifically, sym corrects round-off error in numeric
inputs that match the forms p/q, pu/q, (p/q)'2, 24, and 109, where p and g are modest-
sized integers.

For these forms, demonstrate that sym converts floating-point inputs to the exact

symbolic form. First, numerically approximate 1/7, pi, and 1/+/2.

N1 = 1/7
N2 = pi
N3 = 1/sqrt(2)
N1 =
0.1429
N2 =
3.1416
N3 =
0.7071

Convert the numeric approximations to exact symbolic form. sym corrects the round-off
error.

S1 = sym(N1)
S2 = sym(N2)
S3 = sym(N3)
S1 =

1/7
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S2 =

pi

S3 =
27(1/2)/2

To return the error between the input and the estimated exact form, use the syntax
sym(num, 'e'). See “Conversion to Rational Symbolic Form with Error Term” on page 2-
134.

You can force sym to accept the input as is by placing the input in quotes. Demonstrate
this behavior on the previous input 0.142857142857143. The sym function does not
convert the input to 1/7.

sym('0.142857142857143")

ans =
0.142857142857143

When you convert large numbers, use quotes to exactly represent them. Demonstrate this
behavior by comparing sym(133333333333333333333) with
sym('133333333333333333333"').

sym(1333333333333333333)
sym('1333333333333333333")

ans =
1333333333333333248
ans =
1333333333333333333

You can specify the technique used by sym to convert floating-point numbers using the
optional second argument, which canbe 'f', 'r', 'e', or 'd'. The default flagis 'r"',
for rational form on page 2-134.

In this section...

“Conversion to Rational Symbolic Form” on page 2-134
“Conversion by Using Floating-Point Expansion” on page 2-134
“Conversion to Rational Symbolic Form with Error Term” on page 2-134

“Conversion to Decimal Form” on page 2-135
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Conversion to Rational Symbolic Form

Convert input to exact rational form by calling sym with the 'r' flag. This is the default
behavior when you call sym without flags.

sym(t, 'r")
ans =

1/10

Conversion by Using Floating-Point Expansion

If you call sym with the flag ' f', sym converts double-precision, floating-point numbers to
their numeric value by using N*2”e, where N and e are the exponent and mantissa
respectively.

Convert t by using a floating-point expansion.
sym(t, 'f')

ans =
3602879701896397/36028797018963968

Conversion to Rational Symbolic Form with Error Term

If you call sym with the flag 'e"', sym returns the rational form of t plus the error
between the estimated, exact value for t and its floating-point representation. This error
is expressed in terms of eps (the floating-point relative precision).

Convert t to symbolic form. Return the error between its estimated symbolic form and its
floating-point value.

sym(t, 'e'")

ans =
eps/40 + 1/10

The error term eps/40 is the difference between sym('0.1') and sym(0.1).
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Conversion to Decimal Form

If you call sym with the flag 'd"', sym returns the decimal expansion of the input. The
digits function specifies the number of significant digits used. The default value of
digitsis 32.

sym(t,'d")

ans =
0.10000000000000000555111512312578

Change the number of significant digits by using digits.

digitsOld = digits(7);
sym(t,'d")

ans =
0.1

For further calculations, restore the old value of digits.

digits(digitsOld)
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Basic algebraic operations on symbolic objects are the same as operations on MATLAB
objects of class double. This is illustrated in the following example.

The Givens transformation produces a plane rotation through the angle t. The statements

syms t
G = [cos(t) sin(t); -sin(t) cos(t)]

create this transformation matrix.

[ cos(t), sin(
[ -sin(t), cos(

)

t)]
t)]

Applying the Givens transformation twice should simply be a rotation through twice the
angle. The corresponding matrix can be computed by multiplying G by itself or by raising
G to the second power. Both

A = G*G

and

A = G"2

produce

A =

[ cos(t)”2 - sin(t)"2, 2*cos(t)*sin(t)]
[ -2*cos(t)*sin(t), cos(t)”2 - sin(t)"2]
The simplify function

A = simplify(A)

uses a trigonometric identity to return the expected form by trying several different
identities and picking the one that produces the shortest representation.

A —3
[ cos(2*t), sin(2*t)]

[ -sin(2*t), «cos(2*t)]

The Givens rotation is an orthogonal matrix, so its transpose is its inverse. Confirming
this by
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I =G." *G

which produces

I

[ cos(t)™2 + sin(t)"2, 0]
[ 0, cos(t)™2 + sin(t)"2]
and then

I = simplify(I)

I =

[ 1, 0]

[ 0, 1]
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In this section...

“Symbolic Hilbert Matrix” on page 2-138
“Symbolic Linear Algebra Operations” on page 2-138
“Variable-Precision Arithmetic” on page 2-139

“Symbolic Investigation of Singular Value” on page 2-141

Symbolic Hilbert Matrix

The following examples, which show how to perform basic linear algebraic operations, are
based on a symbolic version of the 3-by-3 Hilbert matrix.

Generate the 3-by-3 Hilbert matrix. With format short, MATLAB prints the output
shown.

H = hilb(3)

H =
1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

The computed elements of H are floating-point numbers that are the ratios of small
integers. H is a MATLAB array of class double.

Convert H to a symbolic matrix.

H = sym(H)

H

[ 1, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

Symbolic Linear Algebra Operations

Symbolic operations on H produce results that correspond to the infinite-precision Hilbert
matrix, sym(hilb(3)), not its floating-point approximation, hilb(3).
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Find the inverse of H.

inv(H)
ans =
[ 9, -36, 30]
[ -36, 192, -180]
[ 30, -180, 180]

Find the determinant of H.
det (H)

ans =
1/2160

You can use the backslash operator to solve a system of simultaneous linear equations.
For example, solve H¥*x = b.

b
X

[1; 1; 1];
H\b

X =
3
-24
30

All three results—the inverse, the determinant, and the solution to the linear system—are
the exact results corresponding to the infinite-precision, rational, Hilbert matrix.

Variable-Precision Arithmetic

Contrast the preceding operations with variable-precision arithmetic using 20 digits of
precision.

digits(20)

V = vpa(H)

V:

[ 1.0, 0.5, 0.33333333333333333333]
[ 0.5, 0.33333333333333333333, 0.25]
[ ©.33333333333333333333, 0.25, 0.2]
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The decimal points in the representation of the individual elements indicate that MATLAB
is using variable-precision arithmetic. The result of each arithmetic operation is rounded
to 20 significant decimal digits.

Invert the matrix and note that errors are magnified by the matrix condition number,
which for hilb(3) is about 500.

cond (V)
ans =
524.0567775860608

Compute the difference of the inverses of the infinite-precision and variable-precision

versions.
ih = inv(H)
ih =

[ 9, -36, 30]
[ -36, 192, -180]
[ 30, -180, 180]

iv

inv(V)

iv =

[ 9.0, -36.0, 30.0]

[ -36.0, 192.0, -180.0]

[ 30.0, -180.0, 180.0]

Although these matrices look the same, calculate the difference to see that they are not.

dhv = ih - iv

dhv =

[ -5.4929962552349494034e-26, 2.4556924435168009098e-25, -2.1971985020939797614e-25]

[ 2.4556924435168009098e-25, -1.2666203129718236271e-24, 1.1373733422604130529e-24]
[ -2.1971985020939797614e-25, 1.1373733422604130529e-24, -1.0856745539758488233e-24]

Solve the equation V*¥y = b. The answer looks the same as the solution to H*x = b.

y = V\b
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Calculate the difference between x and y to see the small difference between the two

solutions.

X-y

ans =

8.0779356694631608874e-27
-6.4623485355705287099%¢e-26
7.1085833891275815809e-26

Using vpa with digits(16) offers comparable precision to using standard double-

precision MATLAB routines.

Symbolic Investigation of Singular Value

Find a value s for H(1, 1) that makes H singular.

syms s
Hs = H;
()s
= det(Hs)
l = solve(Z)
Hs =
[ s, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

Z:
s/240 - 1/270

sol =
8/9

Substitute the solution for s into Hs.

Hs = subs(Hs, s,
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Hs =

[ 8/9, 1/2, 1/3]
[ 1/2, 1/3, 1/4]
[ 1/3, 1/4, 1/5]

Verify that the determinant of Hs is zero.
det (Hs)

ans =
0

Find the null space and column space of Hs. Both spaces are nontrivial.

N
C

null(Hs)
colspace(Hs)

N=
3/10
-6/5
1

C —3

[ 1, 0]

[ 0, 1]

[ -3/10, 6/5]

Check that N is in the null space of Hs.
Hs*N

ans =

0
0
0
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Eigenvalues

The symbolic eigenvalues of a square matrix A or the symbolic eigenvalues and
eigenvectors of A are computed, respectively, using the commands E = eig(A) and
[V,E] = eig(A).

The variable-precision counterparts are E = eig(vpa(A)) and [V,E] =
eig(vpa(A)).

The eigenvalues of A are the zeros of the characteristic polynomial of A, det (A-x*I),
which is computed by charpoly(A).

The matrix H from the last section provides the first example:

H = sym([8/9 1/2 1/3; 1/2 1/3 1/4; 1/3 1/4 1/5])

1/2, 1/3, 1/4]

H =

[ 8/9, 1/2, 1/3]
[

[ 1/3, 1/4, 1/5]

The matrix is singular, so one of its eigenvalues must be zero. The statement

[T,E] = eig(H)

produces the matrices T and E. The columns of T are the eigenvectors of H and the
diagonal elements of E are the eigenvalues of H:

T =
[ 3/10, 218/285 - (4*125897(1/2))/285, (4*125897(1/2))/285 + 218/285]
[
[

-6/5, 292/285 - 125897(1/2)/285, 125897(1/2) /285 + 292/285]
1, 1, 1]
E =
[0, 0, 0]
[ 6, 32/45 - 125897(1/2)/180, 0]
[ o, 0, 125897(1/2)/180 + 32/45]

It may be easier to understand the structure of the matrices of eigenvectors, T, and
eigenvalues, E, if you convert T and E to decimal notation. To do so, proceed as follows.
The commands

Td = double(T)
Ed = double(E)
return
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Td =
0.3000 -0.8098 2.3397
-1.2000 0.6309 1.4182
1.0000 1.0000 1.0000

Ed =
0 0 0
0 0.0878 0
0 0 1.3344

The first eigenvalue is zero. The corresponding eigenvector (the first column of Td) is the
same as the basis for the null space found in the last section. The other two eigenvalues
64 253

+ ——~ which is the

are the result of applying the quadratic formula to x 75Xt 5760

quadratic factor in factor(charpoly(H, x)):

syms X
g = factor(charpoly(H, x))/x
solve(g(3))

g:

[ 1/(2160*x), 1, (2160*x™2 - 3072*x + 253)/x]
ans =

32/45 - 125897(1/2)/180

125897(1/2)/180 + 32/45

Closed form symbolic expressions for the eigenvalues are possible only when the
characteristic polynomial can be expressed as a product of rational polynomials of degree
four or less. The Rosser matrix is a classic numerical analysis test matrix that illustrates
this requirement. The statement

R = sym(rosser)

generates

R =

[ 611, 196, -192, 407, -8, -52, -49, 29]
[ 196, 899, 113, -192, -71, -43, -8, -44]
[ -192, 113, 899, 196, 61, 49, 8, 52]
[ 407, -192, 196, 611, 8, 44, 59, -23]
[ -8, -71, 61, 8, 411, -599, 208, 208]
[ -52, -43, 49, 44, -599, 411, 208, 208]
[ -49, -8, 8, 59, 208, 208, 99, -911]
[ 29, -44, 52, -23, 208, 208, -911, 99]
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The commands

p = charpoly(R, x);
factor(p)

produce
ans =

[ x, x - 1020, x~2 - 1040500, x"~2 - 1020*x + 100, x - 1000, x - 1000]

The characteristic polynomial (of degree 8) factors nicely into the product of two linear
terms and three quadratic terms. You can see immediately that four of the eigenvalues
are 0, 1020, and a double root at 1000. The other four roots are obtained from the
remaining quadratics. Use

eig(R)
to find all these values

ans =
0
1000
1000
1020
510 - 100*26"(1/2)
100*26~(1/2) + 510
-10*%10405"(1/2)
10*10405~(1/2)

The Rosser matrix is not a typical example; it is rare for a full 8-by-8 matrix to have a
characteristic polynomial that factors into such simple form. If you change the two
“corner” elements of R from 29 to 30 with the commands

S = R;
S(1,8) = 30;
S(8,1) = 30;
and then try

p = charpoly(S, x)

you find

p:
X8 - 4040*x™7 + 5079941*x"6 + 82706090*x"5. ..
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- 5327831918568*x"4 + 4287832912719760*x"3. ..
- 1082699388411166000*x~2 + 51264008540948000*x. . .
+ 40250968213600000

You also find that factor(p) is p itself. That is, the characteristic polynomial cannot be
factored over the rationals.

For this modified Rosser matrix

F = eig(S)
returns
F =

-1020.053214255892
-0.17053529728769
0.2180398054830161
999.9469178604428
1000.120698293384
1019.524355263202
1019.993550129163
1020.420188201505

Notice that these values are close to the eigenvalues of the original Rosser matrix.

It is also possible to try to compute eigenvalues of symbolic matrices, but closed form
solutions are rare. The Givens transformation is generated as the matrix exponential of
the elementary matrix

0 1]‘

A=
-10

Symbolic Math Toolbox commands

syms t

A = sym([0 1; -1 0]);

G = expm(t*A)

return

G —

[ exp(-t*1i)/2 + exp(t*1li)/2,

(exp(-t*1i)*1i)/2 - (exp(t*1li)*1i)/2]
[ - (exp(-t*1i)*1i)/2 + (exp(t*1i)*1i)/2,
exp(-t*1i)/2 + exp(t*1i)/2]
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You can simplify this expression using simplify:

G = simplify(G)
G:

[ cos(t), sin(t)]
[ -sin(t), cos(t)]

Next, the command

g = eig(G)
produces
g =

cos(t) - sin(t)*1i
cos(t) + sin(t)*1i

You can rewrite g in terms of exponents:
g = rewrite(g, 'exp')
g =

exp(-t*1i)
exp(t*1li)
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The Jordan canonical form (Jordan normal form) results from attempts to convert a matrix
to its diagonal form by a similarity transformation. For a given matrix A, find a
nonsingular matrix V, so that inv (V) *A*V, or, more succinctly, J = V\A*V, is “as close
to diagonal as possible.” For almost all matrices, the Jordan canonical form is the diagonal
matrix of eigenvalues and the columns of the transformation matrix are the eigenvectors.
This always happens if the matrix is symmetric or if it has distinct eigenvalues. Some
nonsymmetric matrices with multiple eigenvalues cannot be converted to diagonal forms.
The Jordan form has the eigenvalues on its diagonal, but some of the superdiagonal
elements are one, instead of zero. The statement

J = jordan(A)
computes the Jordan canonical form of A. The statement
[V,J] = jordan(A)

also computes the similarity transformation where J = inv(V)*A*V. The columns of V
are the generalized eigenvectors of A.

The Jordan form is extremely sensitive to changes. Almost any change in A causes its
Jordan form to be diagonal. This implies that A must be known exactly (i.e., without
round-off error, etc.) and makes it very difficult to compute the Jordan form reliably with
floating-point arithmetic. Thus, computing the Jordan form with floating-point values is
unreliable and not recommended.

For example, let

A = sym([12,32,66,116;-25,-76,-164,-294;
21,66,143,256;-6,-19,-41,-731)

-25, -76, -164, -294
21, 66, 143, 256

A
[ 12, 32, 66, 116
[
[
[ -6, -19, -41, -73

[V,J] = jordan(A)

produces
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v

[ 4, -2, 4, 3]
[ -6, 8, -11, -8]
[ 4, -7, 10, 7]
[ -1, 2, -3, -2]
J =

[ 1, 1, 0, O]

[ 6, 1, 0, O]

[ 0, 0, 2, 1]

[ 6, 0, 0, 2]

Show that J and inv (V) *A*V are equal by using isequal. The isequal function
returns logical 1 (true) meaning that the inputs are equal.

isequal(J, inv(V)*A*V)
ans =

logical
1

From J, we see that A has a double eigenvalue at 1, with a single Jordan block, and a
double eigenvalue at 2, also with a single Jordan block. The matrix has only two
eigenvectors, V(:,1) and V(:,3). They satisfy

AXV(:,1)
A*V(:,3)

The other two columns of V are generalized eigenvectors of grade 2. They satisfy

AXV(:,2)
A*V(:,4)

1*V(:,2) + V(:,1)
2%V (:,4) + V(:,3)

In mathematical notation, with vy = v(:,j), the columns of V and eigenvalues satisfy the
relationships

(A - Alf)VQ =V

(A- AzI)V4 =V3.
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Singular value decomposition expresses an m-by-n matrix Aas A = U*S*V'. Here, Sis an
m-by-n diagonal matrix with singular values of A on its diagonal. The columns of the m-by-m
matrix U are the left singular vectors for corresponding singular values. The columns of
the n-by-n matrix V are the right singular vectors for corresponding singular values. V' is
the Hermitian transpose (the complex conjugate of the transpose) of V.

To compute the singular value decomposition of a matrix, use svd. This function lets you
compute singular values of a matrix separately or both singular values and singular
vectors in one function call. To compute singular values only, use svd without output
arguments

svd(A)

or with one output argument

S = svd(A)

To compute singular values and singular vectors of a matrix, use three output arguments:
[U,S,V] = svd(A)

svd returns two unitary matrices, U and V, the columns of which are singular vectors. It
also returns a diagonal matrix, S, containing singular values on its diagonal. The elements
of all three matrices are floating-point numbers. The accuracy of computations is
determined by the current setting of digits.

Create the n-by-n matrix A with elements defined by A(i,j) = 1/(i - j + 1/2).The
most obvious way of generating this matrix is

n =3;
for i = 1:n
for j = 1:n
A(i,j) = sym(1l/(i-j+1/2));
end
end

For n = 3, the matrix is

A
A =
[ 2, -2, -2/3]
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[ 2/3, 2, -2]
[ 2/5, 2/3, 2]

Compute the singular values of this matrix. If you use svd directly, it will return exact
symbolic result. For this matrix, the result is very long. If you prefer a shorter numeric
result, convert the elements of A to floating-point numbers using vpa. Then use svd to
compute singular values of this matrix using variable-precision arithmetic:

S = svd(vpa(A))

S —1
3.1387302525015353960741348953506
3.0107425975027462353291981598225
1.6053456783345441725883965978052

Now, compute the singular values and singular vectors of A:

[U,S,V] = svd(A)

u
[

[

0.53254331027335338470683368360204,

-0.82525689650849463222502853672224,

0.18801243961043281839917114171742, -

3.1387302525015353960741348953506,

.76576895948802052989304092179952, . . .
.36054891952096214791189887728353]
.37514965283965451993171338605042, . . .
.42215375485651489522488031917364]
.52236064041897439447429784257224, . . .
.83173955292075192178421874331406]

0,...
0]

0, 3.0107425975027462353291981598225, ...

o,

0.18801243961043281839917114171742,

-0.82525689650849463222502853672224,

0.53254331027335338470683368360204, -

oo oRoRoNo]

0]
0,...

1.6053456783345441725883965978052i

.52236064041897439447429784257224, . . .
.83173955292075192178421874331406]
.37514965283965451993171338605042, . . .
.42215375485651489522488031917364]
.76576895948802052989304092179952, .. .
.36054891952096214791189887728353]
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Solve Algebraic Equation
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Symbolic Math Toolbox offers both symbolic and numeric equation solvers. This topic
shows you how to solve an equation symbolically using the symbolic solver solve. To
compare symbolic and numeric solvers, see “Select Numeric or Symbolic Solver” on page
2-161.

In this section...

“Solve an Equation” on page 2-152
“Return the Full Solution to an Equation” on page 2-153

“Work with the Full Solution, Parameters, and Conditions Returned by solve” on page 2-
153

“Visualize and Plot Solutions Returned by solve” on page 2-154
“Simplify Complicated Results and Improve Performance” on page 2-157

Solve an Equation
If egn is an equation, solve(eqn, x) solves eqn for the symbolic variable x.

Use the == operator to specify the familiar quadratic equation and solve it using solve.

syms a b ¢ x

eqn = a*x™2 + b*x + ¢ == 0;

solx = solve(egn, Xx)

solx =
-(b + (b™2 - 4*a*c)"~(1/2))/(2*a)
-(b - (b™2 - 4*a*c)"~(1/2))/(2*a)

solx is a symbolic vector containing the two solutions of the quadratic equation. If the
input eqn is an expression and not an equation, solve solves the equation eqn ==

To solve for a variable other than X, specify that variable instead. For example, solve eqn
for b.

solb

solve(eqn, b)

solb =
-(a*x™2 + c)/x
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If you do not specify a variable, solve uses symvar to select the variable to solve for. For
example, solve(eqgn) solves eqn for x.

Return the Full Solution to an Equation

solve does not automatically return all solutions of an equation. Solve the equation

cos(x) == -sin(x). The solve function returns one of many solutions.
syms X

solx = solve(cos(x) == -sin(x), Xx)

solx =

-pi/4

To return all solutions along with the parameters in the solution and the conditions on the
solution, set the ReturnConditions option to true. Solve the same equation for the full
solution. Provide three output variables: for the solution to X, for the parameters in the
solution, and for the conditions on the solution.

syms X
[solx, param, cond] = solve(cos(x) == -sin(x), x, 'ReturnConditions', true)

solx =

pi*k - pi/4
param =

k

cond =

in(k, 'integer')

solx contains the solution for x, which is pi*k - pi/4. The param variable specifies
the parameter in the solution, which is k. The cond variable specifies the condition in(k,
"integer') on the solution, which means k must be an integer. Thus, solve returns a
periodic solution starting at pi/4 which repeats at intervals of pi*k, where Kk is an
integer.

Work with the Full Solution, Parameters, and Conditions
Returned by solve

You can use the solutions, parameters, and conditions returned by solve to find solutions
within an interval or under additional conditions.
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To find values of x in the interval - 2*pi<x<2*pi, solve solx for k within that interval
under the condition cond. Assume the condition cond using assume.

assume(cond)
solk = solve(-2*pi<solx, solx<2*pi, param)

solk =
-1
0
1
2

To find values of x corresponding to these values of k, use subs to substitute for k in
solx.

xvalues = subs(solx, solk)

xvalues =
-(5*pi)/4
-pi/4
(3*pi)/4
(7*pi)/4

To convert these symbolic values into numeric values for use in numeric calculations, use
vpa.

xvalues = vpa(xvalues)

xvalues =
-3.9269908169872415480783042290994
-0.78539816339744830961566084581988
2.3561944901923449288469825374596
5.4977871437821381673096259207391

Visualize and Plot Solutions Returned by solve

The previous sections used solve to solve the equation cos(x) == -sin(x). The
solution to this equation can be visualized using plotting functions such as fplot and
scatter.

Plot both sides of equation cos(x) == -sin(x).

fplot(cos(x))
hold on
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grid on

fplot(-sin(x))

title('Both sides of equation cos(x) = -sin(x)"')
legend('cos(x)"',"'-sin(x)"', 'Location', 'best', 'AutoUpdate’, 'off")

Both sides of equation cos(x) = -sin{x)

'1 T T T T T T
— cos(x)
0.8r -5in{x)

Calculate the values of the functions at the values of x, and superimpose the solutions as
points using scatter.

yvalues = cos(xvalues)

yvalues =
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—0.70710678118654752440084436210485
0.70710678118654752440084436210485
—0.70710678118654752440084436210485

0.70710678118654752440084436210485

scatter(xvalues, yvalues)
Both sides of equation cos(x) = -sin(x)
/
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As expected, the solutions appear at the intersection of the two plots.
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Simplify Complicated Results and Improve Performance

If results look complicated, solve is stuck, or if you want to improve performance, see,
“Troubleshoot Equation Solutions from solve Function” on page 2-174.
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Solve a Second-Order Differential Equation Numerically

2-158

This example shows you how to convert a second-order differential equation into a system
of differential equations that can be solved using the numerical solver ode45 of
MATLAB®.

A typical approach to solving higher-order ordinary differential equations is to convert
them to systems of first-order differential equations, and then solve those systems. The
example uses Symbolic Math Toolbox™ to convert a second-order ODE to a system of
first-order ODEs. Then it uses the MATLAB solver ode45 to solve the system.

Rewrite the Second-Order ODE as a System of First-Order ODEs

Use odeToVectorField to rewrite this second-order differential equation

2
B =1- Y

dt dat

using a change of variables. Let y(t) = Yjand % =Y, such that differentiating both

equations we obtain a system of first-order differential equations.

dy;

Tt~
dy,
G =~ -y -
syms y(t)

[V] = odeToVectorField(diff(y, 2) == (1 - y~2)*diff(y) - y)

V:
Yy

—(Y12 -1)¥a -1y
Generate MATLAB function

The MATLAB ODE solvers do not accept symbolic expressions as an input. Therefore,
before you can use a MATLAB ODE solver to solve the system, you must convert that
system to a MATLAB function. Generate a MATLAB function from this system of first-
order differential equations using matlabFunction with V as an input.
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=
Il

matlabFunction(V, 'vars', {'t','Y'})

=
]

function handle with value:
@(t,Y)[Y(2);-(Y(1).72-1.0).*Y(2)-Y(1)]

Solve the System of First-Order ODEs

To solve this system, call the MATLAB ode45 numerical solver using the generated
MATLAB function as an input.

sol = oded45(M, [0 20],[2 0]1);
Plot the Solution

Plot the solution using linspace to generate 100 points in the interval [0,20] and deval
to evaluate the solution for each point.

fplot(@(x)deval(sol,x,1), [0, 20])
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See Also
dsolve | matlabFunction | ode45 | odeToVectorField
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Select Numeric or Symbolic Solver

You can solve equations to obtain a symbolic or numeric answer. For example, a solution
to cos(x) = — 1 is pi in symbolic form and 3.14159 in numeric form. The symbolic
solution is exact, while the numeric solution approximates the exact symbolic solution.
Symbolic Math Toolbox offers both symbolic and numeric equation solvers. This table can
help you choose either the symbolic solver (solve) or the numeric solver (vpasolve). A
possible strategy is to try the symbolic solver first, and use the numeric solver if the
symbolic solver is stuck.

Solve Equations Symbolically Using Solve Equations Numerically Using
solve vpasolve

Returns exact solutions. Solutions can then |Returns approximate solutions. Precision
be approximated using vpa. can be controlled arbitrarily using digits.
Returns a general form of the solution. For polynomial equations, returns all

numeric solutions that exist. For
nonpolynomial equations, returns the first
numeric solution found.

General form allows insight into the Numeric solutions provide less insight.

solution.

Runs slower. Runs faster.

Search ranges can be specified using Search ranges and starting points can be

inequalities. specified.

solve solves equations and inequalities vpasolve does not solve inequalities, nor

that contain parameters. does it solve equations that contain
parameters.

solve can return parameterized solutions. |vpasolve does not return parameterized
solutions.

vpasolve uses variable-precision arithmetic. You can control precision arbitrarily using
digits. For examples, see “Increase Precision of Numeric Calculations” on page 2-123.

See Also

solve | vpasolve
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Related Examples

. “Solve Algebraic Equation” on page 2-152

. “Solve Equations Numerically” on page 2-182

. “Solve System of Linear Equations” on page 2-179
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Solve System of Algebraic Equations

This topic shows you how to solve a system of equations symbolically using Symbolic
Math Toolbox. This toolbox offers both numeric and symbolic equation solvers. For a
comparison of numeric and symbolic solvers, see “Select Numeric or Symbolic Solver” on
page 2-161.

In this section...

“Handle the Output of solve” on page 2-163

“Solve a Linear System of Equations” on page 2-165

“Return the Full Solution of a System of Equations” on page 2-166

“Solve a System of Equations Under Conditions” on page 2-168

“Work with Solutions, Parameters, and Conditions Returned by solve” on page 2-169
“Convert Symbolic Results to Numeric Values” on page 2-173

“Simplify Complicated Results and Improve Performance” on page 2-173

Handle the Output of solve

Suppose you have the system

[}

and you want to solve for x and y. First, create the necessary symbolic objects.
syms X y a

There are several ways to address the output of solve. One way is to use a two-output
call.

[solx,soly] = solve(x™2*y"2 == 0, x-y/2 == a)
The call returns the following.
solx =

0
a
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soly =
-2*a
0
Modify the first equation to x?y? = 1. The new system has more solutions.
[solx,soly] = solve(x"2*y~2 == 1, x-y/2 == a)

Four distinct solutions are produced.

solx =
a/2 - (a™2 - 2)°(1/2)/2
a’/2 - (a™2 + 2)~(1/2)/2
a/2 + (a™2 - 2)°(1/2)/2
a/2 + (a™2 + 2)°(1/2)/2
soly =
-a - (™2 - 2)7(1/2)
-a - (a™2 + 2)"(1/2)
(a2 - 2)™(1/2) - a
(a”2 + 2)™(1/2) - a

Since you did not specify the dependent variables, solve uses symvar to determine the
variables.

This way of assigning output from solve is quite successful for “small” systems. For
instance, if you have a 10-by-10 system of equations, typing the following is both awkward
and time consuming.

[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10] = solve(...)

To circumvent this difficulty, solve can return a structure whose fields are the solutions.
For example, solve the system of equations u™2 - v*2 = a”2,u + v = 1,a"2 - 2*a
= 3.

syms u v a
S = solve(u™2 - v*2 == a™2, u+v =1, a”2 - 2*a == 3)

The solver returns its results enclosed in this structure.

S:
struct with fields:
a: [2x1 sym]
u: [2x1 sym]
v: [2x1 sym]
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The solutions for a reside in the “a-field” of S.
S.a
ans =

-1
3

Similar comments apply to the solutions for u and v. The structure S can now be
manipulated by the field and index to access a particular portion of the solution. For
example, to examine the second solution, you can use the following statement to extract
the second component of each field.

s2 = [S.a(2), S.u(2), S.v(2)]

The following statement creates the solution matrix M whose rows comprise the distinct
solutions of the system.

M = [S.a, S.u, S.v]

M =

Clear solx and soly for further use.

clear solx soly

Solve a Linear System of Equations

Linear systems of equations can also be solved using matrix division. For example, solve
this system.

clear u v x y

Syms u v Xy

eqgns = [x + 2*y == u, 4*x + 5%y == v];
S = solve(eqns);

sol = [S.x; S.yl]

[A,b] = equationsToMatrix(eqns,x,y);
z = A\b
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sol =
(2*v)/3 - (5*u)/3
(4*u)/3 - v/3

zZ =
(2*%v)/3 - (5*u)/3
(4*u)/3 - v/3

Thus,sol and z produce the same solution, although the results are assigned to different
variables.

Return the Full Solution of a System of Equations

solve does not automatically return all solutions of an equation. To return all solutions
along with the parameters in the solution and the conditions on the solution, set the
ReturnConditions option to true.

Consider the following system of equations:

sin(x) + cos(y) = 5
sin(x)cos(y) = L

10
Visualize the system of equations using fimplicit. To set the x-axis and y-axis values in
terms of pi, get the axes handles using axes in a. Create the symbolic array S of the
values -2*pi to 2*pi at intervals of pi/2. To set the ticks to S, use the XTick and
YTick properties of a. To set the labels for the x-and y-axes, convert S to character
vectors. Use arrayfun to apply char to every element of S to return T. Set the
XTickLabel and YTickLabel properties of a to T.

syms
egnl sin(x)+cos(y) == 4/5;

eqn2 sin(x)*cos(y) == 1/10;

a = axes;

fimplicit(egnl,[-2*pi 2*pi],'b"');
hold on

grid on

fimplicit(eqn2,[-2*pi 2*pil, 'm');
L = sym(-2*pi:pi/2:2*pi);

a.XTick = double(L);

a.YTick = double(L);

y

I n x
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a.XTickLabel M;

a.YTickLabel M;

title('Plot of System of Equations')

legend('sin(x)+cos(y) == 4/5','sin(x)*cos(y) == 1/10',...
'Location', 'best', 'AutoUpdate', 'off"')

M = arrayfun(@char, L, 'UniformOutput',6 false);

Plot of System of Equations

2' pl || T T |I\

(3*pi)/2 — P —

f 1 sinlx)+cosly) == 45 1

pi F | sin(x)*cosiy) == 110 }

|I II' |I II'

] B W,

pil2 — I 7

: E

-pif2 S — ___H\.I_

|

- —'/II

(3'piy2 —

_z‘pi i I'II‘
=2%pi - 3'piy2 -pi -pi2 1] pif2 pi (3*piy2 2%

The solutions lie at the intersection of the two plots. This shows the system has repeated,
periodic solutions. To solve this system of equations for the full solution set, use solve
and set the ReturnConditions option to true.

S = solve(eqgnl, eqn2, 'ReturnConditions', true)
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S:
struct with fields:
x: [2x1 sym
y: [2x1 sym

parameters: [1x2 sym
conditions: [2x1 sym

solve returns a structure S with the fields S. x for the solution to x, S.y for the solution
toy, S.parameters for the parameters in the solution, and S. conditions for the
conditions on the solution. Elements of the same indexin S.x, S.y, and S.conditions
form a solution. Thus, S.x(1),S.y(1), and S.conditions (1) form one solution to the
system of equations. The parameters in S. parameters can appear in all solutions.

Index into S to return the solutions, parameters, and conditions.

S.X

S.y

S.parameters

S.conditions

ans =

z1

z1

ans =

y4

y4

ans =

[ z, z1]

ans =
(in((z - acos(67(1/2)/10 + 2/5))/(2*pi), 'integer') |...
in((z + acos(67(1/2)/10 + 2/5))/(2*pi), 'integer')) &...
(in(-(pi - z1 + asin(67(1/2)/10 - 2/5))/(2*pi), 'integer') |...
in((z1l + asin(67(1/2)/10 - 2/5))/(2*pi), 'integer'))

(in((z1 - asin(67(1/2)/10 + 2/5))/(2*pi), 'integer') |...

in((z1 - pi + asin(67(1/2)/10 + 2/5))/(2*pi), 'integer')) &...
(in((z - acos(2/5 - 67(1/2)/10))/(2*pi), 'integer') |...
in((z + acos(2/5 - 67(1/2)/10))/(2*pi), 'integer'))

Solve a System of Equations Under Conditions

To solve the system of equations under conditions, specify the conditions in the input to
solve.
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Solve the system of equations considered above for x and y in the interval -2*pi to
2*pi. Overlay the solutions on the plot using scatter.

Srange = solve(eqnl, eqn2, -2*pi<x, x<2*pi, -2*pi<y, y<2*pi, 'ReturnConditions', true)
scatter(Srange.x, Srange.y, 'k')

Plot of System of Equations
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Work with Solutions, Parameters, and Conditions Returned by
solve

You can use the solutions, parameters, and conditions returned by solve to find solutions
within an interval or under additional conditions. This section has the same goal as the
previous section, to solve the system of equations within a search range, but with a
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different approach. Instead of placing conditions directly, it shows how to work with the
parameters and conditions returned by solve.

For the full solution S of the system of equations, find values of x and y in the interval
-2*pi to 2*pi by solving the solutions S.x and S.y for the parameters S.parameters
within that interval under the condition S.conditions.

Before solving for x and y in the interval, assume the conditions in S. conditions using
assume so that the solutions returned satisfy the condition. Assume the conditions for the
first solution.

assume(S.conditions (1))

Find the parametersin S.x and S.y.

paramx = intersect(symvar(S.x), S.parameters)
paramy = intersect(symvar(S.y), S.parameters)
paramx =

z1

paramy =

z

Solve the first solution of x for the parameter paramx.

solparamx(1l,:) = solve(S.x(1l) > -2*pi, S.x(1l) < 2*pi, paramx)

solparamx =

[ pi + asin(67(1/2)/10 - 2/5), asin(67(1/2)/10 - 2/5) - pi,
-asin(67(1/2)/10 - 2/5), - 2*pi - asin(67(1/2)/10 - 2/5)]

Similarly, solve the first solution of y for paramy.

solparamy(1l,:) = solve(S.y(1l) > -2*pi, S.y(1l) < 2*pi, paramy)

solparamy =

[ acos(6”(1/2)/10 + 2/5), acos(6”(1/2)/10 + 2/5) - 2*pi,
-acos(67(1/2)/10 + 2/5), 2*pi - acos(6”(1/2)/10 + 2/5)]1

Clear the assumptions set by S.conditions (1) using assume. Call asumptions to
check that the assumptions are cleared.

assume(S.parameters, 'clear')
assumptions
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ans =
Empty sym: 1-by-0

Assume the conditions for the second solution.
assume(S.conditions(2))
Solve the second solution to x and y for the parameters paramx and paramy.

solparamx(2,:)
solparamy(2,:)

solve(S.x(2) > -2*pi, S.x(2) < 2*pi, paramx)
solve(S.y(2) > -2*pi, S.y(2) < 2*pi, paramy)

solparamx =

[ pi + asin(67(1/2)/10 - 2/5), asin(67(1/2)/10 - 2/5) - pi,
-asin(67(1/2)/10 - 2/5), - 2*pi - asin(67(1/2)/10 - 2/5)]

[ asin(67(1/2)/10 + 2/5), pi - asin(67(1/2)/10 + 2/5),
asin(67(1/2)/10 + 2/5) - 2*pi, - pi - asin(6™(1/2)/10 + 2/5)]

solparamy =

[ acos(6™(1/2)/10 + 2/5), acos(67(1/2)/10 + 2/5) - 2*pi,
-acos(67(1/2)/10 + 2/5), 2*pi - acos(67(1/2)/10 + 2/5)]

[ acos(2/5 - 67(1/2)/10), acos(2/5 - 67(1/2)/10) - 2*pi,
-acos(2/5 - 67(1/2)/10), 2*pi - acos(2/5 - 67(1/2)/10)]

The first rows of paramx and paramy form the first solution to the system of equations,
and the second rows form the second solution.

To find the values of x and y for these values of paramx and paramy, use subs to
substitute for paramx and paramy inS.xand S.y.

solx(1l,:) = subs(S.x(1), paramx, solparamx(1l,:));
solx(2,:) = subs(S.x(2), paramx, solparamx(2,:))
soly(1l,:) = subs(S.y(1), paramy, solparamy(1l,:));
soly(2,:) = subs(S.y(2), paramy, solparamy(2,:))
solx =

[ pi + asin(6”(1/2)/10 - 2/5), asin(67(1/2)/10 - 2/5) - pi,
-asin(67(1/2)/10 - 2/5), - 2*pi - asin(67(1/2)/10 - 2/5)]
[ asin(6”(1/2)/10 + 2/5), pi - asin(67(1/2)/106 + 2/5),

asin(67(1/2)/10 + 2/5) - 2*pi, - pi - asin(67(1/2)/10 + 2/5)]
soly =
[ acos(6™(1/2)/10 + 2/5), acos(67(1/2)/10 + 2/5) - 2*pi,
-acos(67(1/2)/10 + 2/5), 2*pi - acos(67(1/2)/10 + 2/5)]
[ acos(2/5 - 67(1/2)/10), acos(2/5 - 67(1/2)/10) - 2*pi,
( ),

-acos(2/5 - 67(1/2)/10 2*pi - acos(2/5 - 67(1/2)/10)]

2-171



2 Using Symbolic Math Toolbox Software

Note that solx and soly are the two sets of solutions to x and to y. The full sets of
solutions to the system of equations are the two sets of points formed by all possible
combinations of the values in solx and soly.

Plot these two sets of points using scatter. Overlay them on the plot of the equations.
As expected, the solutions appear at the intersection of the plots of the two equations.

for i = 1l:length(solx(1,:))
for j = 1l:length(soly(1,:))

scatter(solx(1,i), soly(1,j), 'k')
scatter(solx(2,i), soly(2,j), 'k')
end
end
_ Plot of System of Equations
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Convert Symbolic Results to Numeric Values

Symbolic calculations provide exact accuracy, while numeric calculations are
approximations. Despite this loss of accuracy, you might need to convert symbolic results
to numeric approximations for use in numeric calculations. For a high-accuracy
conversion, use variable-precision arithmetic provided by the vpa function. For standard
accuracy and better performance, convert to double precision using double.

Use vpa to convert the symbolic solutions solx and soly to numeric form.

vpa(solx)
vpa(soly)

ans =

[ 2.9859135500977407388300518406219, ...
-3.2972717570818457380952349259371, . ..
0.15567910349205249963259154265761, . ..
-6.1275062036875339772926952239014]

[ 0.70095651347102524787213653614929, ...
2.4406361401187679905905068471302, . ..

-5.5822287937085612290531502304097, . ..

-3.8425491670608184863347799194288]

ans =

[ 0.86983981332387137135918515549046, ...
-5.4133454938557151055661016110685, ...
-0.86983981332387137135918515549046, . . .
5.4133454938557151055661016110685]

[ 1.4151172233028441195987301489821, ...
-4.8680680838767423573265566175769, . ..

-1.4151172233028441195987301489821, . ..
4.8680680838767423573265566175769]

Simplify Complicated Results and Improve Performance

If results look complicated, solve is stuck, or if you want to improve performance, see,
“Troubleshoot Equation Solutions from solve Function” on page 2-174.
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Troubleshoot Equation Solutions from solve Function

2-174

If solve returns solutions that look complicated, or if solve cannot handle an input,
there are many options. These options simplify the solution space for solve. These
options also help solve when the input is complicated, and might allow solve to return
a solution where it was previously stuck.

In this section...

“Return Only Real Solutions” on page 2-174

“Apply Simplification Rules” on page 2-174

“Use Assumptions to Narrow Results” on page 2-175
“Simplify Solutions” on page 2-177

“Tips” on page 2-177

Return Only Real Solutions

Solve the equation x~5 - 1 == 0. This equation has five solutions.

syms x

solve(x™5 - 1 == 0, X)

ans =

1

(2°(1/2)*(5 - 5°(1/2))"(1/2)*1i)/4 - 57(1/2)/4 - 1/4
(2~(1/2)*(5 - 57°(1/2))~(1/2)*1i)/4 - 57(1/2)/4 - 1/4
57(1/2)/4 - (2~(1/2)*(5"~(1/2) + 5)~(1/2)*1i)/4 - 1/4
5°(1/2)/4 + (27~(1/2)*(5~(1/2) + 5)"~(1/2)*1i)/4 - 1/4

If you only need real solutions, specify the Real option as true. The solve function
returns the one real solution.

solve(x™5 - 1, x, 'Real', true)

ans =
1

Apply Simplification Rules

Solve the following equation. The solve function returns a complicated solution.
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syms X
solve(x™(5/2) + 1/x~(5/2) == 1, x)

ans =

1/(1/2 - (37(1/2)*1i)/2)"(2/5)
1/((37(1/2)*11)/2 + 1/2)"(2/5)
-(57°(1/2)/4 - (27(1/2)*(5 - 57(1/2))"~(1/2)*1i)/4 + 1/4)/(1/2 - (3~(1/2)*1i)/2)"(2/5)
-((27(1/2)*(5 - 57°(1/2))~(1/2)*1i)/4 + 57(1/2)/4 + 1/4)/(1/2 - (37(1/2)*1i)/2)"(2/5)
-(57°(1/2)/4 - (27(1/2)*(5 - 57(1/2))"~(1/2)*1i)/4 + 1/4)/(1/2 + (37(1/2)*1i)/2)"(2/5)
-((27(1/2)*(5 - 57°(1/2))~(1/2)*11)/4 + 57(1/2)/4 + 1/4)/(1/2 + (37(1/2)*1i)/2)"(2/5)

To apply simplification rules when solving equations, specify the
IgnoreAnalyticConstraints option as true. The applied simplification rules are not
generally correct mathematically but might produce useful solutions, especially in physics
and engineering. With this option, the solver does not guarantee the correctness and
completeness of the result.

solve(x~(5/2) + 1/x~(5/2) == 1, x, 'IgnoreAnalyticConstraints', true)

ans =
1/(1/2 - (37(1/2)*1i)/2)~(2/5)
1/((37(1/2)*11)/2 + 1/2)~(2/5)

This solution is simpler and more usable.

Use Assumptions to Narrow Results

For solutions to specific cases, set assumptions to return appropriate solutions. Solve the
following equation. The solve function returns seven solutions.

syms X
solve(x™7 + 2*x"6 - 59*x~5 - 106*x"4 + 478*x™3 + 284*x"2 - 1400*x + 800, x)

ans =
1
- 57(1/2) -1
- 177(1/2)/2 - 1/2
177(1/2)/2 - 1/2
-5%27(1/2)
5%27(1/2)
57(1/2) -1

Assume X is a positive number and solve the equation again. The solve function only
returns the four positive solutions.
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assume(x > 0)
solve(x™7 + 2*x™6 - 59*x"5 - 106*x"4 + 478*x"3 + 284*x"2 - 1400*x + 800, Xx)

ans =
1
177(1/2)/2 - 1/2
5%27(1/2)
57(1/72) -1

Place the additional assumption that x is an integer using in(x, 'integer"'). Place
additional assumptions on variables using assumeAlso.

assumeAlso(in(x, 'integer'))
solve (X7 + 2*x™6 - 59*x"5 - 106*x™4 + 478*x"3 + 284*x"2 - 1400*x + 800, X)

ans =
1

solve returns the only positive, integer solution to Xx.

Clear the assumptions on x for further computations by recreating it using syms.
syms x

Alternatively, to make several assumptions, use the & operator. Make the following
assumptions, and solve the following equations.

syms abcfghy

assume(f == c & a == h & a~= 0)

S = solve([a*x + b*y == c, h*x - g*y == f], [x, y], 'ReturnConditions', true);
S.x

S.y
S.conditions

ans =
f/h

ans =

0

ans =
b+g-~=20

Under the specified assumptions, the solution is x = f/hand y = 0 under the condition
b+g~=0.

Clear the assumptions on the variables for further computations by recreating them using
syms.
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syms a ¢ f h

Simplify Solutions

The solve function does not call simplification functions for the final results. To simplify
the solutions, call simplify.

Solve the following equation. Convert the numbers to symbolic numbers using sym to
return a symbolic result.

syms X
S = solve((sin(x) - 2*cos(x))/(sin(x) + 2*cos(x)) == 1/2, Xx)

S —
-log(-(- 140/37 + 48i/37)"(1/2)/2)*11i
-log((- 140/37 + 48i/37)"(1/2)/2)*1i
Call simplify to simplify solution S.
simplify(S)
ans =
-log(377~(1/2)*(- 1/37 - 61/37))*11
log(2)*1i - (log(- 140/37 + 48i/37)*1i)/2
Call simplify with more steps to simplify the result even further.

simplify(S, 'Steps', 50)

ans =
atan(6) - pi
atan(6)

Tips

» To represent a number exactly, use sym to convert the number to a floating-point
object. For example, use sym(13) /5 instead of 13/5. This represents 13/5 exactly
instead of converting 13/5 to a floating-point number. For a large number, place the
number in quotes. Compare sym(13) /5, sym(133333333333333333333)/5, and
sym('133333333333333333333") /5.

sym(13)/5

sym(133333333333333333333) /5
sym('133333333333333333333")/5
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ans =
13/5
ans =
133333333333333327872/5
ans =
133333333333333333333/5

Placing the number in quotes and using sym provides the highest accuracy.

» If possible, simplify the system of equations manually before using solve. Try to
reduce the number of equations, parameters, and variables.
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Solve System of Linear Equations

This section shows you how to solve a system of linear equations using the Symbolic Math
Toolbox.

In this section...

“Solve System of Linear Equations Using linsolve” on page 2-179

“Solve System of Linear Equations Using solve” on page 2-180

Solve System of Linear Equations Using linsolve
A system of linear equations

aj1x] + aipxg + ...+ ajpXy = by
ay1X1 + ayxyxp + ... + aypXpy = b2

amX1 + amepXo + ... + GunXn = bm

[—
can be represented as the matrix equation A - X = b, where A is the coefficient matrix,
ayl ... 1n
A=

am1 - dmn

=
and b is the vector containing the right sides of equations,
by

-

b =|:
bm
If you do not have the system of linear equations in the form AX = B, use
equationsToMatrix to convert the equations into this form. Consider the following

system.
2x+y+z=2
-x+y-z=3

x+2y+3z=-10
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Declare the system of equations.

Syms x y z

egqnl = 2*X + y + z == 2;
egqn2 = -x +y - z == 3;

eqn3 = x + 2*y + 3%z == -10;

Use equationsToMatrix to convert the equations into the form AX = B. The second
input to equationsToMatrix specifies the independent variables in the equations.

[A,B] = equationsToMatrix([eqnl, eqn2, eqn3], [x, vy, z])

A =
[ 2, 1, 1]
[ -1, 1, -1]
[ 1, 2, 3]

B =

2

3

-10

Use linsolve to solve AX = B for the vector of unknowns X.

>
Il

linsolve(A,B)

U= Wl

FromX,x=3,y=1and z = -5.

Solve System of Linear Equations Using solve

Use solve instead of Linsolve if you have the equations in the form of expressions and
not a matrix of coefficients. Consider the same system of linear equations.

2x+y+z=2
-xty-z=3
x+2y+3z=-10

Declare the system of equations.
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syms X y z

eqnl = 2*X + y + z == 2;
eqn2 = -X +y - z == 3;

egn3 = x + 2*y + 3*z == -10;

Solve the system of equations using solve. The inputs to solve are a vector of
equations, and a vector of variables to solve the equations for.

sol = solve([eqgnl, eqn2, eqgn3l, [x, vy, zl);
xSol sol.x
ySol sol.y
zSol sol.z

xSol =
3
ySol
1
zSol
-5

solve returns the solutions in a structure array. To access the solutions, index into the
array.

See Also

More About

. “Solve Algebraic Equation” on page 2-152
. “Solve System of Algebraic Equations” on page 2-163
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Solve Equations Numerically

2-182

The Symbolic Math Toolbox offers both numeric and symbolic equation solvers. For a
comparison of numeric and symbolic solvers, please see “Select Numeric or Symbolic
Solver” on page 2-161. An equation or a system of equations can have multiple solutions.
To find these solutions numerically, use the function vpasolve. For polynomial equations,
vpasolve returns all solutions. For nonpolynomial equations, vpasolve returns the first
solution it finds. This shows you how to use vpasolve to find solutions to both polynomial
and nonpolynomial equations, and how to obtain these solutions to arbitrary precision.

In this section...

“Find All Roots of a Polynomial Function” on page 2-182

“Find Zeros of a Nonpolynomial Function Using Search Ranges and Starting Points” on
page 2-183

“Obtain Solutions to Arbitrary Precision” on page 2-187
“Solve Multivariate Equations Using Search Ranges” on page 2-188

Find All Roots of a Polynomial Function

Use vpasolve to find all the solutions to function f(x) = 6x’ — 2x6 + 3x3 - 8.

syms f(x)
f(x) = 6*X~7-2*X"6+3*x"3-8;
sol = vpasolve(f)

sol =

1.0240240759053702941448316563337
.504340588401275843763318065924051
.504340588401275843763318065924051
.967746155767440310739990106951711
.967746155767440310739990106951711
.831873314310497132183672393171211
.831873314310497132183672393171211

- 0.88080620051762149639205672298326
- 0.88080620051762149639205672298326
- 0.22974795226118163963098570610724
- 0.22974795226118163963098570610724
0.7652087814927846556172932675903
0.7652087814927846556172932675903 -

+ 0+
[oNoNoNoNoNO)

+

vpasolve returns seven roots of the function, as expected, because the function is a
polynomial of degree seven.
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Find Zeros of a Nonpolynomial Function Using Search Ranges
and Starting Points

Consider the function f(x) = e™®/Tcos(2x). A plot of the function reveals periodic zeros,
with increasing slopes at the zero points as x increases.

syms X
h = fplot(exp(x/7)*cos(2*x),[-2 25]);
grid on

101 I-'.ﬂ'll I| II | | |

(=]
%
x
/
\\'\.
\.\\.
C
-\-H-\"'\-\.\,k
-

-30

Use vpasolve to find a zero of the function f. Note that vpasolve returns only one
solution of a nonpolynomial equation, even if multiple solutions exist. On repeated calls,
vpasolve returns the same result, even if multiple zeros exist.
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f = exp(-x/20)*cos(2*x);

for i = 1:3

vpasolve(f,x)
end
ans =
19.634954084936207740391521145497
ans =
19.634954084936207740391521145497
ans =

19.634954084936207740391521145497

To find multiple solutions, set the option random to true. This makes vpasolve choose
starting points randomly. For information on the algorithm that chooses random starting
points, see “Algorithms” on page 4-1878 on the vpasolve page.

for i = 1:3

vpasolve(f,x, 'random',true)
end
ans =
-226.98006922186256147892598444194
ans =
98.174770424681038701957605727484
ans =

58.904862254808623221174563436491

To find a zero close to x = 10 and to x = 1000, set the starting point to 10, and then to
1000.

vpasolve(f,x,10)
vpasolve(f,x,1000)

ans =
10.210176124166828025003590995658

ans =
999.8118620049516981407362567287

To find a zero in the range 15 < x < 25, set the search range to [15 25].
vpasolve(f,x,[15 25])
ans =

21.205750411731104359622842837137
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To find multiple zeros in the range [15 25], you cannot call vpasolve repeatedly as it
returns the same result on each call, as previously shown. Instead, set random to true in
conjunction with the search range.

for 1 = 1:3

vpasolve(f,x,[15 25], 'random', true)
end

ans =
21.205750411731104359622842837137
ans =
16.493361431346414501928877762217
ans =

16.493361431346414501928877762217

If you specify the random option while also specifying a starting point, vpasolve warns
you that the two options are incompatible.

vpasolve(f,x,15, 'random', true)

Warning: 'Random' has no effect because
all variables have a starting value.

> In sym/vpasolve (line 168)

ans =

14.922565104551517882697556070578

Create the function findzeros below to systematically find all zeros for f in a given
search range, within the error tolerance. It starts with the input search range and calls
vpasolve to find a zero. Then, it splits the search range into two around the zero’s value,
and recursively calls itself with the new search ranges as inputs to find more zeros. The
first input is the function, the second input is the range, and the optional third input
allows you to specify the error between a zero and the higher and lower bounds
generated from it.

The function is explained section by section here.

Declare the function with the two inputs and one output.

function sol = findzeros(f, range,err)

If you do not specify the optional argument for error tolerance, findzeros sets err to
0.001.
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if nargin < 2
err = le-3;
end

Find a zero in the search range using vpasolve.
sol = vpasolve(f,range);
If vpasolve does not find a zero, exit.

if(isempty(sol))
return

If vpasolve finds a zero, split the search range into two search ranges above and below
the zero.

else
lowLimit = sol-err;
highLimit = sol+err;

Call findzeros with the lower search range. If findzeros returns zeros, copy the
values into the solution array and sort them.

temp = findzeros(f,[range(1l) lowLimit],1);
if ~isempty(temp)

sol = sort([sol templ);
end

Call findzeros with the higher search range. If findzeros returns zeros, copy the
values into the solution array and sort them.

temp = findzeros(f,[highLimit range(2)],1);
if ~isempty(temp)
sol = sort([sol temp]);
end
return
end
end

The entire function findzeros is as follows.

function sol = findzeros(f, range,err)
if nargin < 3

err = le-3;
end
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sol = vpasolve(f,range);
if(isempty(sol))
return
else
lowLimit = sol-err;
highLimit = sol+err;
temp = findzeros(f,[range(1l) lowLimit],1);
if ~isempty(temp)
sol = sort([sol temp]);
end
temp = findzeros(f,[highLimit range(2)],1);
if ~isempty(temp)
sol = sort([sol temp]);
end
return
end
end

Call findzeros with search range [10 20] to find all zeros in that range for f(x) =
exp(-x/20)*cos(2*x), within the default error tolerance.

syms f(x)
f(x) = exp(-x/20)*cos(2*x);
findzeros(f,[10 201])

ans =

[ 10.210176124166828025003590995658, 11.780972450961724644234912687298, ...
13.351768777756621263466234378938, 14.922565104551517882697556070578, ...
16.493361431346414501928877762217, 18.064157758141311121160199453857, ...
19.634954084936207740391521145497]

Obtain Solutions to Arbitrary Precision

Use digits to set the precision of the solutions. By default, vpasolve returns solutions
to a precision of 32 significant figures. Use digits to increase the precision to 64
significant figures. When modifying digits, ensure that you save its current value so
that you can restore it.

f = exp(x/7)*cos(2*x);
vpasolve(f)

digitsOld = digits;
digits(64)

vpasolve(f)
digits(digitsOld)
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ans =

-7.0685834705770347865409476123789

ans =
-7.068583470577034786540947612378881489443631148593988097193625333

Solve Multivariate Equations Using Search Ranges

Consider the following system of equations.

z = 10(cos(x) + cos(y))
z=x+y*—-0.1x%y
Xx+y—-27=0
A plot of the equations for 0 = x = 2.5 and 0 = x =< 2.5 shows that the three surfaces

intersect in two points. To better visualize the plot, use view. To scale the colormap
values, use caxis.

syms x y z
egnl = z == 10*(cos(x) + cos(y));
egn2 = z == xX+y"2-0.1*x"2*y;
egqn3 = x+y-2.7 == 0;

equations = [eqnl eqn2 eqn3];
fimplicit3(equations)

axis([0 2.5 0 2.5 -20 10])

title('System of Multivariate Equations')
view(69, 28)

caxis([-15 10])
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AR
i

System of Multivariate Equations

Use vpasolve to find a point where the surfaces intersect. The function vpasolve

returns a structure. To access the solution

index into the structure.

’

(equations);

vpasolve

sol

[sol.x sol.y sol.z]

ans = (2.3697 0.3303 2.2934)

To search a region of the solution space, specify search ranges for the variables. If you

specify the ranges 0 = x = 1.5 and 1.5 = y < 2.5, then vpasolve function searches the

bounded area shown in the picture.
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Region specified by search range

Use vpasolve to find a solution for this search range0 = x = 1.5and 1.5 = y = 2.5. To
omit a search range for z, set the search range to [NaN NaN].

vars = [x y z];

range = [0 1.5; 1.5 2.5; NaN NaN];

sol = vpasolve(equations, vars, range);
[sol.x sol.y sol.z]

ans = (0.9106 1.7894 3.9641)

To find multiple solutions, you can set the random option to true. This makes vpasolve
use random starting points on successive runs. The random option can be used in
conjunction with search ranges to make vpasolve use random starting points within a
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search range. Because random selects starting points randomly, the same solution might
be found on successive calls. Call vpasolve repeatedly to ensure you find both solutions.

clear sol
range = [0 3; O 3; NaN NaN];
for i = 1:5
temp = vpasolve(equations, vars, range, 'random', true);
sol(i,1l) = temp.x;
sol(i,2) = temp.y;
sol(i,3) = temp.z;
end
sol
sol =

0.9106 1.7894 3.9641
2.3697 0.3303 2.2934
0.9106 1.7894 3.9641
0.9106 1.7894 3.9641
0.9106 1.7894 3.9641

Plot the equations. Superimpose the solutions as a scatter plot of points with yellow X
markers using scatter3. To better visualize the plot, make two of the surfaces
transparent using alpha. Scale the colormap to the plot values using caxis, and change
the perspective using view.

vpasolve finds solutions at the intersection of the surfaces formed by the equations as
shown.

clf

ax = axes;
h = fimplicit3(equations);

h(2).FaceAlpha =

h(3).FaceAlpha =

axis([0 2.5 0 2.5 -20 10])

hold on
scatter3(sol(:,1),sol(:,2),sol(:,3),600, 'yellow','X", 'LineWidth',?2)
title('Randomly found solutions in specified search range')

cz = ax.Children;

caxis ([0 20])

view(69,28)

hold off

0;
0;
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Randomly found solutions in specified search range
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Solve Differential Equation

Solve a differential equation analytically by using the dsolve function, with or without
initial conditions. To solve a system of differential equations, see “Solve a System of
Differential Equations” on page 2-197.

In this section...

“First-Order Linear ODE” on page 2-193

“Solve Differential Equation with Condition” on page 2-194
“Nonlinear Differential Equation with Initial Condition” on page 2-194
“Second-Order ODE with Initial Conditions” on page 2-194
“Third-Order ODE with Initial Conditions” on page 2-195

“More ODE Examples” on page 2-196

First-Order Linear ODE
Solve this differential equation.

dy _
m—t‘y

First, represent y by using syms to create the symbolic function y(t).

syms y(t)

Define the equation using == and represent differentiation using the diff function.
ode = diff(y,t) == t*y

ode(t) =
diff(y(t), t) == t*y(t)

Solve the equation using dsolve.
ySol(t) = dsolve(ode)

ySol(t) =

Cl*exp(t™2/2)
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Solve Differential Equation with Condition

In the previous solution, the constant C1 appears because no condition was specified.
Solve the equation with the initial condition y (0) == 2. The dsolve function finds a
value of C1 that satisfies the condition.

cond = y(0) == 2;
ySol(t) = dsolve(ode,cond)

ySol(t) =
2*exp(t™2/2)

If dsolve cannot solve your equation, then try solving the equation numerically. See
“Solve a Second-Order Differential Equation Numerically” on page 2-158.

Nonlinear Differential Equation with Initial Condition

Solve this nonlinear differential equation with an initial condition. The equation has
multiple solutions.

dy . 2 _
[t +o =2
y(0) = 0.

syms y(t)

ode = (diff(y,t)+y)"2 == 1;
cond = y(0) == 0;

ySol(t) = dsolve(ode,cond)

ySol(t) =

exp(-t) -1
1 - exp(-t)

Second-Order ODE with Initial Conditions

Solve this second-order differential equation with two initial conditions.

2
Ty cos(2x) — y,
dx
y(0) =1,
y(©0)=0
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Define the equation and conditions. The second initial condition involves the first
derivative of y. Represent the derivative by creating the symbolic function Dy =
diff(y) and then define the condition using Dy (0)==0.

syms y(x)

Dy = diff(y);

ode = diff(y,x,2) == cos(2*x)-y;
condl = y(0) == 1;

cond2 = Dy(0) == 0;

Solve ode for y. Simplify the solution using the simplify function.
conds = [condl cond2];

ySol(x) = dsolve(ode,conds);

ySol = simplify(ySol)

ySol(x) =

1 - (8*sin(x/2)"4)/3

Third-Order ODE with Initial Conditions

Solve this third-order differential equation with three initial conditions.

du _
a3
u(0) =1,
u0)= -1,
u’(0) =m.

Because the initial conditions contain the first- and second-order derivatives, create two
symbolic functions, Du = diff(u,x) and D2u = diff(u,x,2), to specify the initial
conditions.

syms u(x)

Du = diff(u,x);

D2u = diff(u,x,2);

Create the equation and initial conditions, and solve it.

ode = diff(u,x,3) == u;
condl = u(0) == 1;
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Du(0) == -1;
D2u(0) == pi;
[condl cond2 cond3];

cond2
cond3
conds

uSol(x) dsolve(ode, conds)

uSol(x)

(pi*exp(x))/3 -

More ODE Examples

exp(-x/2)*cos((3
(3™°(1/2)*exp(-x/2)*sin((3"(1/2)*

~1/72)*x)/2)*(pi/3 - 1) -...
x)/2)*(pi + 1))/3

This table shows examples of differential equations and their Symbolic Math Toolbox
syntax. The last example is the Airy differential equation, whose solution is called the Airy

function.

Differential Equation

MATLAB Commands

dy _ -t
m‘*“W(t) =e

syms y(t)
ode = diff(y)+4*y == exp(-t);
cond = y(0) == 1;

y(0) =1. ySol(t) = dsolve(ode,cond)
ySol(t) =
exp(-t)/3 + (2*exp(-4*t))/3
2 syms y(x)
2x2g—¥-k3x%¥-—y==(l ode = 2*¥x"2*diff(y,x,2)+3*x*diff(y,x)-y == 0;
dx ySol(x) = dsolve(ode)
ySol(x) =
C2/(3*x) + C3*x™(1/2)
The Airy equation. syms y(x)
ode = diff(y,x,2) == x*y;
dzy ySol(x) = dsolve(ode)
- = xy(x) .
dx ySol(x) =
Cl*airy(0,x) + C2*airy(2,x)
See Also

“Solve a System of Differential Equations” on page 2-197
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Solve a System of Differential Equations

Solve a system of several ordinary differential equations in several variables by using the
dsolve function, with or without initial conditions. To solve a single differential equation,
see “Solve Differential Equation” on page 2-193.

In this section...

“Solve System of Differential Equations” on page 2-197

“Solve Differential Equations in Matrix Form” on page 2-199

Solve System of Differential Equations

Solve this system of linear first-order differential equations.

du _
E—3U+4V,
dv _
m— 4u + 3v

First, represent u and v by using syms to create the symbolic functions u(t) and v(t).
syms u(t) v(t)

Define the equations using == and represent differentiation using the diff function.

odel = diff(u) == 3*u + 4*v;

ode2 = diff(v) == -4*u + 3*v;
odes = [odel; ode2]

odes(t) =

diff(u(t), t) == 3*u(t) + 4*v(t)
diff(v(t), t) == 3*v(t) - 4*u(t)

Solve the system using the dsolve function which returns the solutions as elements of a
structure.

S = dsolve(odes)

S:
struct with fields:
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v: [1x1 sym]
u: [1x1 sym]

If dsolve cannot solve your equation, then try solving the equation numerically. See
“Solve a Second-Order Differential Equation Numerically” on page 2-158.

To access u(t) and v(t), index into the structure S.

uSol(t) = S.u

vSol(t) = S.v

uSol(t) =

C2*cos (4*t)*exp(3*t) + Cl*sin(4*t)*exp(3*t)

)
(
vSol(t)
Cl*cos(4*t)*exp(3*t) - C2*sin(4*t)*exp(3*t)

Alternatively, store u(t) and v (t) directly by providing multiple output arguments.
[uSol(t), vSol(t)] = dsolve(odes)

uSol(t)
C2*cos(
vSol(t)
Cl*cos(4*t)*exp(3*t) - C2*sin(4*t)*exp(3*t)

4*t)*exp(3*t) + Cl*sin(4*t)*exp(3*t)

The constants C1 and C2 appear because no conditions are specified. Solve the system
with the initial conditions u(0) == 0 and v(0) == 0. The dsolve function finds values
for the constants that satisfy these conditions.

condl = u(0) == 0;

cond2 = v(0) == 1;

conds = [condl; cond2];

[uSol(t), vSol(t)] = dsolve(odes,conds)
uSol(t) =

sin(4*t)*exp(3*t)

vSol(t) =

cos (4*t)*exp(3*t)

Visualize the solution using fplot.

fplot(uSol)

hold on

fplot(vSol)

grid on
legend('uSol', 'vSol', 'Location', 'best')
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%107

16T

12 r

10r

uSol
v3ol

Solve Differential Equations in Matrix Form

Solve differential equations in matrix form by using dsolve.

Consider this system of differential equations.

dx

W=x+2y+1,
dy _ _
gt = x+y+t

The matrix form of the system is
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X [1 2][x 1]
= +1 |
Vv -1 1)y t
Let
1
v=["a=" % 8=]"
y -11 t

The system is now Y = AY + B.

Define these matrices and the matrix equation.

syms x(t) y(t)
A=1[12; -111;

B =1[1; t];

Y = [x; yI;

odes = diff(Y) == A*Y + B

odes(t) =
diff(x(t), t) == x(t) + 2*¥y(t) + 1
diff(y(t), t) == - x(t) + y(t)

Solve the matrix equation using dsolve. Simplify the solution by using the simplify
function.

[xSol(t), ySol(t)] = dsolve(odes);

xSol(t) = simplify(xSol(t))

ySol(t) = simplify(ySol(t))

xSol(t) =

(2*t)/3 + 27 (1/2)*C2*exp(t)*cos(2™(1/2)*t) + 27 (1/2)*Cl*exp(t)*sin(2”(1/2)*t) + 1/9
ySol(t) =

Cl*exp(t)*cos(27™(1/2)*t) - t/3 - C2*exp(t)*sin(2~(1l/2)*t) - 2/9

The constants C1 and C2 appear because no conditions are specified.

Solve the system with the initial conditions u(0) = 2 and v(0) = -1. When specifying
equations in matrix form, you must specify initial conditions in matrix form too. dsolve
finds values for the constants that satisfy these conditions.

C=Y(0) == [2; -1];
[xSol(t), ySol(t)] = dsolve(odes,(C)

xSol(t) =
(2*t)/3 + (17*exp(t)*cos(27(1/2)*t))/9 - (7*27(1/2)*exp(t)*sin(2~(1/2)*t))/9 + 1/9
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ySol(t) =
- /3 - (7*exp(t)*cos(27(1/2)*t))/9 - (17*2"~(1/2)*exp(t)*sin(2~(1/2)*t))/18 - 2/9

Visualize the solution using fplot.

clf

fplot(ySol)

hold on

fplot(xSol)

grid on
legend('ySol', 'xSol', 'Location', 'best")

150 7\
100 | / |

50 { 7

-100 | 1

150 &

=200 =Sol 1
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See Also
“Solve Differential Equation” on page 2-193
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Solve Differential Algebraic Equations (DAES)

This example show how to solve differential algebraic equations (DAEs) by using
MATLAB® and Symbolic Math Toolbox™.

Differential algebraic equations involving functions, or state variables,
x(t) = [x1(t), . . ., xp(t)] have the form

F(t, x(t),x(t) =0

where t is the independent variable. The number of equations F = [Fy, . . ., F,] must
match the number of state variables x(t) = [x1(t), . . ., xp(t)].

Because most DAE systems are not suitable for direct input to MATLAB® solvers, such as
odel5i, first convert them to a suitable form by using Symbolic Math Toolbox™
functionality. This functionality reduces the differential index (number of differentiations
needed to reduce the system to ODEs) of the DAEs to 1 or 0, and then converts the DAE
system to numeric function handles suitable for MATLAB® solvers. Then, use MATLAB®
solvers, such as odel51i, odel5s, or ode23t, to solve the DAEs.

Solve your DAE system by completing these steps.
Step 1: Specify Equations and Variables

The following figure shows the DAE workflow by solving the DAEs for a pendulum.
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The state variables are:

* Horizontal position of pendulum x(t)
» Vertical position of pendulum y(t)

» Force preventing pendulum from flying away T(t)
The variables are:

¢  Pendulum mass m
* Pendulum length r

* Gravitational constant g

The DAE system of equations is:
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d?x _ x(t)
"z O

d*y _ rpy®
m? =T(t)==-mg

x(t)2 + y(t)2 =r?
Specify independent variables and state variables by using syms.
syms x(t) y(t) T(t) m r g

Specify equations by using the == operator.

egnl = m*diff(x(t), 2) == T(t)/r*x(t);

eqn2 = m*diff(y(t), 2) == T(t)/r*y(t) - m*g;
egn3 = x(t)"2 + y(t)"2 == r"2;

egns = [eqnl eqn2 eqn3];

Place the state variables in a column vector. Store the number of original variables for
reference.

vars = [x(t); y(t); T(t)];
origVars = length(vars);

Step 2: Reduce Differential Order
2.1 (Optional) Check Incidence of Variables

This step is optional. You can check where variables occur in the DAE system by viewing
the incidence matrix. This step finds any variables that do not occur in your input and can
be removed from the vars vector.

Display the incidence matrix by using incidenceMatrix. The output of
incidenceMatrix has a row for each equation and a column for each variable. Because
the system has three equations and three state variables, incidenceMatrix returns a 3-
by-3 matrix. The matrix has 1s and 0s, where 1s represent the occurrence of a state
variable. For example, the 1 in position (2, 3) means the second equation contains the
third state variable T(t).

M incidenceMatrix(eqns,vars)

M = 3x3
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If a column of the incidence matrix is all 0s, then that state variable does not occur in the
DAE system and should be removed.

2.2 Reduce Differential Order

The differential order of a DAE system is the highest differential order of its equations. To
solve DAEs using MATLAB, the differential order must be reduced to 1. Here, the first and
second equations have second-order derivatives of x (t) and y(t). Thus, the differential
order is 2.

Reduce the system to a first-order system by using reduceDifferentialOrder. The
reduceDifferentialOrder function substitutes derivatives with new variables, such as
Dxt(t) and Dyt (t). The right side of the expressions in eqns is 0.

[egns,vars] = reduceDifferentialOrder(eqns,vars)

eqgns =

ad
m o Dxt(t) -

gm+m % Dyt(t) — T(t) y(t)

-2+ x(t)% + y(t)
Dxt(t) — % x(t)

Dyt(t) - == y(t)

vars =

Step 3: Check and Reduce Differential Index

3.1 Check Differential Index of System
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Check the differential index of the DAE system by using isLowIndexDAE. If the index is ©
or 1, then isLowIndexDAE returns logical 1 (true) and you can skip step 3.2 and go to
Step 4. Convert DAE Systems to MATLAB Function Handles. Here, isLowIndexDAE
returns logical @ (false), which means the differential index is greater than 1 and must
be reduced.

isLowIndexDAE(eqgns,vars)

ans = logical
0

3.2 Reduce Differential Index with reduceDAEIndex

To reduce the differential index, the reduceDAEIndex function adds new equations that
are derived from the input equations, and then replaces higher-order derivatives with
new variables. If reduceDAEIndex fails and issues a warning, then use the alternative
function reduceDAEToODE as described in the workflow “Solve Semilinear DAE System”
on page 2-215.

Reduce the differential index of the DAEs described by egns and vars.
[DAEs,DAEvars] = reduceDAEIndex(eqns,vars)

DAEs =
T(t) x(t)

m Dxtt(t) —

gm + m Dytt(t) — T(t)ry(t)
—r2 4 ><(t)2 + y(t)2
Dxt(t) — Dxtq(t)
Dyt(t) — Dyty(t)
2 Dxtq(t) x(t) + 2 Dytq(t) y(t)
ZMUg%Dﬁﬂn+2Dmﬂﬂ2+2Dﬁﬂwz+2DmH@Mu)
Dxtt(t) — Dxt1t(t)

0
Dytt(t) — 7 Dyt1(t)

d
Dyty(t) = 7 ¥(t)

DAEvars =
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If reduceDAEIndex an error or a warning, use the alternative workflow described in
“Solve Semilinear DAE System” on page 2-215.

Often, reduceDAEIndex introduces redundant equations and variables that can be
eliminated. Eliminate redundant equations and variables using reduceRedundancies.

[DAEs,DAEvars] = reduceRedundancies(DAEs,DAEvars)

DAEs =
T(t) x(t) — mr Dxtt(t)
r
gmr —T(t) y(t) + m r Dytt(t)
r

2 2

-re+ ><(t)2 + y(t)
2 Dxt(t) x(t) + 2 Dyt(t) y(t)
2 Dxt(t) + 2 Dyt(t)% + 2 Dxtt(t) x(t) + 2 Dytt(t) y(t)

ad
Dytt(t) — 3 Dyt(t)

Dyt(t) - 57 Y(t)

DAEvars =
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Check the differential index of the new system. Now, isLowIndexDAE returns logical 1
(true), which means that the differential index of the system is 0 or 1.

isLowIndexDAE (DAEs,DAEvars)
ans = logical

1

Step 4: Convert DAE Systems to MATLAB Function Handles

This step creates function handles for the MATLAB® ODE solver ode15i, which is a
general purpose solver. To use specialized mass matrix solvers such as odel5s and
ode23t, see “Solve DAEs Using Mass Matrix Solvers” on page 2-223 and “Choose an
ODE Solver” (MATLAB).

reduceDAEIndex outputs a vector of equations in DAEs and a vector of variables in
DAEvars. To use odel51i, you need a function handle that describes the DAE system.

First, the equations in DAEs can contain symbolic parameters that are not specified in the
vector of variables DAEvars. Find these parameters by using setdiff on the output of
symvar from DAEs and DAEvars.

pDAEs = symvar(DAEs);
pDAEvars = symvar(DAEvars);
extraParams = setdiff(pDAEs, pDAEvars)

extraParams = (gmr)

The extra parameters that you need to specify are the mass m, radius r, and gravitational
constant g.

Create the function handle by using daeFunction. Specify the extra symbolic
parameters as additional input arguments of daeFunction.

2-209



2 Using Symbolic Math Toolbox Software

2-210

f = daeFunction(DAEs,DAEvars,g,m,r);

The rest of the workflow is purely numerical. Set the parameter values and create the
function handle for odel151i.

9.81;

1;

1;

@(t,Y,YP) f(t,Y,YP,g,m,r);

Mm-S 3 Q

Step 5: Find Initial Conditions For Solvers

The odel51i solver requires initial values for all variables in the function handle. Find
initial values that satisfy the equations by using the MATLAB decic function. decic
accepts guesses (which might not satisfy the equations) for the initial conditions and tries
to find satisfactory initial conditions using those guesses. decic can fail, in which case
you must manually supply consistent initial values for your problem.

First, check the variables in DAEvars.

DAEvars
DAEvars =

Here, Dxt (t) is the first derivative of x(t), Dytt(t) is the second derivative of y (t),
and so on. There are 7 variables in a 7-by-1 vector. Therefore, guesses for initial values of
variables and their derivatives must also be 7-by-1 vectors.

Assume the initial angular displacement of the pendulum is 30° or pi/6, and the origin of
the coordinates is at the suspension point of the pendulum. Given that we used a radius r
of 1, the initial horizontal position x(t) is r*sin(pi/6). The initial vertical position
y(t) is -r*cos(pi/6). Specify these initial values of the variables in the vector yOest.

Arbitrarily set the initial values of the remaining variables and their derivatives to 0.
These are not good guesses. However, they suffice for this problem. In your problem, if
decic errors, then provide better guesses and refer to decic.
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yOest = [r*sin(pi/6); -r*cos(pi/6); 0; 0; 0; 0; 0];
ypOest = zeros(7,1);

Create an option set that specifies numerical tolerances for the numerical search.
opt = odeset('RelTol', 10.07(-7), 'AbsTol',10.0"(-7));

Find consistent initial values for the variables and their derivatives by using decic.
[y0,yp0] = decic(F,0,y0est,[],ypOest,[],o0pt)

yo0 = 7x1

(o)

4771
.8788
-8.6214

0
.0000
.2333
-4.1135

(o)

1
N ©

ypo = 7x1

0
0.0000

Step 6: Solve DAEs Using odel5i

Solve the system integrating over the time span @ < t < 0.5. Add the grid lines and the
legend to the plot.

[tSol,ySol] = odel5i(F,[0 0.5],y0,yp0,opt);
plot(tSol,ySol(:,1l:0origVars), 'LineWidth',2)

for k = 1:origVars

S{k} = char(DAEvars(k));
end
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legend(S, 'Location', 'Best')
grid on

= x(t)
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10 -

12 -

_14 i i i i i i i i i
0 00 01 015 02 025 03 035 04 045 05

Solve the system for different parameter values by setting the new value and
regenerating the function handle and initial conditions.

Set r to 2 and regenerate the function handle and initial conditions.

r
F

2;
@(t,Y,YP)f(t,Y,YP,g,m,r);

yOest = [r*sin(pi/6); -r*cos(pi/6); 0; 0; 0; 0; 0];
[yo,yp0] = decic(F,0,y0est,[],ypOest,[],0pt);

Solve the system for the new parameter value.
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[tSol,y] = odel5i(F,[0 0.5],y0,yp0,opt);
plot(tSol,y(:,1l:0origVars), 'LineWidth',2)

for k = 1l:origVars

S{k} = char(DAEvars(k));
end
legend(S, 'Location', 'Best')
grid on
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See Also
Related Examples

. “Solve Semilinear DAE System” on page 2-215
. “Solve DAEs Using Mass Matrix Solvers” on page 2-223
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Solve Semilinear DAE System

This workflow is an alternative workflow to solving semilinear DAEs, used only if
reduceDAEIndex failed in the standard workflow with the warning below. For the
standard workflow, see “Solve Differential Algebraic Equations (DAEs)” on page 2-203.

Warning: The index of the reduced DAEs is larger...
than 1. [daetools::reduceDAEIndex]

To solve your DAE system complete these steps.

* “Step 1. Reduce Differential Index with reduceDAEToODE” on page 2-215
* “Step 2. ODEs to Function Handles for odel5s and ode23t” on page 2-216
* “Step 3. Initial Conditions for ode15s and ode23t” on page 2-217

* “Step 4. Solve an ODE System with ode15s or ode23t” on page 2-219

Step 1. Reduce Differential Index with reduceDAEToODE

Complete steps 1 and 2 in “Solve Differential Algebraic Equations (DAEs)” on page 2-203
before beginning this step. Then, in step 3 when reduceDAEIndex fails, reduce the
differential index using reduceDAEToODE. The advantage of reduceDAEToODE is that it
reliably reduces semilinear DAEs to ODEs (DAEs of index 0). However, this function is
slower and works only on semilinear DAE systems. reduceDAEToODE can fail if the
system is not semilinear.

To reduce the differential index of the DAEs described by eqns and vars, use
reduceDAETo0DE. To reduce the index, reduceDAETo0DE adds new variables and
equations to the system. reduceDAEToODE also returns constraints, which are conditions
that help find initial values to ensure that the resulting ODEs are equal to the initial
DAEs.

[ODEs,constraints] = reduceDAEToODE(eqns,vars)

ODEs =
Dxt(t) diff(x(t), t)
Dyt(t) - diff(y(t), t)
m*diff (Dxt(t), t) - (T(t)*x(t))/r
m*diff(Dyt(t), t) - (T(t)*y(t) - g*m*r)/r
- (4XT (L) *y(t) - Z*g*m* y¥diff(y(t), t) -...
diff(T(t), t)*(2*x(t)"2 + 2*y(t)"2)
A*T(t)*x(t)*diff(x(t), t) -
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2-216

4xm*r*Dxt (t)*diff (Dxt(t), t) -...
4*m*r*¥Dyt(t)*diff(Dyt(t), t)

constraints =
2¥g*m*r¥y (t) - 2*T(t)*y(t)"2 - 2*m*r*Dxt(t)"2 -...
2¥m¥r*¥Dyt (t)"2 - 2*¥T(t)*x(t)"2
rY2 - y(t)"2 - x(t)~2
2*¥Dxt(t)*x(t) + 2*Dyt(t)*y(t)

Step 2. ODEs to Function Handles for odel5s and ode23t

From the output of reduceDAET0o0DE, you have a vector of equations in ODEs and a
vector of variables in vars. To use odel5s or ode23t, you need two function handles:
one representing the mass matrix of the ODE system, and the other representing the
vector containing the right sides of the mass matrix equations. These function handles are
the equivalent mass matrix representation of the ODE system where M(t,y(t))y’

(t) = fit.y(t)).

Find these function handles by using massMatrixForm to get the mass matrix massM (M
in the equation) and right sides f.

[massM,f] = massMatrixForm(ODEs,vars)

massM =

[ 0,

-1, 0 0 0]
[ 0, -1, 0, , 0]
[ 0, 0, 0, m, 0]
[ 0, 0, 0, 0, m]
[ -4%T(t)*x(t), 2*g*m*r - 4*T(t)*y(t), 2, -4*mFrDxt(t), -4*m*reDyt(t)

The equations in ODEs can contain symbolic parameters that are not specified in the
vector of variables vars. Find these parameters by using setdiff on the output of
symvar from ODEs and vars.

pODEs = symvar(ODEs);
pvars = symvar(vars);
extraParams = setdiff(pODEs, pvars)

extraParams =
[ g, m r]
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The extra parameters that you need to specify are the mass m, radius r, and gravitational
constant g.

Convert massM and f to function handles using odeFunction. Specify the extra symbolic
parameters as additional inputs to odeFunction.

massM = odeFunction(massM, vars, m, r, g);
f = odeFunction(f, vars, m, r, g);

The rest of the workflow is purely numerical. Set the parameter values and substitute the
parameter values in DAEs and constraints.

m=1;
r=1;
g = 9.81;

ODEsNumeric = subs(ODEs);
constraintsNumeric = subs(constraints);

Create the function handle suitable for input to odel5s or ode23s.

@(t, Y) massM(t, Y, m, r, g);

M
F=a@(t, Y) f(t, Y, m, r, g9);

Step 3. Initial Conditions for odel5s and ode23t

The solvers require initial values for all variables in the function handle. Find initial
values that satisfy the equations by using the MATLAB decic function. The decic
accepts guesses (which might not satisfy the equations) for the initial conditions and tries
to find satisfactory initial conditions using those guesses. decic can fail, in which case
you must manually supply consistent initial values for your problem.

First, check the variables in vars.
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Here, Dxt (1) is the first derivative of x(t), and so on. There are 5 variables in a 5-by-1
vector. Therefore, guesses for initial values of variables and their derivatives must also be
5-by-1 vectors.

Assume the initial angular displacement of the pendulum is 30° or pi/6, and the origin of
the coordinates is at the suspension point of the pendulum. Given that we used a radius r
of 1, the initial horizontal position x(t) is r¥*sin(pi/6). The initial vertical position
y(t) is -r*cos(pi/6). Specify these initial values of the variables in the vector yfest.

Arbitrarily set the initial values of the remaining variables and their derivatives to 0.
These are not good guesses. However, they suffice for this problem. In your problem, if
decic errors, then provide better guesses and refer to the decic page.

yOest = [r*sin(pi/6); -r*cos(pi/6); 0; 0; 0];
ypOest = zeros(5,1);

Create an option set that contains the mass matrix M of the system and specifies
numerical tolerances for the numerical search.

opt = odeset('Mass', M, 'RelTol', 10.0"(-7), 'AbsTol' , 10.07(-7));

Find initial values consistent with the system of ODEs and with the algebraic constraints

by using decic. The parameter [1,0,0,0, 1] in this function call fixes the first and the

last element in y@est, so that decic does not change them during the numerical search.
Here, this fixing is necessary to ensure decic finds satisfactory initial conditions.

[y, yp0O] = decic(ODEsNumeric, vars, constraintsNumeric, O,...
yOest, [1,0,0,0,1], ypOest, opt)

yo =
0.5000
-0.8660
-8.4957

-4.2479
-2.4525
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Now create an option set that contains the mass matrix M of the system and the vector
ypO of consistent initial values for the derivatives. You will use this option set when
solving the system.

opt = odeset(opt, 'InitialSlope', yp0O);

Step 4. Solve an ODE System with odel5s or ode23t

Solve the system integrating over the time span 0 < t < 0.5. Add the grid lines and the
legend to the plot. Use ode23s by replacing odel5s with ode23s.

[tSol,ySol] = odel5s(F, [0, 0.5], yO, opt);
plot(tSol,ySol(:,1l:0rigvars),'-0")

for k = 1:origVars
S{k} = char(vars(k));
end

legend(S, 'Location', 'Best')
grid on
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Solve the system for different parameter values by setting the new value and
regenerating the function handle and initial conditions.

Set r to 2 and repeat the steps.
r=2;

ODEsNumeric = subs(ODEs);

constraintsNumeric = subs(constraints);

M = @(t, Y) massM(t, Y, m, r, g);
F=a@(t, Y) f(t, Y, m, r, 9);

yOest = [r*cos(pi/6); -r*sin(pi/6); 0; 0; 0];
10.07(-7),

opt = odeset('Mass', M, 'RelTol',
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[yd, ypO] = decic(ODEsNumeric, vars, constraintsNumeric, O,...
yOest, [1,0,0,0,1], ypOest, opt);

opt = odeset(opt, 'InitialSlope', yp0O);
Solve the system for the new parameter value.

[tSol,ySol] = odel5s(F, [0, 0.5], yO, opt);
plot(tSol,ySol(:,1l:0rigvars),'-0")

for k = l:origVars
S{k} = char(vars(k));
end

legend(S, 'Location', 'Best')
grid on
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See Also

daeFunction | decic | findDecoupledBlocks | incidenceMatrix |
isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEIndex |
reduceDAEToODE | reduceDifferentialOrder | reduceRedundancies

Related Examples
. “Solve Differential Algebraic Equations (DAEs)” on page 2-203
. “Solve DAEs Using Mass Matrix Solvers” on page 2-223
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Solve DAEs Using Mass Matrix Solvers

Solve differential algebraic equations by using one of the mass matrix solvers available in
MATLAB. To use this workflow, first complete steps 1, 2, and 3 from “Solve Differential
Algebraic Equations (DAEs)” on page 2-203. Then, use a mass matrix solver instead of
odel5i.

This example demonstrates the use of odel5s or ode23t. For details on the other
solvers, see “Choose an ODE Solver” (MATLAB) and adapt the workflow on this page.

In this section...

“Step 1. Convert DAEs to Function Handles” on page 2-223
“Step 2. Find Initial Conditions” on page 2-224
“Step 3. Solve DAE System” on page 2-226

Step 1. Convert DAEs to Function Handles

From the output of reduceDAEIndex, you have a vector of equations DAEs and a vector
of variables DAEvars. To use odel5s or ode23t, you need two function handles: one
representing the mass matrix of a DAE system, and the other representing the right sides
of the mass matrix equations. These function handles form the equivalent mass matrix
representation of the ODE system where M(t,y(t))y’(t) = f(t,y(t)).

Find these function handles by using massMatrixForm to get the mass matrix M and the
right sides F.

[M,f] = massMatrixForm(DAEs,DAEvars)

0]
0]
0]
0]
0]
0]
0]

——————— 2
[oNoNoNoNoNoNoNI
'

HFOOOOOO
[cNoNoNOoNOoNONO]

'

ol SNoNoNoNONO]
[cNoNoNOoNOoNONO]

—
1l

(T(t)*x(t) - m*r*Dxtt(t))/r
-(g*m*r - T(t)*y(t) + m*r*Dytt(t))/r
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rY2 - y(t)"2 - x(t)~2

- 2XDxt(t)*x(t) - 2*Dyt(t)*y(t)

- 2XDxtt(t)*x(t) - 2*Dytt(t)*y(t) - 2*Dxt(t)"2 - 2*¥Dyt(t)"2
-Dytt(t)

-Dyt(t)

The equations in DAEs can contain symbolic parameters that are not specified in the
vector of variables DAEvars. Find these parameters by using setdiff on the output of
symvar from DAEs and DAEvars.

pDAEs = symvar(DAEs);
pDAEvars = symvar(DAEvars);
extraParams = setdiff (pDAEs, pDAEvars)

extraParams =
[ g, m r]

The mass matrix M does not have these extra parameters. Therefore, convert M directly to
a function handle by using odeFunction.

M = odeFunction(M, DAEvars);

Convert f to a function handle. Specify the extra parameters as additional inputs to
odeFunction.

f = odeFunction(f, DAEvars, g, m, r);

The rest of the workflow is purely numerical. Set parameter values and create the
function handle.

9.81;

1;

1;

@(t, Y) f(t, Y, g, m, r);

Mm-S 3 Q

Step 2. Find Initial Conditions

The solvers require initial values for all variables in the function handle. Find initial
values that satisfy the equations by using the MATLAB decic function. The decic
accepts guesses (which might not satisfy the equations) for the initial conditions, and
tries to find satisfactory initial conditions using those guesses. decic can fail, in which
case you must manually supply consistent initial values for your problem.

First, check the variables in DAEvars.
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Here, Dxt (1) is the first derivative of x (t), Dytt(t) is the second derivative of y(t),
and so on. There are 7 variables in a 7-by-1 vector. Thus, guesses for initial values of
variables and their derivatives must also be 7-by-1 vectors.

Assume the initial angular displacement of the pendulum is 30° or pi/6, and the origin of
the coordinates is at the suspension point of the pendulum. Given that we used a radius r
of 1, the initial horizontal position x(t) is r¥sin(pi/6). The initial vertical position
y(t) is -r*cos(pi/6). Specify these initial values of the variables in the vector yfest.

Arbitrarily set the initial values of the remaining variables and their derivatives to 0.
These are not good guesses. However, they suffice for our problem. In your problem, if
decic errors, then provide better guesses and refer to the decic page.

yOest = [r*sin(pi/6); -r*cos(pi/6); 0; 0; 0; 0; 0];
ypOest = zeros(7,1);

Create an option set that contains the mass matrix M and initial guesses yp@est, and
specifies numerical tolerances for the numerical search.

opt = odeset('Mass', M, 'InitialSlope', ypOest,...
'RelTol', 10.07(-7), 'AbsTol' , 10.07(-7));

Find consistent initial values for the variables and their derivatives by using the MATLAB
decic function. The first argument of decic must be a function handle describing the
DAE as f(t,y,yp) = f(t,y,y') = 0.Interms of Mand F, this means f(t,y,yp) =
M(t,y)*yp - F(t,y).

implicitDAE = @(t,y,yp) M(t,y)*yp - F(t,y);
[y, yp0O] = decic(implicitDAE, 0, yOest, [], ypOest, [], opt)

yo =

0.4771
-0.8788
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-8.6214

0.0000
.2333
-4.1135

1
N

ypo

Now create an option set that contains the mass matrix M of the system and the vector
ypO of consistent initial values for the derivatives. You will use this option set when
solving the system.

opt = odeset(opt, 'InitialSlope', yp0O);

Step 3. Solve DAE System

Solve the system integrating over the time span 0 < t < 0.5. Add the grid lines and the
legend to the plot. The code uses odel5s. Instead, you can use ode23s by replacing
odel5s with ode23s.

[tSol,ySol] = odel5s(F, [0, 0.5], y0O, opt);
plot(tSol,ySol(:,1:0rigvars),'-0")

for k = l:origVars
S{k} = char(DAEvars(k));
end

legend(S, 'Location', 'Best')
grid on
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-’E' - = '!'I'[t].

T(t)

Solve the system for different parameter values by setting the new value and

regenerating the function handle and initial conditions.

Set r to 2 and regenerate the function handle and initial conditions.
r=2;

F=a@(t, Y) f(t, Y, g, m, r);

yOest = [r*sin(pi/6); -r*cos(pi/6); 0; 0; 0; 0; 0];
implicitDAE = @(t,y,yp) M(t,y)*yp - F(t,y);

[yo, yp0] = decic(implicitDAE, 0, yOest, [], ypOest, [], opt);

opt = odeset(opt, 'InitialSlope', yp0O);
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Solve the system for the new parameter value.

[tSol,ySol] = odel5s(F, [0, 0.5], yO, opt);
plot(tSol,ySol(:,1:0rigvars),'-0")

for k = 1l:origVars
S{k} = char(DAEvars(k));
end

legend(S, 'Location', 'Best')

grid on
2 T T T T T T T T T
W%% ©066666-0000000000-600000000d
ok ]
_EWT-CT-CT'C'OO S-08-00-8-0-0-0 0 00000000-00 00000008
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See Also
Related Examples

. “Solve Differential Algebraic Equations (DAEs)” on page 2-203
. “Solve Semilinear DAE System” on page 2-215
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Fourier and Inverse Fourier Transforms

2-230

This page shows the workflow for Fourier and inverse Fourier transforms in Symbolic
Math Toolbox. For simple examples, see fourier and ifourier. Here, the workflow for
Fourier transforms is demonstrated by calculating the deflection of a beam due to a force.
The associated differential equation is solved by the Fourier transform.

Fourier Transform Definition

The Fourier transform of f(x) with respect to x at w is
F(w) = f f(x)e~Wxgx .
The inverse Fourier transform is

f) = o [ Foweaw.

Concept: Using Symbolic Workflows

Symbolic workflows keep calculations in the natural symbolic form instead of numeric
form. This approach helps you understand the properties of your solution and use exact
symbolic values. You substitute numbers in place of symbolic variables only when you
require a numeric result or you cannot continue symbolically. For details, see “Choose
Symbolic or Numeric Arithmetic” on page 2-121. Typically, the steps are:

Declare equations.

Solve equations.

Substitute values.

Plot results.

a A W N R

Analyze results.
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Calculate Beam Deflection Using Fourier Transform
Define Equations

Fourier transform can be used to solve ordinary and partial differential equations. For
example, you can model the deflection of an infinitely long beam resting on an elastic
foundation under a point force. A corresponding real-world example is railway tracks on a
foundation. The railway tracks are the infinitely long beam while the foundation is elastic.

6(x)

bed rock

stiffness
constant v
¥(x)

Let

* E be the elasticity of the beam (or railway track).
* IDbe the second moment of area of the cross-section of the beam.
* k be the spring stiffness of the foundation.

The differential equation is

dy k.1
i T EY T N, — e <x<e.

Define the function y (x) and the variables. Assume E, I, and k are positive.

syms Y(x) w EI k f
assume([E I k] > 0)

Assign units to the variables by using symunit.
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u = symunit;

Eu = E*u.Pa; % Pascal

Iu = T*u.m™4; % meter™4

ku = k*u.N/u.m™2; % Newton/meter”2
X = x*u.m;

F = f*u.N/u.m;

Define the differential equation.

egn = diff(Y,X,4) + ku/(Eu*Iu)*Y == F/(Eu*Iu)

egn(x) =

diff(Y(x), x, x, x, x)*(1/[m]~4) + ((k*Y(x))/(E*I))*([N]/([Pa]*[m]"6)) == ...
(f/(E*I))*(IN]/([Pal*[m]"5))

Represent the force f by the Dirac delta function 6(x).

eqn = subs(eqgn,f,dirac(x))

eqn(x) =

diff(Y(x), x, x, x, x)*(1/[m]~4) + ((k*Y(x))/(E*I))*([N]/([Pal*[m]"6)) ==...
(dirac(x)/(E*I))*([N]/([Pal*[m]"5))

Solve Equations

Calculate the Fourier transform of eqn by using fourier on both sides of eqn. The
Fourier transform converts differentiation into exponents of w.

egnFT = fourier(lhs(eqn)) == fourier(rhs(eqgn))

eqnFT =
wr4*fourier(Y(x), x, w)*(1/[m]"4) + ((k*fourier(Y(x), x, w))/(E*I))*([N]/([Pa]l*[m]"6))

Isolate fourier(Y(x),x,w) in the equation.
eqnFT = isolate(eqnFT, fourier(Y(x),x,w))

eqnFT =
fourier(Y(x), x, w) == (1/(E*I*w™4*[Pa]l*[m]"2 + K*[N]))*[N]*[m]

Calculate Y (x) by calculating the inverse Fourier transform of the right side. Simplify the

result.
YSol = ifourier(rhs(eqnFT));
YSol = simplify(YSol)
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YSol =
((exp(-(27(1/2)*k™(1/4)*abs(x) )/ (2*¥E™(1/4)*I™(1/4)) ) *sin((2*%2~(1/2)*k™(1/4)*abs(x) +..
pi*E~(1/4)*I7(1/4))/(4*E~(1/4)*I"~(1/4))))/(2*E~(1/4)*1~(1/4)*Kk™(3/4)) ) *[m]

Check that YSo1l has the correct dimensions by substituting YSol into eqn and using the
checkUnits function. checkUnits returns logical 1 (true), meaning eqn now has
compatible units of the same physical dimensions.

checkUnits(subs(eqgn,Y,YSol))

ans =
struct with fields:

Consistent: 1
Compatible: 1

Separate the expression from the units by using separateUnits.
YSol = separateUnits(YSol)

YSol =
(exp(-(27(1/2)*k™(1/4)*abs(x) )/ (2*¥E™(1/4)*I™(1/4)) ) *sin((2*2~(1/2)*k™(1/4)*abs(x) + pi

Substitute Values

Use the values E = 108 Pa, I = 103 m#, and k = 10% N/m?. Substitute these values into
YSol and convert to floating point by using vpa with 16 digits of accuracy.

values = [le6 le-3 1le5];
YSol = subs(YSol,[E I k],values);
YSol vpa(YSol, 16)

YSol =
0.0000158113883008419*exp(-2.23606797749979*abs (x))*sin(2.23606797749979*abs(x) + 0.78!

Plot Results
Plot the result by using fplot.
fplot(YSol)

xlabel('x")
ylabel('Deflection y(x)")
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« 1078

Deflection y(x)

Analyze Results

The plot shows that the deflection of a beam due to a point force is highly localized. The
deflection is greatest at the point of impact and then decreases quickly. The symbolic

result enables you to analyze the properties of the result, which is not possible with
numeric results.

Notice that YSol is a product of terms. The term with sin shows that the response is
vibrating oscillatory behavior. The term with exp shows that the oscillatory behavior is

quickly damped by the exponential decay as the distance from the point of impact
increases.
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Solve Differential Equations Using Laplace Transform

Solve differential equations by using Laplace transforms in Symbolic Math Toolbox with
this workflow. For simple examples on the Laplace transform, see laplace and
ilaplace.

Definition: Laplace Transform

The Laplace transform of a function f{(t) is

F(s) = [ fe~=dt.
0

Concept: Using Symbolic Workflows

Symbolic workflows keep calculations in the natural symbolic form instead of numeric
form. This approach helps you understand the properties of your solution and use exact
symbolic values. You substitute numbers in place of symbolic variables only when you
require a numeric result or you cannot continue symbolically. For details, see “Choose
Symbolic or Numeric Arithmetic” on page 2-121. Typically, the steps are:

Declare equations.

Solve equations.

Substitute values.

Plot results.

aua A W N =

Analyze results.

Workflow: Solve RLC Circuit Using Laplace Transform

Declare Equations
You can use the Laplace transform to solve differential equations with initial conditions.

For example, you can solve resistance-inductor-capacitor (RLC) circuits, such as this
circuit.
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R1

R3

L

* Resistances in ohm: R;, Ry, R;

e Currents in ampere: I;, I,, I;

* Inductance in henry: L

* Capacitance in farad: C

* Electromotive force in volts: E(t)
* Charge in coulomb: Q(t)

~y

Apply Kirchhoff's voltage and current laws to get the differential equations for the RLC

circuit.
dh  RdQ _R—Ri,
g " Lat L b
dQ _ 1 1 Ry
@ B m(E o) R

Declare the variables. Because the physical quantities have positive values, set the
corresponding assumptions on the variables. Let E(t) be an alternating voltage of 1 V.

2-236



Solve Differential Equations Using Laplace Transform

syms L C I1(t) Q(t) s
R = sym('Rsd',[1 3]);
assume([t L C R] > 0)
E(t) = 1*sin(t); % Voltage = 1V

Declare the differential equations.

dIl = diff(I1,t);
dQ = diff(Q,t);

egnl = dIl + (R(2)/L)*dQ == (R(2)-R(1))/L*I1

eqn2 = = (1/(R(2 )+R(3)) (E-Q/C)) + R(2)/(R(2)+R(3))*I1

eqnl(t) =

diff(I1(t), t) + (R2*diff(Q(t), t))/L == -(I1(t)*(R1l - R2))/L
eqn2(t) =

diff(Q(t), t) == (sin(t) - Q(t)/C)/(R2 + R3) + (R2*I1(t))/(R2 + R3)

Assume that the initial current and charge, I, and Q,, are both 0. Declare these initial
conditions.

condl = I1(0) == 0
cond2 = Q(0) ==
condl =

I1(0) == 0

cond2 =

Q(0) ==

Solve Equations

Compute the Laplace transform of eqnl and eqn2.

egnllLT = laplace(eqnl,t,s)
egn2LT = laplace(eqn2,t,s)
eqnlLT =

s*laplace(I1(t), t, s) - I1(0) - (R2*(Q(O) - s*laplace(Q(t), t, s)))/L == ...
-((R1 - R2)*laplace(Il(t), t, s))/L

eqn2LT =

s*laplace(Q(t), t, s) - Q(0) == (R2*laplace(I1l(t), t, s))/(R2 + R3) + ...
(C/(s”2 + 1) - laplace(Q(t), t, s))/(C*(R2 + R3))

The function solve solves only for symbolic variables. Therefore, to use solve, first
substitute laplace(I1(t),t,s) and laplace(Q(t),t,s) with the variables I1 LT
and Q LT.
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syms I1 LT Q LT

egnlLT = subs(eqnlLT, [laplace(Il,t,s) laplace(Q,t,s)],[I1 LT Q LT])
eqnllT =
I1 LT*s - I1(0) - (R2*(Q(O0) - Q LT*s))/L == -(I1 LT*(R1l - R2))/L

eqn2LT = subs(eqn2lLT, [laplace(Il,t,s) laplace(Q,t,s)],[I1 LT Q LTI])

eqn2LT =
Q LT*s - Q(0) == (I1 LT*R2)/(R2 + R3) - (Q LT - C/(s™2 + 1))/ (C*(R2 + R3))

Solve the equations for I1 LT and Q LT.
eqns [eqnlLT eqn2LT];

vars = [I1 LT Q LT];
[I1 LT, Q LT] = solve(eqgns,vars)

I1 LT =
(R2*Q(0) + L*I1(0) - C*R2*s + L*s72*I1(0) + R2*s72*Q(0) + C*L*R2*s”3*I1(0) + ...
C*L*R3*s73*I1(0) + C*L*R2*s*I1(0) + C*L*R3*s*I1(0))/((s”2 + 1)*(RL - R2 + L*s + ...
C*L*R2*s"2 + C*L*R3*s”2 + C*RI*R2*s + C*R1*R3*s - C*R2*R3*s))
QLT =
(C*(R1 - R2 + L*s + L*R2*I1(0) + RI*R2*Q(0) + R1*R3*Q(0) - R2*R3*Q(0) + ...
L*R2*¥s72*I1(0) + L*R2*s”3*Q(0) + L*R3*s”3*Q(0) + RL*R2*s"2*Q(0) + R1*R3*s72*Q(0) - ...
R2*R3*s72*Q(0) + L*R2*s*Q(0) + ...
L*R3*s*Q(0)))/((s"2 + 1)*(R1l - R2 + L*s + C*L*R2*s"2 + C*L*R3*s™2 + ...

C*R1*R2*s + C*R1*R3*s - C*R2*R3*s))

Calculate I; and Q by computing the inverse Laplace transform of I1 LT and Q LT.
Simplify the result. Suppress the output because it is long.

Ilsol = ilaplace(Il LT,s,t);
Qsol = ilaplace(Q LT,s,t);
Ilsol = simplify(Ilsol);
Qsol = simplify(Qsol);

Substitute Values

Before plotting the result, substitute symbolic variables by the numeric values of the
circuit elements. LetR1 =4Q,R2=2Q,R3=3Q,C=1/AFEL=16H,I;(0)=15A,
and Q(0) =2 C.

vars = [R L C I1(0) Q(0)];

values [4231.6 1/4 15 2];
Ilsol = subs(Ilsol,vars,values)
Qsol = subs(Qsol,vars,values)
Ilsol =

15*%exp (- (51*t)/40)*(cosh((1001"(1/2)*t)/40) - (293*1001"(1/2)*sinh((1001"(1/2)*t)/40)),
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Qsol =
(4*sin(t))/51 - (5*cos(t))/51 + (107*exp(-(51*t)/40)*(cosh((1001~(1/2)*t)/40) + (2039*

Plot Results

Plot the current I1sol and charge Qsol. Show both the transient and steady state
behavior by using two different time intervals: 0 = t <10 and 5 = t = 25.

subplot(2,2,1)
fplot(Ilsol,[0 10])
title('Current')
ylabel('I1(t)"')
xlabel('t")

subplot(2,2,2)
fplot(Qsol, [0 10])
title('Charge')
ylabel('Q(t)")
xlabel('t")

subplot(2,2,3)

fplot(Ilsol,[5 25])
title('Current')
ylabel('I1(t)")

xlabel('t")

text(7,0.25, 'Transient')
text(16,0.125, 'Steady State')

subplot(2,2,4)

fplot(Qsol, [5 25])
title('Charge')
ylabel('Q(t)")

xlabel('t")

text(7,0.25, 'Transient')
text(15,0.16, 'Steady State')
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Analyze Results

Initially, the current and charge decrease exponentially. However, over the long term, they
are oscillatory. These behaviors are called "transient" and "steady state", respectively.

With the symbolic result, you can analyze the result's properties, which is not possible
with numeric results.

Visually inspect I1sol and Qsol. They are a sum of terms. Find the terms by using

children. Then, find the contributions of the terms by plotting them over [0 15]. The
plots show the transient and steady state terms.

Ilterms =
Qterms =

children(Ilsol);
children(Qsol);
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subplot(1,2,1)
fplot(Ilterms, [0 15])
ylim([-2 2])
title('Current terms')

subplot(1,2,2)
fplot(Qterms, [0 15])
ylim([-2 2])
title('Charge terms')

Current terms

2 T T T

051

15

Charge terms

0571

15

The plots show that I1so1 has a transient and steady state term, while Qsol has a
transient and two steady state terms. From visual inspection, notice I1sol and Qsol
have a term containing the exp function. Assume that this term causes the transient
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exponential decay. Separate the transient and steady state terms in I1sol and Qsol by
checking terms for exp using has.

Iltransient = Ilterms(has(Ilterms, 'exp'))
Ilsteadystate = Ilterms(~has(Ilterms, 'exp'))

Iltransient =

15*%exp(-(51*t)/40)*(cosh((1001~(1/2)*t)/40) - (293*1001"(1/2)*sinh((1001~(1/2)*t)/40))/21879)
Ilsteadystate =

-(5%sin(t))/51

Similarly, separate Qsol into transient and steady state terms. This result demonstrates
how symbolic calculations help you analyze your problem.

Qtransient = Qterms(has(Qterms, 'exp'))
Qsteadystate = Qterms(~has(Qterms, 'exp'))

Qtransient =

(107*exp (- (51*t)/40)*(cosh((1001"(1/2)*t)/40) + (2039*1001"(1/2)*sinh((1001~(1/2)*t)/40))/15301))/51
Qsteadystate =

[ -(5*%cos(t))/51, (4*sin(t))/51]
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Solve Difference Equations Using Z-Transform

Solve difference equations by using Z-transforms in Symbolic Math Toolbox with this
workflow. For simple examples on the Z-transform, see ztrans and iztrans.

Definition: Z-transform

The Z-transform of a function f(n) is defined as

Concept: Using Symbolic Workflows

Symbolic workflows keep calculations in the natural symbolic form instead of numeric
form. This approach helps you understand the properties of your solution and use exact
symbolic values. You substitute numbers in place of symbolic variables only when you
require a numeric result or you cannot continue symbolically. For details, see “Choose
Symbolic or Numeric Arithmetic” on page 2-121. Typically, the steps are:

Declare equations.

Solve equations.

Substitute values.

Plot results.

ga A W N R

Analyze results.

Workflow: Solve "Rabbit Growth" Problem Using Z-Transform
Declare Equations

You can use the Z-transform to solve difference equations, such as the well-known "Rabbit
Growth" problem. If a pair of rabbits matures in one year, and then produces another pair
of rabbits every year, the rabbit population p(n) at year n is described by this difference
equation.

p(n+2) = p(n+1) + p(n).
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Declare the equation as an expression assuming the right side is 0. Because n represents
years, assume that n is a positive integer. This assumption simplifies the results.

syms p(n) z

assume(n>=0 & in(n, 'integer'))
f = p(n+2) - p(n+l) - p(n)

f =

p(n +2) - p(n+ 1) - p(n)

Solve Equations

Find the Z-transform of the equation.
fZT = ztrans(f,n,z)

fZT =
z*¥p(0) - z*ztrans(p(n), n, z) - z*p(l) + z"2*ztrans(p(n), n, z) - z"2*p(0) - ztrans(p(

The function solve solves only for symbolic variables. Therefore, to use solve, first
substitute ztrans(p(n),n, z) with the variables pZT.

syms pZT
fZT = subs(fZT,ztrans(p(n),n,z),pZT)

fZT =
z*¥p(0) - pZT - z*p(l) - pZT*z - z"2*p(0) + pZT*z"2

Solve for pZT.
pZT = solve(fZT,pZT)

pZT =
-(z*p(1l) - z*p(0) + z™2*p(0))/(- z"2 + z + 1)

Calculate p(n) by computing the inverse Z-transform of pZT. Simplify the result.

pSol = iztrans(pZT,z,n);
pSol = simplify(pSol)
pSol =

2*%(-1)~(n/2)*cos(n*(pi/2 + asinh(1/2)*1i))*p(1)
(27(2 - n)*57(1/2)*(57(1/2) + 1
(

) (n - 1)*(p(0)/2 -
5 - (2*%27°(1 - n)*57(1/2)*(1 - 5

p C
(1/2))~(n - 1)*(p(0)/2 - p(1)))/5

+ ...
A
A
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Substitute Values

To plot the result, first substitute the values of the initial conditions. Let p(0) and p(1)
be 1 and 2, respectively.

pSol = subs(pSol,[p(0) p(1)],[1 2])

pSol =
4*%(-1)~(n/2)*cos(n*(pi/2 + asinh(1/2)*1i)) - (3*27(2 - n)*57(1/2)*(57(1/2) + 1)"~(n

Plot Results

Show the growth in rabbit population over time by plotting pSol.

nValues = 1:10;

pSolValues subs (pSol,n,nValues);
pSolValues double(pSolValues);
pSolValues = real(pSolValues);
stem(nValues,pSolValues)
title('Rabbit Population')
xlabel('Years (n)')
ylabel('Population p(n)"')

grid on
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Rabbit Population
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Analyze Results

The plot shows that the solution appears to increase exponentially. However, because the
solution pSol contains many terms, finding the terms that produce this behavior requires

analysis.

Because all the functions in pSol can be expressed in terms of exp, rewrite pSol to exp.
Simplify the result by using simplify with 80 additional simplification steps. Now, you

can analyze pSol.

rewrite(pSol, 'exp');

pSol
simplify(pSol, 'Steps',b80)

pSol
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pSol =
(2*¥27n)/(- 57(1/2) - 1)"n - (3*5°(1/2)*(1/2 - 57(1/2)/2)"n)/10 + (3*5~(1/2)*(57(1/2)/2

Visually inspect pSol. Notice that pSol is a sum of terms. Each term is a ratio that can
increase or decrease as n increases. For each term, you can confirm this hypothesis in
several ways:

* Checkif the limitat n = Inf goesto 0 or Inf by using limit.

* Plot the term for increasing n and check behavior.

* Calculate the value at a large value of n.

For simplicity, use the third approach. Calculate the terms at n = 100, and then verify
the approach. First, find the individual terms by using children, substitute for n, and
convert to double.

pSolTerms = children(pSol);

pSolTermsDbl = subs(pSolTerms,n,100);
pSolTermsDbl = double(pSolTermsDb1l)
pSolTermsDbl =

1.0e+20 *

0.0000 -0.0000 5.3134 -0.0000 3.9604

The result shows that some terms are 0 while other terms have a large magnitude.
Hypothesize that the large-magnitude terms produce the exponential behavior.
Approximate pSol with these terms.

idx = abs(pSolTermsDbl)>1; % use arbitrary cutoff

pApprox = pSolTerms(idx);
pApprox = sum(pApprox)
pApprox =

(3*57(1/2)*(5~(1/2)/2 + 1/2)"n)/10 + (5°(1/2)/2 + 1/2)"n/2

Verify the hypothesis by plotting the approximation error between pSol and pApprox. As
expected, the error goes to 0 as n increases. This result demonstrates how symbolic
calculations help you analyze your problem.

Perror = pSol - pApprox;

nValues = 1:30;

Perror = subs(Perror,n,nValues);
stem(nValues,Perror)
xlabel('Years (n)')
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ylabel('Error (pSol - pApprox)')
title('Error in Approximation')

Error in Approximation
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Create Plots
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In this section...

“Plot with Symbolic Plotting Functions” on page 2-250

“Plot Functions Numerically” on page 2-252

“Plot Multiple Symbolic Functions in One Graph” on page 2-253

“Plot Multiple Symbolic Functions in One Figure” on page 2-255

“Combine Symbolic Function Plots and Numeric Data Plots” on page 2-257

“Combine Numeric and Symbolic Plots in 3-D” on page 2-259

Plot with Symbolic Plotting Functions

MATLAB provides many techniques for plotting numerical data. Graphical capabilities of
MATLAB include plotting tools, standard plotting functions, graphic manipulation and
data exploration tools, and tools for printing and exporting graphics to standard formats.
Symbolic Math Toolbox expands these graphical capabilities and lets you plot symbolic
functions using:

+ fplot to create 2-D plots of symbolic expressions, equations, or functions in Cartesian
coordinates.

+ fplot3 to create 3-D parametric plots.

* ezpolar to create plots in polar coordinates.

» fsurf to create surface plots.

* fcontour to create contour plots.

+ fmesh to create mesh plots.

Plot the symbolic expression sin(6x) by using fplot. By default, fplot uses the range
-5<x<5b.

syms X
fplot(sin(6*x))
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Plot a symbolic expression or function in polar coordinates r (radius) and 6 (polar angle)
by using ezpolar. By default, ezpolar plots a symbolic expression or function over the
interval 0 < 6 < 2.

Plot the symbolic expression sin(6t) in polar coordinates.

syms t
ezpolar(sin(6*t))
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Plot Functions Numerically

As an alternative to plotting expressions symbolically, you can substitute symbolic
variables with numeric values by using subs. Then, you can use these numeric values
with plotting functions in MATLAB™.

In the following expressions u and v, substitute the symbolic variables x and y with the
numeric values defined by meshgrid.

syms X y
u = sin(x™2 + y"2);

V = COS(Xx*y);

[X, Y] = meshgrid(-1:.1:1,-1:.1:1);
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{X,Y});

{X,Y});
Now, you can plot U and V by using standard MATLAB plotting functions.

[x yl,

[x yl,
Create a plot of the vector field defined by the functions U(X,Y) and V(X,Y) by using the

MATLAB quiver function.
quiver(X, Y, U, V)

U = subs(u,
V = subs(v,
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Plot several functions on one graph by adding the functions sequentially. After plotting

the first function, add successive functions by using the hold on command. The hold

Plot Multiple Symbolic Functions in One Graph
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on command keeps the existing plots. Without the hold on command, each new plot
replaces any existing plot. After the hold on command, each new plot appears on top of
existing plots. Switch back to the default behavior of replacing plots by using the hold
off command.

Plot f = e*sin(20x) using fplot. Show the bounds of f by superimposing plots of e* and

e~ X as dashed red lines. Set the title by using the DisplayName property of the object
returned by fplot.

syms X y
f = exp(x)*sin(20*x)

f = sin(20x) e*

obj = fplot(f,[0 31);

hold on

fplot(exp(x), [0 3], '--r")
fplot(-exp(x), [0 3], '--r")
title(obj.DisplayName)

hold off
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Plot Multiple Symbolic Functions in One Figure

Display several functions side-by-side in one figure by dividing the figure window into
several subplots using subplot. The command subplot(m,n,p) divides the figure into
a m by n matrix of subplots and selects the subplot p. Display multiple plots in separate
subplots by selecting the subplot and using plotting commands. Plotting into multiple
subplots is useful for side-by-side comparisons of plots.

Compare plots of sin((x? + y%)/a) for a = 10, 20, 50, 100 by using subplot to create side-
by-side subplots.

syms x y a
f = sin((x*2 + y*2)/a);
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subplot(2, 2, 1)
fsurf(subs(f, a, 10))
title('a = 10")

subplot(2, 2, 2)
fsurf(subs(f, a, 20))
title('a 20")

subplot(2, 2, 3)
fsurf(subs(f, a, 50))
title('a 50")

subplot(2, 2, 4)

fsurf(subs(f, a, 100))
title('a = 100")
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Combine Symbolic Function Plots and Numeric Data Plots

Plot numeric and symbolic data on the same graph by using MATLAB and Symbolic Math
Toolbox functions together.

For numeric values of x between [ — 5, 5], return a noisy sine curve by finding y = sin(x)
and adding random values to y. View the noisy sine curve by using scatter to plot the
points (x1, y1), (x2, y2), ---.

= linspace(-5,5);

y = sin(x) + (-1).”randi(10, 1, 100).*rand(1l, 100)./2;
scatter(x, vy)
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Show the underlying structure in the points by superimposing a plot of the sine function.
First, use hold on to retain the scatter plot. Then, use fplot to plot the sine function.

hold on

syms t
fplot(sin(t))
hold off
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Combine Numeric and Symbolic Plots in 3-D

Combine symbolic and numeric plots in 3-D by using MATLAB and Symbolic Math Toolbox
plotting functions. Symbolic Math Toolbox provides these 3-D plotting functions:

+ fplot3 creates 3-D parameterized line plots.

* fsurf creates 3-D surface plots.

» fmesh creates 3-D mesh plots.

Create a spiral plot by using fplot3 to plot the parametric line
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x = (1 —1t)sin(100t)
v =(1-1t)cos(100t)

syms t

X (1-t)*sin(100*t);

y (1-t)*cos(100*t);

z sqrt(l - x™2 - y"2);

fplot3(x, y, z, [0 1])
title('Symbolic 3-D Parametric Line')

Symbolic 3-D Parametric Line
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Superimpose a plot of a sphere with radius 1 and center at (0, 0, 0). Find points on the
sphere numerically by using sphere. Plot the sphere by using mesh. The resulting plot
shows the symbolic parametric line wrapped around the top hemisphere.

hold on

[X,Y,Z] = sphere;

mesh(X, Y, Z)

colormap(gray)

title('Symbolic Parametric Plot and a Sphere')
hold off

Symbolic Parametric Plot and a Sphere
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Generate C or Fortran Code from Symbolic Expressions

You can generate C or Fortran code fragments from a symbolic expression, or generate
files containing code fragments, using the ccode and fortran functions. These code
fragments calculate numerical values as if substituting numbers for variables in the
symbolic expression.

To generate code from a symbolic expression g, enter either ccode(g) or fortran(g).

For example:

syms X y
z = 30*x™4/ (x*y"2 + 10) - x"3*(y"2 + 1)"2;
fortran(z)
ans =
! t0 = (x**4*3.0D+1)/ (x*y**241.0D+1) - x**3* (y**2+1.0D0O) **2'"
ccode(z)
ans =
't0 = ((xExRx*Xx)*3L.0E+1)/ (x*(y*y)+1.0E+1) - (x*x*x)*pow(y*y+1.0,2.0) ;"

To generate a file containing code, either enter ccode(g, 'file', 'filename') or
fortran(g, 'file', 'filename'). For the example above,

fortran(z, 'file', 'fortrantest')

generates a file named fortrantest in the current folder. fortrantest consists of the

following:
12 = y**2
t0 = (x**4*3.0D+1)/(t2*x+1.0D+1) -x**3*(1t2+1.0D0)**2

Similarly, the command
ccode(z, 'file', 'ccodetest')
generates a file named ccodetest that consists of the lines

t2
t0

y*y;
((X*X*X*x)*3.0E+1)/(t2*x+1.0E+1) - (x*Xx*x) *pow(t2+1.0,2.0);

ccode and fortran generate many intermediate variables. This is called optimized code.
MATLAB generates intermediate variables as a lowercase letter t followed by an

2-262



Generate C or Fortran Code from Symbolic Expressions

automatically generated number, such as t2. Intermediate variables can make the
resulting code more efficient by reusing intermediate expressions (such as t2 in
fortrantest and ccodetest). They can also make the code easier to read by keeping
expressions short.
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Generate MATLAB Functions from Symbolic Expressions
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You can use matlabFunction to generate a MATLAB function handle that calculates
numerical values as if you were substituting numbers for variables in a symbolic
expression. Also, matlabFunction can create a file that accepts numeric arguments and
evaluates the symbolic expression applied to the arguments. The generated file is
available for use in any MATLAB calculation, whether or not the computer running the file
has a license for Symbolic Math Toolbox functions.

If you work in the MuPAD® Notebook, see “Create MATLAB Functions from MuPAD
Expressions” on page 3-75.

Generating a Function Handle

matlabFunction can generate a function handle from any symbolic expression. For
example:

syms X y
r=sqrt(x*2 + y~2);
ht = matlabFunction(tanh(r))

ht =

function handle with value:
@(x,y)tanh(sqrt(x.”2+y.”2))

You can use this function handle to calculate numerically:
ht(.5,.5)

ans =
0.6089

You can pass the usual MATLAB double-precision numbers or matrices to the function
handle. For example:

cc = [.5,3];
dd = [-.5,.5];
ht(cc, dd)

ans

0.6089 0.9954
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Tip Some symbolic expressions cannot be represented using MATLAB functions.
matlabFunction cannot convert these symbolic expressions, but issues a warning. Since
these expressions might result in undefined function calls, always check conversion
results and verify the results by executing the resulting function.

Control the Order of Variables

matlabFunction generates input variables in alphabetical order from a symbolic
expression. That is why the function handle in “Generating a Function Handle” on page 2-
264 has x before y:

ht = @(x,y)tanh((x.”2 + y.”2).7(1./2))

You can specify the order of input variables in the function handle using the vars option.
You specify the order by passing a cell array of character vectors or symbolic arrays, or a
vector of symbolic variables. For example:

Syms X y z
r = sqrt(x™2 + 3*y"2 + 5*z"2);
htl = matlabFunction(tanh(r), 'vars', [y x z])

htl =
function handle with value:
@(y,x,z)tanh(sqrt(x.”2+y.”2.*¥3.0+z.72.*5.0))

ht2 = matlabFunction(tanh(r), 'vars', {'x', 'y', 'z'})

ht2 =
function handle with value:
@(x,y,z)tanh(sqrt(x.”2+y.”2.*¥3.0+z.72.*5.0))

ht3 matlabFunction(tanh(r), ‘'vars', {'x', [y zl})

ht3 =
function handle with value:
@(x,in2)tanh(sqrt(x.”2+in2(:,1).72.*3.0+in2(:,2).72.*%5.0))

Generate a File

You can generate a file from a symbolic expression, in addition to a function handle.
Specify the file name using the file option. Pass a character vector containing the file
name or the path to the file. If you do not specify the path to the file, matlabFunction
creates this file in the current folder.
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This example generates a file that calculates the value of the symbolic matrix F for
double-precision inputs t, x, and y:

syms x y t

z = (x*3 - tan(y))/(x"3 + tan(y));

w z/(1 + t7°2);

F=[w,(1+ t2)*/y; (1 + t"2)*x/y,3*z - 1];
matlabFunction(F, 'file', 'testMatrix.m')

The file testMatrix.m contains the following code:

function F = testMatrix(t,x,y)
%TESTMATRIX
% F = TESTMATRIX(T,X,Y)

t2 = x."2;

t3 = tan(y);

t4 = t2.%x;

t5 = t.72;

t6 = t5 + 1;

t7 = 1./y;

t8 = 16.*t7.*x;

t9 = 13 + t4;

t10 = 1./t9;

F=[-(tlo.*(t3 - t4))./t6,t8; t8,- t10.*(3.*t3 - 3.*t2.*x) - 1];

matlabFunction generates many intermediate variables. This is called optimized code.
MATLAB generates intermediate variables as a lowercase letter t followed by an
automatically generated number, for example t32. Intermediate variables can make the
resulting code more efficient by reusing intermediate expressions (such as t4, t6, t8, t9,
and t10 in the calculation of F). Using intermediate variables can make the code easier to
read by keeping expressions short.

If you don't want the default alphabetical order of input variables, use the vars option to
control the order. Continuing the example,

matlabFunction(F, 'file', 'testMatrix.m', 'vars',[x y t])
generates a file equivalent to the previous one, with a different order of inputs:

function F = testMatrix(x,y,t)
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Name Output Variables

By default, the names of the output variables coincide with the names you use calling
matlabFunction. For example, if you call matlabFunction with the variable F

syms Xyt
= (x*3 - tan(y))/(x*3 + tan(y));
w=2z/(1+ t°2);

F=1[w, (1 + t'2)*x/y; (1 + t"2)*x/y,3*z - 1];
matlabFunction(F, 'file', 'testMatrix.m', 'vars',[x y t])

the generated name of an output variable is also F:

function F = testMatrix(x,y,t)

If you call matlabFunction using an expression instead of individual variables

syms x y t
z = (x*3 - tan(y))/(x"3 + tan(y));
w=12z/(1+ t"2);

F=[w, (1 + t72)*x/y; (1 + t"2)*x/y,3*z - 11;
matlabFunction(w + z + F,'file', 'testMatrix.m',
'vars',[x y tl)

the default names of output variables consist of the word out followed by the number, for
example:

function outl = testMatrix(x,y,t)

To customize the names of output variables, use the output option:

"2 - y"2 - z272;
f = matlabFunction(r, q, 'file', 'new_function',
'outputs', {'namel', 'name2'})

o]
Il

The generated function returns namel and nameZ2 as results:

function [namel,name2] = new function(x,y,z)
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Generate MATLAB Function Blocks from Symbolic
Expressions
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Using matlabFunctionBlock, you can generate a MATLAB Function block. The
generated block is available for use in Simulink models, whether or not the computer
running the simulations has a license for Symbolic Math Toolbox.

If you work in the MuPAD Notebook, see “Create MATLAB Function Blocks from MuPAD
Expressions” on page 3-79.

Generate and Edit a Block

Suppose, you want to create a model involving the symbolic expression r = sqrt(x~2 +
y”~2). Before you can convert a symbolic expression to a MATLAB Function block, create
an empty model or open an existing one:

new system('my system')
open_system('my system')

Create a symbolic expression and pass it to the matlabFunctionBlock command. Also
specify the block name:

syms X y
r = sqrt(x™2 + y*2);
matlabFunctionBlock('my system/my block', r)

If you use the name of an existing block, the matlabFunctionBlock command replaces
the definition of an existing block with the converted symbolic expression.

You can open and edit the generated block. To open a block, double-click it.

function r = my block(x,y)
s#codegen

r = sqrt(x.”2+y.”2);

Tip Some symbolic expressions cannot be represented using MATLAB functions.
matlabFunctionBlock cannot convert these symbolic expressions, but issues a
warning. Since these expressions might result in undefined function calls, always check
conversion results and verify results by running the simulation containing the resulting
block.
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Control the Order of Input Ports

matlabFunctionBlock generates input variables and the corresponding input ports in
alphabetical order from a symbolic expression. To change the order of input variables, use
the vars option:

syms X vy

mu = sym('mu');

dydt = -x - mu*y*(x"2 - 1);

matlabFunctionBlock('my system/vdp', dydt,'vars', [y mu x])

Name the Output Ports

By default, matlabFunctionBlock generates the names of the output ports as the word
out followed by the output port number, for example, out3. The output option allows
you to use the custom names of the output ports:

syms Xx vy

mu = sym('mu');

dydt = -x - mu*y*(x*2 - 1);

matlabFunctionBlock('my system/vdp', dydt, 'outputs',{'namel'})
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Generate Simscape Equations from Symbolic
Expressions
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Simscape software extends the Simulink product line with tools for modeling and
simulating multidomain physical systems, such as those with mechanical, hydraulic,
pneumatic, thermal, and electrical components. Unlike other Simulink blocks, which
represent mathematical operations or operate on signals, Simscape blocks represent
physical components or relationships directly. With Simscape blocks, you build a model of
a system just as you would assemble a physical system. For more information about
Simscape software see “Simscape”.

You can extend the Simscape modeling environment by creating custom components.
When you define a component, use the equation section of the component file to establish
the mathematical relationships among a component's variables, parameters, inputs,
outputs, time, and the time derivatives of each of these entities. The Symbolic Math
Toolbox and Simscape software let you perform symbolic computations and use the
results of these computations in the equation section. The simscapeEquation function
translates the results of symbolic computations to Simscape language equations.

If you work in the MuPAD Notebook, see “Create Simscape Equations from MuPAD
Expressions” on page 3-81.

Convert Algebraic and Differential Equations

Suppose, you want to generate a Simscape equation from the solution of the following
ordinary differential equation. As a first step, use the dsolve function to solve the
equation:

syms a y(t)

Dy = diff(y);

s = dsolve(diff(y, 2) == -a”™2*y, y(0) == 1, Dy(pi/a) == 0);
s = simplify(s)

The solution is:

S =
cos(a*t)

Then, use the simscapeEquation function to rewrite the solution in the Simscape
language:
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simscapeEquation(s)
simscapeEquation generates the following code:

ans =
's == cos(a*time) ;'

The variable time replaces all instances of the variable t except for derivatives with
respect to t. To use the generated equation, copy the equation and paste it to the equation
section of the Simscape component file. Do not copy the automatically generated variable
ans and the equal sign that follows it.

simscapeEquation converts any derivative with respect to the variable t to the
Simscape notation, X.der, where X is the time-dependent variable. For example, convert
the following differential equation to a Simscape equation. Also, here you explicitly
specify the left and the right sides of the equation by using the syntax
simscapeEquation(LHS, RHS):

syms a x(t)
simscapeEquation(diff(x), -a”2*x)

ans =
'X.der == -an2*x;'

simscapeEquation also translates piecewise expressions to the Simscape language. For
example, the result of the following Fourier transform is a piecewise function:

Syms v u X
assume(x, 'real')

f = exp(-x"2*abs(v))*sin(v)/v;

s = fourier(f, v, u)

S =

piecewise(x ~= 0, atan((u + 1)/x72) - atan((u - 1)/x"2))

From this symbolic piecewise equation, simscapeEquation generates valid code for the
equation section of a Simscape component file:

simscapeEquation(s)

ans =
'if (x ~= 0.0)
s == -atan(1.0/x"2*(u-1.0))+atan(1l.0/x"2*(u+1.0));
else
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s == NaN;
end'

Clear the assumption that x is real by recreating it using syms:

syms X

Limitations

The equation section of a Simscape component file supports a limited number of
functions. For details and the list of supported functions, see Simscape equations. If a
symbolic expression contains functions that are not supported by Simscape, then
simscapeEquation cannot represent the symbolic expression as a Simscape equation
and issues a warning instead. Always verify the conversion result. Expressions with
infinities are prone to invalid conversion.
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MuPAD Engines and MATLAB Workspace
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Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

A MuPAD engine is a separate process that runs on your computer in addition to a
MATLAB process. A MuPAD engine starts when you first call a function that needs a
symbolic engine, such as syms. Symbolic Math Toolbox functions that use the symbolic
engine use standard MATLAB syntax, suchasy = int(x"2).

Conceptually, each MuPAD notebook has its own symbolic engine, with an associated
workspace. You can have any number of MuPAD notebooks open simultaneously.

Cne engine exists for use by Each MuPAD notebook also
Symbalic Math Toolbox. has its own engine.
MATLAB warkspacs MuPAD notebook 1 MuPAD notebook 2

i I 4
1 ]

Engine Engins Engina
Warkspacs Workspace Workspace




MuPAD Engines and MATLAB Workspace

The engine workspace associated with the MATLAB workspace is generally empty, except
for assumptions you make about variables. For details, see “Clear Assumptions and Reset
the Symbolic Engine” on page 3-70.
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Create MuPAD Notebooks
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Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

Before creating a MuPAD notebook, it is best to decide which interface you intend to use
primarily for your task. The two approaches are:

* Perform your computations in the MATLAB Live Editor while using MuPAD notebooks
as an auxiliary tool. This approach is recommended and implies that you create a
MuPAD notebook, and then execute it, transfer data and results, or close it from the
MATLAB Live Editor.

* Perform your computations and obtain the results in the MuPAD Notebook. This
approach is not recommended and implies that you use the MATLAB Live Editor only
to access MuPAD, but do not intend to copy data and results between MATLAB and
MuPAD.

If you created a MuPAD notebook without creating a handle, and then realized that you
need to transfer data and results between MATLAB and MuPAD, use
allMuPADNotebooks to create a handle to this notebook:

mupad
nb = allMuPADNotebooks

nb =
Notebookl

This approach does not require saving the notebook. Alternatively, you can save the
notebook and then open it again, creating a handle.

If You Need Communication Between Interfaces

If you perform computations in both interfaces, use handles to notebooks. The toolbox
uses this handle for communication between the MATLAB workspace and the MuPAD
notebook.



Create MuPAD Notebooks

To create a blank MuPAD notebook from the MATLAB Command Window, type
nb = mupad
The variable nb is a handle to the notebook. You can use any variable name instead of nb.

To create several notebooks, use this syntax repeatedly, assigning a notebook handle to
different variables. For example, use the variables nbl, nb2, and so on.

If You Use MATLAB to Access MuPAD

Use the mupad Command

To create a new blank notebook, type mupad in the MATLAB Command Window.

Use the Welcome to MuPAD Dialog Box

The Welcome to MuPAD dialog box lets you create a new notebook or program file, open

an existing notebook or program file, and access documentation. To open this dialog box,
type mupadwelcome in the MATLAB Command Window.

4\ Welcome to MuPAD 4 *

S e MuPAD

2] Getting Started

RZ201%a

|7] Notebook Interface

j Release Motes

E New Motebook

E‘ New Editor

| ik Open File

| MathWorks'
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Create New Notebooks from MuPAD

If you already opened a notebook, you can create new notebooks and program files
without switching to the MATLAB Live Editor:

* To create a new notebook, select File > New Notebook from the main menu or use
the toolbar.

* To open a new Editor window, where you can create a program file, select File > New
Editor from the main menu or use the toolbar.
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Open MuPAD Notebooks

Open MuPAD Notebooks

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

Before opening a MuPAD notebook, it is best to decide which interface you intend to use
primarily for your task. The two approaches are:

* Perform your computations in the MATLAB Live Editor using MuPAD notebooks as an
auxiliary tool. This approach is recommended and implies that you open a MuPAD
notebook, and then execute it, transfer data and results, or close it from the MATLAB
Live Editor. If you perform computations in both interfaces, use handles to notebooks.
The toolbox uses these handles for communication between the MATLAB workspace
and the MuPAD notebook.

* Perform your computations and obtain the results in MuPAD. This approach is not
recommended. It implies that you use the MATLAB Live Editor only to access the
MuPAD Notebook app, but do not intend to copy data and results between MATLAB
and MuPAD. If you use the MATLAB Live Editor only to open a notebook, and then
perform all your computations in that notebook, you can skip using a handle.

Tip MuPAD notebook files open in an unevaluated state. In other words, the notebook
is not synchronized with its engine when it opens. To synchronize a notebook with its
engine, select Notebook > Evaluate All or use evaluateMuPADNotebook. For
details, see “Evaluate MuPAD Notebooks from MATLAB” on page 3-14.

If you opened a MuPAD notebook without creating a handle, and then realized that you
need to transfer data and results between MATLAB and MuPAD, use
allMuPADNotebooks to create a handle to this notebook:

mupad
nb = allMuPADNotebooks

nb =
Notebookl
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This approach does not require saving changes in the notebook. Alternatively, you can
save the notebook and open it again, this time creating a handle.

If You Need Communication Between Interfaces

The following commands are also useful if you lose the handle to a notebook, in which
case, you can save the notebook file and then reopen it with a new handle.

Use the mupad or openmn Command

Open an existing MuPAD notebook file and create a handle to it by using mupad or
openmn in the MATLAB Command Window:

nb = mupad('file name')
nbl = openmn('file name')

Here, file name must be a full path, such as H: \Documents\Notes\myNotebook.mn,
unless the notebook is in the current folder.

To open a notebook and automatically jump to a particular location, create a link target at
that location inside a notebook, and refer to it when opening a notebook. For information

about creating link targets, see “Work with Links”. To refer to a link target when opening

a notebook, enter:

nb = mupad('file name#linktarget name')
nb = openmn('file name#linktarget name')
Use the open Command

Open an existing MuPAD notebook file and create a handle to it by using the open
function in the MATLAB Command Window:

nbl = open('file name')

Here, file name must be a full path, such as H: \Documents\Notes\myNotebook.mn,
unless the notebook is in the current folder.



Open MuPAD Notebooks

If You Use MATLAB to Access MuPAD
Double-Click the File Name

You can open an existing MuPAD notebook, program file, or graphic file (. xvc or .xvz)
by double-clicking the file name. The system opens the file in the appropriate interface.

Use the mupad or openmn Command

Open an existing MuPAD notebook file by using the mupad or openmn function in the
MATLAB Command Window:

mupad('file name')
openmn('file name')

Here, file name must be a full path, such as H: \Documents\Notes\myNotebook.mn,
unless the notebook is in the current folder.

To open a notebook and automatically jump to a particular location, create a link target at
that location inside a notebook, and refer to it when opening a notebook. For information

about creating link targets, see “Work with Links”. To refer to a link target when opening

a notebook, enter:

mupad('file name#linktarget name')

openmn('file name#linktarget name')

Use the open Command

Open an existing MuPAD notebook file by using open in the MATLAB Command Window:
open('file name')

Here, file name must be a full path, such as H: \Documents\Notes\myNotebook.mn,
unless the notebook is in the current folder.

Use the Welcome to MuPAD Dialog Box
The Welcome to MuPAD dialog box lets you create a new notebook or program file, open

an existing notebook or program file, and access documentation. To open this dialog box,
type mupadwelcome in the MATLAB Command Window.
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Open Notebooks in MuPAD

If you already opened a notebook, you can start new notebooks and open existing ones
without switching to the MATLAB Live Editor. To open an existing notebook, select
File > Open from the main menu or use the toolbar. Also, you can open the list of
notebooks you recently worked with.

Open MuPAD Program Files and Graphics

Besides notebooks, MuPAD lets you create and use program files (. mu) and graphic files
(.xvc or .xvz). Also, you can use the MuPAD Debugger to diagnose problems in your
MuPAD code.

Do not use a handle when opening program files and graphic files because there is no
communication between these files and the MATLAB Live Editor.

Double-Click the File Name

You can open an existing MuPAD notebook, program file, or graphic file by double-clicking
the file name. The system opens the file in the appropriate interface.
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Use the openmn Command

Symbolic Math Toolbox provides these functions for opening MuPAD files in the interfaces
with which these files are associated:

* openmu opens a program file with the extension .mu in the MATLAB Editor.
* openxvc opens an XVC graphic file in the MuPAD Graphics window.
* openxvz opens an XVZ graphic file in the MuPAD Graphics window.

For example, open an existing MuPAD program file by using the openmu function in the
MATLAB Command Window:

openmu( 'H:\Documents\Notes\myProcedure.mu")

You must specify a full path unless the file is in the current folder.

Use the open Command

Open an existing MuPAD file by using open in the MATLAB Command Window:
open('file name')

Here, file name must be a full path, such as H: \Documents\Notes
\myProcedure.mu, unless the notebook is in the current folder.

Use the Welcome to MuPAD Dialog Box

The Welcome to MuPAD dialog box lets you create a new notebook or program file, open
an existing notebook or program file, and access documentation. To open this dialog box,
type mupadwelcome in the MATLAB Command Window.
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Open Program Files and Graphics from MuPAD

If you already opened a notebook, you can create new notebooks and program files and
open existing ones without switching to the MATLAB Command Window. To open an
existing file, select File > Open from the main menu or use the toolbar.

You also can open the Debugger window from within a MuPAD notebook. For details, see
“Open the Debugger”.

Note You cannot access the MuPAD Debugger from the MATLAB Command Window.
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Save MuPAD Notebooks

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

To save changes in a notebook:

1  Switch to the notebook. (You cannot save changes in a MuPAD notebook from the
MATLAB Command Window.)

2  Select File > Save or File > Save As from the main menu or use the toolbar.

If you want to save and close a notebook, you can use the close function in the MATLAB

Command Window. If the notebook has been modified, then MuPAD brings up the dialog
box asking if you want to save changes. Click Yes to save the modified notebook.

Note You can lose data when saving a MuPAD notebook. A notebook saves its inputs and
outputs, but not the state of its engine. In particular, MuPAD does not save variables
copied into a notebook using setVar(nb,...).
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Evaluate MuPAD Notebooks from MATLAB

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

When you open a saved MuPAD notebook file, the notebook displays the results (outputs),
but the engine does not “remember” them. For example, suppose that you saved the
notebook myFilel.mn in your current folder and then opened it:

nb = mupad('myFilel.mn");

Suppose that myFilel.mn performs these computations.

£ := s31in(x)

=/ (1 + ="2)

SH X )

s
[

sin(x)% = 1

| w = simplify(y/(1 - w))

s x)

sin( )2 — sin(x) + 1

Open that file and try to use the value w without synchronizing the notebook with its
engine. The variable w currently has no assigned value.
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zin (x)

=/ (1 + =2)

s x)

-
]

sin(x)% + 1

w = simplify(y/ (1 - w))

sin(x)

[ ] [
st x ) —smix) +1

w o+ 1

w1

To synchronize a MuPAD notebook with its engine, you must evaluate the notebook as
follows:

1 Open the notebooks that you want to evaluate. Symbolic Math Toolbox cannot
evaluate MuPAD notebooks without opening them.

2 Use evaluateMuPADNotebook. Alternatively, you can evaluate the notebook by
selecting Notebook > Evaluate All from the main menu of the MuPAD notebook.

3  Perform your computations using data and results obtained from MuPAD notebooks.
Close the notebooks. This step is optional.

For example, evaluate the notebook myFilel.mn located in your current folder:

evaluateMuPADNotebook(nb)
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z := =3in(x)
sin(x)
Ve =/ (1 + =2)
s x )
sin(x)? + 1
w = simplifviv/ (1 — v)})
sin(x)

sin(x)? —sin(x) = 1

w + 1

il
s x) -1

sin( )2 —sin(x) + 1

Now, you can use the data and results from that notebook in your computations. For
example, copy the variables y and w to the MATLAB workspace:

y = getVar(nb,'y")
w = getVar(nb, 'w")
y =

sin(x)/(sin(x)"2 + 1)

w =
sin(x)/(sin(x)”"2 - sin(x) + 1)

You can evaluate several notebooks in a single call by passing a vector of notebook
handles to evaluateMuPADNotebook:

nbl = mupad('myFilel.mn"');
nb2 = mupad('myFile2.mn"');
evaluateMuPADNotebook([nbl,nb2])

Also, you can use al IMuPADNotebooks that returns handles to all currently open
notebooks. For example, if you want to evaluate the notebooks with the handles nb1 and
nb2, and no other notebooks are currently open, then enter:

evaluateMuPADNotebook (allMuPADNotebooks)



Evaluate MuPAD Notebooks from MATLAB

If any calculation in a notebook throws an error, then evaluateMuPADNotebook stops.
The error messages appear in the MATLAB Command Window and in the MuPAD
notebook. When you evaluate several notebooks and one of them throws an error,
evaluateMuPADNotebook does not proceed to the next notebook. It stops and displays
an error message immediately. If you want to skip calculations that cause errors and
evaluate all input regions that run without errors, use 'IgnorekErrors', true:

evaluateMuPADNotebook(allMuPADNotebooks, 'IgnoreErrors', true)
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Close MuPAD Notebooks from MATLAB

3-18

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

To close notebooks from the MATLAB Command Window, use the close function and
specify the handle to that notebook. For example, create the notebook with the handle nb:

nb = mupad;
Now, close the notebook:
close(nb)

If you do not have a handle to the notebook (for example, if you created it without
specifying a handle or accidentally deleted the handle later), use al LIMuPADNotebooks to
return handles to all currently open notebooks. This function returns a vector of handles.
For example, create three notebooks without handles:

mupad
mupad
mupad

Use allMuPADNotebooks to get a vector of handles to these notebooks:

nbhandles allMuPADNotebooks

nbhandles
Notebookl
Notebook?2
Notebook3

Close the first notebook (Notebook1):
close(nbhandles (1))

Close all notebooks:



Close MuPAD Notebooks from MATLAB

close(allMuPADNotebooks)

If you modify a notebook and then try to close it, MuPAD brings up the dialog box asking
if you want to save changes. To suppress this dialog box, call close with the ' force'
flag. You might want to use this flag if your task requires opening many notebooks,
evaluating them, and then closing them. For example, suppose that you want to evaluate
the notebooks myFilel.mn, myFile2.mn, ..., myFilel0.mn located in your current
folder. First, open the notebooks. If you do not have any other notebooks open, you can
skip specifying the handles and later use al LIMuPADNotebooks. Otherwise, do not forget
to specify the handles.

mupad('myFilel.mn")
mupad('myFile2.mn")

mupad('myFilel@.mn")
Evaluate all notebooks:
evaluateMuPADNotebook (allMuPADNotebooks)

When you evaluate MuPAD notebooks, you also modify them. Therefore, when you try to
close them, the dialog box asking you to save changes will appear for each notebook. To
suppress the dialog box and discard changes, use the ' force' flag:

close(allMuPADNotebooks, ' force')
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Convert MuPAD Notebooks to MATLAB Live Scripts

Migrate MuPAD notebooks to MATLAB live scripts that use MATLAB code. Live scripts
are an interactive way to run MATLAB code. For details, see “What Is a Live Script or
Function?” (MATLAB) MuPAD notebooks are converted to live scripts by using Symbolic
Math Toolbox. For more information, see “Getting Started with Symbolic Math Toolbox”.

3-20

Convert a MuPAD Notebook .mn to a MATLAB Live Script .mlx

1

Prepare the notebook: This step is optional, but helps avoid conversion errors and
warnings. Check if your notebook contains untranslatable objects from “MuPAD
Objects That Are Not Converted” on page 3-22. These objects cause translation
eITors or warnings.

Convert the notebook: Use convertMuPADNotebook. For example, convert
myNotebook.mn in the current folder to myScript.mlx in the same folder.

convertMuPADNotebook('myNotebook.mn', 'myScript.mlx")

Alternatively, right-click the notebook in the Current Folder browser and select Open
as Live Script.

Check for errors or warnings: Check the output of convertMuPADNotebook for
errors or warnings. If there are none, go to step 7. For example, this output means
that the converted live script myScript.mlx has 4 errors and 1 warning.

Created ''myScript.mlx': 4 translation errors, 1 warnings. For verifying...

the document, see help.

A translation error means that the translated code will not run correctly while a
translation warning indicates that the code requires inspection. If the code only
contains warnings, it will likely run without issues.

Fix translation errors: Open the converted live script by clicking the link in the
output. Find errors by searching for ERROR. The error explains which MuPAD
command did not translate correctly. For details and fixes, click ERROR. After fixing
the error, delete the error message. For the list of translation errors, see
“Troubleshoot MuPAD to MATLAB Translation Errors” on page 3-26. If you cannot
fix your error, and the “Known Issues” on page 3-21 do not help, please contact
technical support.

Fix translation warnings: Find warnings by searching for WARNING. The warning
text explains the issue. For details and fixes, click WARNING. Decide to either adapt
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the code or ignore the warning. Then delete the warning message. For the list of
translation warnings, see “Troubleshoot MuPAD to MATLAB Translation Warnings”
on page 3-36.

Verify the live script: Open the live script and check for unexpected commands,
comments, formatting, and so on. For readability, the converted code may require
manual cleanup, such as eliminating auxiliary variables.

Execute the live script: Ensure that the code runs properly and returns expected
results. If the results are not expected, check your MuPAD code for the “Known
Issues” on page 3-21 listed below.

Convert MuPAD Graphics to MATLAB Graphics

To convert MuPAD graphics, first try to convert the MuPAD plot commands that generated
the graphics. This approach ensures you can control the graphical output in MATLAB
similar to MuPAD. If you cannot convert the MuPAD commands, then export the graphic.
See “Save and Export Graphics”.

Known Issues

These are the known issues when converting MuPAD notebooks to MATLAB live scripts
with the convertMuPADNotebook function. If your issue is not described, please contact
technical support.

“MuPAD Objects That Are Not Converted” on page 3-22

“No Automatic Substitution in MATLAB” on page 3-22

“last(1) in MuPAD Is Not ans in MATLAB” on page 3-23

“Some solve Results Are Wrongly Accessed” on page 3-23

“break Inside case Is Wrongly Translated” on page 3-23

“Some MuPAD Graphics Options Are Not Translated” on page 3-24
“Some Operations on Matrices Are Wrongly Translated” on page 3-24
“indets Behavior in MATLAB Differs” on page 3-25

“Return Type of factor Differs in MATLAB” on page 3-25

“Layout Issues” on page 3-25

“Syntax Differences Between MATLAB and MuPAD” on page 3-25
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MuPAD Objects That Are Not Converted

Expand the list to view MuPAD objects that are not converted. To avoid conversion errors
and warnings, remove these objects or commands from your notebook before conversion.

Objects Not Converted

Reading code from files. Replace commands such as read (" filename.mu") by the
content of filename.mu.

Function calls with expression sequences as input arguments.

Function calls where the function is generated by the preceding code instead of being
specified explicitly.

Domains, and commands that create domains and their elements.

Assignments to slots of domains and function environments.

Commands using the history mechanism, such as last(2) or HISTORY := 30.
MuPAD environment variables, such as ORDER, HISTORY, and LEVEL.

No Automatic Substitution in MATLAB

In MATLAB, when symbolic variables are assigned values, then expressions containing
those values are not automatically updated.

Fixing This Issue

When values are assigned to variables, update any expressions that contain those
variables by calling subs on those expressions.

syms a b

% f is still a + b

subs (f) % f is updated



Convert MuPAD Notebooks to MATLAB Live Scripts

last(1) in MuPAD Is Not ans in MATLAB

In MuPAD, last (1) always returns the last result. In MATLAB, ans returns the result of
the last unassigned command. For example, in MATLAB if you run x = 1, then calling
ans does not return 1.

Fixing This Issue

Instead of using ans, assign the result to a variable and use that variable.

Some solve Results Are Wrongly Accessed

When results of MuPAD solve are accessed, convertMuPADNotebook assumes that the
result is a finite set. However, if the result is a non-finite set then the code is wrongly
translated.

Fixing This Issue

There is no general solution. Further, non-finite solution sets are not translatable.

If you are accessing parameters or conditions, use the parameters or conditions
output arguments of MATLAB solve.

syms X
S = solve(sin(x) == 1, x, 'ReturnConditions', true);
S.X % solution

S.parameters
S.conditions

% parameters in solution
% conditions on solution
ans =

pi/2 + 2*pi*k

ans =

k

ans =

in(k, 'integer')

break Inside case Is Wrongly Translated
In MuPAD, a break ends a case in a switch case. However, MATLAB does not require a
break to end a case. Thus, a MuPAD break introduces an unnecessary break in

MATLAB. Also, if a MuPAD case omits a break, then the MATLAB case will not fall-
through.
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Fixing This Issue

In the live script, delete break statements that end cases in a switch-case statement.
For fall-through in MATLAB,
Some MuPAD Graphics Options Are Not Translated

While the most commonly used MuPAD graphics options are translated, there are some

specify all values with their conditions in one case.

options that are not translated.

Fixing This Issue

Find the corresponding option in MATLAB by using the properties of the figure handle
example, the MuPAD command plot(sin(x), Width =
4*unit::cm) sets height and width. Translate it to MATLAB

gcf or axis handle gca. For
80*unit::mm, Height =

code.

syms X

fplot(sin(x));

g = gcf;

g.Units = 'centimeters’';

g.Position(3:4) = [8 4];

0.5

0.5 \

Some Operations on Matrices Are Wrongly Translated

Operations on matrices are not always translated correctly. For example, if M is a matrix,
then exp (M) in MuPAD is wrongly translated to exp (M) instead of the matrix exponential

expm(M).
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Fixing This Issue

When performing operations on matrices, search for the matrix operation and use it

instead. For example, in MATLAB:

* Use expm instead of exp.

* Use funm(M, 'sin') instead of sin(M).

* A== [1 2; 3 4] displays differently from A = matrix([[1, 2], [3, 4]])in
MuPAD but is programmatically equivalent.

indets Behavior in MATLAB Differs

indets is translated to MATLAB symvar. However, symvar does not find bound
variables or constant identifiers like PI.

Return Type of factor Differs in MATLAB

The return type of MuPAD factor has no equivalent in MATLAB. Subsequent operations
on the results of factor in MATLAB might return incorrect results.

Fixing This Issue

Check and modify the output of factor in MATLAB as required such that subsequent
commands run correctly.

Layout Issues

*  MuPAD notebook frames are not converted.

*  MuPAD notebook tables are not converted.

* MuPAD plots are not interactive in live scripts.

+ Titles or headings in MuPAD notebooks are not always detected.

* MuPAD text attribute underline is not converted

+ Text formatting: Font, font size, and color are not converted. All text in live scripts
looks the same.

Syntax Differences Between MATLAB and MuPAD

For the syntax differences between MATLAB and MuPAD, see “Differences Between
MATLAB and MuPAD Syntax” on page 3-52.
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Troubleshoot MuPAD to MATLAB Translation Errors

This page helps troubleshoot all errors generated by the convertMuPADNotebook
function when converting MuPAD notebooks to MATLAB live scripts. For the conversion
steps, see “Convert MuPAD Notebooks to MATLAB Live Scripts” on page 3-20. To
troubleshoot warnings, see “Troubleshoot MuPAD to MATLAB Translation Warnings” on

page 3-36.
Error Message Details Recommendations
No equivalent code in convertMuPADNotebook |[Adjust the code so that it

MATLAB.

cannot find the
corresponding functionality
in MATLAB.

uses only the functionality
that can be expressed in the
MATLAB language.
Alternatively, in the

target .mlx file, some
functionality can be
replaced with MATLAB
functionality, such as in
statistics or file input-
output.

Unable to translate the
second and higher

derivatives of Airy functions.

Express these derivatives in
terms of Airy functions and
their first derivatives.

The MATLAB airy function
represents Airy functions of
the first and second kind
and their first derivatives. In
MuPAD, airyAi(z,n) and
airyBi(z,n) can
represent second and higher
derivatives of Airy functions,
that is, n can be greater
than 1.

Rewrite second and higher
derivatives of Airy functions
in terms of Airy functions
and their first derivatives.
Then convert the result to
MATLAB code.

The MuPAD airyAi and
airyBi functions return
results in terms of Airy
functions and their first
derivatives. You can replace
second and higher
derivatives by their outputs
in MuPAD, before converting
the code to MATLAB.
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Error Message

Details

Recommendations

Unable to translate
assignment to MuPAD
environment variable.

Environment variables are
global variables, such as
HISTORY, LEVEL, ORDER,
and so on, that affect the
behavior of MuPAD
algorithms.

In some cases, you can use
name-value pair arguments
in each function call, such
as setting the value Order
in the taylor function call.

In other cases, there is no
appropriate replacement.
Adjust the code so that it

does not require a global

setting.

Unable to translate
assignments to the
remember table of a
procedure.

MuPAD uses remember
tables to speed up
computations, especially
when you use recursive
procedure calls. The system
stores the arguments of a
procedure call as indices of
the remember table entries,
and the corresponding
results as values of these
entries. When you call a
procedure using the same
arguments as in previous
calls, MuPAD accesses

the remember table of that
procedure. If

the remember table contain
s the entry with the required
arguments, MuPAD returns
the value of that entry. For
details, see “Remember
Mechanism”.

The remember tables are
not available in MATLAB.

Adjust the code so that it
does not use remember
tables.
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Error Message

Details

Recommendations

Unable to translate
assignments to slots of
domains and function
environments.

In MuPAD, the slot
function defines methods
and entries of data types
(domains) or for defining
attributes of function
environments. These
methods and entries (slots)
let you overload system
functions by your own
domains and function
environments.

Domains, function
environments, and their
slots are not available in
MATLAB.

Adjust the code so that it
does not use assignments to
slots of domains and
function environments.

Unable to translate explicitly
given coefficient ring.

MuPAD lets you use special
coefficient rings that cannot
be represented by
arithmetical expressions.
Specifying coefficient rings
of polynomials is not
available in MATLAB.

Adjust the code so that it
does not use polynomials
over special rings.

Unable to translate
complexInfinity.

MuPAD uses the value
complexInfinity. This
value is not available in
MATLAB.

Adjust the code so that it
does not use
complexInfinity.

Unable to translate MuPAD
code because it uses an
obsolete calling syntax.

MuPAD syntax has changed
and the code uses obsolete
syntax that is no longer
supported.

Update code to use current
MuPAD syntax by checking
MuPAD documentation and
then run
convertMuPADNotebook
again.

Unable to translate a call to
the function 'D' with more
than one argument.

The indices in the first
argument of D cannot be
translated to variable names
in MATLAB.

Use the MuPAD diff
function instead of D.
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Error Message

Details

Recommendations

Unable to translate MuPAD
domains, or commands to
create domains or their
elements.

Domains represent data
types in MuPAD. They are
not available in MATLAB.

Adjust the code so that it
does not create or explicitly
use domains and their
elements.

Unable to translate the
MuPAD environment variable

"{0}".

Environment variables are
global variables, such as
HISTORY, LEVEL, ORDER,
and so on, that affect the
behavior of MuPAD
algorithms.

convertMuPADNotebook
cannot translate MuPAD
environment variables
because they are not
available in MATLAB.

Adjust the code so that it
does not require accessing
MuPAD environment
variables.

Unable to translate function
calls with expression
sequences as input
arguments.

In MuPAD, a function call
f(x), where X is a sequence
of n operands, resolves to a
call with n arguments.

MATLAB cannot resolve
function calls with
expression sequences to
calls with multiple
arguments.

Adjust the code so that it
does not contain function
calls with expression
sequences as input
arguments.

Unable to translate infinite
sets.

MuPAD recognizes infinite
sets. For example, solve
can return a solution as an
infinite set:
solve(sin(x*PI/2) =
0, x) returns {2k|k € Z}.
You can create such sets by
using Dom: : ImageSet.

MATLAB does not support
infinite sets.

Adjust the code so that it
does not use infinite sets as
inputs.
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Error Message

Details

Recommendations

Unable to translate a call
accessing previously
computed results. The
MATLAB ans function lets
you access only the most
recent result.

The MuPAD last function
and its shortcut % typically
let you access the last 20
commands stored in an
internal history table.

In MATLAB, ans lets you
access only one most recent
command.

Adjust the code so that it
uses assignments instead of
relying on last or %.

Unable to translate the
variable "{0}" representing a
MuPAD library.

Libraries contain most of
the MuPAD functionality.
Each library includes a
collection of functions for
solving particular types of
mathematical problems.
While MuPAD library
functions are translated to
MATLAB code, the libraries
themselves are not.

Adjust the code so that it
does not use MuPAD library
names as identifiers.

Unable to map a function to
objects of this class.

Objects of this class do not
have an equivalent
representation in MATLAB.
The mapping cannot be
translated.

In the target .mlx file,
implement the mapping by
writing a loop.
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Error Message

Details

Recommendations

Unable to translate this form
of matrix definition.

MuPAD provides a few
different approaches for
creating a matrix. You can
create a matrix from an
array, list of elements, a
nested list of rows, or a
table. Also, you can create a
matrix by specifying only
the nonzero entries, such as

A[il,j1] = valuel,
A[i2,j2] = value2, and
SO on.

Some of these approaches
cannot be translated to
MATLAB code.

Adjust the code so that it
defines matrices by using an
array, list of elements, or a
nested list of rows.

Cannot translate division
with respect to several
variables.

Polynomial division with
respect to several variables
is not available in MATLAB.

Adjust the code so that it
does not use polynomial
division with respect to
several variables.

Unable to translate nested
indexed assignment.

Nested indexed assignment
is not available in MATLAB.

Replace the nested indexed
assignment with multiple
assignments.

Unable to create a
polynomial from a coefficient
list.

Cannot translate polynomial
creation from the given
coefficient list.

Make the first argument to
poly an arithmetical
expression instead of a list.
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Error Message

Details

Recommendations

Unable to translate nontrivial
procedures.

For code that you want to
execute repeatedly, MuPAD
lets you create procedures
by using the proc
command.

convertMuPADNotebook
can translate simple
procedures to anonymous
functions. Simple
procedures do not contain
loops, assignments, multiple
statements, or nested
functions where the inner
function accesses variables
of the outer function.

More complicated
procedures cannot be
translated to MATLAB code.

Adjust the code so that it
does not use complicated
procedures.

Unable to translate the
global table of properties.

convertMuPADNotebook
cannot translate the MuPAD
global table of properties,
PROPERTIES, because this
functionality is not available
in MATLAB.

Set properties and
assumptions as described in
“Properties and
Assumptions”.

Unable to create random
generators with individual
seed values.

MuPAD lets you set a
separate seed value for each
random number generator.
MATLAB has one seed value
for all random number
generators. See rng for
details.

Adjust the code so that it
does not rely on individual
seed values for different
random number generators.
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Error Message

Details

Recommendations

Unable to translate target
"{0}" for MATLAB function
"rewrite".

The MuPAD rewrite
function can rewrite an
expression in terms of the
following targets: andor,
arccos, arccosh, arccot,
arccoth, arcsin,
arcsinh, arctan,
arctanh, arg, bernoulli,
cos, cosh, cot, coth,
diff, D, erf, erfc, erfi,
exp, fact, gamma,
harmonic, heaviside,
inverf, inverfc,
lambertW, 1n, max, min,
piecewise, psi, sign,
sin, sincos, sinh,
sinhcosh, tan, tanh.

The MATLAB rewrite
function supports fewer
targets:

exp, log, sincos, sin, cos
, tan, cot, sqrt,
heaviside, asin, acos,
atan, acot, sinh, cosh,
tanh, coth, sinhcosh,
asinh, acosh, atanh,
acoth, piecewise.

Adjust the code so that it
uses the target options
available in MATLAB. If
needed, use a sequence of
function calls to rewrite
with different target
options.

Unable to translate slots of
domains and function
environments.

Slots and domains are not
available in MATLAB.

Adjust the code so that it
does not use slots or
domains.
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Error Message

Details

Recommendations

Unable to substitute only one
occurrence of a
subexpression.

Substituting only one
occurrence of a
subexpression is not
available in MATLAB.

In the target .mlx file,
break up the expression
using the function
children to get the
subexpression, and then
substitute for it using the
function subs.

Syntax error in MuPAD code.

MuPAD code contains a
syntax error, for example, a
missing bracket.

Check and correct the
MuPAD code that you are
translating.

Test environment of MuPAD
not available in MATLAB.

The MuPAD test
environment is not available
in MATLAB.

Adjust the code so that it
does not use the MuPAD test
environment.

Unknown domain or library

“{0}".

Most likely, a custom
domain or library is used
and cannot be translated.

Check and correct the
MuPAD code that you are
translating.

Unknown MuPAD function
n { 0 } n .

The function is not available
in MuPAD.

Check and correct the
MuPAD code that you are
translating.

Unable to translate calls to
the function "{0}".

The function is a valid
MuPAD function, but the
function call is invalid. For
example, the number of
input arguments or types of
arguments can be incorrect.

Check and correct the
MuPAD code that you are
translating.

Unable to translate calls to
functions of the library

"{0}".

The functions of this library
are available in MuPAD, but
there are no corresponding
functions in MATLAB.

Adjust the code so that it
does not use the functions of
this library.

MuPAD function "{0}"
cannot be converted to
function handle.

The MuPAD function does
not have an equivalent
function handle in MATLAB.

Adjust the code to use a
function that has an
equivalent in MATLAB.
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Error Message

Details

Recommendations

Unable to translate option

"{0}".

Most likely, this option is
available in MuPAD, but
there are no corresponding
options in MATLAB.

Adjust the code so that it

does not use this option.

Unable to translate MuPAD
code because it uses invalid
calling syntax.

Most likely, the function call
in the MuPAD code has an
error.

Check and correct the

MuPAD code that you are

translating.
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Troubleshoot MuPAD to MATLAB Translation Warnings

This page helps troubleshoot all warnings generated by the convertMuPADNotebook
function when converting MuPAD notebooks to MATLAB live scripts. For the conversion
steps, see “Convert MuPAD Notebooks to MATLAB Live Scripts” on page 3-20. To
troubleshoot errors, see “Troubleshoot MuPAD to MATLAB Translation Errors” on page 3-

26.

Warning Message

Meaning

Recommendations

Translating the alias

function as an assignment,
and the unalias function as
deletion of an assignment.

The MuPAD alias and
unalias function let you
create and delete an alias
(abbreviation) for any
MuPAD object. For example,
you can create an alias d for
the diff function: alias(d
= diff).

Creating aliases is not
available in MATLAB. When
translating a notebook file,
convertMuPADNotebook
replaces aliases with
assignments.

Verify the resulting code. If
you do not want a MuPAD
alias to be converted to an
assignment in MATLAB,
adjust the code so that it
does not use aliases.

Replacing animation by its
last frame.

MuPAD animations cannot
be correctly reproduced in
MATLAB. When translating
a notebook file,
convertMuPADNotebook
replaces an animation with
a static image showing the
last frame of the animation.

Verify the resulting code.
The last frame might not be
ideal for some animations. If
you want the static image to
show any other frame of the
animation, rewrite the
MuPAD code so that it
creates a static plot showing
that image.




Troubleshoot MuPAD to MATLAB Translation Warnings

Warning Message Meaning Recommendations
Potentially incorrect MuPAD |When translating a Verify the corrected code.
code "{0}". Replacing it by |notebook file, Then delete this warning.
{13, convertMuPADNotebook

detected that the part of the
code in the MuPAD
notebook might be
incorrect. For example, the
code appears to have a typo,
or a commonly used
argument is missing.

convertMuPADNotebook

corrected it.
Invalid assignment to When translating a Verify the corrected code.
remember table. Replacing |notebook file, Then delete this warning.

it by procedure definition. |convertMuPADNotebook
considered an assignment to
a remember table in a
MuPAD notebook as
unintentional, and replaced
it by a procedure definition.
For example, an assignment
such as f(x) :=x"2 gets
replaced by f:= x->x"2.
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Warning Message

Meaning

Recommendations

Replacing MuPAD domain
by an anonymous function
that creates objects similar
to the elements of this
domain.

Domains represent data
types in MuPAD. They are
not available in MATLAB.

convertMuPADNotebook
translated a MuPAD domain
to a MATLAB anonymous
function that creates objects
similar to the elements of
the domain. For example,
the code line
f:=Dom::IntegerMod(7)
gets translated to a MATLAB
anonymous function f =
@(X)mod (X, sym(7)).

Verify the resulting code.
Check if an anonymous
MATLAB function is the
correct translation of the
domain in this case, and that
the code still has the desired
functionality.

Ignoring addpattern
command. Configurable
pattern matcher not
available in MATLAB.

addpattern functionality is
not available in MATLAB.

Adjust the code to avoid
using addpattern.

Ignoring assertions.

Assertions are not available
in MATLAB. When
translating a notebook file,
convertMuPADNotebook
ignores assertions.

Verify the resulting code. If
assertions are not essential
part of your code, you can
ignore this warning.
However, if your code relies
on assertions, you can
implement them using
conditional statements, such
as if-then.
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Warning Message

Meaning

Recommendations

Ignoring assignment to a
MuPAD environment
variable.

Environment variables are
global variables, such as
HISTORY, LEVEL, ORDER,
and so on, that affect the
behavior of MuPAD
algorithms.

Verify the resulting code. If
an assignment to an
environment variable is not
essential for your code,
simply delete the warning.

In some cases, you can use
name-value pair arguments
in each function call, such
as setting the value Order
in the taylor function call.

In other cases, there is no
appropriate replacement.
Adjust the code so that it

does not require a global

setting.

Ignoring assignment to a
protected MuPAD constant
or function.

The names of the built-in
MuPAD functions, options,
and constants are protected.
If you try to assign a value
to a MuPAD function, option,
or constant, the system
throws an error. This
approach ensures that you
will not overwrite a built-in
functionality accidentally.
See “Protect Function and
Option Names”.

Verify the resulting code.
Check if the ignored
assignment is essential for
the correctness of the code
and results. If it is, adjust
the code so that it does not
use this assignment, but still
has the desired functionality.
If it is not essential, simply
delete this warning.

Ignoring option "hold".

hold is not available in
MATLAB.

Adjust the code to avoid
using hold.

Ignoring info command.
Information not available in
MATLAB.

MATLAB functions do not
have associated information.

For information on a
function, refer to MATLAB
documentation.
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Warning Message

Meaning

Recommendations

Ignoring options "{0}".

These options are available
in MuPAD, but are not
available in MATLAB.
Because they do not appear
to be essential for this code,
convertMuPADNotebook
ignores them.

Verify the resulting code.
Check if the ignored options
are essential for the
correctness of the code and
results. If they are, adjust
the code so that it does not
use these options, but still
has the desired functionality.
If they are not essential,
simply delete this warning.

Ignoring MuPAD path
variables.

The MuPAD environment
variables FILEPATH,
NOTEBOOKPATH,
WRITEPATH, and READPATH
let you specify the working
folders for writing new files,
searching for files, loading
files, and so on if you do not
specify the full path to the
file.

These environment
variables are not available
in MATLAB.

Verify the resulting code.
Check if the ignored path
variables are essential for
the correctness of the code
and results. If they are,
adjust the code so that it
does not use these
preferences, but still has the
desired functionality. If they
are not essential, simply
delete this warning.
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Warning Message

Meaning

Recommendations

Ignoring MuPAD preference
because there is no
equivalent setting in
MATLAB.

The MuPAD Pref library
provides a collection of
functions which can be used
to set and restore
preferences, such as use of
abbreviations in outputs,
representation of floating-
point numbers, memory
limit on a MuPAD session,
and so on.

MATLAB uses sympref for
a few preferences, such as
specifying parameters of
Fourier transforms,
specifying the value of the
Heaviside function at 0, or
enabling and disabling
abbreviations in outputs.
Most preferences cannot be
translated to MATLAB code.

Verify the resulting code.
Check if the ignored
preferences are essential for
the correctness of the code
and results. If they are not
essential, simply delete this
warning.

3-41



3 MuPADIn Symbolic Math Toolbox

3-42

Warning Message

Meaning

Recommendations

Ignoring call to variable
protection mechanism.

The names of the built-in
MuPAD functions, options,
and constants are protected.
If you try to assign a value
to a MuPAD function, option,
or constant, the system
throws an error. This
approach ensures that you
will not overwrite a built-in
functionality accidentally.
See “Protect Function and
Option Names”.

Protecting procedures and
functions from overwriting
is not available in MATLAB.
When translating a
notebook file,
convertMuPADNotebook
ignores the corresponding
MuPAD code.

Verify the resulting code.
Check if the ignored call to
variable protection
mechanism is essential for
the correctness of the code
and results. If it is, adjust
the code so that it does not
use this call, but still has the
desired functionality. If it is
not essential, simply delete
this warning.
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Warning Message

Meaning

Recommendations

Ignoring default value when
translating a table.

MuPAD tables let you set the
default value. This value is
returned when you index
into a table using the index
for which the entry does not
exist. For example, if you
create the table using T :
table(a = 13,c =
42,10), and then index into
it using T[b], the result is
10.

Default values for tables
cannot be translated to
MATLAB. When translating
a notebook file,
convertMuPADNotebook
ignores the corresponding
value.

Verify the resulting code.
Check if the ignored value is
essential for the correctness
of the code and results. If
default values for the tables
are not essential, simply
delete this warning.
Otherwise, you can create a
MATLAB function that
checks if the
containers.Map object
corresponding to the
MuPAD table has a certain
key, and if it does not,
returns the default value.

Unable to decide which
object the indexing refers
to, instead using generic
translation.

When the class of the object
being indexed into is
ambiguous, then
convertMuPADNotebook
defaults to a generic
translation for the indexing.

Verify that the generic
translation returns the
correct result. If not, adjust
the code.

Possibly missing a
multiplication sign.

Do not skip multiplication
signs in MuPAD and
MATLAB code. Both
languages require you to
type multiplication signs
explicitly. For example, the
expression X (X + 1) must
be typed as x*(x + 1).

Verify the converted code.
Check if you missed a
multiplication sign. Correct
the code if needed.

Expression used as operator.
Possibly "subs' was
intended.

An arithmetical expression
is used as a function.
convertMuPADNotebook
attempted to fix the error.

Verify that the translation
returns the correct result. If
not, adjust the code.
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Warning Message

Meaning

Recommendations

MuPAD package mechanism
not available in MATLAB.

The MuPAD package
mechanism is not available
in MATLAB.

Adjust the code to avoid
using the MuPAD package
mechanism.




Edit MuPAD Code in MATLAB Editor

Edit MuPAD Code in MATLAB Editor

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

The default interface for editing MuPAD code is the MATLAB Editor. Alternatively, you can
create and edit your code in any text editor. The MATLAB Editor automatically formats
the code and, therefore, helps you avoid errors, or at least reduce their number.

Note The MATLAB Editor cannot evaluate or debug MuPAD code.

To open an existing MuPAD file with the extension .mu in the MATLAB Editor, double-click
the file name or select Open and navigate to the file.
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if abks(a) > =grt(2)

else
zolve (sin(x) + cos({x) = a, x, PFrincipalValue)
end if

After editing the code, save the file. Note that the extension .mu allows the Editor to
recognize and open MuPAD program files. Thus, if you intend to open the files in the
MATLAB Editor, save them with the extension .mu. Otherwise, you can specify other
extensions suitable for text files, for example, . txt or . tst.

Comments in MuPAD Procedures

Enter a comment in a .mu file by entering the // characters. All text following the // on
the same line is ignored. The // characters do not affect text on succeeding lines. To
create a multi-line comment, start with the /* characters and end the comment with the
*/ characters. All text between these characters is ignored. You can nest comments
using /* and */.
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Notebook Files and Program Files
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Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

The two main types of files in MuPAD are:

* Notebook files, or notebooks
* Program files

A notebook file has the extension .mn and lets you store the result of the work performed
in the MuPAD Notebook. A notebook file can contain text, graphics, and any MuPAD
commands and their outputs. A notebook file can also contain procedures and functions.

By default, a notebook file opens in the MuPAD Notebook. Creating a new notebook or
opening an existing one does not automatically start the MuPAD engine. This means that
although you can see the results of computations as they were saved, MuPAD does not
remember evaluating them. (The “MuPAD Workspace” is empty.) You can evaluate any or
all commands after opening a notebook.

A program file is a text file that contains any code snippet that you want to store
separately from other computations. Saving a code snippet as a program file can be very
helpful when you want to use the code in several notebooks. Typically, a program file
contains a single procedure, but it also can contain one or more procedures or functions,
assignments, statements, tests, or any other valid MuPAD code.

Tip If you use a program file to store a procedure, MuPAD does not require the name of
that program file to match the name of a procedure.

The most common approach is to write a procedure and save it as a program file with the
extension .mu. This extension allows the MATLAB Editor to recognize and open the file
later. Nevertheless, a program file is just a text file. You can save a program file with any
extension that you use for regular text files.



Notebook Files and Program Files

To evaluate the commands from a program file, you must execute a program file in a
notebook. For details about executing program files, see “Read MuPAD Procedures” on
page 3-66.
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Source Code of the MuPAD Library Functions
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Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

You can display the source code of the MuPAD built-in library functions. If you work in the
MuPAD Notebook app, enter expose(name), where name is the library function name.
The MuPAD Notebook displays the code as plain text with the original line breaks and
indentations.

You can also display the code of a MuPAD library function in the MATLAB Command
Window. To do this, use the evalin or feval function to call the MuPAD expose
function:

sprintf(char(feval(symengine, 'expose', 'numlib::tau')))
ans =
'proc(a)
name numlib::tau;
begin

if args(0) <> 1 then
error(message("symbolic:numlib:IncorrectNumber0OfArguments"))
else
if ~testtype(a, Type::Numeric) then
return(procname(args()))
else
if domtype(a) <> DOM _INT then
error(message("symbolic:numlib:ArgumentInteger"))
end if
end if
end if;
numlib: :numdivisors(a)
end proc'



Source Code of the MuPAD Library Functions

MuPAD also includes kernel functions written in C++. You cannot access the source code
of these functions.
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Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

There are several differences between MATLAB and MuPAD syntax. Be aware of which
interface you are using in order to use the correct syntax:

* Use MATLAB syntax in the MATLAB workspace, except for the functions
evalin(symengine,...) and feval(symengine, .. .), which use MuPAD syntax.

* Use MuPAD syntax in MuPAD notebooks.

You must define MATLAB variables before using them. However, every expression entered
in a MuPAD notebook is assumed to be a combination of symbolic variables unless
otherwise defined. This means that you must be especially careful when working in
MuPAD notebooks, since fewer of your typos cause syntax errors.

This table lists common tasks, meaning commands or functions, and how they differ in
MATLAB and MuPAD syntax.



Differences Between MATLAB and MuPAD Syntax

Common Tasks in MATLAB and MuPAD Syntax

expression

Task MuPAD Syntax MATLAB Syntax
Assignment 1= =

List variables anames (All, User) whos

Numerical value of float(expression) double(expression)

Suppress output

’

Enter matrix

matrix([[x11,x12,x13],
[x21,x22,x2311)

[x11,x12,x13;
x21,x22,x23]

Translate MuPAD set

{a,b,c}

unique([1 2 31)

Auto-completion

Ctrl+space bar

Tab

Equality, inequality
comparison

=, <>

’

The next table lists differences between MATLAB expressions and MuPAD expressions.
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MATLAB vs. MuPAD Expressions

MuPAD Expression

MATLAB Expression

infinity Inf
PI pi
I i
undefined NaN
trunc fix

arcsin, arccos etc.

asin, acos etc.

numeric::int vpaintegral

normal simplifyFraction

bessell, besselY, bessell, besselK besselj, bessely, besseli, besselk

lambertWw lambertw

Si, Ci sinint, cosint

EULER eulergamma

conjugate conj

CATALAN catalan

The MuPAD definition of exponential integral differs from the Symbolic Math Toolbox

counterpart.
Symbolic Math Toolbox MuPAD Definition
Definition

Exponential expint(x) = -Ei(-x) = X 4

integral Ei(x) = f%dt for x < 0.

o)

X

Ei(1, x).

fwdtforx>0=

— 0

[o2]

Ei(n,x) = [ wc}t.
1

The definitions of Ei extend to the
complex plane, with a branch cut
along the negative real axis.




Copy Variables and Expressions Between MATLAB and MuPAD

Copy Variables and Expressions Between MATLAB and
MuPAD

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

You can copy a variable from a MuPAD notebook to a variable in the MATLAB workspace
using a MATLAB command. Similarly, you can copy a variable or symbolic expression in
the MATLAB workspace to a variable in a MuPAD notebook using a MATLAB command. To
do either assignment, you need to know the handle to the MuPAD notebook you want to
address.

The only way to assign variables between a MuPAD notebook and the MATLAB workspace
is to open the notebook using the following syntax:

nb = mupad;

You can use any variable name for the handle nb. To open an existing notebook file, use
the following syntax:

nb = mupad('file name');

Here file name must be a full path unless the notebook is in the current folder. The
handle nb is used only for communication between the MATLAB workspace and the
MuPAD notebook.

* To copy a symbolic variable in the MATLAB workspace to a variable in the MuPAD
notebook engine with the same name, enter this command in the MATLAB Command
Window:

setVar(notebook handle, 'MuPADvar',MATLABvar)

For example, if nb is the handle to the notebook and z is the variable, enter:

setVar(nb,'z',z)

3-55



3 MuPADin Symbolic Math Toolbox

There is no indication in the MuPAD notebook that variable z exists. To check that it
exists, enter the command anames (All, User) in the notebook.

* To assign a symbolic expression to a variable in a MuPAD notebook, enter:

setVar(notebook handle, 'variable',expression)

at the MATLAB command line. For example, if nb is the handle to the notebook,
exp(x) - sin(x) is the expression, and z is the variable, enter:

syms x
setVar(nb, 'z',exp(x) - sin(x))

For this type of assignment, x must be a symbolic variable in the MATLAB workspace.

Again, there is no indication in the MuPAD notebook that variable z exists. Check that
it exists by entering this command in the notebook:

anames (All, User)

* To copy a symbolic variable in a MuPAD notebook to a variable in the MATLAB
workspace, enter in the MATLAB Command Window:

MATLABvar = getVar(notebook handle, 'variable');

For example, if nb is the handle to the notebook, z is the variable in the MuPAD
notebook, and u is the variable in the MATLAB workspace, enter:

u = getVar(nb,'z")

Communication between the MATLAB workspace and the MuPAD notebook occurs in
the notebook's engine. Therefore, variable z must be synchronized into the notebook's
MuPAD engine before using getVar, and not merely displayed in the notebook. If you
try to use getVar to copy an undefined variable z in the MuPAD engine, the resulting
MATLAB variable u is empty. For details, see “Evaluate MuPAD Notebooks from
MATLAB” on page 3-14.

Tip Do all copying and assignments from the MATLAB workspace, not from a MuPAD
notebook.
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From MATLAB, variables
can be copied to and from

MuPAD notebook

a MuPAD notebook engine. A

MATLAB workspace setvar(nb, 'Z’,z)
z=4 DEE getvar(nb, ‘Z’)
u=4 ’ Engine
Workspace
z=4

Copy and Paste Using the System Clipboard

You can also copy and paste between notebooks and the MATLAB workspace using
standard editing commands. If you copy a result in a MuPAD notebook to the system

clipboard, you might get the text associated with the expression, or a picture, depending

on your operating system and application support.

For example, consider this MuPAD expression:

v o= exp(x) /{1 + x"2)

g X

s
x°+1

Select the output with the mouse and copy it to the clipboard:

v 1= exp(x) /(1 + x"2)

Paste this into the MATLAB workspace. The result is text:

exp(x)/(x"2 + 1)

If you paste it into Microsoft® WordPad on a Windows® system, the result is a picture.
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Reserved Variable and Function Names

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

Both MATLAB and MuPAD have their own reserved keywords, such as function names,
special values, and names of mathematical constants. In MATLAB, if you supply an
expression or equation as a string scalar or character vector to any symbolic function
other than str2sym, and the input text contains reserved keywords as variable or
function names in at least one interface, then an error can result. If you work in one
interface and a name is a reserved keyword in the other, then the interface you are
working in produces the error and warning messages. These messages can specify the
cause of the problem incorrectly.

Tip The best approach is to avoid using reserved keywords as variable or function names,
especially if you use both interfaces.

In MuPAD, function names are protected. Normally, the system does not let you redefine a
standard function or use its name as a variable. (To be able to modify a standard MuPAD
function, you must first remove its protection.) Even when you work in the MATLAB
Command Window, the MuPAD engine handles symbolic computations. Therefore, MuPAD
function names are reserved keywords in this case. Using a MuPAD function name while
performing symbolic computations in the MATLAB Command Window can lead to an
error. For example:

evalin(symengine, 'solve(D - 10)"')

Error using symengine
Invalid argument.

Error in mupadengine/evalin (line 132)
res = mupadmex(statement,output type{:});
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The message does not indicate the real cause of the problem.

To fix this issue, use the syms function to declare D as a symbolic variable. Then, pass the
equation to the symbolic solver as a symbolic expression (that is, do not specify the
equation as a string scalar or character vector).

syms D
solve(D - 10)

ans =
10

In this case, the software replaces D with another variable name before passing the
expression to the MuPAD engine.

Alternatively, convert an equation, which is specified as a string scalar or character vector
and contains an undeclared, reserved variable name, to a symbolic expression using
str2sym. Then, supply the expression to solve. For example:

clear all
expsn = str2sym("D - 10");
solve(expsn)

ans =
10
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Call Built-In MuPAD Functions from MATLAB

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

To access built-in MuPAD functions at the MATLAB command line, use
evalin(symengine,...) or feval(symengine, ...). These functions are designed to
work like the existing MATLAB evalin and feval functions.

evalin and feval do not open a MuPAD notebook, and therefore, you cannot use these
functions to access MuPAD graphics capabilities.

evalin

For evalin, the syntax is
y = evalin(symengine, '"MuPAD Expression');

Use evalin when you want to perform computations in the MuPAD language, while
working in the MATLAB workspace. For example, to make a three-element symbolic
vector of the sin(kx) function, k = 1 to 3, enter:

y = evalin(symengine, '[sin(k*x) $ k = 1..3]")
y =
[

sin(x), sin(2*x), sin(3*x)]

feval

For evaluating a MuPAD function, you can also use the feval function. feval has a
different syntax than evalin, so it can be simpler to use. The syntax is:

y = feval(symengine, '"MuPAD Function',x1,...,xn);

3-61



3 MuPADin Symbolic Math Toolbox

3-62

MuPAD Function represents the name of a MuPAD function. The arguments x1, ..., xn
must be symbolic variables, numbers, or character vectors. For example, to find the tenth
element in the Fibonacci sequence, enter:

z = feval(symengine, 'numlib::fibonacci',10)

Z =

55

The next example compares the use of a symbolic solution of an equation to the solution

returned by the MuPAD numeric fsolve function near the point x = 3. The symbolic
solver returns these results:

syms x
f = sin(x"2);
solve(f)

ans =
0

The numeric solver fsolve returns this result:
feval(symengine, 'numeric::fsolve',f,'x=3")

ans =
X == 3.0699801238394654654386548746678

As you might expect, the answer is the numerical value of 1/3m. The setting of MATLAB
format does not affect the display; it is the full returned value from the MuPAD
'numeric::fsolve' function.

evalin vs. feval

The evalin(symengine, .. .) function causes the MuPAD engine to evaluate a
character vector. Since the MuPAD engine workspace is generally empty, expressions
returned by evalin(symengine, .. .) are not simplified or evaluated according to their
definitions in the MATLAB workspace. For example:

syms X
y = xX"2;
evalin(symengine, 'cos(y)')

ans =
cos(y)
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Variable y is not expressed in terms of x because y is unknown to the MuPAD engine.

In contrast, feval(symengine, ...) can pass symbolic variables that exist in the
MATLAB workspace, and these variables are evaluated before being processed in the
MuPAD engine. For example:

syms X
y = x72;
feval(symengine, 'cos

2
ans =
cos(x"2)

Floating-Point Arguments of evalin and feval

By default, MuPAD performs all computations in an exact form. When you call the evalin
or feval function with floating-point numbers as arguments, the toolbox converts these
arguments to rational numbers before passing them to MuPAD. For example, when you
calculate the incomplete gamma function, the result is the following symbolic expression:

y feval(symengine, 'igamma', 0.1, 2.5)

y:
igamma(1/10, 5/2)

To approximate the result numerically with double precision, use the double function:

format long
double(y)

ans =
0.028005841168289

Alternatively, use quotes to prevent the conversion of floating-point arguments to rational
numbers. (The toolbox treats arguments enclosed in quotes as character vectors.) When
MuPAD performs arithmetic operations on numbers involving at least one floating-point
number, it automatically switches to numeric computations and returns a floating-point
result:

feval(symengine, 'igamma', '0.1', 2.5)

ans =
0.028005841168289177028337498391181
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For further computations, set the format for displaying outputs back to short:

format short
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Use Your Own MuPAD Procedures

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

Write MuPAD Procedures

A MuPAD procedure is a text file that you can write in any text editor. The recommended
practice is to use the MATLAB Editor on page 3-45.

To define a procedure, use the proc function. Enclose the code in the begin and
end proc functions:

myProc:= proc(n)

begin
if n=1o0or n=20 then
1
else
n * myProc(n - 1)
end if;
end proc:

By default, a MuPAD procedure returns the result of the last executed command. You can
force a procedure to return another result by using return. In both cases, a procedure
returns only one result. To get multiple results from a procedure, combine them into a list
or other data structure, or use the print function.

* Ifyou just want to display the results, and do not need to use them in further
computations, use the print function. With print, your procedure still returns one
result, but prints intermediate results on screen. For example, this procedure prints
the value of its argument in each call:

myProcPrint:= proc(n)

begin
print(n);
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if n =0 or n =1 then
return(l);
end if;
n * myProcPrint(n - 1);
end proc:

+ If you want to use multiple results of a procedure, use ordered data structures, such
as lists or matrices as return values. In this case, the result of the last executed
command is technically one object, but it can contain more than one value. For
example, this procedure returns the list of two entries:

myProcSort:= proc(a, b)
begin
if a < b then
[a, bl
else
[b, al
end if;
end proc:

Avoid using unordered data structures, such as sequences and sets, to return multiple
results of a procedure. The order of the entries in these structures can change
unpredictably.

When you save the procedure, it is recommended to use the extension .mu. For details,
see “Notebook Files and Program Files” on page 3-48. The name of the file can differ from
the name of the procedure. Also, you can save multiple procedures in one file.

Steps to Take Before Calling a Procedure

To be able to call a procedure, you must first execute the code defining that procedure, in
a notebook. If you write a procedure in the same notebook, simply evaluate the input
region that contains the procedure. If you write a procedure in a separate file, you must
read the file into a notebook. Reading a file means finding it and executing the commands
inside it.

Read MuPAD Procedures
If you work in the MuPAD Notebook and create a separate program file that contains a

procedure, use one of the following methods to execute the procedure in a notebook. The
first approach is to select Notebook > Read Commands from the main menu.



Use Your Own MuPAD Procedures

Alternatively, you can use the read function. The function call read (filename)
searches for the program file in this order:

1 Folders specified by the environment variable READPATH

2 filename regarded as an absolute path

3 Current folder (depends on the operating system)

If you want to call the procedure from the MATLAB Live Editor, you still need to execute
that procedure before calling it. See “Call Your Own MuPAD Procedures” on page 3-67.

Use Startup Commands and Scripts

Alternatively, you can add a MuPAD procedure to startup commands of a particular
notebook. This method lets you execute the procedure every time you start a notebook
engine. Startup commands are executed silently, without any visible outputs in the
notebook. You can copy the procedure to the dialog box that specifies startup commands
or attach the procedure as a startup script. For information, see “Hide Code Lines”.

Call Your Own MuPAD Procedures

You can extend the functionality available in the toolbox by writing your own procedures
in the MuPAD language. This section explains how to call such procedures at the MATLAB
Command Window.

Suppose you wrote the myProc procedure that computes the factorial of a nonnegative
integer.
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FILE

[ myProcedure.mu® = ]

1 myProc = proc(n)

2 begin

2 ifn=10ormn=0 then
4 1

5 el=se

& n*myProc{n - 1)

7 end if;

g

end proc:

Save the procedure as a file with the extension .mu. For example, save the procedure as
myProcedure.mu in the folder C: /MuPAD.

Return to the MATLAB Command Window. Before calling the procedure at the MATLAB
command line, enter:

read(symengine, 'C:/MuPAD/myProcedure.mu')

The read command reads and executes the myProcedure.mu file in MuPAD. After that,
you can call the myProc procedure with any valid parameter. For example, compute the
factorial of 15:

feval(symengine, 'myProc', 15)

ans =
1307674368000

If your MuPAD procedure accepts character vector arguments, enclose these arguments
in two sets of quotes: double quotes inside single quotes. Single quotes suppress
evaluation of the argument before passing it to the MuPAD procedure, and double quotes
let MuPAD recognize that the argument is a character vector. For example, this MuPAD
procedure converts a character vector to lowercase and checks if reverting that character
vector changes it.
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reverted != proc(s:DCM STRING)
begin

end if

'.ﬂl.'ﬂﬁ-.]ﬂ\u'lnh-l'_dl\.'ﬁl—"l
[

end proc:

In the MATLAB Command Window, use the read command to read and execute
reverted.mu.

read(symengine, 'C:/MuPAD/reverted.mu')

Now, use feval to call the procedure reverted. To pass a character vector argument to
the procedure, use double quotes inside single quotes.

feval(symengine, 'reverted', '"Abccba"')

ans =
1
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Note Symbolic Math Toolbox includes operations and functions for symbolic math
expressions that parallel MATLAB functionality for numeric values. Unlike MuPAD
functionality, Symbolic Math Toolbox functions enable you to work in familiar interfaces,
such as the MATLAB Command Window or Live Editor, which offer a smooth workflow
and are optimized for usability.

Therefore, use the equivalent Symbolic Math Toolbox functionality to work with symbolic
math expressions. For a list of available functions, see Symbolic Math Toolbox functions
list.

If you cannot find the Symbolic Math Toolbox equivalent for MuPAD functionality, contact
MathWorks Technical Support.

The symbolic engine workspace associated with the MATLAB workspace is usually empty.
The MATLAB workspace tracks the values of symbolic variables, and passes them to the
symbolic engine for evaluation as necessary. However, the symbolic engine workspace
contains all assumptions you make about symbolic variables, such as whether a variable
is real, positive, integer, greater or less than some value, and so on. These assumptions
can affect solutions to equations, simplifications, and transformations, as explained in
“Effects of Assumptions on Computations” on page 3-73.

Note These commands

X = sym('x"');
clear x

clear any existing value of x in the MATLAB workspace, but do not clear assumptions
about x in the symbolic engine workspace. However,

syms X

does clear assumptions about X.

If you make an assumption about the nature of a variable, for example, using the
commands


https://www.mathworks.com/support/contact_us.html

Clear Assumptions and Reset the Symbolic Engine

syms X
assume(x, 'real')

or

syms X
assume(x > 0)

then clearing the variable x from the MATLAB workspace does not clear the assumption
from the symbolic engine workspace. To clear the assumption, enter the command

assume(x, 'clear')
or, equivalently,
syms x

For details, see “Check Assumptions Set On Variables” on page 3-72 and “Effects of
Assumptions on Computations” on page 3-73.

If you reset the symbolic engine by entering the command
reset(symengine)

MATLAB no longer recognizes any symbolic variables that exist in the MATLAB
workspace. Clear the variables with the clear command, or renew them with the syms
or sym command.

This example shows how the MATLAB workspace and the symbolic engine workspace
respond to a sequence of commands.

Step [(Command MATLAB Workspace MuPAD Engine Workspace
1 syms X positive X x>0

or

syms X;

assume(x > 0)

clear x empty x >0

syms X X empty
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Check Assumptions Set On Variables

To check whether a variable, say x, has any assumptions in the symbolic engine
workspace associated with the MATLAB workspace, use the assumptions function in the
MATLAB Live Editor:

assumptions(x)

If the function returns an empty symbolic object, there are no additional assumptions on
the variable. (The default assumption is that x can be any complex number.) Otherwise,
there are additional assumptions on the value of that variable.

For example, while declaring the symbolic variable x make an assumption that the value
of this variable is a real number:

syms x real
assumptions(x)

ans =
in(x, 'real')

Another way to set an assumption is to use the assume function:

syms z
assume(z ~= 0);
assumptions(z)

ans =
z ~=0

To see assumptions set on all variables in the MATLAB workspace, use assumptions
without input arguments:

assumptions
ans =
[ in(x, 'real'), z ~= 0]

Clear assumptions set on x and z:
assume([x z],'clear')
assumptions

ans =
Empty sym: 1-by-0
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Equivalently, the following command also clears assumptions from x and z:

syms X z

Effects of Assumptions on Computations

Assumptions can affect many computations, including results returned by the solve
function. They also can affect the results of simplifications. For example, solve this
equation without any additional assumptions on its variable:

syms X
solve(x™4 == 1, Xx)

ans =
-1
1
-11
1i

Now solve the same equation assuming that x is real:

syms x real
solve(x™4 == 1, Xx)

ans =

-1
1

Use the assumeAlso function to add the assumption that x is also positive:

assumeAlso(x > 0)
solve(x™4 == 1, Xx)

ans =
1

Clearing x does not change the underlying assumptions that x is real and positive:

clear x

X = sym('x");
assumptions(x)
solve(x™4 == 1, x)

ans =
[ in(x, 'real'), 0 < x]
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ans =
1

Clearing x with assume(x, 'clear') or syms X clears the assumption:

syms X
assumptions(x)

ans =
Empty sym: 1-by-0
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Create MATLAB Functions from MuPAD Expressions

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

Symbolic Math Toolbox lets you create a MATLAB function from a symbolic expression. A
MATLAB function created from a symbolic expression accepts numeric arguments and
evaluates the expression applied to the arguments. You can generate a function handle or
a file that contains a MATLAB function. The generated file is available for use in any
MATLAB calculation, independent of a license for Symbolic Math Toolbox functions.

If you work in the MATLAB Live Editor, see “Generate MATLAB Functions from Symbolic
Expressions” on page 2-264.

When you use the MuPAD Notebook app, all your symbolic expressions are written in the
MuPAD language. To be able to create a MATLAB function from such expressions, you
must convert it to the MATLAB language. There are two approaches for converting a
MuPAD expression to the MATLAB language:

* Assign the MuPAD expression to a variable, and copy that variable from a notebook to
the MATLAB workspace. This approach lets you create a function handle or a file that
contains a MATLAB function. It also requires using a handle to the notebook.

* Generate MATLAB code from the MuPAD expression in a notebook. This approach
limits your options to creating a file. You can skip creating a handle to the notebook.

The generated MATLAB function can depend on the approach that you chose. For
example, code can be optimized differently or not optimized at all.

Suppose you want to create a MATLAB function from a symbolic matrix that converts

spherical coordinates of any point to its Cartesian coordinates. First, open a MuPAD
notebook with the handle notebook handle:

notebook handle = mupad;
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In this notebook, create the symbolic matrix S that converts spherical coordinates to
Cartesian coordinates:

X := r*sin(a)*cos(b):

y := r*sin(a)*sin(b):

zZ := r*cos(b):

S := matrix([x, y, zl):

Now convert matrix S to the MATLAB language. Choose the best approach for your task.

Copy MuPAD Variables to the MATLAB Workspace

If your notebook has a handle, like notebook handle in this example, you can copy
variables from that notebook to the MATLAB workspace with the getVar function, and
then create a MATLAB function. For example, to convert the symbolic matrix S to a
MATLAB function:

1 Copy variable S to the MATLAB workspace:

= getVar(notebook handle,'S")

Variable S and its value (the symbolic matrix) appear in the MATLAB workspace and
in the MATLAB Live Editor:

S =
rx*cos(b)*sin(a)
r*sin(a)*sin(b)
rxcos(b)
2 UsematlabFunction to create a MATLAB function from the symbolic matrix. To
generate a MATLAB function handle, use matlabFunction without additional
parameters:

h = matlabFunction(S)

h =
@(a,b,r)[r.*cos(b).*sin(a);r.*sin(a).*sin(b);r.*cos(b)]

To generate a file containing the MATLAB function, use the parameter file and
specify the path to the file and its name. For example, save the MATLAB function to
the file cartesian.min the current folder:

S = matlabFunction(S, 'file', 'cartesian.m');

You can open and edit cartesian.min the MATLAB Editor.
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1 function 5 = cartesian(a,b,r) L
2 $CARTESIRN

3 3 5 = CARTESIAN(L,EB,R)

4

2= tZ2 = =zin(a):

6 — t3 = co=(b):

7 = S = [r.*c2.*c3;r.*t2.*=2in(b) rr.*t3];

Generate MATLAB Code in a MuPAD Notebook

To generate the MATLAB code from a MuPAD expression within the MuPAD notebook, use
the generate: :MATLAB function. Then, you can create a new file that contains an empty
MATLAB function, copy the code, and paste it there. Alternatively, you can create a file
with a MATLAB formatted character vector representing a MuPAD expression, and then
add appropriate syntax to create a valid MATLAB function.

1 In the MuPAD Notebook app, use the generate: :MATLAB function to generate
MATLAB code from the MuPAD expression. Instead of printing the result on screen,
use the fprint function to create a file and write the generated code to that file:

fprint(Unquoted, Text, "cartesian.m", generate::MATLAB(S)):

Note If the file with this name already exists, fprint replaces the contents of this
file with the converted expression.

2 Open cartesian.m. It contains a MATLAB formatted character vector representing
matrix S:

S = zeros(3,1);

S(1,1) = r*cos(b)*sin(a);
S(2,1) = r*sin(a)*sin(b);
S(3,1) = r*cos(b);

3 To convert this file to a valid MATLAB function, add the keywords function and
end, the function name (must match the file name), input and output arguments, and
comments:
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Efunctinn 5 = cartesian(r, a, b)
—-|3¥CARTESIAN Converts spherical coordinates
% to Cartesian coordinates.

- % Angles are measured in radians.

- 5 = zeros(3,1);

- 5{(1,1) = r*cos(b)*=inla):;
- S(2,1) r¥*zin(a)*=in (k) :
- 5(3,1) = r*cos(b):

end

(¥ T i £ I I = T 5 B R L T % I )

=

L
|
T
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Create MATLAB Function Blocks from MuPAD
Expressions

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

Symbolic Math Toolbox lets you create a MATLAB function block from a symbolic
expression. The generated block is available for use in Simulink models, whether or not
the computer that runs the simulations has a license for Symbolic Math Toolbox.

If you work in the MATLAB Live Editor, see “Generate MATLAB Function Blocks from
Symbolic Expressions” on page 2-268. Working in the MATLAB Live Editor is
recommended.

The MuPAD Notebook does not provide a function for generating a block. Therefore, to be
able to create a block from the MuPAD expression:

1 In a MuPAD notebook, assign that expression to a variable.

2 Use the getVar function to copy that variable from a notebook to the MATLAB
workspace.

For details about these steps, see “Copy MuPAD Variables to the MATLAB Workspace” on
page 3-76.

When the expression that you want to use for creating a MATLAB function block appears
in the MATLAB workspace, use the matlabFunctionBlock function to create a block
from that expression.

For example, open a MuPAD notebook with the handle notebook handle:
notebook handle = mupad;
In this notebook, create the following symbolic expression:

ro:= sqrt(x™2 + y~2)
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Use getVar to copy variable r to the MATLAB workspace:

r = getVar(notebook handle, 'r"')

Variable r and its value appear in the MATLAB workspace and in the MATLAB Live
Editor:

r
(x*2 + y*2)~(1/2)

Before generating a MATLAB Function block from the expression, create an empty model
or open an existing one. For example, create and open the new model my system:

new system('my system')
open_system('my system')

Since the variable and its value are in the MATLAB workspace, you can use
matlabFunctionBlock to generate the block my block:

matlabFunctionBlock('my system/my block', r)
You can open and edit the block in the MATLAB Editor. To open the block, double-click it:

function r = my block(x,y)
s#codegen

r=sqrt(x.”2+y.”2);
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Create Simscape Equations from MuPAD Expressions

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

Symbolic Math Toolbox lets you integrate symbolic computations into the Simscape
modeling workflow by using the results of these computations in the Simscape equation
section.

If you work in the MATLAB Live Editor, see “Generate Simscape Equations from Symbolic
Expressions” on page 2-270. Working in the MATLAB Live Editor is recommended.

If you work in the MuPAD Notebook app, you can:

* Assign the MuPAD expression to a variable, copy that variable from a notebook to the
MATLAB workspace, and use simscapeEquation to generate the Simscape equation
in the MATLAB Command Window.

* Generate the Simscape equation from the MuPAD expression in a notebook.

In both cases, to use the generated equation, you must manually copy the equation and
paste it to the equation section of the Simscape component file.

For example, follow these steps to generate a Simscape equation from the solution of the
ordinary differential equation computed in the MuPAD Notebook app:

1 Open a MuPAD notebook with the handle notebook handle:

notebook handle = mupad;
2 In this notebook, define the following equation:

s:= ode(y'(t) = y(t)"2, y(t)):

3 Decide whether you want to generate the Simscape equation in the MuPAD Notebook
or in the MATLAB Command Window.
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GenerateSimscape Equations in the MuPAD Notebook App

To generate the Simscape equation in the same notebook, use generate: :Simscape. To
display generated Simscape code on screen, use the print function. To remove quotes
and expand special characters like line breaks and tabs, use the printing option
Unquoted:

print(Unquoted, generate::Simscape(s))

This command returns the Simscape equation that you can copy and paste to the
Simscape equation section:

-y"2+y.der == 0.0;

Generate Simscape Equations in the MATLAB Command
Window

To generate the Simscape equation in the MATLAB Command Window, follow these steps:
1 Use getVar to copy variable s to the MATLAB workspace:

s = getVar(notebook handle, 's')

Variable s and its value appear in the MATLAB workspace and in the MATLAB
Command Window:

S =
ode(diff(y(t), t) - y(t)"2, y(t))

2 Use simscapeEquation to generate the Simscape equation from s:

simscapeEquation(s)

You can copy and paste the generated equation to the Simscape equation section. Do not
copy the automatically generated variable ans and the equal sign that follows it.

ans =
s == (-y"2+y.der == 0.0);
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abs

Symbolic absolute value (complex modulus or magnitude)

Syntax
abs(z)

Description

abs (z) returns the absolute value (or complex modulus) of z. Because symbolic variables
are assumed to be complex by default, abs returns the complex modulus (magnitude) by
default. If z is an array, abs acts element-wise on each element of z.

Examples

Compute Absolute Values of Symbolic Numbers
[abs(sym(1/2)), abs(sym(0)), abs(sym(pi) - 4)]

ans =
[ 1/2, 0, 4 - pi]

Compute Absolute Value of Complex Numbers

Compute abs (x)”"2 and simplify the result. Because symbolic variables are assumed to
be complex by default, the result does not simplify to x"2.

syms x
simplify(abs(x)"2)

ans =
abs(x)"2

Assume X is real, and repeat the calculation. Now, the result is simplified to x"2.



abs

assume(x, 'real')
simplify(abs(x)”"2)

ans =
X2

Remove assumptions on x for further calculations. For details, see “Use Assumptions on
Symbolic Variables” on page 1-29.

assume(x, 'clear')

Absolute Values of Elements of Array

Compute the absolute values of each element of matrix A.

A = sym([1/2+i -25;

1 pi/21);
abs (A)
ans =
[ 57(1/2)/2, 25]
[ 1, pi/2]

Effect of Assumptions on Absolute Value

Compute the absolute value of this expression assuming that the value of x is negative.
syms X

assume(x < 0)

abs (5*x"3)

ans =
-5*%x”3

For further computations, clear the assumption on x by recreating it using syms:
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syms x

Input Arguments

z — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, vector,
matrix, or array, variable, function, or expression.

Definitions
Complex Modulus

The absolute value of a complex number z = x + y*i is the value |z| = y/x? + y2. Here, x
and y are real numbers. The absolute value of a complex number is also called a complex
modulus.

Tips

* Calling abs for a number that is not a symbolic object invokes the MATLAB abs
function.

See Also

angle | imag | real | sign | signIm

Introduced before R2006a
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acCos

Symbolic inverse cosine function

Syntax

acos (X)

Description

acos (X) returns the inverse cosine function (arccosine function) of X. All angles are in
radians.

* For real values of X in the interval [-1,1], acos(x) returns the values in the interval
[0,pi].

» For real values of X outside the interval [ -1, 1] and for complex values of X, acos (X)
returns complex values with the real parts in the interval [0, pi].

Examples

Inverse Cosine Function for Numeric and Symbolic Arguments
Depending on its arguments, acos returns floating-point or exact symbolic results.

Compute the inverse cosine function for these numbers. Because these numbers are not
symbolic objects, acos returns floating-point results.

A = acos([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1])

A =
3.1416 1.9106 2.0944 1.3181 1.0472 0.5236 0

Compute the inverse cosine function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, acos returns unresolved symbolic calls.

symA = acos(sym([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 11))
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SymA =
[ pi, pi - acos(1/3), (2*pi)/3, acos(1/4), pi/3, pi/6, 0]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

3.1415926535897932384626433832795, . ..
.9106332362490185563277142050315, . ..
.0943951023931954923084289221863, . ..
.318116071652817965745664254646, . . .
.0471975511965977461542144610932, . ..
.52359877559829887307710723054658, . ..

OO FNREFEF—QY
=}
(%]

—

Plot Inverse Cosine Function

Plot the inverse cosine function on the interval from -1 to 1. Prior to R2016a, use ezplot
instead of fplot.

syms x

fplot(acos(x), [-1, 1])
grid on
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Handle Expressions Containing Inverse Cosine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acos.

Find the first and second derivatives of the inverse cosine function:

syms X
diff(acos(x), x)
diff(acos(x), x, X)

ans =
-1/(1 - x™2)7(1/2)
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ans =
-x/(1 - x*2)"(3/2)

Find the indefinite integral of the inverse cosine function:
int(acos(x), x)

ans =
x*acos(x) - (1 - x*2)°(1/2)

Find the Taylor series expansion of acos (x):
taylor(acos(x), x)

ans =
- (3*x"5)/40 - x"3/6 - x + pi/2

Rewrite the inverse cosine function in terms of the natural logarithm:
rewrite(acos(x), 'log')

ans =
-log(x + (1 - x™2)7~(1/2)*1i)*1i

Input Arguments

X — Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic

vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or

matrix of symbolic numbers, variables, expressions, or functions.

See Also

acot|acsc|asec|asin|atan|cos|cot|csc|sec|sin|tan

Introduced before R2006a



acosh

acosh

Symbolic inverse hyperbolic cosine function

Syntax

acosh(X)

Description

acosh (X) returns the inverse hyperbolic cosine function of X.

Examples

Inverse Hyperbolic Cosine Function for Numeric and Symbolic
Arguments

Depending on its arguments, acosh returns floating-point or exact symbolic results.

Compute the inverse hyperbolic cosine function for these numbers. Because these
numbers are not symbolic objects, acosh returns floating-point results.

A

acosh([-1, 0, 1/6, 1/2, 1, 21)
A:

0.0000 + 3.14161 0.0000 + 1.57081 0.0000 + 1.40331i...
0.0000 + 1.04721 0.0000 + 0.00001 1.3170 + 0.00001

Compute the inverse hyperbolic cosine function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, acosh returns unresolved symbolic calls.

symA = acosh(sym([-1, 0, 1/6, 1/2, 1, 21))

SymA =
[ pi*1li, (pi*1i)/2, acosh(1l/6), (pi*1i)/3, 0, acosh(2)]
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Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)
ans =

[ 3.14159265358979323846264338327951, ...
1.57079632679489661923132169163981, . ..
1.40334824757520728867804708559611, ...
1.04719755119659774615421446109321, . ..
0,...
1.316957896924816708625046347308]

Plot Inverse Hyperbolic Cosine Function

Plot the inverse hyperbolic cosine function on the interval from 1 to 10.
syms X

fplot(acosh(x),[1 10])
grid on
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Handle Expressions Containing Inverse Hyperbolic Cosine
Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acosh.

Find the first and second derivatives of the inverse hyperbolic cosine function. Simplify
the second derivative by using simplify.

syms x

diff(acosh(x), x)
simplify(diff(acosh(x), x, x))
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17((x - 1)™(1/2)*(x + 1)7(1/2))

ans =
-X/((x - 1)7(3/2)*(x + 1)7(3/2))

Find the indefinite integral of the inverse hyperbolic cosine function. Simplify the result
by using simplify.

int(acosh(x), x)

ans =
x*acosh(x) - (x - 1)™(1/2)*(x + 1)"(1/2)

Find the Taylor series expansion of acosh(x) for x > 1:

assume(x > 1)
taylor(acosh(x), x)

ans =
(x*5*31)/40 + (x*3*11)/6 + x*1i - (pi*1li)/2

For further computations, clear the assumption on x by recreating it using syms:
syms x

Rewrite the inverse hyperbolic cosine function in terms of the natural logarithm:
rewrite(acosh(x), 'log"')

ans =
log(x + (x - 1)™(1/2)*(x + 1)7(1/2))

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.
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See Also

acoth | acsch |asech |asinh | atanh | cosh | coth | csch|sech|sinh | tanh

Introduced before R2006a

4-13



4 Functions — Alphabetical List

4-14

acot

Symbolic inverse cotangent function

Syntax

acot (X)

Description

acot (X) returns the inverse cotangent function (arccotangent function) of X. All angles
are in radians.

* For real values of X, acot (X) returns values in the interval [ -pi/2,pi/2].

* For complex values of X, acot (X) returns complex values with the real parts in the
interval [ -pi/2,pi/2].

Examples

Inverse Cotangent Function for Numeric and Symbolic
Arguments

Depending on its arguments, acot returns floating-point or exact symbolic results.

Compute the inverse cotangent function for these numbers. Because these numbers are
not symbolic objects, acot returns floating-point results.

A = acot([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)])

A

-0.7854 -1.2490 -1.0472 1.1071 0.7854 0.5236

Compute the inverse cotangent function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, acot returns unresolved symbolic calls.

symA = acot(sym([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)]1))
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SymA =
[ -pi/4, -acot(1/3), -pi/3, acot(l/2), pi/4, pi/6]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =

[ -0.78539816339744830961566084581988, . ..
-1.2490457723982544258299170772811, . ..
-1.0471975511965977461542144610932, . ..
1.1071487177940905030170654601785, . ..
0.78539816339744830961566084581988, . . .
0.52359877559829887307710723054658]

Plot Inverse Cotangent Function

Plot the inverse cotangent function on the interval from -10 to 10.

syms X
fplot(acot(x),[-10 10])
grid on
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Handle Expressions Containing Inverse Cotangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acot.

Find the first and second derivatives of the inverse cotangent function:

syms X
diff(acot(x), x)
diff(acot(x), x, X)

ans =
-1/(x”2 + 1)
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ans =
(2*x)/(x™2 + 1)°2

Find the indefinite integral of the inverse cotangent function:
int(acot(x), x)

ans =
log(x™2 + 1)/2 + x*acot(x)

Find the Taylor series expansion of acot (x) for x > 0:

assume(x > 0)
taylor(acot(x), x)

ans =
- x*5/5 + x*3/3 - x + pi/2

For further computations, clear the assumption on x by recreating it using syms:
syms x

Rewrite the inverse cotangent function in terms of the natural logarithm:
rewrite(acot(x), 'log')

ans =
(log(1l - 1i/x)*1i)/2 - (log(li/x + 1)*1i)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also

acos | acsc|asec|asin|atan|cos|cot|csc|sec|sin|tan
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acoth

Symbolic inverse hyperbolic cotangent function

Syntax

acoth(X)

Description

acoth(X) returns the inverse hyperbolic cotangent function of X.

Examples

Inverse Hyperbolic Cotangent Function for Numeric and
Symbolic Arguments

Depending on its arguments, acoth returns floating-point or exact symbolic results.

Compute the inverse hyperbolic cotangent function for these numbers. Because these
numbers are not symbolic objects, acoth returns floating-point results.

A = acoth([-pi/2, -1, 0, 1/2, 1, pi/2])

A =

-0.7525 + 0.00001 -Inf + 0.00001 0.0000 + 1.5708i...
0.5493 + 1.5708i Inf + 0.00001 0.7525 + 0.00001

Compute the inverse hyperbolic cotangent function for the numbers converted to
symbolic objects. For many symbolic (exact) numbers, acoth returns unresolved symbolic
calls.

symA = acoth(sym([-pi/2, -1, 0, 1/2, 1, pi/2]))

SymA =
[ -acoth(pi/2), Inf, -(pi*li)/2, acoth(1/2), Inf, acoth(pi/2)]
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Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =

[ -0.75246926714192715916204347800251, ...
Inf, ...
-1.57079632679489661923132169163981, ...
0.54930614433405484569762261846126. ..

- 1.57079632679489661923132169163981,, . ..
Inf, ...
0.75246926714192715916204347800251]

Plot Inverse Hyperbolic Cotangent Function

Plot the inverse hyperbolic cotangent function on the interval from -10 to 10.
syms X

fplot(acoth(x),[-10 10])
grid on
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Handle Expressions Containing Inverse Hyperbolic Cotangent
Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acoth.

Find the first and second derivatives of the inverse hyperbolic cotangent function:
syms X

diff(acoth(x), x)
diff(acoth(x), x, X)
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ans =
-1/(x*2 - 1)

ans =
(2*¥x)/(x*2 - 1)7°2

Find the indefinite integral of the inverse hyperbolic cotangent function:
int(acoth(x), x)

ans =
log(x™2 - 1)/2 + x*acoth(x)

Find the Taylor series expansion of acoth(x) for x > 0:

assume(x > 0)
taylor(acoth(x), x)

ans =
x~5/5 + x*3/3 + x - (pi*li)/2

For further computations, clear the assumption on x by recreating it using syms:
syms X

Rewrite the inverse hyperbolic cotangent function in terms of the natural logarithm:
rewrite(acoth(x), 'log"')

ans =
log(l/x + 1)/2 - log(l - 1/x)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.
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See Also

acosh | acsch | asech |asinh | atanh | cosh | coth | csch | sech|sinh | tanh

Introduced before R2006a
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acCsC

Symbolic inverse cosecant function

Syntax

acsc(X)

Description

acsc(X) returns the inverse cosecant function (arccosecant function) of X. All angles are
in radians.

* Forreal values of X in intervals [-Inf,-1] and [1,Inf], acsc returns real values in
the interval [-pi/2,pi/2].

» For real values of X in the interval [-1, 1] and for complex values of X, acsc returns
complex values with the real parts in the interval [-pi/2,pi/2].

Examples

Inverse Cosecant Function for Numeric and Symbolic
Arguments

Depending on its arguments, acsc returns floating-point or exact symbolic results.

Compute the inverse cosecant function for these numbers. Because these numbers are
not symbolic objects, acsc returns floating-point results.

A = acsc([-2, 0, 2/sqrt(3), 1/2, 1, 5])
A

-0.5236 + 0.00001 1.5708 - Infi 1.0472 + 0.00001 1.5708...
- 1.31701 1.5708 + 0.00001 0.2014 + 0.00001
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Compute the inverse cosecant function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, acsc returns unresolved symbolic calls.

symA = acsc(sym([-2, 0, 2/sqrt(3), 1/2, 1, 51))

SymA =
[ -pi/6, Inf, pi/3, asin(2), pi/2, asin(1/5)]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =

[ -0.52359877559829887307710723054658, ...
Inf, ...
1.0471975511965977461542144610932, ...
1.5707963267948966192313216916398. ..

- 1.31695789692481657340294987079691,, . ..
1.5707963267948966192313216916398, ...
0.201357920790330796600997587120221

Plot Inverse Cosecant Function

Plot the inverse cosecant function on the interval from -10 to 10.
syms X

fplot(acsc(x),[-10 10])
grid on
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Handle Expressions Containing Inverse Cosecant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acsc.

Find the first and second derivatives of the inverse cosecant function:

syms X
diff(acsc(x), x)
diff(acsc(x), x, X)

ans =
-1/ (xX™2%(1 - 1/x72)7™(1/2))
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ans =
2/(x*3*(1 - 1/x7°2)"(1/2)) + 1/(x"5*(1 - 1/x"2)"(3/2))

Find the indefinite integral of the inverse cosecant function:
int(acsc(x), x)

ans =
x*asin(1l/x) + log(x + (x™2 - 1)"(1/2))*sign(x)

Find the Taylor series expansion of acsc(x) around x = Inf:
taylor(acsc(x), x, Inf)

ans =
1/x + 1/(6*x"3) + 3/(40*x"5)

Rewrite the inverse cosecant function in terms of the natural logarithm:
rewrite(acsc(x), 'log')

ans =
-log(1i/x + (1 - 1/x72)7(1/2))*1i

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also

acos | acot | asec|asin|atan|cos|cot|csc|sec|sin|tan

Introduced before R2006a
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acsch

Symbolic inverse hyperbolic cosecant function

Syntax

acsch(X)

Description

acsch(X) returns the inverse hyperbolic cosecant function of X.

Examples

Inverse Hyperbolic Cosecant Function for Numeric and
Symbolic Arguments

Depending on its arguments, acsch returns floating-point or exact symbolic results.

Compute the inverse hyperbolic cosecant function for these numbers. Because these
numbers are not symbolic objects, acsch returns floating-point results.

A

acsch([-2*i, 0, 2*i/sqrt(3), 1/2, i, 3])
A =

0.0000 + 0.52361 Inf + 0.00001 0.0000 - 1.0472i...
1.4436 + 0.00001 0.0000 - 1.57081 0.3275 + 0.00001

Compute the inverse hyperbolic cosecant function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, acsch returns unresolved symbolic calls.

symA = acsch(sym([-2*i, 0, 2*i/sqrt(3), 1/2, i, 31))

SymA =
[ (pi*1i)/6, Inf, -(pi*1li)/3, asinh(2), -(pi*1i)/2, asinh(1/3)]
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Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =

[ 6.523598775598298873077107230546581, . ..
Inf, ...
-1.04719755119659774615421446109321, ...
1.4436354751788103424932767402731, ...
-1.57079632679489661923132169163981, . ..
0.327450150237258443322535259988261

Plot Inverse Hyperbolic Cosecant Function

Plot the inverse hyperbolic cosecant function on the interval from -10 to 10.
syms x

fplot(acsch(x),[-10 101)
grid on
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0.5

Handle Expressions Containing Inverse Hyperbolic Cosecant
Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acsch.

Find the first and second derivatives of the inverse hyperbolic cosecant function:
syms X

diff(acsch(x), x)
diff(acsch(x), x, X)
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ans =
-1/ (x72%(1/x7°2 + 1)7(1/2))

ans =
2/ (x*3*%(1/x”2 + 1)7(1/2)) - 1/(x"5*%(1/x"2 + 1)~(3/2))

Find the indefinite integral of the inverse hyperbolic cosecant function:
int(acsch(x), x)

ans =
x*asinh(1l/x) + asinh(x)*sign(x)

Find the Taylor series expansion of acsch(x) around x = Inf:
taylor(acsch(x), x, Inf)

ans =
1/x - 1/(6*x"3) + 3/(40*x"5)

Rewrite the inverse hyperbolic cosecant function in terms of the natural logarithm:
rewrite(acsch(x), 'log"')

ans =
log((1/x72 + 1)~(1/2) + 1/x)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth | asech | asinh | atanh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a
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adjoint

Classical adjoint (adjugate) of square matrix

Syntax

X = adjoint(A)

Description

X = adjoint(A) returns the “Classical Adjoint (Adjugate) Matrix” on page 4-34 X of A,
such that A*X = det(A)*eye(n) = X*A, where n is the number of rows in A.

Examples

Classical Adjoint (Adjugate) of Matrix

Find the classical adjoint of a numeric matrix.

A = magic(3);
X = adjoint(A)
X -—

-53.0000 52.0000 -23.0000
22.0000 -8.0000 -38.0000
7.0000 -68.0000 37.0000

Find the classical adjoint of a symbolic matrix.

syms X y z
A=sym([xyz; 210; 10 2]);
X = adjoint(A)

X —

[ 2: _Z*yr _Z]

[ -4, 2*x - z, 2*z]

[ -1, y, X - 2%y]
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Verify that det (A) *eye(3) = X*A by using isAlways.

cond = det(A)*eye(3) == X*A;
isAlways(cond)

ans =
3x3 logical array

1 1 1

1 1 1

1 1 1

Compute Inverse Using Classical Adjoint and Determinant

Compute the inverse of this matrix by computing its classical adjoint and determinant.

syms a b cd
A= [ab; cdl;
invA = adjoint(A)/det(A)

invA =
[ d/(a*d - b*c), -b/(a*d - b*c)
[ -c/(a*d

’ ]
- b*c), a/(a*d - b*c)l

Verify that invA is the inverse of A.

isAlways(invA == inv(A))
ans =
2x2 logical array
1 1
1 1

Input Arguments

A — Square matrix
numeric matrix | symbolic matrix

Square matrix, specified as a numeric or symbolic matrix.
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Definitions

Classical Adjoint (Adjugate) Matrix

The classical adjoint, or adjugate, of a square matrix A is the square matrix X, such that
the (i,j)-th entry of X is the (j,i)-th cofactor of A.

The (j,i)-th cofactor of A is defined as follows.
aﬁ’ = (- 1)i +jdet(Aij)
Aj; is the submatrix of A obtained from A by removing the i-th row and j-th column.

The classical adjoint matrix should not be confused with the adjoint matrix. The adjoint is
the conjugate transpose of a matrix while the classical adjoint is another name for the
adjugate matrix or cofactor transpose of a matrix.

See Also

ctranspose | det | inv | rank

Introduced in R2013a
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airy

Airy function

airy(n,x)

airy(__ ,1)

Description

airy(x) returns the Airy function on page 4-42 of the first kind, Ai(x), for each element
of x.

airy(0,x) is the same asairy(x).

airy(1,x) returns the derivative of Ai(x).

airy(2,x) returns the Airy function on page 4-42 of the second kind, Bi(x).
airy(3,x) returns the derivative of Bi(x).

airy(n,x) uses the values in vector n to return the corresponding Airy functions of
elements of vector x. Both n and x must have the same size.

airy( __ ,1) returns the “Scaled Airy Functions” on page 4-43 following the syntax
for the MATLAB airy function.
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Examples

Find the Airy Function of the First Kind

Find the Airy function of the first kind, Ai(x), for numeric or symbolic inputs using airy.
Approximate exact symbolic outputs using vpa.

Find the Airy function of the first kind, Ai(x), at 1.5. Because the input is double and not
symbolic, you get a double result.

airy(1.5)

ans =
0.0717

Find the Airy function of the values of vector v symbolically, by converting v to symbolic
form using sym. Because the input is symbolic, airy returns exact symbolic results. The
exact symbolic results for most symbolic inputs are unresolved function calls.

v = sym([-1 0 25.1 1+1i]);
VAiry = airy(v)

VAiry =
[ airy(0, -1), 37(1/3)/(3*gamma(2/3)), airy(0, 251/10), airy(6, 1 + 1i)]

Numerically approximate the exact symbolic result using vpa.

vpa(vAiry)

ans =

[ ©0.53556088329235211879951656563887, 0.35502805388781723926006318600418, ...
4.9152763177499054787371976959487e-38, . ..
0.060458308371838149196532978116646 - 0.151889565877181402354947912592231]

Find the Airy function, Ai(x), of the symbolic input x"~2. For symbolic expressions, airy
returns an unresolved call.

syms X
airy(x"2)

ans =
airy(0, x"2)
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Find the Airy Function of the Second Kind

Find the Airy function of the second kind, Bi(x), of the symbolic input [-3 4 1+1i x"2]
by specifying the first argument as 2. Because the input is symbolic, airy returns exact
symbolic results. The exact symbolic results for most symbolic inputs are unresolved
function calls.

v = sym([-3 4 1+1i x"2]);
vAiry = airy(2, v)

VAiry =
[ airy(2, -3), airy(2, 4), airy(2, 1 + 1i), airy(2, x*2)]

Use the syntax airy(2,x) like airy(x), as described in the example “Find the Airy
Function of the First Kind” on page 4-36.

Plot Airy Functions

Plot the Airy Functions, Ai(x) and Bi(x), over the interval [ -10 2] using fplot.

syms X
fplot(airy(x), [-10 2])

hold on

fplot(airy(2,x), [-10 2])
legend('Ai(x)"','Bi(x)"', 'Location', 'Best"')
title('Airy functions Ai(x) and Bi(x)"')
grid on
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Airy functions Ai(x) and Bi(x)

Ailx)
Biix)

157

Plot the absolute value of Ai(z) over the complex plane.

syms y
z = x + li*y;

figure(2)
fsurf(abs(airy(z)))
title('|Ai(z)]|")

a = gca;

a.ZLim = [0 10];
caxis([0 10])
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|Ai(z)]

WA

Find Derivatives of Airy Functions

Find the derivative of the Airy function of the first kind, Ai'(x), at @ by specifying the first
argument of airy as 1. Then, numerically approximate the derivative using vpa.

dAi = airy(1l, sym(0))
dAi vpa = vpa(dAi)

dAi =

-(37(1/6)*gamma(2/3))/(2*pi)

dAi vpa =
-0.2588194037928067984051835601892
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Find the derivative of the Airy function of the second kind, Bi'(x), at x by specifying the
first argument as 3. Then, find the derivative at x = 5 by substituting for x using subs
and calling vpa.

syms x
dBi = airy(3, x)
dBi vpa = vpa(subs(dBi, x, 5))

dBi =

airy(3, x)

dBi vpa =
1435.8190802179825186717212380046

Solve Airy Differential Equation for Airy Functions

Show that the Airy functions Ai(x) and Bi(x) are the solutions of the differential equation

2

"y

—2 —xy =0.
ax2 y

syms y(x)
dsolve(diff(y, 2) - x*y == 0)

ans =
Cl*airy(0, x) + C2*airy(2, x)

Differentiate Airy Functions

Differentiate expressions containing airy.

syms X y
diff(airy(x"2))
diff(diff(airy(3, x"2 + x*y -y*2), x), vy)

ans =
2*¥x*airy(1l, x"2)

ans =

airy(2, x®2 + x*y - y"2)*¥(x"2 + x*y - y*2) +
airy(2, x™2 + x*y - y*2)*¥(x - 2¥y)*(2*¥x + y) +.

airy(3, x™2 + x*y - y"2)*¥(x - 2*¥y)*(2*x + y)*¥(x"2 + x*y - y"2)
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Expand Airy Function using Taylor Series

Find the Taylor series expansion of the Airy functions, Ai(x) and Bi(x), using taylor.

aiTaylor = taylor(airy(x))
biTaylor = taylor(airy(2, x))
aiTaylor =

- (3”(1/6)*gamma(2/3)*x"4)/(24*pi) + (37°(1/3)*x"3)/(18*gamma(2/3))...
- (37°(1/6)*gamma(2/3)*x)/(2*pi) + 3~(1/3)/(3*gamma(2/3))

biTaylor =

(3~(2/3)*gamma(2/3) *x™4) / (24*pi) + (37(5/6)*x"3)/(18*gamma(2/3))...
+ (37(2/3)*gamma(2/3)*x)/(2*pi) + 37°(5/6)/(3*gamma(2/3))

Fourier Transform of Airy Function

Find the Fourier transform of the Airy function Ai(x) using fourier.

syms x
aiFourier = fourier(airy(x))

aiFourier =

exp((w”3*1i)/3)

Numeric Roots of Airy Function

Find a root of the Airy function Ai(x) numerically using vpasolve.

syms X
vpasolve(airy(x) == 0, x)

ans =
-226.99630507523600716771890962744

Find a root in the interval [ -5 -3].
vpasolve(airy(x) == 0, x, [-5 -3])

ans =
-4.0879494441309706166369887014574
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Input Arguments

x — Input

number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

n — Type of Airy function
0 (default) | number | vector | matrix | multidimensional array | symbolic number |
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array

Type of Airy function, specified as a number, vector, matrix, or multidimensional array, or
a symbolic number, variable, vector, matrix, or multidimensional array. The values of the
input must be 0, 1, 2, or 3, which specify the Airy function as follows.

n Returns

0 (default) Airy function, Ai(x), which is the same as airy(x).

Derivative of Airy function, Ai’(x).

Airy function of the second kind, Bi(x).

3 Derivative of Airy function of the second kind, Bi’(x).

Definitions

Airy Functions

The Airy functions Ai(x) and Bi(x) are the two linearly independent solutions of the
differential equation
2

07y
— —xy=0.
2 Y

Ai(x) is called the Airy function of the first kind. Bi(x) is called the Airy function of the
second kind.
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Scaled Airy Functions
The Airy function of the first kind, Ai(x), is scaled as

e[ Bﬂu

Ai(x) .
The derivative, Ai’'(x), is scaled by the same factor.

The Airy function of the second kind, Bi(x), is scaled as
‘Re wm|B

The derivative, Bi’'(x), is scaled by the same factor.

Tips
* When you call airy for inputs that are not symbolic objects, you call the MATLAB
airy function.

* Whenyoucallairy(n, x), atleast one argument must be a scalar or both
arguments must be vectors or matrices of the same size. If one argument is a scalar
and the other is a vector or matrix, airy(n,x) expands the scalar into a vector or
matrix of the same size as the other argument with all elements equal to the scalar.

* airy returns special exact values at 0.

See Also

besseli | besselj | besselk | bessely

Introduced in R2012a
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Test whether all equations and inequalities represented as elements of symbolic array are
valid

Syntax

all(A)
all(A,dim)

Description

all(A) tests whether all elements of A return logical 1 (true). If A is a matrix, all tests
all elements of each column. If A is a multidimensional array, all tests all elements along
one dimension.

all(A,dim) tests along the dimension of A specified by dim.

Examples

Test All Elements of Symbolic Vector

Create vector V that contains the symbolic equation and inequalities as its elements:

syms X
V=[x ~=x+1, abs(x) >= 0, x == x];

Use all to test whether all of them are valid for all values of x:
all(V)
ans =

logical
1
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Test All Elements of Symbolic Matrix

Create this matrix of symbolic equations and inequalities:

syms X

M= [x == X, x == abs(x); abs(x) >= 0, x ~= 2*x]
M:

[ X == X, X == abs(x)]

[ O <= abs(x), X ~= 2%x]

Use all to test equations and inequalities of this matrix. By default, all tests whether all
elements of each column are valid for all possible values of variables. If all equations and
inequalities in the column are valid (return logical 1), then all returns logical 1 for that
column. Otherwise, it returns logical 0 for the column. Thus, it returns 1 for the first
column and 0 for the second column:

all(M)

ans =
1x2 logical array
1 0

Specify Dimension to Test Along

Create this matrix of symbolic equations and inequalities:

syms X

M =[x == X, X == abs(x); abs(x) >= 0, x ~= 2*x]
M =

[ X == X, X == abs(x)]

[ O <= abs(x), X ~= 2%x]

For matrices and multidimensional arrays, all can test all elements along the specified
dimension. To specify the dimension, use the second argument of all. For example, to
test all elements of each column of a matrix, use the value 1 as the second argument:

all(M, 1)

ans =
1x2 logical array
1 0
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To test all elements of each row, use the value 2 as the second argument:

all(M, 2)
ans =
2x1 logical array
0
1

Test Arrays with Numeric Values

Test whether all elements of this vector return logical 1s. Note that all also converts all
numeric values outside equations and inequalities to logical 1s and 0s. The numeric value
0 becomes logical 0:

syms x
all([0, x == x])

ans =

logical
0

All nonzero numeric values, including negative and complex values, become logical 1s:
all([1, 2, -3, 4 + i, x == x])
ans =

logical
1

Input Arguments

A — Input
symbolic array

Input, specified as a symbolic array. For example, it can be an array of symbolic
equations, inequalities, or logical expressions with symbolic subexpressions.

dim — Dimension
first non-singleton dimension (default) | integer
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Dimension, specified as an integer. For example, if A is a matrix, any (A, 1) tests elements
of each column and returns a row vector of logical 1s and 0s. any (A, 2) tests elements of
each row and returns a column vector of logical 1s and 0s.

Tips
+ If Ais an empty symbolic array, all(A) returns logical 1.

+ If some elements of A are just numeric values (not equations or inequalities), all
converts these values as follows. All numeric values except 0 become logical 1. The
value 0 becomes logical 0.

» If Ais avector and all its elements return logical 1, all1(A) returns logical 1. If one or
more elements are zero, all(A) returns logical 0.

+ If Ais a multidimensional array, all(A) treats the values along the first dimension
that is not equal to 1 (nonsingleton dimension) as vectors, returning logical 1 or 0 for
each vector.

See Also

and | any | isAlways | not | or | xor

Introduced in R2012a
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allMuPADNotebooks

All open notebooks

Note

MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts”.

Syntax

L = allMuPADNotebooks

Description

L = allMuPADNotebooks returns a vector with handles (pointers) to all currently open
MuPAD notebooks.

If there are no open notebooks, al lIMuPADNotebooks returns an empty object [ empty
mupad ].

Examples

Identify All Open Notebooks

Get a vector of handles to all currently open MuPAD notebooks.



allMuPADNotebooks

Suppose that your current folder contains MuPAD notebooks named myFilel.mn and
myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively.
Also create a new notebook with the handle nb3:

nbl = mupad('myFilel.mn")
nb2 = mupad('myFile2.mn")
nb3 = mupad

nbl =

myFilel

nb2 =

myFile2

nb3 =

Notebookl

Suppose that there are no other open notebooks. Use allMuPADNotebooks to get a
vector of handles to these notebooks:

allNBs = allMuPADNotebooks
allNBs =
myFilel

myFile2
Notebookl

Create Handle to Existing Notebook

If you already created a MuPAD notebook without a handle or if you lost the handle to a
notebook, use alIMuPADNotebooks to create a new handle. Alternatively, you can save
the notebook, close it, and then open it again using a handle.

Create a new notebook:
mupad

Suppose that you already performed some computations in that notebook, and now want
to transfer a few variables to the MATLAB workspace. To be able to do it, you need to
create a handle to this notebook:

nb = allMuPADNotebooks
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nb =
Notebookl

Now, you can use nb when transferring data and results between the notebook
Notebookl and the MATLAB workspace. This approach does not require you to save
Notebookl.

getVar(nb, 'x")

ans =

X

Output Arguments

L — All open MuPAD notebooks
vector of handles to notebooks

All open MuPAD notebooks, returned as a vector of handles to these notebooks.

See Also

close | evaluateMuPADNotebook | getVar | mupad | mupadNotebookTitle | openmn
| setVar

Topics

“Create MuPAD Notebooks” on page 3-4

“Open MuPAD Notebooks” on page 3-7

“Save MuPAD Notebooks” on page 3-13

“Evaluate MuPAD Notebooks from MATLAB” on page 3-14

“Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-55
“Close MuPAD Notebooks from MATLAB” on page 3-18

Introduced in R2013b
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and

Logical AND for symbolic expressions

Syntax

A&B
and (A, B)

Description

A & B represents the logical AND. A & B is true only when both A and B are true.

and(A,B) is equivalent to A & B.

Examples

Construct and Set Assumptions Using AND

Combine symbolic inequalities into one condition by using &.

syms X y
cond = x>=0 & y>=0;

Set the assumptions represented by the condition using assume.
assume(cond)
Verify that the assumptions are set.

assumptions

ans =
[ 0 <=Xx, 0 <=y]
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Evaluate Inequalities or Conditions

Define a range for a variable by combining two inequalities into a logical condition using
&

syms X
range = 0 < x & x < 1;

Return the condition at 1/2 and 10 by substituting for x using subs. The subs function
does not evaluate the conditions automatically.

x1 = subs(range,x,1/2)
x2 = subs(range,x,10)
X1l =

0 <1/2 & 1/2 <1

X2 =

0 <10 & 10 <1
Evaluate the inequalities to logical 1 or 0 by using isAlways.

isAlways(x1)
isAlways(x2)
ans =

logical

1

ans =

logical

0

Input Arguments

A — Input
symbolic equation | symbolic inequality | symbolic expression

Input, specified as a symbolic equation, inequality, or expression.

B — Input
symbolic equation | symbolic inequality | symbolic expression

Input, specified as a symbolic equation, inequality, or expression.
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Tips

* Ifyoucall simplify for a logical expression containing symbolic subexpressions, you
can get the symbolic values TRUE and FALSE. These values are not the same as logical
1 (true) and logical 0 (false). To convert symbolic TRUE and FALSE to logical values,
use isAlways.

See Also

all|any|isAlways | not |or | piecewise | xor

Introduced in R2012a
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angle

Symbolic polar angle

Syntax

angle(Z)

Description

angle(Z) computes the polar angle of the complex value Z.

Examples

Compute Polar Angle of Numeric Inputs

Compute the polar angles of these complex numbers. Because these numbers are not
symbolic objects, you get floating-point results.

[angle(l + i), angle(4 + pi*i), angle(Inf + Inf*i)]
ans

0.7854 0.6658 0.7854

Compute Polar Angle of Symbolic Inputs

Compute the polar angles of these complex numbers which are converted to symbolic
objects:

[angle(sym(1l) + i), angle(sym(4) + sym(pi)*i), angle(Inf + sym(Inf)*i)]

ans =
[ pi/4, atan(pi/4), pi/4]
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Compute Polar Angle of Symbolic Expressions

Compute the limits of these symbolic expressions:
syms x

limit(angle(x + x™2*i/(1 + x)), x, -Inf)
limit(angle(x + x™2*i/(1 + x)), x, Inf)

ans =
-(3*pi)/4

ans =
pi/4

Compute Polar Angle of Array

Compute the polar angles of the elements of matrix Z:

Z = sym([sqrt(3) + 3*i, 3 + sqrt(3)*i; 1 + i, i]);

angle(2)

ans =

[ pi/3, pi/6]
[ pi/4, pi/2]

Input Arguments

Z — Input
number | vector | matrix | array | symbolic number | symbolic array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable,
expression, function.
Tips

* Calling angle for numbers (or vectors or matrices of numbers) that are not symbolic
objects invokes the MATLAB angle function.

o« IfZ = 0, then angle(Z) returns 0.
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Alternatives

Forreal X and Y such that Z = X + Y*i, the call angle(Z) is equivalent to
atan2(Y,X).

See Also

atan2 | conj | imag | real | sign | signIm

Introduced in R2013a
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animationToFrame

Return structure of frames from animation objects

Syntax

frames = animationToFrame

frames = animationToFrame(fig)
frames = animationToFrame( _ ,Name,Value)
Description

frames = animationToFrame returns a structure array of frames from animation
objects. The animation objects must be created using the fanimator function.

frames = animationToFrame(fig) returns a structure array of frames from
animation objects in the figure fig.

frames = animationToFrame( _ ,Name,Value) uses the specified Name,Value

pair arguments. Use this option with any of the input argument combinations in the
previous syntaxes.

Examples

Return Animation Frames

Create an animation of a moving circle, and return specific frames of the animation.
First, create two symbolic variables, t and x. The variable t defines the time parameter
of the animation. Use t to set the center of the circle at (t,1) and x to parameterize the

perimeter of the circle within the range [-pi pi]. Create the circle animation object
using fanimator. Set the x-axis and y-axis to be equal length.
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syms t x
fanimator(@fplot,cos(x)+t,sin(x)+1,[-pi pil)
axis equal

By default, fanimator generates an animation object with 10 frames per unit time within
the range of t from 0 to 10. The default animation object contains a total of 101 frames.
Use the command playAnimation to play the animation.

Next, return a structure array of frames from the animation object by using
animationToFrame.

frames = animationToFrame
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frames = 1x101 struct array with fields:
cdata
colormap

The structure frames contains two fields. The cdata field stores the image data as an
array of uint8 values.

Reconstruct the animation frames by using the imshow function. For example, display the
50th frame and the last frame of the animation.

imshow(frames(50).cdata)

imshow(frames(101).cdata)
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Return Animation Frames in Reverse Order

Create a moving circle animation object and a timer animation object. Return the
generated animation frames in reverse order.

First, create two symbolic variables, t and x. The variable t defines the time parameter
of the animation. Create a figure window for the animation.

syms t x
figl = figure;
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Create a circle animation object using fanimator. Use t to set the center of the circle at
(t,1) and x to parameterize the perimeter of the circle within the range [-pi pi]. Set
the x-axis and y-axis to be equal length.

fanimator(@fplot,cos(x)+t,sin(x)+1,[-pi pil)
axis equal

Next, use the text function to add a piece of text to count the elapsed time. Use
num2str to convert the time parameter to a string.

hold on
fanimator(@(t) text(8,3,"Timer: "+num2str(t,2)))
hold off

By default, fanimator creates stop-motion frames with 10 frames per unit time within
the range of t from 0 to 10. The default animation object contains a total of 101 frames.
Use the command playAnimation to play the animation.

Next, return a structure array of frames from the animation in figure fig by using
animationToFrame. Return the animation frames in reverse order by setting the
'Backwards' option to true. Set the frame rate per unit time to 2 to return a total of 21
frames.

frames = animationToFrame(figl, 'Backwards',true, 'FrameRate',?2)
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ir Timer: 0 b

frames = 1x21 struct array with fields:
cdata
colormap

The structure frames contains two fields. The cdata field stores the image data as an
array of uint8 values.

Reconstruct the animation frames by using the imshow function. For example, display the
first frame and the 11th frame of the animation in a new figure window.

fig2 = figure;
imshow(frames(1l).cdata)
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2r l/,ﬁ\:
N

imshow(frames(11l).cdata)
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ar Timer: 5

Input Arguments

fig — Target figure
Figure object

Target figure, specified as a Figure object. For more information about Figure objects,
see figure.
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Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel,...,NameN,ValueN.

Example: 'Backwards',true, 'AnimationRange',[-2 5]

AnimationRange — Range of animation time parameter
[0 10] (default) | two-element row vector

Range of the animation time parameter, specified as a two-element row vector. The two
elements must be real values that are increasing.

Example: [-2 4.5]

FrameRate — Frame rate
10 (default) | positive value

Frame rate, specified as a positive value. The frame rate defines the number of frames
per unit time when you returning animation frames as a structure array.

Example: 20

Backwards — Backward option
logical 0 (false) (default) | logical value

Backward option, specified as a logical value (boolean). If you specify true, then the
function returns the animation frames backwards or in reverse order.

Example: true

Output Arguments

frames — Animation frames
structure array

Animation frames, returned as a structure array with two fields:

* cdata — The image data stored as an array of uint8 values. The size of the image
data array depends on your screen resolution.
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* colormap — The colormap. On true color systems, this field is empty.

The animationToFrame function returns a structure of animation frames in the same
format as the output returned by the getframe function.

See Also

fanimator | getframe | playAnimation | rewindAnimation | writeAnimation

Introduced in R2019a
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Animator Properties

Animator appearance and behavior

Description

Animator properties control the appearance and behavior of an Animator object. By
changing property values, you can modify certain aspects of the Animator object. You
can use dot notation to refer to a particular object and property:

fp fanimator(@(x) plot(x,sin(x)))
1s fp.Visible
fp.Visible = 'off!

Properties

Frames

AnimationRange — Range of animation time parameter
[0 10] (default) | two-element row vector

This property is read-only.

Range of the animation time parameter, specified as a two-element row vector. The two
elements must be real values that are increasing.

FrameRate — Frame rate
10 (default) | positive value

This property is read-only.

Frame rate, specified as a positive value. The frame rate defines the number of frames
per unit time interval of an animation object.

Interactivity

Visible — State of visibility
‘on' (default) | ‘off"
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State of visibility, specified as one of these values:

* 'on' — Display the object.

« ‘'off' — Hide the object without deleting it. You still can access the properties of an
invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Callbacks

ButtonDownFcn — Mouse-click callback
"' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

* Function handle.
* Cell array containing a function handle and additional arguments.

* Character vector that is a valid MATLAB command or function, which is evaluated in
the base workspace (not recommended).

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

* Clicked object — Access properties of the clicked object from within the callback
function.

+ Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition” (MATLAB).
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Note If the PickableParts property is set to 'none"' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
"' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

* Function handle.

* Cell array in which the first element is a function handle. Subsequent elements in the
cell array are the arguments to pass to the callback function.

* Character vector containing a valid MATLAB expression (not recommended). MATLAB
evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition” (MATLAB).

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
"' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

e Function handle.

* Cell array in which the first element is a function handle. Subsequent elements in the
cell array are the arguments to pass to the callback function.

* Character vector containing a valid MATLAB expression (not recommended). MATLAB
evaluates this expression in the base workspace.
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For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition” (MATLAB).

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
‘on' (default) | 'off"

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

* The running callback is the currently executing callback.
* The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

* 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

+ If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

+ If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.
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+ 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

» If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

+ If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

* Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
‘queue’ (default) | 'cancel’

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

* The running callback is the currently executing callback.

* The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

* 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

* 'cancel' — Does not execute the interrupting callback.
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BeingDeleted — Deletion status
‘off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object

Parent, specified as an Axes object.

Children — Children
graphics object

This property is read-only.

Children, returned as a graphics object. You cannot set any graphics object as a child of
an animator object.

HandleVisibility — Visibility of object handle
‘on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

* 'on' — Object handle is always visible.

+ 'off' — Object handle is invisible at all times. This option is useful for preventing
unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

* ‘'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.
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If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifier

Type — Type of graphics object
"animator’

This property is read-only.

Type of graphics object, returned as 'animator'. Use this property to find all objects of
a given type within a plotting hierarchy. For example, you can use the findobj function
to find graphics objects of type 'animator’.

Tag — Object identifier
"' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[]1 (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps” (MATLAB).

4-73



4 Functions — Alphabetical List

See Also

Introduced in R2019a
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any

Test whether at least one of equations and inequalities represented as elements of
symbolic array is valid

Syntax

any (A)
any(A,dim)

Description

any (A) tests whether at least one element of A returns logical 1 (true). If A is a matrix,
any tests elements of each column. If A is a multidimensional array, any tests elements
along one dimension.

any(A,dim) tests along the dimension of A specified by dim.

Examples
Test Vector of Symbolic Conditions

Create vector V that contains the symbolic equation and inequalities as its elements:

syms X real
V=[x ~=x+ 1, abs(x) >= 0, x == x];

Use any to test whether at least one of them is valid for all values of x:
any (V)
ans =

logical
1
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Test Matrix of Symbolic Conditions

Create this matrix of symbolic equations and inequalities:

syms x real

M = [x == 2*x, x == abs(x); abs(x) >= 0, x == 2*x]
M:

[ X == 2*%x, X == abs(x)]

[ O <= abs(x), X == 2%x]

Use any to test equations and inequalities of this matrix. By default, any tests whether
any element of each column is valid for all possible values of variables. If at least one
equation or inequality in the column is valid (returns logical 1), then any returns logical 1
for that column. Otherwise, it returns logical 0 for the column. Thus, it returns 1 for the
first column and 0 for the second column:

any (M)

ans =
1x2 logical array
1 0

Specify Dimension to Test Along

Create this matrix of symbolic equations and inequalities:

syms x real

M = [x == 2*Xx, x == abs(x); abs(x) >= 0, x == 2*x]
M =

[ X == 2*x, x == abs(x)]

[ O <= abs(x), X == 2%x]

For matrices and multidimensional arrays, any can test elements along the specified
dimension. To specify the dimension, use the second argument of any. For example, to
test elements of each column of a matrix, use the value 1 as the second argument:

any (M, 1)

ans =
1x2 logical array
1 0
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To test elements of each row, use the value 2 as the second argument:

any (M, 2)
ans =
2x1 logical array
0
1

Test Arrays with Numeric Values

Test whether any element of this vector returns logical 1. Note that any also converts all
numeric values outside equations and inequalities to logical 1s and 0s. The numeric value
0 becomes logical 0:

syms x
any ([0, x == x + 1])

ans =

logical
0

All nonzero numeric values, including negative and complex values, become logical 1s:
any([-4 + i, x == x + 1])
ans =

logical
1

Input Arguments

A — Input
symbolic array

Input, specified as a symbolic array. For example, it can be an array of symbolic
equations, inequalities, or logical expressions with symbolic subexpressions.

dim — Dimension
first non-singleton dimension (default) | integer
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Dimension, specified as an integer. For example, if A is a matrix, any (A, 1) tests elements
of each column and returns a row vector of logical 1s and 0s. any (A, 2) tests elements of
each row and returns a column vector of logical 1s and 0s.

Tips
+ If Ais an empty symbolic array, any (A) returns logical 0.

* If some elements of A are just numeric values (not equations or inequalities), any
converts these values as follows. All nonzero numeric values become logical 1. The
value 0 becomes logical 0.

+ If Ais avector and any of its elements returns logical 1, any (A) returns logical 1. If
all elements are zero, any (A) returns logical 0.

+ If Ais a multidimensional array, any (A) treats the values along the first dimension
that is not equal to 1 (non-singleton dimension) as vectors, returning logical 1 or 0 for
each vector.

See Also

all|and|isAlways | not|or | xor

Introduced in R2012a
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argnames

Input variables of symbolic function

Syntax

argnames ()

Description

argnames () returns input variables of f.

Examples

Find Input Variables of Symbolic Function

Create this symbolic function:

syms f(x, y)
f(x, y) =x+y;

Use argnames to find input variables of f:
argnames (f)

ans =
[ x, yl

Create this symbolic function:

syms f(a, b, x, y)
f(xl bl y; a) = a*X + b*y,

Use argnames to find input variables of f. When returning variables, argnames uses the
same order as you used when you defined the function:

argnames (f)
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ans =
[ x, b, y, al

Input Arguments

f — Input
symbolic function

Input, specified as a symbolic function.

See Also

formula | sym| syms | symvar

Introduced in R2012a
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asec

Symbolic inverse secant function

Syntax

asec(X)

Description

asec(X) returns the inverse secant function (arcsecant function) of X. All angles are in
radians.

» For real elements of X in the interval [ -Inf,-1] and [1, Inf], asec returns values
in the interval [0, pi].

» For real values of X in the interval [-1, 1] and for complex values of X, asec returns
complex values with the real parts in the interval [0, pi].

Examples

Inverse Secant Function for Numeric and Symbolic Arguments
Depending on its arguments, asec returns floating-point or exact symbolic results.

Compute the inverse secant function for these numbers. Because these numbers are not
symbolic objects, asec returns floating-point results.

A = asec([-2, 0, 2/sqrt(3), 1/2, 1, 5])

A

2.0944 + 0.00001 0.0000 + Infi 0.5236 + 0.00001i...
0.0000 + 1.31701 0.0000 + 0.00001 1.3694 + 0.00001

Compute the inverse secant function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, asec returns unresolved symbolic calls.

4-81



4 Functions — Alphabetical List

symA = asec(sym([-2, 0, 2/sqrt(3), 1/2, 1, 51))

SymA =
[ (2*¥pi)/3, Inf, pi/6, acos(2), O, acos(1l/5)]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[ 2.0943951023931954923084289221863, ...
Inf,...
0.52359877559829887307710723054658, . ..
1.31695789692481657340294987079691,, . ..
0,...
1.3694384060045659001758622252964]

Plot Inverse Secant Function

Plot the inverse secant function on the interval from -10 to 10.
syms X

fplot(asec(x),[-10 10])
grid on
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Handle Expressions Containing Inverse Secant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing asec.

Find the first and second derivatives of the inverse secant function:
syms x

diff(asec(x), x)

diff(asec(x), x, X)

ans =
1/(x™2%(1 - 1/x72)7(1/2))
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ans =
- 2/(X"3%(1 - 1/x72)7(1/2)) - 1/(x"5*%(1 - 1/x72)"(3/2))

Find the indefinite integral of the inverse secant function:
int(asec(x), x)

ans =
x*acos(1l/x) - log(x + (x*2 - 1)"(1/2))*sign(x)

Find the Taylor series expansion of asec(x) around x = Inf:
taylor(asec(x), x, Inf)

ans =
pi/2 - 1/x - 1/(6*x"3) - 3/(40*x"5)

Rewrite the inverse secant function in terms of the natural logarithm:
rewrite(asec(x), 'log')

ans =
-log(1/x + (1 - 1/x™2)~(1/2)*1i)*1i

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also

acos | acot|acsc|asin|atan|cos|cot|csc|sec|sin|tan

Introduced before R2006a
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asech

Symbolic inverse hyperbolic secant function

Syntax

asech(X)

Description

asech (X) returns the inverse hyperbolic secant function of X.

Examples

Inverse Hyperbolic Secant Function for Numeric and Symbolic
Arguments

Depending on its arguments, asech returns floating-point or exact symbolic results.

Compute the inverse hyperbolic secant function for these numbers. Because these
numbers are not symbolic objects, asech returns floating-point results.

A

asech([-2, 0, 2/sqrt(3), 1/2, 1, 31])
A:

0.0000 + 2.09441 Inf + 0.00001 0.0000 + 0.52361...
1.3170 + 0.00001 0.0000 + 0.00001 0.0000 + 1.2310i

Compute the inverse hyperbolic secant function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, asech returns unresolved symbolic calls.

symA = asech(sym([-2, 0, 2/sqrt(3), 1/2, 1, 31))

SymA =
[ (pi*2i)/3, Inf, (pi*1li)/6, acosh(2), 0, acosh(1l/3)]

4-85



4 Functions — Alphabetical List

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =
[ 2.09439510239319549230842892218631, ...
Inf,...
0.523598775598298873077107230546581, . . .
1.316957896924816708625046347308, ...
0,...
1.230959417340774682134929178248i]

Plot Inverse Hyperbolic Secant Function

Plot the inverse hyperbolic secant function on the interval from 0 to 1.
syms X

fplot(asech(x),[0 1])
grid on
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Handle Expressions Containing Inverse Hyperbolic Secant
Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing asech.

Find the first and second derivatives of the inverse hyperbolic secant function. Simplify

the second derivative by using simplify.

diff(asech(x
simplify(diff(asech(x), x, x))
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ans =
-1/ (x72%(1/x - 1)7(1/2)*(1/x + 1)7(1/2))

ans =
-(2¥x72 - 1)/ (x™5%(1/x - 1)7(3/2)*(1/x + 1)"(3/2))

Find the indefinite integral of the inverse hyperbolic secant function:
int(asech(x), x)

ans =
atan(1/((1/x - 1)~(1/2)*(1/x + 1)~(1/2))) + x*acosh(1l/x)

Find the Taylor series expansion of asech(x) around x = Inf:
taylor(asech(x), x, Inf)

ans =
(pi*li)/2 - 1li/x - 1i/(6*x"3) - 31i/(40*x"5)

Rewrite the inverse hyperbolic secant function in terms of the natural logarithm:
rewrite(asech(x), 'log')

ans =
log((1/x - 1)7(1/2)*(1/x + 1)7(1/2) + 1/X)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth |acsch |asinh | atanh | cosh | coth | csch | sech|sinh | tanh

Introduced before R2006a
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asin

Symbolic inverse sine function

Syntax

asin(X)

Description

asin(X) returns the inverse sine function (arcsine function) of X. All angles are in
radians.

» For real values of X in the interval [ -1, 1], asin(X) returns the values in the interval
[-pi/2,pi/2].

» For real values of X outside the interval [ -1, 1] and for complex values of X, asin(X)
returns complex values with the real parts in the interval [-pi/2,pi/2].

Examples

Inverse Sine Function for Numeric and Symbolic Arguments
Depending on its arguments, asin returns floating-point or exact symbolic results.

Compute the inverse sine function for these numbers. Because these numbers are not
symbolic objects, asin returns floating-point results.

A = asin([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1])

A =
-1.5708 -0.3398 -0.5236 0.2527 0.5236 1.0472 1.5708

Compute the inverse sine function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, asin returns unresolved symbolic calls.

symA = asin(sym([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 11))
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SymA =
[ -pi/2, -asin(1/3), -pi/6, asin(l/4), pi/6, pi/3, pi/2]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =

[ -1.5707963267948966192313216916398, ...
-0.33983690945412193709639251339176, . . .
-0.52359877559829887307710723054658, . . .
0.25268025514207865348565743699371, . ..
0.52359877559829887307710723054658, . . .
1.0471975511965977461542144610932, . ..
1.5707963267948966192313216916398]

Plot Inverse Sine Function

Plot the inverse sine function on the interval from -1 to 1.

syms X
fplot(asin(x),[-1 1])
grid on
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Handle Expressions Containing Inverse Sine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing asin.

Find the first and second derivatives of the inverse sine function:

syms x
diff(asin(x), x)
diff(asin(x), x, x)

ans =
1/(1 - x*2)"~(1/2)
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ans =
x/(1 - x"*2)~(3/2)

Find the indefinite integral of the inverse sine function:
int(asin(x), Xx)

ans =
x*asin(x) + (1 - x*2)"(1/2)

Find the Taylor series expansion of asin(x):
taylor(asin(x), x)

ans =
(3*x"5)/40 + x"3/6 + X

Rewrite the inverse sine function in terms of the natural logarithm:
rewrite(asin(x), 'log')

ans =
-log((1 - x*2)"(1/2) + x*1i)*1i

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also

acos | acot | acsc|asec|atan|cos|cot|csc|sec|sin|tan

Introduced before R2006a
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asinh

Symbolic inverse hyperbolic sine function

Syntax

asinh(X)

Description

asinh (X) returns the inverse hyperbolic sine function of X.

Examples

Inverse Hyperbolic Sine Function for Numeric and Symbolic
Arguments

Depending on its arguments, asinh returns floating-point or exact symbolic results.

Compute the inverse hyperbolic sine function for these numbers. Because these numbers
are not symbolic objects, asinh returns floating-point results.

A

asinh([-i, 0, 1/6, i/2, i, 2])
A:

0.0000 - 1.57081 0.0000 + 0.00001 0.1659 + 0.00001...
0.0000 + 0.52361 0.0000 + 1.57081 1.4436 + 0.00001

Compute the inverse hyperbolic sine function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, asinh returns unresolved symbolic calls.

symA = asinh(sym([-i, 0, 1/6, i/2, i, 21))

SymA =
[ -(pi*1i)/2, 0, asinh(1/6), (pi*1i)/6, (pi*1i)/2, asinh(2)]
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Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =

[ -1.57079632679489661923132169163981, ...
0,...
0.16590455026930117643502171631553, . ..
0.523598775598298873077107230546581, . . .
1.57079632679489661923132169163981, ...
1.4436354751788103012444253181457]

Plot Inverse Hyperbolic Sine Function

Plot the inverse hyperbolic sine function on the interval from -10 to 10.
syms x

fplot(asinh(x),[-10 101)
grid on
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Handle Expressions Containing Inverse Hyperbolic Sine
Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing asinh.

Find the first and second derivatives of the inverse hyperbolic sine function:
syms X

diff(asinh(x), x)
diff(asinh(x), x, X)
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ans =
1/(x”2 + 1)"~(1/2)

ans =
-X/(x*2 + 1)7(3/2)

Find the indefinite integral of the inverse hyperbolic sine function:
int(asinh(x), x)

ans =
x*asinh(x) - (x™2 + 1)°(1/2)

Find the Taylor series expansion of asinh(x):
taylor(asinh(x), x)

ans =
(3*x"5)/40 - x"3/6 + X

Rewrite the inverse hyperbolic sine function in terms of the natural logarithm:
rewrite(asinh(x), 'log')

ans =
log(x + (x*2 + 1)~(1/2))

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth | acsch|asech |atanh | cosh| coth|csch|sech|sinh|tanh

Introduced before R2006a
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assume

Set assumption on symbolic object

Syntax

assume(condition)
assume(expr,set)
assume (expr, 'clear')

Description

assume(condition) states that condition is valid. assume is not additive. Instead, it
automatically deletes all previous assumptions on the variables in condition.

assume (expr,set) states that expr belongs to set. assume deletes previous

assumptions on variables in expr.

assume (expr, 'clear') clears all assumptions on all variables in expr.

Examples

Common Assumptions

Set an assumption using the associated syntax.

Assume ‘X’ is

Syntax

real assume(x, 'real')
rational assume(x, 'rational')
positive

positive integer

assume(x,{'positive', 'integer'})

less than -1 or greater than 1

(
(
assume(x, 'positive')
(
(

assume(x<-1 | x>1)
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Assume ‘X’ is Syntax

an integer from 2 through 10 assume(in(x, 'integer') & x>2 &
x<10)

not an integer assume(~in(z, 'integer'))

not equal to 0 assume(x ~= 0)

even assume(x/2, 'integer')

odd assume((x-1)/2, 'integer"')

from 0 through 2n assume (x>0 & x<2*pi)

a multiple of i assume(x/pi, 'integer")

Assume Variable Is Even or Odd

Assume X is even by assuming that x/2 is an integer. Assume X is odd by assuming that
(x-1)/2 is an integer.

Assume X is even.

syms X
assume(x/2, 'integer"')

Find all even numbers between 0 and 10 using solve.

solve(x>0,x<10,x)

Assume Xx is odd. assume is not additive, but instead automatically deletes the previous
assumption in(x/2, 'integer').

assume((x-1)/2,'integer")
solve(x>0,x<10,x)
ans =

n
1
3
5
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7
9

Clear the assumptions on x for further computations.

assume(x, 'clear')

Multiple Assumptions

Successive assume commands do not set multiple assumptions. Instead, each assume
command deletes previous assumptions and sets new assumptions. Set multiple
assumptions by using assumeAlso or the & operator.

Assume x > 5 and then X < 10 by using assume. Use assumptions to check that only
the second assumption exists because assume deleted the first assumption when setting
the second.

syms x
assume(x > 5)
assume(x < 10)
assumptions

ans =
x < 10

Assume the first assumption in addition to the second by using assumeAlso. Check that
both assumptions exist.

assumeAlso(x > 5)
assumptions

ans =
[ 5 <x, x <10]

Clear the assumptions on Xx.
assume(x, 'clear"')

Assume both conditions using the & operator. Check that both assumptions exist.

assume(x>5 & x<10)
assumptions

ans =
[ 5 <x, x < 10]

4-99



4 Functions — Alphabetical List

Clear the assumptions on x for future calculations.

assume(x, 'clear')

Assumptions on Integrand

Compute an indefinite integral with and without the assumption on the symbolic
parameter a.

Use assume to set an assumption that a does not equal - 1.

syms X a
assume(a ~= -1)

Compute this integral.
int(x™a,Xx)

ans =
x™(a + 1)/(a + 1)

Now, clear the assumption and compute the same integral. Without assumptions, int
returns this piecewise result.

assume(a, 'clear')
int(x™a, x)

ans =

piecewise(a == -1, log(x), a ~= -1, x™(a + 1)/(a + 1))

Assumptions on Parameters and Variables of Equation
Use assumptions to restrict the returned solutions of an equation to a particular interval.

Solve this equation.

syms X
egn = x5 - (565*x™4)/6 - (1159*x"3)/2 - (2311*x"2)/6 + (365*x)/2 + 250/3;
solve(eqgn, Xx)

ans =
-5

1
-1/3
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1/2
100

Use assume to restrict the solutions to the interval -1 <= x <= 1.

assume(-1 <= x <= 1)
solve(eqn, Xx)

Set several assumptions simultaneously by using the logical operators and, or, xor, not,
or their shortcuts. For example, all negative solutions less than -1 and all positive
solutions greater than 1.

assume(x < -1 | x > 1)
solve(eqn, Xx)

ans =

-5
100

For further computations, clear the assumptions.

assume(x, 'clear')

Use Assumptions for Simplification
Setting appropriate assumptions can result in simpler expressions.

Try to simplify the expression sin(2*pi*n) using simplify. The simplify function
cannot simplify the input and returns the input as it is.

syms n
simplify(sin(2*n*pi))

ans =
sin(2*pi*n)

Assume n is an integer. simplify now simplifies the expression.

assume(n, 'integer"')
simplify(sin(2*n*pi))
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ans =
0

For further computations, clear the assumption.

assume(n, 'clear')

Assumptions on Expressions
Set assumption on the symbolic expression.

You can set assumptions not only on variables, but also on expressions. For example,
compute this integral.

syms X
f = 1/abs(x™2 - 1);
int(f,x)

ans =
-atanh(x)/sign(x®2 - 1)

Set the assumption x2 - 1 > 0 to produce a simpler result.

assume(x™2 - 1 > 0)

int(f,x)
ans =
-atanh(x)

For further computations, clear the assumption.

assume(x, 'clear')

Assumptions to Prove Relations

Prove relations that hold under certain conditions by first assuming the conditions and
then using isAlways.

Prove that sin(pi*x) is never equal to @ when X is not an integer. The isAlways
function returns logical 1 (true), which means the condition holds for all values of x
under the set assumptions.
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syms X
assume(~in(x, 'integer'))
isAlways(sin(pi*x) ~= 0)
ans =
logical
1

Assumptions on Matrix Elements
Set assumptions on all elements of a matrix using sym.

Create the 2-by-2 symbolic matrix A with auto-generated elements. Specify the set as
rational.

A = sym('A',[2 2], 'rational’)

Al 1, Al 2]

A
[
[ A2 1, A2 2]

Return the assumptions on the elements of A using assumptions.

assumptions(A)

ans =

[ in(A1 1, 'rational'), in(Al 2, 'rational'),
in(A2 1, 'rational'), in(A2 2, 'rational')]

You can also use assume to set assumptions on all elements of a matrix. Now, assume all
elements of A have positive rational values. Set the assumptions as a cell of character
vectors {'positive', 'rational'}.

assume(A, {'positive', 'rational'})
Return the assumptions on the elements of A using assumptions.

assumptions(A)

ans =
[ <Al 1, 0<Al2, 0<A21, 0<A22,...
in(Al1 1, ‘rational'), in(Al_2, ‘'rational'),
in(A2_1, ‘'rational'), in(A2_2, 'rational')]

For further computations, clear the assumptions.
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assume(A, 'clear')

Input Arguments

condition — Assumption statement
symbolic expression | symbolic equation | symbolic relation | vector or matrix of symbolic
expressions, equations, or relations

Assumption statement, specified as a symbolic expression, equation, relation, or vector or
matrix of symbolic expressions, equations, or relations. You also can combine several
assumptions by using the logical operators and, or, xor, not, or their shortcuts.

expr — Expression to set assumption on
symbolic variable | symbolic expression | vector or matrix of symbolic variables or
expressions

Expression to set assumption on, specified as a symbolic variable, expression, vector, or
matrix. If expr is a vector or matrix, then assume (expr, set) sets an assumption that
each element of expr belongs to set.

set — Set of assumptions
character vector | string array | cell array

Set of assumptions, specified as a character vector, string array, or cell array. The
available assumptions are 'integer', 'rational’', 'real’, or 'positive’.

You can combine multiple assumptions by specifying a string array or cell array of
character vectors. For example, assume a positive rational value by specifying set as
["positive" "rational"] or {'positive', 'rational'}.

Tips
* assume removes any assumptions previously set on the symbolic variables. To retain

previous assumptions while adding an assumption, use assumeAlso.

*  When you delete a symbolic variable from the MATLAB workspace using clear, all
assumptions that you set on that variable remain in the symbolic engine. If you later
declare a new symbolic variable with the same name, it inherits these assumptions.

* To clear all assumptions set on a symbolic variable var, use this command.
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assume(var, 'clear')

To delete all objects in the MATLAB workspace and close the Symbolic Math Toolbox
engine associated with the MATLAB workspace clearing all assumptions, use this
command:

clear all

MATLAB projects complex numbers in inequalities to the real axis. If condition is an
inequality, then both sides of the inequality must represent real values. Inequalities
with complex numbers are invalid because the field of complex numbers is not an
ordered field. (It is impossible to tell whether 5 + i is greater or less than 2 + 3*1i.)
For example, x > 1 becomes x > 0,and x <= 3 + 2*i becomes x <= 3.

The toolbox does not support assumptions on symbolic functions. Make assumptions
on symbolic variables and expressions instead.

When you create a new symbolic variable using sym and syms, you also can set an
assumption that the variable is real, positive, integer, or rational.

a =sym('a','real');

b =sym('b', 'rational');

c =sym('c', ' 'positive');

d = sym('d"', 'positive');

e = sym('e',{'positive’, 'integer'});

or more efficiently

syms a real

syms b rational

syms c d positive

syms e positive integer

See Also

and | assumeAlso | assumptions | in | isAlways | not | or | piecewise | sym | syms

Topics

“Set Assumptions” on page 1-29

“Check Existing Assumptions” on page 1-30

“Delete Symbolic Objects and Their Assumptions” on page 1-30
“Default Assumption” on page 1-29
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assumeAlso

Add assumption on symbolic object

Syntax

assumeAlso(condition)
assumeAlso(expr,set)

Description

assumeAlso(condition) states that condition is valid for all symbolic variables in
condition. It retains all assumptions previously set on these symbolic variables.

assumeAlso(expr,set) states that expr belongs to set, in addition to all previously
made assumptions.

Examples

Assumptions Specified as Relations
Set assumptions using assume. Then add more assumptions using assumeAlso.

Solve this equation assuming that both x and y are nonnegative.

syms X y
assume(x >= 0 & y >= 0)
s = solve(x™2 + y*2 == 1, vy)

Warning: Solutions are valid under the following
conditions: x <= 1;
X ==

To include parameters and conditions in the
solution, specify the 'ReturnConditions' value as
"true'.
> In solve>warnIfParams (line 482)
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In solve (line 357)
S =

(1 - x)™(1/2)*(x + 1)°(1/2)
-(1 - x ~

The solver warns that both solutions hold only under certain conditions.

Add the assumption that x < 1. To add a new assumption without removing the previous
one, use assumeAlso.

assumeAlso(x < 1)
Solve the same equation under the expanded set of assumptions.

s = solve(x™2 + y"2 ==1, vy)

S =
(1 - x)™(1/2)*(x + 1)~ (1/2)
For further computations, clear the assumptions.

assume([x y],'clear')

Assumptions Specified as Sets

Set assumptions using syms. Then add more assumptions using assumeAlso.
When declaring the symbolic variable n, set an assumption that n is positive.
syms n positive

Using assumeAlso, add more assumptions on the same variable n. For example, assume
also that n is an integer.

assumeAlso(n, 'integer"')

Return all assumptions affecting variable n using assumptions. In this case, nis a
positive integer.

assumptions(n)

ans =
[ © <n, in(n, 'integer')]

For further computations, clear the assumptions.
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assume(n, 'clear')

Assumptions on Matrix Elements

Use the assumption on a matrix as a shortcut for setting the same assumption on each
matrix element.

Create the 3-by-3 symbolic matrix A with auto-generated elements. To assume every
element of A is rational, specify set as 'rational’.

sym('A',[3 3], 'rational')

Al 1, Al 2, Al 3]
A2 1, A2 2, A2 3]
A3 1, A3 2, A3 3]

A

A —
[

[

[
Now, add the assumption that each element of A is greater than 1.
assumeAlso(A > 1)

Return assumptions affecting elements of A using assumptions:

assumptions(A)

ans =

[ 1<A11, 1<A12, 1<A13, 1<A21, 1<A22,1<A23,...

1 <A31, 1<A32,1<A33,...

in(Al 1, ‘'rational'), in(Al1 2, 'rational'), in(Al 3, ‘'rational'),
in(A2_1, 'rational'), in(A2_ 2, 'rational'), in(A2_3, 'rational'),
in(A3 1, ‘'rational'), in(A3 2, 'rational'), in(A3_3, 'rational')]

For further computations, clear the assumptions.

assume(A, 'clear')

Contradicting Assumptions

When you add assumptions, ensure that the new assumptions do not contradict the
previous assumptions. Contradicting assumptions can lead to inconsistent and
unpredictable results. In some cases, assumeAlso detects conflicting assumptions and
issues an error.

Try to set contradicting assumptions. assumeAlso returns an error.
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syms y
assume(y, 'real’)
assumeAlso(y == i)

Error using mupadengine/feval (line 195)
Inconsistent assumptions.
Error in sym/assumeAlso (line 622)

feval(symengine, 'assumeAlso', cond);

assumeAlso does not guarantee to detect contradicting assumptions. For example,
assume that y is nonzero, and both y and y*i are real values.

syms vy
assume(y ~= 0)

assumeAlso(y, 'real')
assumeAlso(y*i, 'real')

Return all assumptions affecting variable y using assumptions:
assumptions(y)

ans =
[ in(y, 'real'), in(y*1i, 'real'), y ~= 0]

For further computations, clear the assumptions.

assume(y, 'clear')

Input Arguments

condition — Assumption statement
symbolic expression | symbolic equation | relation | vector or matrix of symbolic
expressions, equations, or relations

Assumption statement, specified as a symbolic expression, equation, relation, or vector or
matrix of symbolic expressions, equations, or relations. You also can combine several
assumptions by using the logical operators and, or, xor, not, or their shortcuts.

expr — Expression to set assumption on
symbolic variable | symbolic expression | vector or matrix of symbolic variables or
expressions
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Expression to set assumption on, specified as a symbolic variable, expression, or a vector
or matrix of symbolic variables or expressions. If expr is a vector or matrix, then
assumeAlso(expr,set) sets an assumption that each element of expr belongs to set.

set — Set of assumptions
character vector | string array | cell array

Set of assumptions, specified as a character vector, string array, or cell array. The
available assumptions are 'integer', 'rational’, 'real’, or 'positive’.

You can combine multiple assumptions by specifying a string array or cell array of
character vectors. For example, assume a positive rational value by specifying set as
["positive" "rational"] or {'positive', 'rational'}.

Tips

* assumeAlso keeps all assumptions previously set on the symbolic variables. To
replace previous assumptions with the new one, use assume.

* When adding assumptions, always check that a new assumption does not contradict
the existing assumptions. To see existing assumptions, use assumptions. Symbolic
Math Toolbox does not guarantee to detect conflicting assumptions. Conflicting
assumptions can lead to unpredictable and inconsistent results.

* When you delete a symbolic variable from the MATLAB workspace using clear, all
assumptions that you set on that variable remain in the symbolic engine. If later you
declare a new symbolic variable with the same name, it inherits these assumptions.

» To clear all assumptions set on a symbolic variable var use this command.

assume(var, 'clear')

» To clear all objects in the MATLAB workspace and close the Symbolic Math Toolbox
engine associated with the MATLAB workspace resetting all its assumptions, use this
command.

clear all

* MATLAB projects complex numbers in inequalities to the real axis. If condition is an
inequality, then both sides of the inequality must represent real values. Inequalities
with complex numbers are invalid because the field of complex numbers is not an
ordered field. (It is impossible to tell whether 5 + 1i is greater or less than 2 + 3*1i.)
For example, x > i becomes x > 0,and X <= 3 + 2*1i becomes x <= 3.
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* The toolbox does not support assumptions on symbolic functions. Make assumptions
on symbolic variables and expressions instead.

* Instead of adding assumptions one by one, you can set several assumptions in one
function call. To set several assumptions, use assume and combine these assumptions
by using the logical operators and, or, xor, not, all, any, or their shortcuts.

See Also

and | assume | assumptions | in | isAlways | not |or | piecewise | sym | syms

Topics

“Set Assumptions” on page 1-29

“Check Existing Assumptions” on page 1-30

“Delete Symbolic Objects and Their Assumptions” on page 1-30
“Default Assumption” on page 1-29

Introduced in R2012a
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assumptions

Show assumptions affecting symbolic variable, expression, or function

Syntax

assumptions(var)
assumptions

Description
assumptions(var) returns all assumptions that affect variable var. If var is an

expression or function, assumptions returns all assumptions that affect all variables in
var.

assumptions returns all assumptions that affect all variables in MATLAB Workspace.

Examples

Assumptions on Variables

Assume that the variable n is an integer using assume. Return the assumption using
assumptions.

syms n
assume(n, 'integer"')
assumptions

ans =

in(n, 'integer')
The syntax in(n, 'integer') indicates n is an integer.

Assume that n is less than x and that x < 42 using assume. The assume function
replaces old assumptions on input with the new assumptions. Return all assumptions that
affect n.
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syms X
assume(n<x & x<42)
assumptions(n)

ans =
[ n < x, x <42]

assumptions returns the assumption X < 42 because it affects n through the
assumption n < x. Thus, assumptions returns the transitive closure of assumptions,
which is all assumptions that mathematically affect the input.

Set the assumption on variable mthat 1 < m < 3. Return all assumptions on m and x
using assumptions.

syms m
assume (1l<m<3)
assumptions([m x])

ans =
[n<x, 1<mm<3, x < 42]

To see the assumptions that affect all variables, use assumptions without any
arguments.

assumptions

ans =
[n<x, 1<m m<3, X< 42]

For further computations, clear the assumptions.

assume([m n x]1,'clear')

Multiple Assumptions on One Variable

You cannot set an additional assumption on a variable using assume because assume
clears all previous assumptions on that variable. To set an additional assumption on a
variable, using assumeAlso.

Set an assumption on x using assume. Set an additional assumption on x use
assumeAlso. Use assumptions to return the multiple assumptions on x.

syms X
assume(x, 'real')
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assumeAlso(x<0)
assumptions(x)

ans =
[ in(x, 'real'), x < 0]

The syntax in(x, 'real') indicates x is real.
For further computations, clear the assumptions.

assume(x, 'clear')

Assumptions Affecting Expressions and Functions

assumptions accepts symbolic expressions and functions as input and returns all
assumptions that affect all variables in the symbolic expressions or functions.

Set assumptions on variables in a symbolic expression. Find all assumptions that affect all
variables in the symbolic expression using assumptions.

syms a b c

expr = a*exp(b)*sin(c);

assume(a+b > 3 & in(a, 'integer') & in(c, 'real'))

assumptions(expr)

ans =
[ 3<a+b, in(a, 'integer'), in(c, 'real')

Find all assumptions that affect all variables that are inputs to a symbolic function.

syms f(a,b,c)
assumptions(f)

ans =
[ 3<a+ b, in(a, 'integer'), in(c, 'real')]

Clear the assumptions for further computations.

assume([a b c], 'clear')

Restore Old Assumptions

To restore old assumptions, first store the assumptions returned by assumptions. Then
you can restore these assumptions at any point by calling assume or assumeAlso.
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Solve the equation for a spring using dsolve under the assumptions that the mass and
spring constant are positive.

syms m k positive
syms x(t)
dsolve(m*diff(x,t,t) == -k*x, x(0)==0)

ans =
C8*sin((k™(1/2)*t)/m~(1/2))

Suppose you want to explore solutions unconstrained by assumptions, but want to restore
the assumptions afterwards. First store the assumptions using assumptions, then clear
the assumptions and solve the equation. dsolve returns unconstrained solutions.

tmp = assumptions;
assume([m k], 'clear")
dsolve(m*diff(x,t,t) == -k*x, x(0)==0)

ans =
Clo*exp((t*(-k*m)~(1/2))/m) + ClO*exp(-(t*(-k*m)”~(1/2))/m)

Restore the original assumptions using assume.
assume (tmp)
After computations are complete, clear assumptions using assume.

assume([m k], 'clear")

Input Arguments

var — Symbolic input to check for assumptions
symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic
matrix | symbolic multidimensional array

Symbolic input for which to show assumptions, specified as a symbolic variable,
expression, or function, or a vector, matrix, or multidimensional array of symbolic
variables, expressions, or functions.
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Tips

* When you delete a symbolic object from the MATLAB workspace by using clear, all
assumptions that you set on that obhject remain in the symbolic engine. If you declare a
new symbolic variable with the same name, it inherits these assumptions.

» To clear all assumptions set on a symbolic variable var use this command.

assume(var, 'clear"')

* To clear all objects in the MATLAB workspace and close the Symbolic Math Toolbox
engine associated with the MATLAB workspace resetting all its assumptions, use this
command.

clear all

See Also

and | assume | assumeAlso | clear | in | isAlways | not | or | piecewise | sym |
syms

Topics

“Set Assumptions” on page 1-29

“Check Existing Assumptions” on page 1-30

“Delete Symbolic Objects and Their Assumptions” on page 1-30
“Default Assumption” on page 1-29

Introduced in R2012a
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atan

Symbolic inverse tangent function

Syntax

atan(X)

Description

atan (X) returns the inverse tangent function (arctangent function) of X. All angles are in
radians.

* For real values of X, atan(X) returns values in the interval [ -pi/2,pi/2].

* For complex values of X, atan(X) returns complex values with the real parts in the
interval [ -pi/2,pi/2].

Examples

Inverse Tangent Function for Numeric and Symbolic
Arguments

Depending on its arguments, atan returns floating-point or exact symbolic results.

Compute the inverse tangent function for these numbers. Because these numbers are not
symbolic objects, atan returns floating-point results.

A = atan([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)])

A

-0.7854 -0.3218 -0.5236 0.4636 0.7854 1.0472

Compute the inverse tangent function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, atan returns unresolved symbolic calls.

symA = atan(sym([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)]1))
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SymA =
[ -pi/4, -atan(1/3), -pi/6, atan(1/2), pi/4, pi/3]

Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =

[ -0.78539816339744830961566084581988, . ..
-0.32175055439664219340140461435866, . . .
-0.52359877559829887307710723054658, . . .
0.46364760900080611621425623146121, ...
0.78539816339744830961566084581988, . . .
1.0471975511965977461542144610932]

Plot Inverse Tangent Function

Plot the inverse tangent function on the interval from -10 to 10.

syms X
fplot(atan(x),[-10 10])
grid on
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Handle Expressions Containing Inverse Tangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions

containing atan.
Find the first and second derivatives of the inverse tangent function:

syms X
diff(atan(x), x)
diff(atan(x), x, x)
ans =
1/(x*2 + 1)
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ans =
-(2*%x) /(x*2 + 1)"2

Find the indefinite integral of the inverse tangent function:
int(atan(x), x)

ans =
x*atan(x) - log(x™2 + 1)/2

Find the Taylor series expansion of atan(x):
taylor(atan(x), x)

ans =
x*5/5 - x"3/3 + x

Rewrite the inverse tangent function in terms of the natural logarithm:
rewrite(atan(x), 'log')

ans =
(log(l - x*1i)*1i)/2 - (log(l + x*1i)*1i)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also

acos | acot | acsc|asec|asin|atan2|cos|cot|csc|sec|sin]|tan

Introduced before R2006a
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Symbolic four-quadrant inverse tangent

Syntax

atan2(Y,X)

Description

atan2(Y,X) computes the four-quadrant inverse tangent (arctangent) of Y and X. If Y
and X are vectors or matrices, atan2 computes arctangents element by element.

Examples

Four-Quadrant Inverse Tangent for Numeric and Symbolic
Arguments

Compute the arctangents of these parameters. Because these numbers are not symbolic
objects, you get floating-point results.

[atan2(1, 1), atan2(pi, 4), atan2(Inf, Inf)]

ans =
0.7854 0.6658 0.7854

Compute the arctangents of these parameters which are converted to symbolic objects:
[atan2(sym(1l), 1), atan2(sym(pi), sym(4)), atan2(Inf, sym(Inf))]

ans =
[ pi/4, atan(pi/4), pi/4]

Limit of Four-Quadrant Inverse Tangent

Compute the limits of this symbolic expression:
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syms X
limit(atan2(x”~2/(1 + x), x), x, -Inf)
limit(atan2(x”2/(1 + x), x), x, Inf)

ans =
-(3*pi)/4

ans =
pi/4

Four-Quadrant Inverse Tangent of Array Input

Compute the arctangents of the elements of matrices Y and X:

Y = sym([3 sqrt(3); 1 11);
X = sym([sqrt(3) 3; 1 0]);

atan2(Y, X)
ans =

[ pi/3, pi/6]
[ pi/4, pi/2]

Input Arguments

Y — Input
number | vector | matrix | array | symbolic number | symbolic array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, array, function,
or expression. If Y is a number, it must be real. If Y is a vector or matrix, it must either be
a scalar or have the same dimensions as X. All numerical elements of Y must be real.

X — Input
number | vector | matrix | array | symbolic number | symbolic array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, array, function,
or expression. The function also accepts a vector or matrix of symbolic numbers,
variables, expressions, functions. If X is a number, it must be real. If X is a vector or
matrix, it must either be a scalar or have the same dimensions as Y. All numerical
elements of X must be real.
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Definitions

Four-Quadrant Inverse Tangent

IfX#0andY # 0, then

atan2(Y, X) = atan(%) + %sign(Y)(l — sign(X))

Results returned by atan2 belong to the closed interval [ -pi, pi]. Results returned by
atan belong to the closed interval [-pi/2,pi/2].

Tips
* Calling atan2 for numbers (or vectors or matrices of numbers) that are not symbolic

objects invokes the MATLAB atan2 function.

* If one of the arguments X and Y is a vector or a matrix, and another one is a scalar,
then atan2 expands the scalar into a vector or a matrix of the same length with all
elements equal to that scalar.

* Symbolic arguments X and Y are assumed to be real.
o IfX =0andY > 0, then atan2(Y,X) returns pi/2.

IfX = 0and Y < 0, then atan2(Y,X) returns -pi/2.
IfX =Y = 0, then atan2(Y, X) returns 0.
Alternatives

For complex Z = X + Y*1i, the call atan2(Y, X) is equivalent to angle(Z).

See Also

angle | atan| conj | imag | real

Introduced in R2013a



atanh

atanh

Symbolic inverse hyperbolic tangent function

Syntax

atanh(X)

Description

atanh (X) returns the inverse hyperbolic tangent function of X.

Examples

Inverse Hyperbolic Tangent Function for Numeric and
Symbolic Arguments

Depending on its arguments, atanh returns floating-point or exact symbolic results.

Compute the inverse hyperbolic tangent function for these numbers. Because these
numbers are not symbolic objects, atanh returns floating-point results.

A

atanh([-i, 0, 1/6, i/2, i, 21)

A =
0.0000 - 0.78541i 0.0000 + 0.00001 0.1682 + 0.00001i...
0.0000 + 0.46361 0.0000 + 0.78541i  0.5493 + 1.57081

Compute the inverse hyperbolic tangent function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, atanh returns unresolved symbolic calls.

symA = atanh(sym([-i, 0, 1/6, i/2, i, 2]))

SymA =
[ -(pi*1i)/4, 0, atanh(1/6), atanh(1li/2), (pi*1i)/4, atanh(2)]
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Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =

[ -0.785398163397448309615660845819881, . ..

0,...

0.1682361183106064652522967051085, . ..
0.463647609000806116214256231461211, . ..
0.785398163397448309615660845819881,, . . .
0.54930614433405484569762261846126 - 1.57079632679489661923132169163981 ]

Plot Inverse Hyperbolic Tangent Function

Plot the inverse hyperbolic tangent function on the interval from -1 to 1.
syms x

fplot(atanh(x),[-1 1])
grid on
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Handle Expressions Containing Inverse Hyperbolic Tangent
Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing atanh.

Find the first and second derivatives of the inverse hyperbolic tangent function:
syms X

diff(atanh(x), x)
diff(atanh(x), x, X)

4-127



4 Functions — Alphabetical List

4-128

ans =
-1/(x*2 - 1)

ans =
(2*¥x)/(x*2 - 1)7°2

Find the indefinite integral of the inverse hyperbolic tangent function:
int(atanh(x), x)

ans =
log(x™2 - 1)/2 + x*atanh(x)

Find the Taylor series expansion of atanh(x):
taylor(atanh(x), x)

ans =
X*5/5 + X"3/3 + X

Rewrite the inverse hyperbolic tangent function in terms of the natural logarithm:
rewrite(atanh(x), 'log"')

ans =
log(x + 1)/2 - log(l - x)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth | acsch|asech|asinh | cosh|coth|csch|sech|sinh|tanh

Introduced before R2006a
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Base units of unit system

Syntax

baseUnits(unitSystem)

Description

baseUnits(unitSystem) returns the base units of the unit system unitSystemas a
vector of symbolic units. You can use the returned units to create new unit systems by
using newUnitSystem.

Examples

Base Units of Unit System

Get the base units of a unit system by using baseUnits. Then, modify the base units and
create a new unit system using the modified base units. Available unit systems include SI,
CGS, and US. For all unit systems, see “Unit Systems List” on page 2-36.

Get the base units of the SI unit system.
SIUnits = baseUnits('SI"')

SIUnits
[ [kagl, [sl, [m], [A], [cd], [mol], [KI]

Note Do not define a variable called baseUnits because the variable will prevent access
to the baseUnits function.

Define base units that use kilometer for length and hour for time by modifying SIUnits
using subs.
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u = symunit;
newUnits = subs(SIUnits,[u.m u.s],[u.km u.hr])

newUnits =
[ [kgl, [h], [km], [A]l, [cd], [mol], [KI]

Define the new unit system by using newUnitSystem.
newUnitSystem('SI km hr',newUnits)

ans =
"SI km_hr"

To convert units between unit systems, see “Unit Conversions and Unit Systems” on page
2-39.

Input Arguments

unitSystem — Name of unit system
string | character vector

Name of the unit system, specified as a string or character vector.

See Also

derivedUnits | newUnitSystem | removeUnitSystem | rewrite | symunit

Topics

“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

External Websites
The International System of Units (SI)

Introduced in R2017b
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Bernoulli numbers and polynomials

Syntax

bernoulli(n)
bernoulli(n,x)

Description

bernoulli(n) returns the nth Bernoulli number on page 4-135.

bernoulli(n,x) returns the nth Bernoulli polynomial on page 4-135.

Examples

Bernoulli Numbers with Odd and Even Indices

The 0th Bernoulli number is 1. The next Bernoulli number can be -1/2 or 1/2, depending
on the definition. The bernoulli function uses -1/2. The Bernoulli numbers with even
indices n > 1 alternate the signs. Any Bernoulli number with an odd index n > 2 is 0.

Compute the even-indexed Bernoulli numbers with the indices from 0 to 10. Because
these indices are not symbolic objects, bernoulli returns floating-point results.

bernoulli(0:2:10)

ans =
1.0000 0.1667 -0.0333 0.0238 -0.0333 0.0758

Compute the same Bernoulli numbers for the indices converted to symbolic objects:
bernoulli(sym(0:2:10))

ans =
[ 1, 1/6, -1/30, 1/42, -1/30, 5/66]
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Compute the odd-indexed Bernoulli numbers with the indices from 1 to 11:
bernoulli(sym(1:2:11))
ans =

[ -1/2, 6, 0, 0, 0, 0]

Bernoulli Polynomials
For the Bernoulli polynomials, use bernoulli with two input arguments.

Compute the first, second, and third Bernoulli polynomials in variables X, y, and z,
respectively:

syms X y z
bernoulli(1, x)
bernoulli(2, y)
bernoulli(3, z)

ans =
x - 1/2

ans =
y*2 -y + 1/6

ans
z"3 - (3*z72)/2 + z/2

If the second argument is a number, bernoulli evaluates the polynomial at that number.
Here, the result is a floating-point number because the input arguments are not symbolic
numbers:

bernoulli(2, 1/3)

-0.0556
To get the exact symbolic result, convert at least one of the numbers to a symbolic object:
bernoulli(2, sym(1/3))

ans =
-1/18
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Plot Bernoulli Polynomials

Plot the first six Bernoulli polynomials.

syms X
fplot(bernoulli(0:5, x), [-0.8 1.81])
title('Bernoulli Polynomials')

grid on

Bemoulli Polynomials

Handle Expressions Containing Bernoulli Polynomials

Many functions, such as diff and expand, handles expressions containing bernoulli.
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Find the first and second derivatives of the Bernoulli polynomial:

syms n X
diff(bernoulli(n,x”2), x)

ans =
2*¥n*x*pbernoulli(n - 1, x*2)

diff(bernoulli(n,x”2), x, X)

ans =
2*n*bernoulli(n - 1, x™2) +...
4*n*x~2*bernoulli(n - 2, x™2)*(n - 1)

Expand these expressions containing the Bernoulli polynomials:
expand(bernoulli(n, x + 3))

ans =
bernoulli(n, x) + (n*(x + 1)™n)/(x + 1) +...
(n*(x + 2)™n)/(x + 2) + (n*xX™n)/xX

expand(bernoulli(n, 3*x))

ans =
(3”*n*bernoulli(n, x))/3 + (3”n*bernoulli(n, x + 1/3))/3 +...
(3”*n*bernoulli(n, x + 2/3))/3

Input Arguments

n — Index of the Bernoulli number or polynomial
nonnegative integer | symbolic nonnegative integer | symbolic variable | symbolic
expression | symbolic function | symbolic vector | symbolic matrix

Index of the Bernoulli number or polynomial, specified as a nonnegative integer, symbolic
nonnegative integer, variable, expression, function, vector, or matrix. If n is a vector or
matrix, bernoulli returns Bernoulli numbers or polynomials for each element of n. If
one input argument is a scalar and the other one is a vector or a matrix,
bernoulli(n,x) expands the scalar into a vector or matrix of the same size as the other
argument with all elements equal to that scalar.

x — Polynomial variable
symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic
matrix



bernoulli

Polynomial variable, specified as a symbolic variable, expression, function, vector, or
matrix. If X is a vector or matrix, bernoulli returns Bernoulli numbers or polynomials
for each element of x. When you use the bernoulli function to find Bernoulli
polynomials, at least one argument must be a scalar or both arguments must be vectors
or matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, bernoulli(n, x) expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

Definitions

Bernoulli Polynomials
The Bernoulli polynomials are defined as follows:

teXt
et-1

= > bernoulli(n, x)—
n=0 ’

Bernoulli Numbers

The Bernoulli numbers are defined as follows:

bernoulli(n) = bernoulli(n, 0)

See Also

euler

Introduced in R2014a
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Bernstein polynomials

Syntax

bernstein(f,n,t)
bernstein(g,n,t)
bernstein(g,var,n,t)

Description

bernstein(f,n,t) with a function handle f returns the nth-order Bernstein polynomial
on page 4-142 symsum(nchoosek(n, k) *t~k*(1-t)~(n-k)*f(k/n),k,0,n),
evaluated at the point t. This polynomial approximates the function f over the interval
[0,1].

bernstein(g,n,t) with a symbolic expression or function g returns the nth-order
Bernstein polynomial, evaluated at the point t. This syntax regards g as a univariate
function of the variable determined by symvar(g,1).

If any argument is symbolic, bernstein converts all arguments except a function handle
to symbolic, and converts a function handle’s results to symbolic.

bernstein(g,var,n,t) with a symbolic expression or function g returns the
approximating nth-order Bernstein polynomial, regarding g as a univariate function of the
variable var.

Examples

Approximation of Sine Function Specified as Function Handle

Approximate the sine function by the 10th- and 100th-degree Bernstein polynomials:
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syms t
bl0 = bernstein(@(t) sin(2*pi*t), 10, t);
b1l00 = bernstein(@(t) sin(2*pi*t), 100, t);

Plot sin(2*pi*t) and its approximations:

fplot(sin(2*pi*t),[0,1])
hold on

fplot(b10,[0,1])
fplot(bl006,[0,1])

legend('sine function', 'l10th-degree polynomial',...
'100th-degree polynomial')

title('Bernstein polynomials')

hold off
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Approximation of Exponential Function Specified as Symbolic
Expression

Approximate the exponential function by the second-order Bernstein polynomial in the
variable t:

syms x t
bernstein(exp(x), 2, t)

ans =
(t - 1)72 + t72*%exp(1l) - 2*t*exp(1l/2)*(t - 1)
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Approximate the multivariate exponential function. When you approximate a multivariate
function, bernstein regards it as a univariate function of the default variable
determined by symvar. The default variable for the expression y*exp (x*y) is x:

syms x y t
symvar(y*exp(x*y), 1)

ans =
X

bernstein treats this expression as a univariate function of x:
bernstein(y*exp(x*y), 2, t)

ans =
y¥(t - 1)72 + t72*¥y*exp(y) - 2*¥t*y*exp(y/2)*(t - 1)

To treat y*exp (x*y) as a function of the variable y, specify the variable explicitly:
bernstein(y*exp(x*y), y, 2, t)
ans =

t"2*exp(x) - t*exp(x/2)*(t - 1)

Approximation of Linear Ramp Specified as Symbolic Function

Approximate function f representing a linear ramp by the fifth-order Bernstein
polynomials in the variable t:

syms f(t)

f(t) = triangularPulse(1/4, 3/4, Inf, t);

p = bernstein(f, 5, t)

p =

TX¥EN3*¥(t - 1)72 - 3FEM2*¥(t - 1)73 - 5¥t74k(t - 1) + t75
Simplify the result:

simplify(p)

ans =
-th2*% (2%t - 3)
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Numerical Stability of Simplified Bernstein Polynomials

When you simplify a high-order symbolic Bernstein polynomial, the result often cannot be
evaluated in a numerically stable way.

Approximate this rectangular pulse function by the 100th-degree Bernstein polynomial,
and then simplify the result:

ernstein(f, 100, sym('t'));

@(x)rectangularPulse(1/4,3/4,x);
b
simplify(bl);

f =
bl
b2

Convert the polynomial b1 and the simplified polynomial b2 to MATLAB functions:

fl
f2

matlabFunction(bl);
matlabFunction(b2);

Compare the plot of the original rectangular pulse function, its numerically stable
Bernstein representation f1, and its simplified version f2. The simplified version is not
numerically stable.

t =0:0.001:1;

plot(t, f(t), t, f1(t), t, f2(t))

hold on

legend('original function', 'Bernstein polynomial',...
'simplified Bernstein polynomial')

hold off
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Input Arguments

f — Function to be approximated by a polynomial
function handle

Function to be approximated by a polynomial, specified as a function handle. f must
accept one scalar input argument and return a scalar value.

g — Function to be approximated by a polynomial
symbolic expression | symbolic function
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Function to be approximated by a polynomial, specified as a symbolic expression or
function.

n — Bernstein polynomial order
nonnegative integer

Bernstein polynomial order, specified as a nonnegative number.

t — Evaluation point
number | symbolic number | symbolic variable | symbolic expression | symbolic function

Evaluation point, specified as a number, symbolic number, variable, expression, or
function. If t is a symbolic function, the evaluation point is the mathematical expression
that defines t. To extract the mathematical expression defining t, bernstein uses
formula(t).

var — Free variable
symbolic variable

Free variable, specified as a symbolic variable.

Definitions

Bernstein Polynomials
A Bernstein polynomial is a linear combination of Bernstein basis polynomials.

A Bernstein polynomial of degree n is defined as follows:
n
B(t) = kEOBkbk,n(t)-

Here,

n

bint) =

)tk(l - K k=0,..n

n

k is a binomial coefficient.

are the Bernstein basis polynomials, and
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The coefficients fi are called Bernstein coefficients or Bezier coefficients.

If f is a continuous function on the interval [0, 1] and
k
Ba(f)® = 3 5 Jon®

is the approximating Bernstein polynomial, then

lim By(f)(t) = f(t)

n— o

uniformly in t on the interval [0, 1].

Tips

* Symbolic polynomials returned for symbolic t are numerically stable when
substituting numerical values between 0 and 1 for t.

» Ifyou simplify a symbolic Bernstein polynomial, the result can be unstable when
substituting numerical values for the curve parameter t.

See Also

bernsteinMatrix | formula | nchoosek | symsum | symvar

Introduced in R2013b
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Bernstein matrix

Syntax

B = bernsteinMatrix(n,t)

Description

B = bernsteinMatrix(n,t), where t is a vector, returns the Length(t)-by-(n+1)
Bernstein matrix B, such that B(i,k+1)= nchoosek(n,k)*t(i)~k*(1-t(i))"~(n-k).
Here, the index i runs from 1 to length(t), and the index k runs from 0 to n.

The Bernstein matrix is also called the Bezier matrix.
Use Bernstein matrices to construct Bezier curves:
bezierCurve = bernsteinMatrix(n, t)*P

Here, the n+1 rows of the matrix P specify the control points of the Bezier curve. For
example, to construct the second-order 3-D Bezier curve, specify the control points as:

P = [pOx, pOy, pOz; plx, ply, plz; p2x, p2y, p2z]

Examples

2-D Bezier Curve

Plot the fourth-order Bezier curve specified by the control points p@ = [0 1], pl = [4
3]1,p2 = [6 2],p3 = [3 0],pd4 = [2 4]. Create a matrix with each row
representing a control point:

P=1[01; 43; 62; 30; 24];

Compute the fourth-order Bernstein matrix B:
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syms t
B = bernsteinMatrix (4, t)

B =
[ (t - 1)™4, -4*%t*(t - 1)73, 6*t™2*%(t - 1)72, -4*t"3*%(t - 1), t™4]
Construct the Bezier curve:

bezierCurve = simplify(B*P)

bezierCurve =
[ -2%t*(- 5%t"3 + 6*t™2 + 6%t - 8), 5*t™4 + 8*t"3 - 18*t"2 + 8*t + 1]

Plot the curve adding the control points to the plot:

fplot(bezierCurve(l), bezierCurve(2), [0, 11)
hold on

scatter(P(:,1), P(:,2),'filled")
title('Fourth-order Bezier curve')

hold off
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3-D Bezier Curve

Construct the third-order Bezier curve specified by the 4-by-3 matrix P of control points.
Each control point corresponds to a row of the matrix P.

P=[00060; 222;2-11; 61 3];
Compute the third-order Bernstein matrix:
syms t

B = bernsteinMatrix(3,t)

B =

[

-(t - 1)73, 3FtR(t - 1)72, -3*t72¢(t - 1), t73]
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Construct the Bezier curve:
bezierCurve = simplify(B*P)

bezierCurve =
[ 6%t*(t™2 - t + 1), t*(10*t™2 - 15*%t + 6), 3*t*(2*t"2 - 3*t + 2)]

Plot the curve adding the control points to the plot:

fplot3(bezierCurve(l), bezierCurve(2), bezierCurve(3), [0, 1])
hold on

scatter3(P(:,1), P(:,2), P(:,3),'filled")

hold off

-8
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3-D Bezier Curve with Evaluation Point Specified as Vector

Construct the third-order Bezier curve with the evaluation point specified by the following
1-by-101 vector t:

t =0:1/100:1;
Compute the third-order 101-by-4 Bernstein matrix and specify the control points:

B
)

bernsteinMatrix(3,t);
[000; 222; 2-11; 61 3];

Construct and plot the Bezier curve. Add grid lines and control points to the plot.

bezierCurve = B*P;

plot3(bezierCurve(:,1), bezierCurve(:,2), bezierCurve(:,3))
hold on

grid

scatter3(P(:,1), P(:,2), P(:,3),'filled")

hold off



bernsteinMatrix

-8

Input Arguments

n — Approximation order
nonnegative integer

Approximation order, specified as a nonnegative integer.

t — Evaluation point
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic

vector

Evaluation point, specified as a number, symbolic number, variable, expression, or vector.
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Output Arguments

B — Bernstein matrix
matrix

Bernstein matrix, returned as a Llength(t)-by-n+1 matrix.

See Also

bernstein | nchoosek | symsum | symvar

Introduced in R2013b
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besselh

Bessel function of third kind (Hankel function) for symbolic expressions

Syntax

H = besselh(nu,K,z)

H = besselh(nu,z)

H = besselh(nu,K,z,1)

Description

H = besselh(nu,K,z) computes the Hankel function H,()K)(z), where K =1 or 2, for

each element of the complex array z. The output H has the symbolic data type if any input
argument is symbolic. See “Bessel’s Equation” on page 4-153.

H = besselh(nu,z) usesK=1.

H = besselh(nu,K,z,1) scales HX(2) by exp(-i*z) ifK = 1, and by exp (+i*z) if K
=2.

Examples

Compute Hankel Function

Specify the Hankel function for a symbolic variable.

syms z
H = besselh(3/2,1,2z)
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Evaluate the function symbolically and numerically at the pointz = 1 + 2i.
Hval = subs(H,z,1+21)

Hval =
_2+‘1 7 14
VZe 2t (-f-5 i
JI+21i o
vpa(Hval)

ans = —0.084953341280586443678471523210602 — 0.056674847869835575940327724800155 i

Specify the function without the second argument, K = 1.

H2

besselh(3/2,z)

H2
V2 eZi(1+ %)
Vzm

Notice that the functions H and H2 are identical.

Scale the function by e~ by using the four-argument syntax.

Hnew = besselh(3/2,1,z,1)
Hnew =
ﬁ(l + %)
C Vzm
Find the derivative of H.
diffH = diff(H)
diffH =
J2Zetl i V?VQZI(l + 2 )1 N ¢§'e21(1 + %)
7% i Vel 2

4-152



besselh

Input Arguments

nu — Hankel function order
symbolic array | double array

Hankel function order, specified as a symbolic array or double array. If nu and z are
arrays of the same size, the result is also that size. If either input is a scalar, besselh
expands it to the other input size.

Example: nu = 3*sym('pi')/2

K — Kind of Hankel function
symbolic 1 or 2 | double 1 or 2

Kind of Hankel function, specified as a symbolic or double 1 or 2. K identifies the sign of
the added Bessel function Y:

HY@) = J,(2) + iY,(2)
H,‘,2 (@) = J,(2) = iY,(2).
Example: K = sym(2)

z — Hankel function argument
symbolic array | double array

Hankel function argument, specified as a symbolic array or double array. If nu and z are
arrays of the same size, the result is also that size. If either input is a scalar, besselh
expands it to the other input size.

Example: z = sym(1+11)

Definitions

Bessel’s Equation

The differential equation

sz_w + zd—w + (z - vz)w 0,
dZ dZ
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where v is a real constant, is called Bessel's equation, and its solutions are known as
Bessel functions.

J,(2) and J_,(2) form a fundamental set of solutions of Bessel's equation for noninteger v.
Y,(2) is a second solution of Bessel's equation—linearly independent of J,(z)—defined by

Jy(2)cos(vm) — J_,(2)

Y2 = sin(vm)

The relationship between the Hankel and Bessel functions is

HY@) = J,(2) + iY,(2)
HP @) = J,(2) - iY,(2).

Here, J,(2) is besselj, and Y,(2) is bessely.

References

[1] Abramowitz, M., and I. A. Stegun. Handbook of Mathematical Functions. National
Bureau of Standards, Applied Math. Series #55, Dover Publications, 1965.

See Also

besseli | besselj | besselk | bessely
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besseli

Modified Bessel function of the first kind for symbolic expressions

Syntax

besseli(nu, z)

Description

besseli(nu,z) returns the modified Bessel function of the first kind on page 4-159,
I,(2).

Examples

Find Modified Bessel Function of First Kind

Compute the modified Bessel functions of the first kind for these numbers. Because these
numbers are not symbolic objects, you get floating-point results.

[besseli(0, 5), besseli(-1, 2), besseli(1/3, 7/4), besseli(1l, 3/2 + 2*i)]

ans =
27.2399 + 0.00001 1.5906 + 0.00001 1.7951 + 0.00001 -0.1523 + 1.0992i

Compute the modified Bessel functions of the first kind for the numbers converted to
symbolic objects. For most symbolic (exact) numbers, besseli returns unresolved
symbolic calls.

[besseli(sym(0), 5), besseli(sym(-1), 2),...
besseli(1/3, sym(7/4)), besseli(sym(1l), 3/2 + 2*i)]

ans =
[ besseli(0, 5), besseli(1l, 2), besseli(1/3, 7/4), besseli(l, 3/2 + 2i)]

For symbolic variables and expressions, besseli also returns unresolved symbolic calls:
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syms X y
[besseli(x, y), besseli(l, x"2), besseli(2, x - y), besseli(x"2, x*y)l]

ans =

[ besseli(x, y), besseli(1l, x*2), besseli(2, x - y), besseli(x™2, x*y)]

Solve Bessel Differential Equation for Modified Bessel
Functions

Solve this second-order differential equation. The solutions are the modified Bessel
functions of the first and the second kind.

syms nu w(z)
dsolve(z™2*diff(w, 2) + z*¥diff(w) -(z"2 + nu™2)*w == 0)

ans =
C2*besseli(nu, z) + C3*besselk(nu, z)

Verify that the modified Bessel function of the first kind is a valid solution of the modified
Bessel differential equation.

syms nu z
isAlways(z"2*diff(besseli(nu, z), z, 2) + z*diff(besseli(nu, z), z)...
- (272 + nu"2)*besseli(nu, z) == 0)
ans =
logical
1

Special Values of Modified Bessel Function of First Kind

If the first parameter is an odd integer multiplied by 1/2, besseli rewrites the Bessel
functions in terms of elementary functions:

syms x
besseli(1/2, x)

ans =
(27(1/2)*sinh(x) )/ (x*(1/2)*pi~(1/2))

besseli(-1/2, x)

ans =
(27(1/2)*cosh(x) )/ (x~(1/2)*pi~(1/2))
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besseli(-3/2, x)

ans =
(27(1/2)*(sinh(x) - cosh(x)/x))/(x~(1/2)*pi~(1/2))

besseli(5/2, Xx)
ans =

-(27(1/2)*((3*cosh(x))/x - sinh(x)*(3/x"2 + 1)))/(x*(1/2)*pi™~(1/2))

Differentiate Modified Bessel Function of First Kind

Differentiate the expressions involving the modified Bessel functions of the first kind:

syms X y
diff(besseli(l, x))
diff(diff(besseli(0, x*2 + x*y -y*2), x), Vy)

ans =
besseli(0, x) - besseli(l, x)/x

ans =
besseli(l, x™2 + x*y - y"2) +...

(2*x + y)*(besseli(0, x"2 + x*y - y"2)*
(besseli(1l, x™2 + x*y - y"2)*(x - 2*y))

Bessel Function for Matrix Input

Call besseli for the matrix A and the value 1/2. The result is a matrix of the modified
Bessel functions besseli(1/2, A(i,j)).

syms x
A=1[-1, pi; x, 0];
besseli(1/2, A)

ans =
[ (27(1/2)*sinh(1)*11)/pi~(1/2), (27(1/2)*sinh(pi))/pil]
[ (27(1/2)*sinh(x))/(x~(1/2)*pi~(1/2)), 0]

Plot the Modified Bessel Functions of the First Kind

Plot the modified Bessel functions of the first kind forv =10, 1, 2, 3.
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syms X vy
fplot(besseli(0:3, x))
axis ([0 4 -0.1 4])
grid on

ylabel('I v(x)")

legend('I 0','I 1','T 2','T 3', 'Location', 'Best")
title('Modified Bessel functions of the first kind')

Modified Bessel functions of the first kind

4 T T T T T T

4-158



besseli

Input Arguments

nu — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable,
expression, function, or array. If nu is a vector or matrix, besseli returns the modified
Bessel function of the first kind for each element of nu.

z — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable,
expression, function, or array. If nu is a vector or matrix, besseli returns the modified
Bessel function of the first kind for each element of nu.

Definitions

Modified Bessel Functions of the First Kind

The modified Bessel differential equation

2
2dW+zd—W—(22+V2)w=0

Zd dz

has two linearly independent solutions. These solutions are represented by the modified
Bessel functions of the first kind, I,(z), and the modified Bessel functions of the second
kind, K,(2):

w(z) = C11,(2) + C2K,(2)

This formula is the integral representation of the modified Bessel functions of the first
kind:

I

2/2) 2cos(t ZV
I —
W) = Trw+172) 6[9 lsin(e)"dt
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Tips
* Calling besseli for a number that is not a symbolic object invokes the MATLAB

besseli function.

» At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, besseli(nu, z) expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References

[1] Olver, E. W. ]. “Bessel Functions of Integer Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

See Also

airy | besselh | besselj | besselk | bessely
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besselj

Bessel function of the first kind for symbolic expressions

Syntax

besselj(nu,z)

Description

besselj(nu,z) returns the Bessel function of the first kind on page 4-165, J,(2).

Examples

Find Bessel Function of First Kind

Compute the Bessel functions of the first kind for these numbers. Because these numbers
are floating point, you get floating-point results.

[besselj(0,5) besselj(-1,2) besselj(1/3,7/4) besselj(1l,3/2+2*1i)]

ans =
-0.1776 + 0.00001 -0.5767 + 0.00001 0.5496 + 0.00001 1.6113 + 0.3982i

Compute the Bessel functions of the first kind for the numbers converted to symbolic
form. For most symbolic (exact) numbers, besselj returns unresolved symbolic calls.

[besselj(sym(0),5) besselj(sym(-1),2)...
besselj(1/3,sym(7/4)) besselj(sym(1l),3/2+2*1i)]

ans =
[ besselj(0, 5), -besselj(1l, 2), besselj(1/3, 7/4), besselj(1l, 3/2 + 2i)]

For symbolic variables and expressions, besselj also returns unresolved symbolic calls.
syms Xx vy

[besselj(x,y) besselj(1l,x"2) besselj(2,x-y) besselj(x"2,x*y)]
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ans =
[ besselj(x, y), besselj(l, x*2), besselj(2, x - y), besselj(x"2, x*y)]

Solve Bessel Differential Equation for Bessel Functions

Solve this second-order differential equation. The solutions are the Bessel functions of the
first and the second kind.

syms nu w(z)

ode = z"2*diff(w,2) + z*diff(w) +(z"2-nu™2)*w == 0;
dsolve(ode)
ans =

C2*besselj(nu, z) + C3*bessely(nu, z)

Verify that the Bessel function of the first kind is a valid solution of the Bessel differential
equation.

cond = subs(ode,w,besselj(nu,z));
isAlways(cond)

ans =

logical
1

Special Values of Bessel Function of First Kind

Show that if the first parameter is an odd integer multiplied by 1/2, besselj rewrites the
Bessel functions in terms of elementary functions.

syms X
besselj(1/2,x)

ans =
(27(1/2)*sin(x) )/ (x~(1/2)*pi~(1/2))

besselj(-1/2,x)

ans =
(27(1/2)*cos(x) )/ (x~(1/2)*pi~(1/2))

besselj(-3/2,x)

ans =
-(27(1/2)*(sin(x) + cos(x)/x))/(x~(1/2)*pi~(1/2))
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besselj(5/2,x)
ans =

-(27(1/72)*((3*cos(x) ) /x - sin(x)*(3/x"2 - 1)))/(x~(1/2)*pi~(1/2))

Differentiate Bessel Function of First Kind

Differentiate expressions involving the Bessel functions of the first kind.

syms Xy
diff(besselj(1,x))

ans =
besselj (0, x) - besselj(l, x)/x

diff(diff(besselj(0,x™2+x*y-y~2), X), Y)

ans =

- besselj(1l, x™2 + x*¥y - y*2) -...

(2*x + y)*(besselj (0, x™2 + x*y - y"2)*(x - 2*y) -...
(besselj(1l, x™2 + x*y - y"2)*¥(x - 2*y))/(x"2 + x*y - y*2))

Find Bessel Function for Matrix Input

Call besselj for the matrix A and the value 1/2. besselj acts element-wise to return
matrix of Bessel functions.

syms X
A = ['11 plr Xr 0]!
besselj(1/2, A)

ans =

[ (27(1/2)*sin(1)*1i)/pin~(1/2), 0]
[ (27(1/2)*sin(x))/(x*(1/2)*pi”~(1/2)), 0]

Plot Bessel Functions of First Kind

Plot the Bessel functions of the first kind for 0, 1, 2, 3.
syms x y

fplot(besselj(0:3, x))
axis([0 10 -0.5 1.1])
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grid on

ylabel('J v(x)")

legend('J 0','J 1','J 2',']J 3", 'Location', 'Best")
title('Bes sel functlons of the first kind' )

Bessel functions of the first kind

Input Arguments

nu — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |

symbolic function | symbolic expression
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Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

If nu is a vector or matrix, besselj returns the modified Bessel function of the first kind
for each element of nu.

z — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

If nu is a vector or matrix, besselj returns the modified Bessel function of the first kind
for each element of nu.

Definitions

Bessel Functions of the First Kind

The Bessel functions are solutions of the Bessel differential equation.

2
2d"w +de

z dZ dz

+ (z - VZ)W 0

These solutions are the Bessel functions of the first kind, J,(z), and the Bessel functions of
the second kind, Y, (2).

w(z) = C1Jy(2) + C2Y,(2)
This formula is the integral representation of the Bessel functions of the first kind.

I

fcos (zcos(t))sin(t)%"dt
)¢

_ (22"
WA= Zrosi2)
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Tips
* Calling besselj for a number that is not a symbolic object invokes the MATLAB

besselj function.

» At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, besselj (nu, z) expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References

[1] Olver, E. W. ]. “Bessel Functions of Integer Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

See Also

airy | besselh | besseli | besselk | bessely
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besselk

Modified Bessel function of the second kind for symbolic expressions

Syntax

besselk(nu, z)

Description

besselk(nu, z) returns the modified Bessel function of the second kind on page 4-171,
K, (2).

Examples

Find Modified Bessel Function of Second Kind

Compute the modified Bessel functions of the second kind for these numbers. Because
these numbers are not symbolic objects, you get floating-point results.

[besselk(0, 5), besselk(-1, 2), besselk(1l/3, 7/4),...
besselk(1l, 3/2 + 2*i)]

ans =
0.0037 + 0.00001 0.1399 + 0.00001 0.1594 + 0.0000i -0.1620 - 0.10661

Compute the modified Bessel functions of the second kind for the numbers converted to
symbolic objects. For most symbolic (exact) numbers, besselk returns unresolved
symbolic calls.

[besselk(sym(0), 5), besselk(sym(-1), 2),...
besselk(1/3, sym(7/4)), besselk(sym(1l), 3/2 + 2*i)]

ans =
[ besselk(®, 5), besselk(l, 2), besselk(1l/3, 7/4), besselk(l, 3/2 + 2i)]

For symbolic variables and expressions, besselk also returns unresolved symbolic calls:
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syms X y
[besselk(x, y), besselk(l, x"2), besselk(2, x - y), besselk(x"2, x*y)]

ans =

[ besselk(x, y), besselk(l, x*2), besselk(2, x - y), besselk(x"2, x*y)]

Special Values of Modified Bessel Function of Second Kind

If the first parameter is an odd integer multiplied by 1/2, besselk rewrites the Bessel
functions in terms of elementary functions:

syms X
besselk(1/2, x)

ans =
(27(1/2)*pi”~(1/2)*exp(-x))/(2*x~(1/2))

besselk(-1/2, Xx)

ans =
(27(1/2)*pi”~(1/2)*exp(-x))/(2*x~(1/2))

besselk(-3/2, x)

ans =
(27(1/2)*pi~(1/2) *exp (-x)*(1/x + 1))/ (2*x~(1/2))

besselk(5/2, x)
ans =

(27(1/72)*pin(1/2) *exp (-x) *(3/x + 3/x72 + 1))/ (2*x~(1/2))

Solve Bessel Differential Equation for Bessel Functions

Solve this second-order differential equation. The solutions are the modified Bessel
functions of the first and the second kind.

syms nu w(z)
dsolve(z™2*diff(w, 2) + z*¥diff(w) -(z"2 + nu™2)*w == 0)

ans =
C2*besseli(nu, z) + C3*besselk(nu, z)

Verify that the modified Bessel function of the second kind is a valid solution of the
modified Bessel differential equation:
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syms nu z

isAlways(z"2*diff(besselk(nu, z), z, 2) + z*diff(besselk(nu, z), z)...
- (2”2 + nu™2)*besselk(nu, z) == 0)
ans =
logical
1

Differentiate Modified Bessel Function of Second Kind

Differentiate the expressions involving the modified Bessel functions of the second kind:

syms X y
diff(besselk(1l, x))
diff(diff(besselk(0, x*2 + x*y -y*2), x), y)

ans =
- besselk(1l, x)/x - besselk(0, x)

ans =
(2*x + y)*(besselk(0, x~2 + x*y - y~2)*
(besselk(l, X2 + x*y - y*2)*(x - 2*y))
besselk(1l, x"2 + x*y - y~2)

Find Bessel Function for Matrix Input

Call besselk for the matrix A and the value 1/2. The result is a matrix of the modified
Bessel functions besselk(1/2, A(i,j)).

syms X
A=1[-1, pi; x, 0];
besselk(1/2, A)

ans =

[ -(27(1/2)*pin(1/2) *exp (1) *11) /2, (27(1/2)*exp(-pi))/2]
[ (27(1/2)*pi~(1/2)*exp(-x))/(2*x~(1/2)), Inf]

Plot Modified Bessel Functions of Second Kind

Plot the modified Bessel functions of the second kind forv= 20,1, 2, 3.

syms X vy
fplot(besselk(0:3, x))
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axis([0 4 0 4])
grid on

ylabel ('K v(x)")

legend('K:O','Kfl','K72','K73', 'Location', 'Best')
title('Modified Bessel functions of the second kind')

Modified Bessel functions of the second kind
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Input Arguments

nu — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable,
expression, function, or array. If nu is a vector or matrix, besseli returns the modified
Bessel function of the first kind for each element of nu.

z — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable,
expression, function, or array. If nu is a vector or matrix, besseli returns the modified
Bessel function of the first kind for each element of nu.

Definitions

Modified Bessel Functions of the Second Kind

The modified Bessel differential equation

has two linearly independent solutions. These solutions are represented by the modified
Bessel functions of the first kind, I,(z), and the modified Bessel functions of the second
kind, K,(2):

w(z) = C11,(2) + C2K,(2)

The modified Bessel functions of the second kind are defined via the modified Bessel
functions of the first kind:

/2
Ky(2) = sin(vm)

(I-0(2) = 1,(2))
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Here I,(2) are the modified Bessel functions of the first kind:

I

= (2/2) zcos(t 21)
I(z) = fFv+1/26fe )sin(t)“ dt

Tips
* Calling besselk for a number that is not a symbolic object invokes the MATLAB

besselk function.

* At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, besselk(nu, z) expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References

[1] Olver, E. W. ]. “Bessel Functions of Integer Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.
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bessely

Bessel function of the second kind for symbolic expressions

Syntax

bessely(nu, z)

Description

bessely(nu, z) returns the Bessel function of the second kind on page 4-177, Y, (2).

Examples

Find Bessel Function of Second Kind
Compute the Bessel functions of the second kind for these numbers. Because these
numbers are not symbolic objects, you get floating-point results.

[bessely (0, 5), bessely(-1, 2), bessely(1l/3, 7/4), bessely(l, 3/2 + 2*i)]

ans =
-0.3085 + 0.00001 0.1070 + 0.00001 0.2358 + 0.00001i -0.4706 + 1.58731i

Compute the Bessel functions of the second kind for the numbers converted to symbolic
objects. For most symbolic (exact) numbers, bessely returns unresolved symbolic calls.

[bessely(sym(0), 5), bessely(sym(-1), 2),...
bessely(1/3, sym(7/4)), bessely(sym(l), 3/2 + 2*i)]

ans =
[ bessely(0, 5), -bessely(1l, 2), bessely(1/3, 7/4), bessely(l, 3/2 + 2i)]

For symbolic variables and expressions, bessely also returns unresolved symbolic calls:
syms X y

[bessely(x, y), bessely(1l, x"2), bessely(2, x - y), bessely(x™2, x*y)]
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ans =
[ bessely(x, y), bessely(l, x*2), bessely(2, x - y), bessely(x™2, x*y)]

Solve Bessel Differential Equation for Bessel Functions

Solve this second-order differential equation. The solutions are the Bessel functions of the
first and the second kind.

syms nu w(z)
dsolve(z"2*diff(w, 2) + z*diff(w) +(z"2 - nu™2)*w == 0)

ans =
C2*besselj(nu, z) + C3*bessely(nu, z)

Verify that the Bessel function of the second kind is a valid solution of the Bessel
differential equation:

syms nu z
isAlways(z"2*diff(bessely(nu, z), z, 2) + z*diff(bessely(nu, z), z)...
+ (272 - nu™2)*bessely(nu, z) == 0)

ans =

logical
1

Special Values of Bessel Function of Second Kind

If the first parameter is an odd integer multiplied by 1/2, bessely rewrites the Bessel
functions in terms of elementary functions:

syms X
bessely(1/2, x)

ans =
-(27(1/2)*cos (x) )/ (x~(1/2)*pin(1/2))

bessely(-1/2, x)

ans =
(27(1/2)*sin(x) )/ (x~(1/2)*pi~(1/2))

bessely(-3/2, x)

ans =
(27(1/2)*(cos(x) - sin(x)/x))/(x~(1/2)*pi~(1/2))
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bessely(5/2, x)
ans =

-(27(1/2)*((3*sin(x))/x + cos(x)*(3/x"2 - 1)))/(x~(1/2)*pi~(1/2))

Differentiate Bessel Functions of Second Kind

Differentiate the expressions involving the Bessel functions of the second kind:

syms X y
diff(bessely(1l, x))
diff(diff(bessely (0, x*2 + x*y -y*2), x), y)

ans =
bessely (0, x) - bessely(l, x)/x

ans =
- bessely(1l, x"2 + x*y - y*2) -...

(2*x + y)*(bessely(0, x"2 + x*y - y"2)*(x - 2*y) -...
(bessely (1, x™2 + x*¥y - y"2)*(x - 2*y))/(x"2 + x*y - y~2))

Find Bessel Function for Matrix Input

Call bessely for the matrix A and the value 1/2. The result is a matrix of the Bessel
functions bessely(1/2, A(i,j)).

syms x
= [-ll pl; X, 0];
bessely(1/2, A)

ans =
[ (2™(1/2)*cos(1)*1i)/pin~(1/2), 27(1/2)/pil
[ -(27(1/2)*cos(x))/(x~(1/2)*pi~(1/2)), Inf]

Plot Bessel Functions of Second Kind

Plot the Bessel functions of the second kind forv =0, 1, 2, 3.

syms x vy
fplot(bessely(0:3,x))
axis([0 10 -1 0.6])
grid on
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ylabel('Y v(x)")
legend('Y ©','Y 1','Y 2','Y 3', 'Location', 'Best"')
title('Bes sel functlons of the second kind')

Bessel functions of the second kind

Input Arguments

nu — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.
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If nu is a vector or matrix, bessely returns the Bessel function of the second kind for
each element of nu.

z — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

If z is a vector or matrix, bessely returns the Bessel function of the second kind for each
element of z.

Definitions

Bessel Function of the Second Kind
The Bessel differential equation

2
2d“w +ZdW

Zd dZ+(z2—1)2)w=0

has two linearly independent solutions. These solutions are represented by the Bessel
functions of the first kind, J,(z), and the Bessel functions of the second kind, Y,(2):

w(2) = C1]u(2) + C2Y)(2)

The Bessel functions of the second kind are defined via the Bessel functions of the first
kind:

_ Ju(@)cos(vm) — J-1(2)

Yy(z) = sin(vm)

Here J,(2) are the Bessel function of the first kind:

I

fcos (zcos(t))sin(t)%"dt
)¢

_ (22"
WA= Zrosi2)
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Tips

* Calling bessely for a number that is not a symbolic object invokes the MATLAB
bessely function.

At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, bessely(nu, z) expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References

[1] Olver, E. W. ]J. “Bessel Functions of Integer Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

See Also

airy | besselh | besseli | besselj | besselk

Introduced in R2014a
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Beta function

Syntax

beta(x,y)

Description

beta(x,y) returns the beta function on page 4-181 of x and y.

Examples

Compute Beta Function for Numeric Inputs

Compute the beta function for these numbers. Because these numbers are not symbolic
objects, you get floating-point results:

[beta(l, 5), beta(3, sqrt(2)), beta(pi, exp(l)), beta(0, 1)]

ans =
0.2000 0.1716 0.0379 Inf

Compute Beta Function for Symbolic Inputs
Compute the beta function for the numbers converted to symbolic objects:
[beta(sym(1l), 5), beta(3, sym(2)), beta(sym(4), sym(4))]

ans =
[ 1/5, 1/12, 1/140]

If one or both parameters are complex numbers, convert these numbers to symbolic
objects:
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[beta(sym(i), 3/2), beta(sym(i), i), beta(sym(i + 2), 1 - i)]

ans =
[ (pi~(1/2)*gamma(1i))/(2*gamma(3/2 + 1i)), gamma(1li)~2/gamma(2i),...
(pi*(1/2 + 1i/2))/sinh(pi)]

Compute Beta Function for Negative Parameters

Compute the beta function for negative parameters. If one or both arguments are
negative numbers, convert these numbers to symbolic objects:
[beta(sym(-3), 2), beta(sym(-1/3), 2), beta(sym(-3), 4), beta(sym(-3), -2)]

ans =
[ 1/6, -9/2, Inf, Inf]

Compute Beta Function for Matrix Inputs

Call beta for the matrix A and the value 1. The result is a matrix of the beta functions
beta(A(i,j),1):

Differentiate Beta Function

Differentiate the beta function, then substitute the variable t with the value 2/3 and
approximate the result using vpa:

syms t
u = diff(beta(t™2 + 1, t))
vpa(subs(u, t, 2/3), 10)

beta(t, t72 + 1)*(psi(t) + 2*t*psi(t™2 + 1) -
psi(t™2 + t + 1)*(2*t + 1))
ans =

-2.836889094
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Expand Beta Function

Expand these beta functions:

syms X y
expand(beta(x, y))
expand(beta(x + 1, y - 1))

ans =
(gamma(x)*gamma(y))/gamma(x + y)

ans =
- (x*gamma(x)*gamma(y))/(gamma(x + y) - y*gamma(x + y))

Input Arguments

X — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

If x is a vector or matrix, beta returns the beta function for each element of x.
y — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |

symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

If y is a vector or matrix, beta returns the beta function for each element of y.

Definitions

Beta Function

This integral defines the beta function:
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1
_ - -1, _ I)I(y)
B(x,y)—oftx 11—ty ldt—ﬁ

Tips

The beta function is uniquely defined for positive numbers and complex numbers with
positive real parts. It is approximated for other numbers.

Calling beta for numbers that are not symbolic objects invokes the MATLAB beta
function. This function accepts real arguments only. If you want to compute the beta
function for complex numbers, use sym to convert the numbers to symbolic objects,
and then call beta for those symbolic objects.

If one or both parameters are negative numbers, convert these numbers to symbolic
objects using sym, and then call beta for those symbolic objects.

If the beta function has a singularity, beta returns the positive infinity Inf.
beta(sym(0),0), beta(0,sym(0)), and beta(sym(0),sym(0)) return NaN.
beta(x,y) = beta(y,x) and beta(x,A) = beta(A,x).

At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, beta(x,y) expands the scalar into a vector or matrix of the same
size as the other argument with all elements equal to that scalar.

References

[1] Zelen, M. and N. C. Severo. “Probability Functions.” Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

See Also

factorial | gamma | nchoosek | psi

Introduced in R2014a
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Concatenate symbolic arrays along specified dimension

Syntax

cat(dim,Al,...,AN)

Description

cat(dim,Al,...,AN) concatenates the arrays Al, ..., AN along dimension dim. The

remaining dimensions must be the same size.

Examples

Concatenate Two Vectors into Matrix

Create vectors A and B.

sym('a%sd',[1 4])
sym('b%sd',[1 4])

al, a2, a3, a4]

bl, b2, b3, b4]

— W— > >
|

To concatenate A and B into a matrix, specify dimension dim as 1.
cat(1,A,B)

ans =

[ al, a2, a3, a4l

[ bl, b2, b3, b4]

Alternatively, use the syntax [A;B].
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[A;B]

ans =
[ al, a2, a3, a4]
[ bl, b2, b3, b4]

Concatenate Two Vectors into One Vector

To concatenate two vectors into one vector, specify dimension dim as 2.

A = sym('a%d',[1 4]);
B = sym('b%d',[1 4]1);
cat(2,A,B)

ans =

[ al, a2, a3, a4, bl, b2, b3, b4]
Alternatively, use the syntax [A B].
[A B]

ans =
[ al, a2, a3, a4, bl, b2, b3, b4d]

Concatenate Multidimensional Arrays Along Their Third
Dimension

Create arrays A and B.

A(:,:,1) =
[ all, al2]
[ @21, a22]
A(:,:,2) =
[ -all, -al2]
[ -a21, -a22]

B(:,:,1) =
[ b1l1l, bl2]
[ b21, b22]
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B(:,:,2) =
[ -bl1l, -bl2]
[ -b21, -b22]

Concatenate A and B by specifying dimension dim as 3.

cat(3,A,B)
ans(:,:,1) =
[ al1, al2]
[ a21, a22]
ans(:,:,2) =

[ -all, -al2]
[ -a21, -a22]

ans(:,:,3) =
[ bll, bl2]
[ b21, b22]
ans(:,:,4) =
[ -bl1l, -bl2]
[ -b21, -b22]

Input Arguments

dim — Dimension to concatenate arrays along
positive integer

Dimension to concatenate arrays along, specified as a positive integer.
Al,...,AN — Input arrays
symbolic variables | symbolic vectors | symbolic matrices | symbolic multidimensional

arrays

Input arrays, specified as symbolic variables, vectors, matrices, or multidimensional
arrays.

See Also

horzcat | reshape | vertcat

4-185



4 Functions — Alphabetical List

Introduced in R2010b

4-186



catalan
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Catalan constant

Syntax

catalan

Description

catalan represents the Catalan constant on page 4-188. To get a floating-point
approximation with the current precision set by digits, use vpa(catalan).

Examples

Approximate Catalan Constant

Find a floating-point approximation of the Catalan constant with the default number of
digits and with the 10-digit precision.

Use vpa to approximate the Catalan constant with the default 32-digit precision:

vpa(catalan)

ans =
0.91596559417721901505460351493238

Set the number of digits to 10 and approximate the Catalan constant:

old = digits(10);
vpa(catalan)

ans =
0.9159655942

Restore the default number of digits:
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digits(old)

Definitions

Catalan Constant

The Catalan constant is defined as follows:

catalan = >

See Also

dilog | eulergamma

Introduced in R2014a
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ccode

C code representation of symbolic expression

Syntax

ccode(f)
ccode(f,Name,Value)

Description

ccode (f) returns C code for the symbolic expression f.

ccode(f,Name, Value) uses additional options specified by one or more Name, Value
pair arguments.

Examples

Generate C Code from Symbolic Expression

Generate C code from the symbolic expression log(1+x).
syms X

f = log(1l+x);

ccode(f)

ans =
' t0 = log(x+1.0);"

Generate C code for the 3-by-3 Hilbert matrix.

H = sym(hilb(3));
ccode(H)

ans =
H[O][O0] = 1.0;
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H[O][1] = 1.0/2.0;
H[0][2] = 1.0/3.0;
H[1][0] = 1.0/2.0;
H[1][1] = 1.0/3.0;
H[1][2] = 1.0/4.0;
H[2][0] = 1.0/3.0;
H[2][1] = 1.0/4.0;
H[2][2] = 1.0/5.0;"

Initialize Arrays Efficiently

Because generated C code initializes only non-zero elements, you can efficiently initialize
arrays by setting all elements to 0 directly in your C code. Then, use the generated C
code to initialize only nonzero elements. This approach enables efficient initialization of
matrices, especially sparse matrices.

Initialize the 3-by-3 identity matrix. First initialize the matrix with all elements set to 0 in
your C code. Then use the generated C code to initialize the nonzero values.

I3 = sym(eye(3));
I3code = ccode(I3)

I3code =

" I3[0][0]
I3[1][1]
I3[2][2]

i
R
lcNoNo])

Write Optimized C Code to File with Comments

Write C code to the file ccodetest. ¢ by specifying the File option. When writing to a
file, ccode optimizes the code by using intermediate variables named t0, t1, and so on.

syms X

f = diff(tan(x));

ccode(f, 'File', 'ccodetest.c')
t0 = pow(tan(x),2.0)+1.0;

Include the comment Version: 1.1 in the file by using the Comments option. ccode
uses block comments.

ccode(f, 'File', 'ccodetest.c', 'Comments', 'Version: 1.1"')
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/*

Version: 1.1

*/

t0 = pow(tan(x),2.0)+1.0;

Input Arguments

f — Symbolic input
symbolic expression

Symbolic input, specified as a symbolic expression.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as

Namel,Valuel, ...,NameN,ValueN.

Example: ccode(x"2, 'File', 'ccode.c', 'Comments', 'V1.2")

File — File to write to
character vector | string

File to write to, specified as a character vector or string. When writing to a file, ccode
optimizes the code by using intermediate variables named t0, t1, and so on.

Comments — Comments to include in file header
character vector | cell array of character vectors | string vector

Comments to include in the file header, specified as a character vector, cell array of
character vectors, or string vector. Because ccode uses block comments, the comments
must not contain /* or */.

See Also

fortran | latex | matlabFunction

Introduced before R2006a
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Convert cell array to symbolic array

Syntax
S = cell2sym(C)
S = cell2sym(C, flag)

Description

S = cell2sym(C) converts a cell array C to a symbolic array S. The elements of C must
be convertible to symbolic objects.

If each element of the input cell array C is a scalar, then size(S) = size(C), and S(k)
= sym(C(k)) for all indices k. If the cell array C contains nonscalar elements, then the
contents of C must support concatenation into an N-dimensional rectangle. Otherwise, the
results are undefined. For example, the contents of cells in the same column must have
the same number of columns. However, they do not need to have the same number of
rows. See figure.

10x25 10x25

20x25 20x25

cell2sym 60x50

30x25 30x25

S = cell2sym(C, flag) uses the technique specified by flag for converting floating-
point numbers to symbolic numbers.
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Examples

Convert Cell Array of Scalars
Convert a cell array of only scalar elements to a symbolic array.

Create a cell array of scalar elements.
C = {IXI’IyI’IZI; 1 2 3}

C —1

2x3 cell array
{'x"} {'y"'} {'z"}
{[1]} {[2]} {[31}

Convert this cell array to a symbolic array.

S cell2sym(C)
S —

[ x, Y,
[ 1, 2, 3]

cell2sym does not create symbolic variables X, y, and z in the MATLAB workspace. To
access an element of S, use parentheses.

S(1,1)
ans =

X

Convert Cell Array Containing Nonscalar Elements

Convert a cell array whose elements are scalars, vectors, and matrices into a symbolic
array. Such conversion is possible only if the contents of the cell array can be
concatenated into an N-dimensional rectangle.

Create a cell array, the elements of which are a scalar, a row vector, a column vector, and
a matrix.

C={'x"[234]; ['y'; sym(9)] [6 7 8; 10 11 12]}

C:
2x2 cell array
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{'x' } {1x3 double}
{2x1 sym} {2x3 double}

Convert this cell array to a symbolic array.

S = cell2sym(C)

S =

[ x, 2, 3, 4]
[y, 6, 7, 8

[ 9, 10, 11, 12]

Choose Conversion Technique for Floating-Point Values

When converting a cell array containing floating-point numbers, you can explicitly specify
the conversion technique.

Create a cell array pi with two elements: the double-precision value of the constant pi
and the exact value pi.

C

{pi, sym(pi)}

C —
1x2 cell array
{[3.1416]} {1x1 sym}

Convert this cell array to a symbolic array. By default, cel12sym uses the rational
conversion mode. Thus, results returned by cell2sym without a flag are the same as
results returned by cell2sym with the flag 'r'.

S = cell2sym(C)

S —1
[ pi, pi]

S = cell2sym(C,'r")
S —1
[ pi, pi]

Convert the same cell array to a symbolic array using the flags 'd', 'e', and 'f'. See
the “Input Arguments” on page 4-195 section for the details about conversion techniques.

S = cell2sym(C,'d")
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— N
|

3.1415926535897931159979634685442, pi]

S = cell2sym(C,'e")

— N
Il

pi - (198*eps)/359, pil
S = cell2sym(C,'f")

S =
[ 884279719003555/281474976710656, pi]

Input Arguments

C — Input cell array
cell array

Input cell array, specified as a cell array. The elements of C must be convertible to
symbolic objects.

flag — Conversion technique
'r' (default) | 'd' | 'e" | 'f'

Conversion technique, specified as one of the characters listed in this table.

‘r' In the rational mode, cell2sym converts floating-point numbers obtained by
evaluating expressions of the form p/q, p*pi/q, sqrt(p), 2°q, and 10°q for
modest sized integers p and q to the corresponding symbolic form. This
approach effectively compensates for the round-off error involved in the
original evaluation, but might not represent the floating-point value precisely.
If cell2sym cannot find simple rational approximation, then it uses the same
technique as it would use with the flag ' f'.

d' In the decimal mode, cell2sym takes the number of digits from the current
setting of digits. Conversions with fewer than 16 digits lose some accuracy,
while more than 16 digits might not be warranted. For example,
cell2sym({4/3}, 'd") with the 10-digit accuracy returns 1.333333333,
while with the 20-digit accuracy it returns 1.3333333333333332593. The
latter does not end in 3s, but it is an accurate decimal representation of the
floating-point number nearest to 4/3.

4-195



4 Functions — Alphabetical List

4-196

‘e! In the estimate error mode, cell2sym supplements a result obtained in the
rational mode by a term involving the variable eps. This term estimates the
difference between the theoretical rational expression and its actual floating-
point value. For example, cell2sym({3*pi/4}, 'e"') returns (3*pi)/4 -
(103*eps)/249.

'f! In the floating-point mode, cel12sym represents all values in the form N*2"e
or -N*2~e, where N >= 0 and e are integers. For example,
cell2sym({1/10},'f"') returns
3602879701896397/36028797018963968. The returned rational value is
the exact value of the floating-point number that you convert to a symbolic
number.

Output Arguments

S — Resulting symbolic array
symbolic array

Resulting symbolic array, returned as a symbolic array.

See Also
cell2mat | mat2cell | num2cell | sym2cell

Introduced in R2016a
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charpoly

Characteristic polynomial of matrix

Syntax

charpoly(A)
charpoly(A,var)

Description

charpoly (A) returns a vector of coefficients of the characteristic polynomial on page 4-
199 of A. If A is a symbolic matrix, charpoly returns a symbolic vector. Otherwise, it
returns a vector of double-precision values.

charpoly (A, var) returns the characteristic polynomial of A in terms of var.

Examples

Compute Coefficients of Characteristic Polynomial of Matrix

Compute the coefficients of the characteristic polynomial of A by using charpoly.

A=[110;010; 0011];
charpoly(A)

ans =
1 -3 3 -1

For symbolic input, charpoly returns a symbolic vector instead of double. Repeat the
calculation for symbolic input.

A = sym(A);
charpoly(A)
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ans =
[ 1! _31 3! _1]

Compute Characteristic Polynomial of Matrix

Compute the characteristic polynomial of the matrix A in terms of x.
syms X

A=sym([110; 0610; 060 1]);

polyA = charpoly(A,x)

polyA =
X"3 - 3*x™2 + 3*x - 1

Solve the characteristic polynomial for the eigenvalues of A.
eigenA = solve(polyA)
eigenA =

1

1
1

Input Arguments

A — Input
numeric matrix | symbolic matrix

Input, specified as a numeric or symbolic matrix.

var — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.
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Definitions

Characteristic Polynomial of Matrix

The characteristic polynomial of an n-by-n matrix A is the polynomial p,(x), defined as
follows.

pa(x) = det(xI, — A)

Here, I, is the n-by-n identity matrix.

References

[1] Cohen, H. “A Course in Computational Algebraic Number Theory.” Graduate Texts in
Mathematics (Axler, Sheldon and Ribet, Kenneth A., eds.). Vol. 138, Springer,
1993.

[2] Abdeljaoued, J. “The Berkowitz Algorithm, Maple and Computing the Characteristic

Polynomial in an Arbitrary Commutative Ring.” MapleTech, Vol. 4, Number 3, pp
21-32, Birkhauser, 1997.

See Also
det | eig | jordan | minpoly | poly2sym | sym2poly

Introduced in R2012b
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chebyshevT

Chebyshev polynomials of the first kind

Syntax

chebyshevT(n, x)

Description

chebyshevT(n, x) represents the nth degree Chebyshev polynomial of the first kind on
page 4-204 at the point x.

Examples

First Five Chebyshev Polynomials of the First Kind

Find the first five Chebyshev polynomials of the first kind for the variable x.

syms X
chebyshevT([0, 1, 2, 3, 4], x)

ans =

[ 1, x, 2*x™2 - 1, 4*x"3 - 3*x, 8*x™4 - 8*x"2 + 1]

Chebyshev Polynomials for Numeric and Symbolic Arguments

Depending on its arguments, chebyshevT returns floating-point or exact symbolic
results.

Find the value of the fifth-degree Chebyshev polynomial of the first kind at these points.
Because these numbers are not symbolic objects, chebyshevT returns floating-point
results.

chebyshevT(5, [1/6, 1/4, 1/3, 1/2, 2/3, 3/4])
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ans =
0.7428 0.9531 0.9918 0.5000 -0.4856 -0.8906

Find the value of the fifth-degree Chebyshev polynomial of the first kind for the same
numbers converted to symbolic objects. For symbolic numbers, chebyshevT returns
exact symbolic results.

chebyshevT(5, sym([1/6, 1/4, 1/3, 1/2, 2/3, 3/4]1))
ans =

[ 361/486, 61/64, 241/243, 1/2, -118/243, -57/64]

Evaluate Chebyshev Polynomials with Floating-Point Numbers

Floating-point evaluation of Chebyshev polynomials by direct calls of chebyshevT is
numerically stable. However, first computing the polynomial using a symbolic variable,
and then substituting variable-precision values into this expression can be numerically
unstable.

Find the value of the 500th-degree Chebyshev polynomial of the first kind at 1/3 and
vpa(1l/3). Floating-point evaluation is numerically stable.

chebyshevT (500, 1/3)
chebyshevT (500, vpa(l/3))

ans =
0.9631

ans =
0.963114126817085233778571286718

Now, find the symbolic polynomial T500 = chebyshevT (500, x), and substitute x =
vpa(1l/3) into the result. This approach is numerically unstable.

syms X
T500 = chebyshevT (500, x);
subs(T500, x, vpa(l/3))

ans =
-3293905791337500897482813472768.0

Approximate the polynomial coefficients by using vpa, and then substitute x =
sym(1/3) into the result. This approach is also numerically unstable.
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subs(vpa(T500), x, sym(1/3))

ans =
1202292431349342132757038366720.0

Plot Chebyshev Polynomials of the First Kind

Plot the first five Chebyshev polynomials of the first kind.

syms X y
fplot(chebyshevT(0:4,x))
axis([-1.5 1.5 -2 2])

grid on

ylabel('T n(x)")

legend('T _O(x)"','T 1(x)"','T _2(x)"','T 3(x)"','T _4(x)"','Location', 'Best"')
title('Chebyshev polynomials of the first kind')
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Chebyshev polynomials of the first kind
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Input Arguments

n — Degree of polynomial
nonnegative integer | symbolic variable | symbolic expression | symbolic function | vector

| matrix
Degree of the polynomial, specified as a nonnegative integer, symbolic variable,

expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables,

expressions, or functions.
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x — Evaluation point
number | symbolic number | symbolic variable | symbolic expression | symbolic function |
vector | matrix

Evaluation point, specified as a number, symbolic number, variable, expression, or

function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions,
or functions.

Definitions

Chebyshev Polynomials of the First Kind
Chebyshev polynomials of the first kind are defined as T,(x) = cos(n*arccos(x)).
These polynomials satisfy the recursion formula

TO0,x)=1, T(1,x)=x, T(nx)=2xT(n-1,x)—-T(n-2,x)

Chebyshev polynomials of the first kind are orthogonal on the interval -1 < x < 1 with
respect to the weight function

1

w(x) = T

Chebyshev polynomials of the first kind are a special case of the Jacobi polynomials

22"(n1)? 1 1

T(n.X) = =y P(”' X

and Gegenbauer polynomials

T(n,x) = %G(n, 0,x)

Tips

* chebyshevT returns floating-point results for numeric arguments that are not
symbolic objects.
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* chebyshevT acts element-wise on nonscalar inputs.

* At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, then chebyshevT expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References

[1] Hochstrasser, U. W. “Orthogonal Polynomials.” Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A.
Stegun, eds.). New York: Dover, 1972.

See Also

chebyshevU | gegenbauerC | hermiteH | jacobiP | laguerreL | legendreP

Introduced in R2014b
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Chebyshev polynomials of the second kind

Syntax

chebyshevU(n, x)

Description

chebyshevU(n, x) represents the nth degree Chebyshev polynomial of the second kind
on page 4-210 at the point Xx.

Examples

First Five Chebyshev Polynomials of the Second Kind

Find the first five Chebyshev polynomials of the second kind for the variable x.

syms X
chebyshevU([0, 1, 2, 3, 4], x)

ans =

[ 1, 2*x, 4*x"2 - 1, 8*x"3 - 4*x, 16*x™4 - 12*x"2 + 1]

Chebyshev Polynomials for Numeric and Symbolic Arguments

Depending on its arguments, chebyshevU returns floating-point or exact symbolic
results.

Find the value of the fifth-degree Chebyshev polynomial of the second kind at these
points. Because these numbers are not symbolic objects, chebyshevU returns floating-
point results.

chebyshevU(5, [1/6, 1/3, 1/2, 2/3, 4/5])
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ans =
0.8560 0.9465 0.0000 -1.2675 -1.0982

Find the value of the fifth-degree Chebyshev polynomial of the second kind for the same
numbers converted to symbolic objects. For symbolic numbers, chebyshevU returns
exact symbolic results.

chebyshevU(5, sym([1/6, 1/4, 1/3, 1/2, 2/3, 4/51))
ans =

[ 208/243, 33/32, 230/243, 0, -308/243, -3432/3125]

Evaluate Chebyshev Polynomials with Floating-Point Numbers

Floating-point evaluation of Chebyshev polynomials by direct calls of chebyshevU is
numerically stable. However, first computing the polynomial using a symbolic variable,
and then substituting variable-precision values into this expression can be numerically
unstable.

Find the value of the 500th-degree Chebyshev polynomial of the second kind at 1/3 and
vpa(1l/3). Floating-point evaluation is numerically stable.

chebyshevU (500, 1/3)
chebyshevU (500, vpa(l/3))

ans =
0.8680

ans =
0.86797529488884242798157148968078

Now, find the symbolic polynomial U500 = chebyshevU(500, x), and substitute x =
vpa(1l/3) into the result. This approach is numerically unstable.

syms X
U500 = chebyshevU (500, x);
subs (U500, x, vpa(1/3))

ans =
63080680195950160912110845952.0

Approximate the polynomial coefficients by using vpa, and then substitute x =
sym(1/3) into the result. This approach is also numerically unstable.
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subs(vpa(U500), x, sym(1/3))

ans =
-1878009301399851172833781612544.0

Plot Chebyshev Polynomials of the Second Kind

Plot the first five Chebyshev polynomials of the second kind.

syms x vy
fplot(chebyshevU(0:4, x))
axis([-1.5 1.5 -2 2])

grid on

ylabel('U n(x)")

legend('U 0(x)"', 'U 1(x)', 'U2(x)"', 'U3(x)", 'U4(x)', 'Location',
title('Chebyshev polynomials of the second kind')

'Best')
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Chebyshev polynomials of the second kind
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Input Arguments

n — Degree of polynomial
nonnegative integer | symbolic variable | symbolic expression | symbolic function | vector
| matrix

Degree of the polynomial, specified as a nonnegative integer, symbolic variable,
expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.
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x — Evaluation point
number | symbolic number | symbolic variable | symbolic expression | symbolic function |
vector | matrix

Evaluation point, specified as a number, symbolic number, variable, expression, or
function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions,
or functions.

Definitions

Chebyshev Polynomials of the Second Kind

Chebyshev polynomials of the second kind are defined as follows:

_sin((n + 1)acos(x))
U(n,x) = =5 sinn(acozg?)s) -

These polynomials satisfy the recursion formula
U@O,x)=1, U(l,x)=2x, Unx)=2xUn-1,x)-Un-2,x)

Chebyshev polynomials of the second kind are orthogonal on the interval -1 < x < 1 with
respect to the weight function

w(x) = 41 — x?
Chebyshev polynomials of the second kind are a special case of the Jacobi polynomials

2n
2+ 1) (11
U = ST P 27

and Gegenbauer polynomials

U(n,x) =G(n,1,x)

Tips

* chebyshevU returns floating-point results for numeric arguments that are not
symbolic objects.
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* chebyshevU acts element-wise on nonscalar inputs.

* At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, then chebyshevU expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References

[1] Hochstrasser, U. W. “Orthogonal Polynomials.” Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A.
Stegun, eds.). New York: Dover, 1972.

See Also

chebyshevT | gegenbauerC | hermiteH | jacobiP | laguerreL | legendreP

Introduced in R2014b
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checkUnits

Check for compatible dimensions and consistent units

Syntax

C = checkUnits(expr)

C = checkUnits(expr, 'Compatible")
C = checkUnits(expr, 'Consistent')

Description

C = checkUnits(expr) checks expr for compatible dimensions and consistent units
and returns a structure containing the fields Consistent and Compatible. The fields
contain logical @ (false) or logical 1 (true) depending on the check results.

expr has compatible dimensions if all terms have the same dimensions, such as length or
time. expr has consistent units if all units of the same dimension can be converted to
each other with a conversion factor of 1.

C = checkUnits(expr, 'Compatible') only checks expr for compatible dimensions.
C = checkUnits(expr, 'Consistent') only checks expr for consistent units.
Examples

Check Dimensions of Units

Check the dimensions of an equation or expression. The dimensions are checked to
confirm that the equation or expression is valid.

Verify the dimensions of the equation

Al _pky
s s
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by using checkUnits with the option 'Compatible'. MATLAB assumes that symbolic
variables are dimensionless. The checkUnits function returns logical 0 (false) because
the dimensions of the equation are not compatible.

u = symunit;

syms A B

egqn = A*u.m/u.s == B*u.kg/u.s;
checkUnits(eqgn, 'Compatible')

ans =
logical
0

Replace u. kg with u.m by using subs and repeat the check. Because the dimensions are
now compatible, checkUnits returns logical 1 (true).

egn = subs(eqgn,u.kg,u.m);
checkUnits(eqn, 'Compatible')

ans =
logical
1

Check Consistency of Units

Checking units for consistency is a stronger check than compatibility. Units are consistent
when all units of the same dimension can be converted to each other with a conversion
factor of 1. For example, 1 Newton is consistent with 1 kg m/s? but not with 1 kg cm/s?.

Show that 1 Newton is consistent with 1 kg m/s? by checking exprl but not with 1 kg
cm/s? by checking expr2.

u = symunit;

exprl = 1*u.N + 1*u.kg*u.m/u.s"2;
expr2 = 1*u.N + 1*u.kg*u.cm/u.s”2;
checkUnits(exprl, 'Consistent’)

ans =
logical
1

checkUnits(expr2, 'Consistent')
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ans =
logical
0

Show the difference between compatibility and consistency by showing that expr2 has
compatible dimensions but not consistent units.

checkUnits(expr2, 'Compatible')
ans =

logical
1

Check Multiple Equations or Expressions

Check multiple equations or expressions by placing them in an array. checkUnits
returns an array whose elements correspond to the elements of the input.

Check multiple equations for compatible dimensions. checkUnits returns [1 0],
meaning that the first equation has compatible dimensions while the second equation
does not.

u = symunit;

syms Xy z
eqnl = x*u.m == y*u.m"2/(z*u.m);
eqn2 = x*u.m + y*u.s == z*u.m;
eqns = [eqnl eqn2];
compatible = checkUnits(eqns, 'Compatible')
compatible =

1x2 logical array

1 0

Check Dimensions and Consistency of Units

Check for both compatible dimensions and consistent units of the equation or expression
by using checkUnits.

Define the equations for x- and y-displacement of a moving projectile. Check their units
for compatibility and consistency.

symunit;
9.81*u.cm/u.s”"2;

u
9
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v = 10*u.m/u.s”2;

syms theta x(t) y(t)

x(t) = v*cos(theta)*t;

y(t) = v*sin(theta)*t + (-g*t™2)/2;
S = checkUnits([x y])

S:
struct with fields:

Consistent: [1 0]
Compatible: [1 1]

The second equation has compatible dimensions but inconsistent units. This inconsistency
is because g incorrectly uses cm instead of m. Redefine g and check the equations again.
The second equation now has consistent units.

g = 9.81*u.m/u.s"2;
y(t) = v*sin(theta)*t + (-g*t™2)/2;
S = checkUnits([x yI)

S —
struct with fields:

Consistent: [1 1]
Compatible: [1 1]

Input Arguments

expr — Input expression
symbolic expression | symbolic equation | symbolic function | symbolic vector | symbolic
matrix | symbolic multidimensional array

Input expression, specified as a symbolic expression, equation, function, vector, matrix, or
multidimensional array.

See Also

findUnits | isUnit | newUnit | separateUnits | str2symunit | symunit |
symunit2str | unitConversionFactor
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Topics

“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

Introduced in R2017a
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children

Subexpressions or terms of symbolic expression

Syntax

children(expr)
children(A)

Description

children(expr) returns a vector containing the child subexpressions of the symbolic
expression expr. For example, the child subexpressions of a sum are its terms.

children(A) returns a cell array containing the child subexpressions of each expression
in A.

Examples

Find Child Subexpressions of Symbolic Expression

Find the child subexpressions of this expression. Child subexpressions of a sum are its
terms.

syms X y
children(x™2 + x*y + y”"2)

ans =
[ x*y, x*2, y"2]

Find the child subexpressions of this expression. This expression is also a sum, only some
terms of that sum are negative.

children(x"2 - x*y - y”"2)

ans =
[ -x*y, x*2, -y*2]
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The child subexpression of a variable is the variable itself:
children(x)
ans =

X

Find Child Subexpressions of Equation

Find the child subexpressions of this equation. The child subexpressions of an equation
are the left and right sides of that equation.

syms X y
children(x™2 + x*y == y™2 + 1)

ans =
[ Xx*2 + y*x, y*2 + 1]

Find the child subexpressions of this inequality. The child subexpressions of an inequality
are the left and right sides of that inequality.

children(sin(x) < cos(x))
ans =

[ sin(x), cos(x)]

Find Child Subexpressions of Elements of Matrix

Call the children function for this matrix. The result is the cell array containing the
child subexpressions of each element of the matrix.

syms X y
s = children([x + y, sin(x)*cos(y); x"3 - y"3, exp(x*y~2)1)

S =
2x2 cell array
{1x2 sym} {1x2 sym}
{1x2 sym} {1x1 sym}
To access the contents of cells in the cell array, use braces:

s{1:4}
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ans =
[ x*3, -y"3]

ans =
[ cos(y), sin(x)]

ans =
X*y”"2

Input Arguments

expr — Input
symbolic number | symbolic variable | symbolic function | symbolic expression

Input, specified as a symbolic number, variable, function, or expression.

A — Input
symbolic array

Input, specified as a symbolic array.

See Also

coeffs | lhs | numden | rhs | subs

Topics
“Create Symbolic Numbers, Variables, and Expressions” on page 1-3

Introduced in R2012a
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Cholesky factorization

Syntax

= chol(A)

chol(A)

chol(A)

= chol(A, 'vector')

chol(A, 'lower')

chol(A, 'nocheck')

chol(A, 'real')

L chol(A, 'lower', 'nocheck', 'real’)

[T,p,s] = chol(A, 'lower', 'vector', 'nocheck', 'real')

i nmnmnmweyom
—_— |
Il

Description

T = chol(A) returns an upper triangular matrix T, such that T'*T = A. A must be a
Hermitian positive definite matrix on page 4-227. Otherwise, this syntax throws an error.

[T,p] = chol(A) computes the Cholesky factorization on page 4-227 of A. This syntax
does not error if A is not a Hermitian positive definite matrix. If A is a Hermitian positive
definite matrix, then p is 0. Otherwise, T is sym([]), and p is a positive integer (typically,
p=1).

[T,p,S] = chol(A) returns a permutation matrix S, such that T'*T = S'*A*S, and
the value p = 0 if matrix A is Hermitian positive definite. Otherwise, it returns a positive
integer p and an empty object S = sym([]).

[T,p,s] = chol(A, 'vector') returns the permutation information as a vector s,
such that A(s,s) = T'*T. If Ais not recognized as a Hermitian positive definite matrix,
then p is a positive integer and s = sym([]).

= chol(A, 'lower"') returns a lower triangular matrix T, such that T*T' = A.
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= chol (A, 'nocheck") skips checking whether matrix A is Hermitian positive
definite. 'nocheck' lets you compute Cholesky factorization of a matrix that contains
symbolic parameters without setting additional assumptions on those parameters.

= chol(A, 'real') computes the Cholesky factorization of A using real
arithmetic. In this case, chol computes a symmetric factorization A = T.'*T instead of
a Hermitian factorization A = T'*T. This approach is based on the fact that if A is real
and symmetric, then T'*T = T.'*T. Use 'real' to avoid complex conjugates in the
result.

= chol(A, 'lower', 'nocheck"', 'real') computes the Cholesky factorization of
A with one or more of these optional arguments: 'lower', 'nocheck’', and 'real’.
These optional arguments can appear in any order.

[T,p,s] = chol(A, 'lower', 'vector', 'nocheck', 'real') computes the
Cholesky factorization of A and returns the permutation information as a vector s. You
can use one or more of these optional arguments: ' lower', 'nocheck', and 'real’.
These optional arguments can appear in any order.

Examples

Compute Cholesky Factorization of Numeric and Symbolic
Matrices

Compute the Cholesky factorization of the 3-by-3 Hilbert matrix. Because these numbers
are not symbolic objects, you get floating-point results.

chol(hilb(3))

ans

1.000 0.5000 0.3333

0
0 0.2887 0.2887
0 0 0.0745

Now convert this matrix to a symbolic object, and compute the Cholesky factorization:
chol(sym(hilb(3)))

ans =
[ 1, 1/2, 1/3]
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[ 0, 37(1/2)/6, 37(1/2)/6]
[ o, 0, 57(1/2)/30]

Return Lower Triangular Matrix

Compute the Cholesky factorization of the 3-by-3 Pascal matrix returning a lower
triangular matrix as a result:

chol(sym(pascal(3)), 'lower')

n

N

0
1
2

—_——Q
oo

’ ’ ]
’ ’ ]
’ ’ ]

If Input is not Hermitian Positive Definite

Try to compute the Cholesky factorization of this matrix. Because this matrix is not
Hermitian positive definite, chol used without output arguments or with one output
argument throws an error:

A

sym([111; 123; 135]);

T

chol(A)

Error using sym/chol (line 132)

Cannot prove that input matrix is Hermitian positive definite.
Define a Hermitian positive definite matrix by setting

appropriate assumptions on matrix components, or use 'nocheck’

to skip checking whether the matrix is Hermitian positive definite.

To suppress the error, use two output arguments, T and p. If the matrix is not recognized
as Hermitian positive definite, then this syntax assigns an empty symbolic object to T and
the value 1 to p:

[T,p] = chol(A)

T:
[ empty sym ]
p:

1

For a Hermitian positive definite matrix, p is 0:
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[T,p] = chol(sym(pascal(3)))

T =
[ 1, 1, 1]
[ 6, 1, 2]
[ 6, 0, 1]
p:

0

Alternatively, 'nocheck' lets you skip checking whether A is a Hermitian positive
definite matrix. Thus, this flag lets you compute the Cholesky factorization of a symbolic
matrix without setting additional assumptions on its components to make it Hermitian
positive definite:

syms a
A=1[a 0; 0 al;
chol (A, 'nocheck"')

ans =
[ a~(1/2), 0]
[ 0, a~(1/2)]

—_

If you use 'nocheck' for computing the Cholesky factorization of a matrix that is not
Hermitian positive definite, chol can return a matrix T for which the identity T'*T = A
does not hold. To make isAlways return logical 0 (false) for undecidable conditions,
set Unknown to false.

T = chol(sym([1 1; 2 1]), 'nocheck")
T —

[ 1, 2]

[ 0, 37(1/2)*1i]

isAlways(A == T'*T, 'Unknown', 'false')

ans =
2x2 logical array

0 0

0 0

Return Permutation Matrix

Compute the Cholesky factorization of the 3-by-3 inverse Hilbert matrix returning the
permutation matrix:
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A = sym(invhilb(3));
[T, p, SI = chol(A)

T =
[ 3, -12, 10]
[ 0, 4¥37(1/2), -5*%37(1/2)]
[ O, 0, 57(1/2)1
p =

0
S =

1 0 0

0 1 0

0 0 1

Return Permutation Information as Vector

Compute the Cholesky factorization of the 3-by-3 inverse Hilbert matrix returning the
permutation information as a vector:

A = sym(invhilb(3));
[T, p, S] = chol(A, 'vector')

T =
[ 3, -12, 10]
[ 0, 4%¥3~(1/2), -5*3"(1/2)]
[ 0, 0, 57(1/2)1
p =

0
S =

1 2 3

Use Assumptions to Make Matrix Hermitian Positive Definite

Compute the Cholesky factorization of matrix A containing symbolic parameters. Without
additional assumptions on the parameter a, this matrix is not Hermitian. To make
isAlways return logical 0 (false) for undecidable conditions, set Unknown to false.

syms a
A=[a0; 0al;
isAlways(A == A', 'Unknown', 'false')
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ans =
2x2 logical array

0 1

1 0

By setting assumptions on a and b, you can define A to be Hermitian positive definite.
Therefore, you can compute the Cholesky factorization of A:

assume(a > 0)
chol(A)

ans =

[ a~(1/2), 0]
[ 0, a~(1/2)]
For further computations, remove the assumptions on a by recreating it using syms:

syms a

Return Real Result Without Complex Conjugates

Compute the Cholesky factorization of this matrix. To skip checking whether it is
Hermitian positive definite, use 'nocheck'. By default, chol computes a Hermitian
factorization A = T'*T. Thus, the result contains complex conjugates.

;A(l/Z), conj(b)/conj(a™~(1/2))
0, (a*abs(a) - abs(b)”2)"(1/2)/abs(a)™(1/2)

syms a b

A = [a b; b al;

T = chol(A, 'nocheck')
-

[

[

]
]
To avoid complex conjugates in the result, use 'real':

= chol(A, 'nocheck', 'real')

a™(1/2) b/a~(1/

’ )
0, ((a”2 - b~2)/a)"~(1/

T
T
[
[ )

2)]
2)]

When you use this flag, chol computes a symmetric factorization A = T.'*T instead of a
Hermitian factorization A = T'*T. To make isAlways return logical 0 (false) for
undecidable conditions, set Unknown to false.
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isAlways(A == T.'*T)

ans =
2x2 logical array

1 1

1 1

isAlways(A == T'*T, 'Unknown', 'false')

ans =
2x2 logical array

0 0

0 0

Input Arguments

A — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Output Arguments

T — Upper triangular matrix
symbolic matrix

Upper triangular matrix, returned as a symbolic matrix such that T'*T = A. IfTisa
lower triangular matrix, then T*T' = A.

p — Output
symbolic number

Flag, returned as a symbolic number. Value 0 if A is Hermitian positive definite or if you
use 'nocheck"’.

If chol does not identify A as a Hermitian positive definite matrix, then p is a positive
integer. R is an upper triangular matrix of orderq = p - 1, such thatR'*R =
A(l:q,1:q).
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S — Permutation matrix
symbolic matrix

Permutation matrix returned as a symbolic matrix.

s — Permutation vector
symbolic vector

Permutation vector returned as a symbolic vector.

Limitations

Matrix computations involving many symbolic variables can be slow. To increase the
computational speed, reduce the number of symbolic variables by substituting the given
values for some variables.

Definitions

Hermitian Positive Definite Matrix

A square complex matrix A is Hermitian positive definite if v'*A*v is real and positive for
all nonzero complex vectors v, where v' is the conjugate transpose (Hermitian transpose)
of v.

Cholesky Factorization of a Matrix

The Cholesky factorization of a Hermitian positive definite n-by-n matrix A is defined by
an upper or lower triangular matrix with positive entries on the main diagonal. The
Cholesky factorization of matrix A can be defined as T'*T = A, where T is an upper
triangular matrix. Here T' is the conjugate transpose of T. The Cholesky factorization
also can be defined as T*T' = A, where T is a lower triangular matrix. T is called the
Cholesky factor of A.
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Tips

Calling chol for numeric arguments that are not symbolic objects invokes the
MATLAB chol function.

If you use 'nocheck’, then the identities T' *T = A (for an upper triangular matrix
T)and T*T' = A (for a lower triangular matrix T) are not guaranteed to hold.

If you use 'real’, then the identities T'*T = A (for an upper triangular matrix T)
and T*T' = A (for a lower triangular matrix T) are only guaranteed to hold for a real
symmetric positive definite A.

To use 'vector', you must specify three output arguments. Other flags do not
require a particular number of output arguments.

If you use 'matrix' instead of 'vector', then chol returns permutation matrices,
as it does by default.

If you use 'upper' instead of ' lower', then chol returns an upper triangular
matrix, as it does by default.

If A is not a Hermitian positive definite matrix, then the syntaxes containing the
argument p typically return p = 1 and an empty symbolic object T.

To check whether a matrix is Hermitian, use the operator ' (or its functional form
ctranspose). Matrix A is Hermitian if and only if A'= A, where A' is the conjugate
transpose of A.

See Also

chol | ctranspose | eig | isAlways | lu | qr | svd | transpose | vpa

Introduced in R2013a
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close

Close MuPAD notebook

Note

MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts”.

Syntax

close(nb)
close(nb, 'force')

Description

close(nb) closes the MuPAD notebook with the handle nb. If you modified the notebook,
close(nb) brings up a dialog box asking if you want to save the changes.

close(nb, 'force') closes notebook nb without prompting you to save the changes. If
you modified the notebook, close(nb, 'force') discards the changes.

This syntax can be helpful when you evaluate MuPAD notebooks by using
evaluateMuPADNotebook. When you evaluate a notebook, MuPAD inserts results in the
output regions or at least inserts the new input region at the bottom of the notebook, thus
modifying the notebook. If you want to close the notebook quickly without saving such
changes, use close(nb, 'force').

Examples

4-229



4 Functions — Alphabetical List

Close One Notebook
Open and close an existing notebook.

Suppose that your current folder contains a MuPAD notebook named myFilel.mn. Open
this notebook keeping its handle in the variable nb1:

nbl = mupad('myFilel.mn"');

Suppose that you finished using this notebook and now want to close it. Enter this
command in the MATLAB Command Window. If you have unsaved changes in that
notebook, then this command will bring up a dialog box asking if you want to save the
changes.

close(nbl)

Close Several Notebooks
Use a vector of notebook handles to close several notebooks.
Suppose that your current folder contains MuPAD notebooks named myFilel.mn and

myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively.
Also create a new notebook with the handle nb3:

nbl = mupad('myFilel.mn")
nb2 = mupad('myFile2.mn")
nb3 = mupad

nbl =

myFilel

nb2 =

myFile2

nb3 =

Notebookl

Close myFilel.mn and myFile2.mn. If you have unsaved changes in any of these two
notebooks, then this command will bring up a dialog box asking if you want to save the
changes.
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close([nbl, nb2])

Close All Open Notebooks
Identify and close all currently open MuPAD notebooks.

Get a list of all currently open notebooks:

allNBs = allMuPADNotebooks;

Close all notebooks. If you have unsaved changes in any notebook, then this command
will bring up a dialog box asking if you want to save the changes.

close(allNBs)

Close All Open Notebooks and Discard Modifications
Identify and close all currently open MuPAD notebooks without saving changes.

Get a list of all currently open notebooks:

allNBs = allMuPADNotebooks;

Close all notebooks using the force flag to suppress the dialog box that offers you to
save changes:

close(allNBs, 'force')

Input Arguments

nb — Pointer to MuPAD notebook
handle to notebook | vector of handles to notebooks

Pointer to notebook, specified as a MuPAD notebook handle or a vector of handles. You
create the notebook handle when opening a notebook with the mupad or openmn function.

You can get the list of all open notebooks using the alTMuPADNotebooks function.
close accepts a vector of handles returned by al LIMuPADNotebooks.
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See Also

allMuPADNotebooks | evaluateMuPADNotebook | getVar | mupad |
mupadNotebookTitle | openmn | setVar

Topics

“Create MuPAD Notebooks” on page 3-4

“Open MuPAD Notebooks” on page 3-7

“Save MuPAD Notebooks” on page 3-13

“Evaluate MuPAD Notebooks from MATLAB” on page 3-14

“Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-55
“Close MuPAD Notebooks from MATLAB” on page 3-18

Introduced in R2013b
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Coefficients of polynomial

Syntax

coeffs(p)
coeffs(p,var)
coeffs(p,vars)

C,T] = coeffs( )
= coeffs( , ALlY)

C
C
C
[

Description

C = coeffs(p) returns coefficients of the polynomial p with respect to all variables
determined in p by symvar.

C = coeffs(p,var) returns coefficients of the polynomial p with respect to the variable
var.

C = coeffs(p,vars) returns coefficients of the multivariate polynomial p with respect
to the variables vars.

[C,T] = coeffs( ) returns the coefficient C and the corresponding terms T of the
polynomial p.

= coeffs(___ ,'All'") returns all coefficients, including coefficients that are 0.
For example, coeffs(2*x~2, 'AlLl"') returns [ 2, 0, 0] instead of 2.

Examples

Coefficients of Univariate Polynomial

Find the coefficients of this univariate polynomial. The coefficients are ordered from the
lowest degree to the highest degree.
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syms X
c = coeffs(16*x™2 + 19*x + 11)

C =
[ 11, 19, 16]

Reverse the ordering of coefficients by using fliplr.

C

fliplr(c)
Cc =

[ 16, 19, 11]

Coefficients of Multivariate Polynomial with Respect to
Particular Variable

Find the coefficients of this polynomial with respect to variable x and variable y.
syms X y

cx = coeffs(x™3 + 2*x"2*y + 3*x*y"2 + 4*y~3,  x)

cy = coeffs(x™3 + 2*¥x"2*y + 3*x*y"2 + 4*y~3  y)

CX =
[ 4*¥y"3, 3*y~2, 2*y, 1]

Ccy =
[ x*3, 2*x"2, 3*x, 4]

Coefficients of Multivariate Polynomial with Respect to Two
Variables

Find the coefficients of this polynomial with respect to both variables x and y.

syms X y

cxy = coeffs(x™3 + 2*x"2*y + 3*x*y™2 + 4*y~3, [x y])
cyx = coeffs(x™3 + 2*x"2*y + 3*x*y™2 + 4*y~3, [y x])
cxy =

[ 4! 3! 2' 1]

Cyx =

[ 1! 2! 3' 4]
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Coefficients and Corresponding Terms of Univariate
Polynomial

Find the coefficients and the corresponding terms of this univariate polynomial. When two
outputs are provided, the coefficients are ordered from the highest degree to the lowest
degree.

syms x
[c,t] = coeffs(16*x"2 + 19*x + 11)

C =
[ 16, 19, 11]

t
[

X |l

~2, x, 1]
Coefficients and Corresponding Terms of Multivariate
Polynomial

Find the coefficients and the corresponding terms of this polynomial with respect to
variable x and variable y.

syms X y

[cx,tx] = coeffs(X™3 + 2*x"2*y + 3*x*y"2 + 4*y~3, X)
[cy,ty] = coeffs(x™3 + 2*¥x"2*y + 3*x*y"2 + 4*y"3, y)
CcX =

[ 4, 3*x, 2*x"2, x"3]

ty =
[ yv*3, y*2, vy, 1]

Find the coefficients of this polynomial with respect to both variables x and y.

syms X y
[cxy, txy] = coeffs(x"3 + 2*¥x"™2*y + 3*x*y"2 + 4*y"3, [Xx,y])
[cyx, tyx] = coeffs(x"3 + 2*¥x™2*y + 3*x*y"2 + 4*y"3, [y,x])
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cxy =
[ 1, 2, 3, 4]

txy =
[ x*3, x™2*y, x*y™2, y~3]

Cyx =
[ 4, 3, 2, 1]

tyx =
[ y*3, x*y™2, x™2*¥y, x*3]
All Coefficients of Polynomial

Find all coefficients of a polynomial, including coefficients that are 0, by specifying the
option 'All"'.

Find all coefficients of 3x2.

syms X
c = coeffs(3*x™2, 'All')

C =
[ 3, 0, 0]

If you find coefficients with respect to multiple variables and specify 'Al1l"', then coeffs
returns coefficients for all combinations of the variables.

Find all coefficients and corresponding terms of ax? + by.

syms a by

[cxy, txy] = coeffs(a*x"2 + b*y, [y x], 'All')
cXy =

[ 6, 0, b]

[ a, 0, 0]

txy =

[ x*2*y, x*y, y]

[ x"2, x, 1]
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Input Arguments

p — Polynomial
symbolic expression | symbolic function

Polynomial, specified as a symbolic expression or function.

var — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

vars — Polynomial variables
vector of symbolic variables

Polynomial variables, specified as a vector of symbolic variables.

Output Arguments

C — Coefficients of polynomial
symbolic number | symbolic variable | symbolic expression | symbolic vector | symbolic
matrix | symbolic multidimensional array

Coefficients of polynomial, returned as a symbolic number, variable, expression, vector,
matrix, or multidimensional array. If there is only one coefficient and one corresponding
term, then C is returned as a scalar.

T — Terms of polynomial
symbolic number | symbolic variable | symbolic expression | symbolic vector | symbolic
matrix | symbolic multidimensional array

Terms of polynomial, returned as a symbolic number, variable, expression, vector, matrix,

or multidimensional array. If there is only one coefficient and one corresponding term,
then T is returned as a scalar.

See Also
poly2sym | sym2poly
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Introduced before R2006a
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Collect coefficients

Syntax

collect(P)
collect(P,expr)

Description

collect (P) collects coefficients in P of the powers of the default variable of P. The
default variable is found by symvar.

collect(P,expr) collects coefficients in P of the powers of the symbolic expression
expr. If P is a vector or matrix, then collect acts element-wise on P. If expr is a vector,
then collect finds coefficients in terms of all expressions in expr.

Examples

Collect Coefficients of Powers of Default Variable

Collect the coefficients of a symbolic expression.

syms x
coeffs = collect((exp(x) + x)*(x + 2))

coeffs =
X"2 + (exp(x) + 2)*x + 2*exp(x)

Because you did not specify the variable, collect uses the default variable defined by
symvar. For this expression, the default variable is x.

symvar((exp(x) + x)*(x + 2), 1)

ans =
X
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Collect Coefficients of Powers of a Particular Variable

Collect coefficients of a particular variable by specifying the variable as the second
argument to collect.

Collect coefficients of an expression in powers of x, and then in powers of y.

syms X y
coeffs x = collect(x™2*y + y*x - x™2 - 2*x, Xx)
coeffs y = collect(x™2*y + y*x - x™2 - 2*x, y)
coeffs x =

(y - 1)*x*2 + (y - 2)*x

coeffs y =

(Xx*2 + x)*y - x"2 - 2*x

Collect coefficients in powers of both x and y by specifying the second argument as a
vector of variables.

syms a b
coeffs xy = collect(a”2*x*y + a*b*x"2 + a*x*y + x~2, [x yl])

coeffs xy =

(a*b + 1)*x™2 + (a™2 + a)*x*y

Collect Coefficients in Terms of i and pi1

Collect coefficients of an expression in terms of i, and then in terms of pi.

syms X y
coeffs i = collect(2*x*i - 3*i*y, i)
coeffs pi = collect(x*pi*(pi - y) + x*(pi + 1) + 3*pi*y, pi)

coeffs i =

(2*x - 3*y)*1i

coeffs pi =

X*¥pit2 + (x + 3*y - x*y)*pi + x*1i

Collect Coefficients of Symbolic Expressions and Functions
Collect coefficients of expressions and functions by specifying the second argument as an

expression or function. Collect coefficients of multiple expressions or functions by using
vector input.
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Expand sin(x + 3*y) and collect coefficients of cos(y), and then of both sin(x) and
sin(y).

syms x y

f = expand(sin(x + 3*y));

coeffs cosy = collect(f, cos(y))

coeffs cosy =
4*sin(x)*cos(y)”™3 + 4*cos(x)*sin(y)*cos(y)”2 + (-3*sin(x))*cos(y) - cos(x)*sin(y)

coeffs sinxsiny = collect(f, [sin(x) sin(y)1)

coeffs sinxsiny =
(4*cos(y)”™3 - 3*cos(y))*sin(x) + (4*cos(x)*cos(y)"2 - cos(x))*sin(y)

Collect coefficients of the symbolic function y (x) in a symbolic expression.
syms y(x)

T = y"2*x + y*x*2 + y*sin(x) + x*y;

coeffs y = collect(f, y)

coeffs y(x) =

X*y(X)"2 + (X + sin(x) + x"2)*y(x)

Collect Coefficients for Each Element of Matrix

Call collect on a matrix. collect acts element-wise on the matrix.

syms X y
collect([(x + 1)*(y + 1), x*2 + x*¥(x -y); 2*x*y - x, x*y + x/yl], Xx)

ans =
[ (y + 1)*x +y + 1, 2*¥x™2 - y*x]
[ (2*y - 1)*x, (y + 1/y)*x]

Collect Coefficients of Function Calls

Collect coefficients of calls to a particular function by specifying the function name as the
second argument. Collect coefficients of function calls with respect to multiple functions
by specifying the multiple functions as a cell array of character vectors.

Collect coefficients of calls to the sin function in F, where F contains multiple calls to
different functions.
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syms abcdefx
F = a*sin(2*x) + b*sin(2*x) + c*cos(x) + d*cos(x) + e*sin(3*x) +f*sin(3*x);
collect(F, 'sin')

ans =
(a + b)*sin(2*x) + (e + f)*sin(3*x) + c*cos(x) + d*cos(x)

Collect coefficients of calls to both the sin and cos functions in F.
collect(F, {'sin' 'cos'})

ans =
(c + d)*cos(x) + (a + b)*sin(2*x) + (e + f)*sin(3*x)

Input Arguments

P — Input expression
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input expression, specified as a symbolic expression, function, vector, or matrix.

expr — Expression in terms of which you collect coefficients
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | character vector | cell array of character vectors

Expression in terms of which you collect the coefficients, specified as a symbolic number,
variable, expression, function, or vector; a character vector; a cell array of character
vectors.

Example: i, pi, X, sin(x), y(x), [sin(x) cos(y)], {'sin' 'cos'}.

See Also

combine | expand | factor | horner | numden | rewrite | simplify |
simplifyFraction | symvar

Introduced before R2006a
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Create symbolic vectors, array subscripting, and for-loop iterators

Syntax

m:n
m:d:n
X:iX+r
X:dix+r

Description

m:n returns a symbolic vector of values [m,m+1, ...,n], where m and n are symbolic
constants. If n is not an increment of m, then the last value of the vector stops before n.
This behavior holds for all syntaxes.

m:d:n returns a symbolic vector of values [m,m+d, . ..,n], where d is a rational
number.
X :X+r returns a symbolic vector of values [x,x+1,...,x+r], where x is a symbolic

variable and r is a rational number.

x:d:x+r returns a symbolic vector of values [x,x+d, ..., x+r], where d and r are
rational numbers.

Examples

Create Numeric and Symbolic Arrays

Use the colon operator to create numeric and symbolic arrays. Because these inputs are
not symbolic objects, you receive floating-point results.

1/2:7/2
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ans =
0.5000 1.5000 2.5000 3.5000

To obtain symbolic results, convert the inputs to symbolic objects.
sym(1/2):sym(7/2)

ans =
[ 1/2, 3/2, 5/2, 7/2]

Specify the increment used.
sym(1/2):2/3:sym(7/2)

ans =
[ 1/2, 7/6, 11/6, 5/2, 19/6]

Obtain Increments of Symbolic Variable

syms X
X:iX+2

Specify the increment used.

syms X
X:3/7:x+2

ans =
[ x, x + 3/7, x +6/7, x +9/7, x + 12/7]

Obtain increments between x and 2*x in intervals of x/3.
syms X
X:X/3:2*X

[ x, (4*x)/3, (5*x)/3, 2*x]

Find Product of Harmonic Series

Find the product of the first four terms of the harmonic series.
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syms X

p = sym(1);

for i = x:x+3
p = p*l/i;

end

p

p =

1/7(x*(x + 1)*(x + 2)*(x + 3))
Use expand to obtain the full polynomial.
expand(p)

ans =
1/(x™ + 6*x™3 + 11*x"2 + 6%*X)

Use subs to replace x with 1 and find the product in fractions.

p = subs(p,x,1)

p:
1/24

Use vpa to return the result as a floating-point value.

vpa(p)

ans =
0.041666666666666666666666666666667

You can also perform the described operations in a single line of code.
vpa(subs( expand(prod(l./(x:x+3))) ,x,1))

ans =
0.041666666666666666666666666666667

Input Arguments

m — Input
symbolic constant

Input, specified as a symbolic constant.
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n — Input
symbolic constant

Input, specified as a symbolic constant.

X — Input
symbolic variable

Input, specified as a symbolic variable.

r — Upper bound on vector values
symbolic rational

Upper bound on vector values, specified as a symbolic rational. For example, x: x+2
returns [ x, x + 1, x + 2].

d — Increment in vector values
symbolic rational

Increment in vector values, specified as a symbolic rational. For example, x:1/2: x+2
returns [ x, x + 1/2, x + 1, x + 3/2, x + 2].

See Also

reshape

Introduced before R2006a
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colspace

Basis for column space of matrix

Syntax

colspace(A)

Description

colspace(A) returns a symbolic matrix whose columns form a basis for the column
space of the symbolic matrix A.

Examples

Compute Basis for Column Space of Symbolic Matrix

Compute the basis for the column space of a symbolic matrix.

A = sym([2 0;3 4;0 5]);
B = colspace(A)

B =

[ 1, 0]

[ 0, 1]

[ -15/8, 5/4]

Input Arguments

A — Input
symbolic matrix

Input, specified as a symbolic matrix.
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See Also
null

Introduced before R2006a
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Combine terms of identical algebraic structure

Syntax

Y = combine(S)

Y = combine(S,T)

Y = combine(  ,'IgnoreAnalyticConstraints',true)
Description

Y = combine(S) rewrites products of powers in the expression S as a single power.

Y = combine(S,T) combines multiple calls to the target function T in the expression S.
Use combine to implement the inverse functionality of expand with respect to the
majority of the applied rules.

Y = combine(  ,'IgnoreAnalyticConstraints', true) simplifies the output by
applying common mathematical identities, such as log(a) + log(b) = log(a*b).
These identities might not be valid for all values of the variables, but applying them can
return simpler results.

Examples

Powers of the Same Base

Combine powers of the same base.

Syms X y z
combine (xy*x"z)

ans =
X~y + z)
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Combine powers of numeric arguments. To prevent MATLAB from evaluating the
expression, use sym to convert at least one numeric argument into a symbolic value.

syms X y
combine (x™(3)*x*y*x™exp(sym(1)))

ans =
X~y + exp(1l) + 3)

Here, sym converts 1 into a symbolic value, preventing MATLAB from evaluating the
expression el,

Powers of the Same Exponent

Combine powers with the same exponents in certain cases.
combine(sqrt(sym(2))*sqrt(3))

ans =
67(1/2)

combine does not usually combine the powers because the internal simplifier applies the
same rules in the opposite direction to expand the result.

syms X y
combine (y"~5*x"5)

ans =
X" 5*y~5

Terms with Logarithms

Combine terms with logarithms by specifying the target argument as 1og. For real
positive numbers, the logarithm of a product equals the sum of the logarithms of its
factors.

S = log(sym(2)) + log(sym(3));
combine(S, 'log')

ans =
log(6)

Try combining log(a) + log(b). Because a and b are assumed to be complex numbers
by default, the rule does not hold and combine does not combine the terms.
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syms a b
= log(a) + log(b);
combine(S, 'log")

ans =
log(a) + log(b)

Apply the rule by setting assumptions such that a and b satisfy the conditions for the rule.

assume(a > 0)
assume(b > 0)

log(a) + log(b);
comblne( ,'log')
ans =
log(a*b)

For future computations, clear the assumptions set on variables a and b by recreating
them using syms.

syms a b

Alternatively, apply the rule by ignoring analytic constraints using
"IgnoreAnalyticConstraints’.

syms a b
= log(a) + log(b);
combine(S, 'log', 'IgnoreAnalyticConstraints', true)
ans =
log(a*b)

Terms with Sine and Cosine Function Calls

Rewrite products of sine and cosine functions as a sum of the functions by setting the
target argument to sincos.

syms a b
combine(sin(a)*cos(b) + sin(b)"2, 'sincos"')

ans =
sin(a + b)/2 - cos(2*b)/2 + sin(a - b)/2 + 1/2

Rewrite sums of sine and cosine functions by setting the target argument to sincos.
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combine(cos(a) + sin(a), 'sincos"')

ans =
2”~(1/2)*cos(a - pi/4)

combine does not rewrite powers of sine or cosine functions with negative integer
exponents.

syms a b
combine(sin(b)”~(-2)*cos(b)”~(-2), 'sincos"')

ans =

1/(cos(b)"2*sin(b)"2)

Exponential Terms

Combine terms with exponents by specifying the target argument as exp.
combine(exp(sym(3))*exp(sym(2)),'exp')

ans =
exp(5)

syms a
combine(exp(a)”~3, 'exp')

Terms with Integrals

Combine terms with integrals by specifying the target argument as int.

syms a f(x) g(x)
combine(int(f(x),x)+int(g(x),x), " 'int")
combine(a*int(f(x),x), 'int")

ans =
int(f(x) + g(x), x)
ans =

int(a*f(x), x)

Combine integrals with the same limits.
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syms a b h(z)
combine(int(f(x),x,a,b)+int(h(z),z,a,b), 'int")

ans =

int(f(x) + h(x), x, a, b)

Terms with Inverse Tangent Function Calls

Combine two calls to the inverse tangent function by specifying the target argument as
atan.

syms a b

assume(-1 < a < 1)

assume(-1 < b < 1)

combine(atan(a) + atan(b), 'atan"')

ans =
-atan((a + b)/(a*b - 1))

Combine two calls to the inverse tangent function. combine simplifies the expression to a
symbolic value if possible.

assume(a > 0)
combine(atan(a) + atan(l/a),'atan')

ans =
pi/2

For further computations, clear the assumptions:

syms a b

Terms with Calls to Gamma Function

Combine multiple gamma functions by specifying the target as gamma.

syms X
combine(gamma(x)*gamma(1l-x), 'gamma')

ans =
-pi/sin(pi*(x - 1))

combine simplifies quotients of gamma functions to rational expressions.
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Multiple Input Expressions in One Call

Evaluate multiple expressions in one function call by using a symbolic matrix as the input
parameter.

S = [sqrt(sym(2))*sqrt(5), sqrt(2)*sqrt(sym(1ll))];
combine(S)

ans =
[ 107(1/2), 227(1/2)]

Input Arguments

S — Input expression
symbolic expression | symbolic vector | symbolic matrix | symbolic function

Input expression, specified as a symbolic expression, function, or as a vector or matrix of
symbolic expressions or functions.

combine works recursively on subexpressions of S.
If S is a symbolic matrix, combine is applied to all elements of the matrix.

T — Target function
‘atan' | 'exp' | 'gamma’ | 'int' | 'log' | 'sincos’' | 'sinhcosh’

Target function, specified as 'atan', 'exp', 'gamma‘', 'int"', 'log', 'sincos’, or
'sinhcosh'. The rewriting rules apply only to calls to the target function.

Output Arguments

Y — Expression with combined functions
symbolic variable | symbolic number | symbolic expression | symbolic vector | symbolic
matrix

Expression with the combined functions, returned as a symbolic variable, number,
expression, or as a vector or matrix of symbolic variables, numbers, or expressions.
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Algorithms

combine applies the following rewriting rules to the input expression S, depending on the
value of the target argument T.

* WhenT = 'exp', combine applies these rewriting rules where valid,

b a+b

ele? =¢

(e“)b =g,
* WhenT= "'log"',
log(a) + log(b) = log(ab).
If b < 1000,
blog(a) = log(ab).
When b >= 1000, combine does not apply this second rule.

The rules applied to rewrite logarithms do not hold for arbitrary complex values of a
and b. Specify appropriate properties for a or b to enable these rewriting rules.

¢« WhenT="int’,
a f FO0)dx = f af(x)dx
[ rooax+ [ geaax = [£x) + gix)ax
Ibf(x)dx + !bg(x)dx = Ibf(x) + g(x)dx
b b b
[ roaax+ [awdy = [7Fw) + gy

[Pvreoax+ [xawiy = [*vi(0) +x(pde.

e WhenT= "'sincos',

_ cos(x—y) _ cos(x+Y)

sin(x)sin(y) 5 > .
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combine applies similar rules for sin(x)cos(y) and cos(x)cos(y).

Acos(x) + Bsin(x) = Ay/1 + B—zcos(x + tan_l(_—B))
A? Al

WhenT = 'atan'and-1<x<1,-1<y<]1,

x+y)

atan(x) + atan(y) = atan(1 mpri R

When T = 'sinhcosh’,

sinh(x)sinh(y) = Cosh(2>< +y) _ COSh(2x -y

combine applies similar rules for sinh(x)cosh(y) and cosh(x)cosh(y).

combine applies the previous rules recursively to powers of sinh and cosh with
positive integral exponents.

When T = 'gamma’,
al'(@)=T(a+1).
and,

I'a+1)
I'(a)

=da.

For positive integers n,

I
sin(ma)

I(-a)[(a) = -

See Also

collect | expand | factor | horner | numden | rewrite | simplify |
simplifyFraction

Introduced in R2014a
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compose

Functional composition

Syntax

compose
compose
compose
compose

z)

y,z)

(f,9)
(f,9,2)
(f;g: ’
(f;g: ’

z
X
X

Description

compose(f,g) returns f(g(y)) where f = f(x) andg = g(y). Here x is the
symbolic variable of f as defined by symvar and y is the symbolic variable of g as defined
by symvar.

compose(f,g,z) returns f(g(z)) where f = f(x),g = g(y), and x and y are the
symbolic variables of f and g as defined by symvar.

compose(f,g,x,z) returns f(g(z)) and makes x the independent variable for f. That
is,if f = cos(x/t), then compose(f,qg,x,z) returns cos(g(z)/t) whereas
compose(f,qg,t,z) returns cos(x/g(z)).

compose(f,g,x,y,z) returns f(g(z)) and makes x the independent variable for f and
y the independent variable for g. For f = cos(x/t) andg = sin(y/u),
compose(f,g,x,y,z) returns cos(sin(z/u)/t) whereas compose(f,g,x,u,z)
returns cos(sin(y/z)/t).

Examples

Compose Functions From Expressions

Show functional composition by creating functions from existing functions.
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Declare functions.

syms Xy z tu

f=1/(1 + x*2);
g = sin(y);

h = x~t;

p = exp(-y/u);

Compose functions with different functions and variables as inputs.
a = compose(f,q)

a =
1/(sin(y)”2 + 1)

b = compose(f,g,t)

b =
1/(sin(t)”2 + 1)

¢ = compose(h,g,x,z)
C =
sin(z)"t

d = compose(h,g,t,z)

d:
x"sin(z)

e = compose(h,p,x,y,z)

e =
exp(-z/u)"t

Input Arguments

f — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.
g — Input

symbolic function | symbolic expression
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Input, specified as a symbolic function or expression.

x — Symbolic variable
symbolic variable

Symbolic variable, specified as a symbolic variable.

y — Symbolic variable
symbolic variable

Symbolic variable, specified as a symbolic variable.

z — Symbolic variable
symbolic variable

Symbolic variable, specified as a symbolic variable.

See Also

finverse | subs | syms

Introduced before R2006a
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cond

Condition number of matrix

Syntax

cond(A)
cond(A,P)

Description

cond (A) returns the 2-norm condition number of matrix A.

cond (A, P) returns the P-norm condition number of matrix A.

Examples

Compute 2-Norm Condition Number of Matrix

Compute the 2-norm condition number of the inverse of the 3-by-3 magic square A.

A = inv(sym(magic(3)));
condN2 = cond(A)

condN2 =
(5*%37(1/2))/2

Use vpa to approximate the result.
vpa(condN2, 20)

ans =
4.3301270189221932338186158537647
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Compute Different Condition Numbers of Matrix

Compute the 1-norm condition number, the Frobenius condition number, and the infinity
condition number of the inverse of the 3-by-3 magic square A.

A = inv(sym(magic(3)));
condN1l = cond(A, 1)
condNf = cond(A, 'fro')
condNi = cond(A, inf)

condN1
16/3

condNf =
(2857(1/2)*391™(1/2))/60

condNi =
16/3

Approximate these results by using vpa.

vpa(condN1)
vpa(condNf)
vpa(condNi)

ans =
5.3333333333333333333333333333333
ans =
5.5636468855119361058627454652148
ans =
5.3333333333333333333333333333333

Compute Condition Number of Hilbert Matrix

Hilbert matrices are examples of ill-conditioned matrices. Numerically compute the
condition numbers of the 3-by-3 Hilbert matrix by using cond and vpa.

= hilb(sym(3));
condN2 = vpa(cond(H))
condN1l = vpa(cond(H,1))
condNf = vpa(cond(H, fro'))
condNi = vpa(cond(H,inf))
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condN2 =
524.05677758606270799646154046059

condN1l =
748.0

condNf =
526.15882107972220183000899851322

condNi =
748.0

Input Arguments

A — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

P — Input
2 (default) | number | character vector

One of these values 1, 2, inf, or 'fro".

* cond(A, 1) returns the 1-norm condition number.

* cond(A,2) or cond(A) returns the 2-norm condition number.
* cond(A,inf) returns the infinity norm condition number.

* cond(A, 'fro') returns the Frobenius norm condition number.

Definitions

Condition Number of a Matrix
Condition number of a matrix is the ratio of the largest singular value of that matrix to the

smallest singular value. The P-norm condition number of the matrix A is defined as
norm(A,P)*norm(inv(A),P).
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Tips

* Calling cond for a numeric matrix that is not a symbolic object invokes the MATLAB
cond function.

See Also

equationsToMatrix | inv | linsolve | norm | rank

Introduced in R2012b
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conj

Complex conjugate of symbolic input

Syntax

conj (x)

Description

conj (x) returns the complex conjugate of x. Because symbolic variables are complex by
default, unresolved calls, such as conj (x), can appear in the output of norm, mtimes,
and other functions. For details, see “Use Assumptions on Symbolic Variables” on page 1-
29.

For complex x, conj (x) = real(x) - i*imag(x).

Examples

Conjugate of Numeric and Symbolic Input
Compute the conjugate of numeric input.
conj (1+31)

ans =
1.0000 - 3.00001

Compute the conjugate of symbolic input.

syms X

f = x*2;

fConj = conj(f)
fConj =
conj(x)"2

4-264



conj

Convert symbolic output to double by substituting for x with a number by using subs,
and then using double.

fConj = subs(fConj,x,1+21); % X is 1+2i
fConj = double(fConj)
fConj =

-3.0000 - 4.00001
Conjugate of Real Inputs Using Assumptions

If the input is real, conj returns the input instead of an unresolved call. Assume x is real
and find its conjugate. conj returns x instead of conj (x), as expected.

syms x
assume(x, 'real')
conj(x)

ans =
X

Clear the assumption for further computations.

assume(x, 'clear')

Input Arguments

X — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

See Also

imag | real

Introduced before R2006a
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convertMuPADNotebook

Convert MuPAD notebook to MATLAB live script

Syntax

convertMuPADNotebook (MuPADfile,MATLABLiveScript)
convertMuPADNotebook (MuPADfile)

Description

convertMuPADNotebook (MuPADfile,MATLABLiveScript) converts a MuPAD
notebook file MuPADTile (.mn) to a MATLAB live script file MATLABLiveScript (.mlx).
Both MuPADfile and MATLABLiveScript must be full paths unless the files are in the
current folder. For information on live scripts, see “Create Live Scripts in the Live Editor’
(MATLAB).

y

convertMuPADNotebook (MuPADfile) uses the same name and path, MuPADfile, for
the MATLAB live script file that contains converted code. The extension .mn changes
to .mlx in the resulting MATLAB live script file.

Examples

Convert MuPAD Notebook to MATLAB Script

Using convertMuPADNotebook, convert a MuPAD notebook to a MATLAB live script.
Alternatively, right-click the notebook in the Current Folder browser and select Open as
Live Script from the context menu.

Suppose that your current folder contains a MuPAD notebook named myNotebook.mn.
Convert this notebook to the MATLAB live script file named myScript.mlx.

convertMuPADNotebook( 'myNotebook.mn', "'myScript.mlx")

Open the resulting file.



convertMuPADNotebook

edit('myScript.mlx")

Visually check the code for correctness and completeness. Then verify it by running it.

Use Same Name for Converted File
Convert a MuPAD notebook to a MATLAB live script file with the same name.

Suppose that your current folder contains a MuPAD notebook named myFile.mn.
Convert this notebook to the MATLAB live script file named myFile.mlx.

convertMuPADNotebook('myFile.mn")
Open the resulting file.
edit('myFile.mlx")

Visually check the code for correctness and completeness. Then verify it by executing it.

Fix Translation Errors or Warnings

If convertMuPADNotebook reports that the converted code has translation errors or
warnings, correct the resulting MATLAB code before using it.

Convert the MuPAD notebook, myNotebook.mn, to the MATLAB live script file,
myScript.mlx. Because myNotebook.mn contains commands that cannot be directly
translated to MATLAB code, convertMuPADNotebook flags these commands as
translation errors and warnings.

convertMuPADNotebook( 'myNotebook.mn', "myScript.mlx")

Created 'myScript.mlx': 4 translation errors, 1 warnings. For verifying...
the document, see help.

ans =

C:\MATLABscripts\myScript.mlx

A translation error indicates that convertMuPADNotebook was unable to convert part of
the MuPAD notebook, and that without this part the translated code will not run properly.
A translation warning indicates that convertMuPADNotebook was unable to convert a
part of the MuPAD notebook (for example, an empty input region) and ignored it.
Converted code containing warnings is likely to run without any issues.

Open the resulting file.
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edit('myScript.mlx");

Eliminate translation errors. First, search for “translation error”. Next to “translation
error”, the converted code displays short comments explaining which MuPAD command
did not translate properly. There is also a link to documentation that provides more
details and suggestions for fixing the issue. After fixing the issue, remove the
corresponding error message and any comments related to it.

Find translation warnings by searching for “translation warning”. The converted code
displays a short comment and a link to documentation next to “translation warning”.
Some warnings might require you to adapt the code so it runs properly. In most cases,
you can ignore translation warnings. Whether you fixed the code or decided to ignore the
warning, remove the warning message and any comments related to it.

Visually check the code for correctness and completeness.

Verify that the resulting MATLAB code runs properly by executing it.

Convert All Notebooks in a Folder

Convert all MuPAD notebooks in a folder by making it your current folder, and then using
a loop to call the convertMuPADNotebook function on every notebook in the folder.

files = dir('*.mn');
for i = l:numel(files)

convertMuPADNotebook(files (i) .name)
end

Convert MuPAD Procedure to MATLAB Function

convertMuPADNotebook converts MuPAD procedures to MATLAB functions. Not all
MuPAD procedures can be converted.

Simple procedures are converted into anonymous functions. Convert a MuPAD notebook
with the following code.

f 1= x -> x™2
f(2)

The output of convertMuPADNotebook is a live script with the anonymous function f.



convertMuPADNotebook

Fr=tidf ) et
f= @(x)n"2
fisym(2))

ans = 4

For details on anonymous functions, see “Anonymous Functions” (MATLAB).

When procedures are too complex to convert to anonymous functions, they are converted
to local functions in the live script. Local functions are placed at the end of the live script.

Convert a MuPAD notebook with the following code.

X -> if x=1 then 2 else 3 end
f(0)

The procedure is too complex to convert to an anonymous function. The output of
convertMuPADNotebook is a live script with the local function aux2.
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f = @aux?

@aux?

f{sym(Q))

Local Functions

function returnValue = auxZ(x)
if x = sym(1l)
auxl = sym(2);
else
auxl = sym(3);
end
returnValue = auxl;
end

For information on local functions in scripts, see “Add Functions to Scripts” (MATLAB).

When converting a notebook that reads a MuPAD program file (. mu),
convertMuPADNotebook replaces the read command with the contents of the . mu file.
The notebook and program files must be in the same directory.

Input Arguments

MuPADfile — Name of MuPAD notebook
character vector

Name of a MuPAD notebook, specified as a character vector. This character vector must
specify the full path to the file, unless the file is in the current folder.
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Example: 'C:\MuPAD Notebooks\myFile.mn'

MATLABLiveScript — Name of MATLAB live script file
character vector

Name of a MATLAB live script file, specified as a character vector. This character vector
must specify the full path to the file, unless you intend to create a file in the current
folder.

Example: 'C:\MATLAB Scripts\myFile.mlx"

See Also
generate: :MATLAB

Topics

“Convert MuPAD Notebooks to MATLAB Live Scripts” on page 3-20
“Troubleshoot MuPAD to MATLAB Translation Errors” on page 3-26
“Troubleshoot MuPAD to MATLAB Translation Warnings” on page 3-36

Introduced in R2016a
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COS

Symbolic cosine function

Syntax

cos (X)

Description

cos (X) returns the cosine function on page 4-275 of X.

Examples

Cosine Function for Numeric and Symbolic Arguments
Depending on its arguments, cos returns floating-point or exact symbolic results.

Compute the cosine function for these numbers. Because these numbers are not symbolic
objects, cos returns floating-point results.

A= COS(['ZI _pir pl/6: 5*pl/7l 11])

A:
-0.4161 -1.0000 0.8660 -0.6235 0.0044

Compute the cosine function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, cos returns unresolved symbolic calls.

symA = cos(sym([-2, -pi, pi/6, 5*pi/7, 111))

SymA =
[ cos(2), -1, 3°(1/2)/2, -cos((2*pi)/7), cos(1l)]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)



cos

ans =

[ -0.41614683654714238699756822950076, . . .
-1.0,...
0.86602540378443864676372317075294, . ..
-0.62348980185873353052500488400424, . ..
0.00442569798805078574835502472394161

Plot Cosine Function

Plot the cosine function on the interval from —41m to 4.

syms x
fplot(cos(x),[-4*pi 4*pi])
grid on
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Handle Expressions Containing Cosine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing cos.

Find the first and second derivatives of the cosine function:
syms X

diff(cos(x), x)

diff(cos(x), x, X)

ans =
-sin(x)

ans =
-cos(x)

Find the indefinite integral of the cosine function:
int(cos(x), Xx)

ans =
sin(x)

Find the Taylor series expansion of cos (x):
taylor(cos(x), x)

ans =
x"4/24 - x~2/2 + 1

Rewrite the cosine function in terms of the exponential function:
rewrite(cos(x), 'exp')

ans =
exp(-x*1i)/2 + exp(x*1i)/2

Evaluate Units with cos Function

cos numerically evaluates these units automatically: radian, degree, arcmin, arcsec,
and revolution.



Ccos

Show this behavior by finding the cosine of x degrees and 2 radians.
u = symunit;

syms X

f = [x*u.degree 2*u.radian];

cosinf = cos(f)

cosinf =
[ cos((pi*x)/180), cos(2)]

You can calculate cosinf by substituting for x using subs and then using double or
vpa.

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Cosine Function

The cosine of an angle, «, defined with reference to a right angled triangle is

cos(a) = adjacent side _ b
~ hypotenuse ~ h -
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h a

(hypotenuse) (opposite)

(adjacent)

The cosine of a complex argument, «, is

ela + e—la

cos(a) = 5

See Also

acos | acot | acsc|asec|asin|atan|cot|csc|sec|sin|tan

Introduced before R2006a
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cosh

Symbolic hyperbolic cosine function

Syntax

cosh(X)

Description

cosh(X) returns the hyperbolic cosine function of X.

Examples

Hyperbolic Cosine Function for Numeric and Symbolic
Arguments

Depending on its arguments, cosh returns floating-point or exact symbolic results.

Compute the hyperbolic cosine function for these numbers. Because these numbers are
not symbolic objects, cosh returns floating-point results.

A = cosh([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2])

A:
3.7622 -1.0000 0.8660 -0.6235 -0.0000

Compute the hyperbolic cosine function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, cosh returns unresolved symbolic calls.

symA = cosh(sym([-2, -pi*i, pi*i/6, S5*pi*i/7, 3*pi*i/2]))

SymA =
[ cosh(2), -1, 37(1/2)/2, -cosh((pi*21i)/7), 0]

Use vpa to approximate symbolic results with floating-point numbers:
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vpa(symA)

ans =

[ 3.7621956910836314595622134777737, ...
-1.0,...
0.86602540378443864676372317075294, . ..
-0.62348980185873353052500488400424, . ..
0]

Plot Hyperbolic Cosine Function

Plot the hyperbolic cosine function on the interval from —m to m. Prior to R2016a, use
ezplot instead of fplot

syms x

fplot(cosh(x), [-pi, pil)
grid on
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Handle Expressions Containing Hyperbolic Cosine Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing cosh.

Find the first and second derivatives of the hyperbolic cosine function:

syms X
diff(cosh(x), x)
diff(cosh(x), x, Xx)

ans =
sinh(x)
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ans =
cosh(x)

Find the indefinite integral of the hyperbolic cosine function:
int(cosh(x), x)

ans =
sinh(x)

Find the Taylor series expansion of cosh(x):
taylor(cosh(x), x)

ans =
X~4/24 + x™2/2 + 1

Rewrite the hyperbolic cosine function in terms of the exponential function:
rewrite(cosh(x), 'exp')

ans =
exp(-x)/2 + exp(x)/2

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth | acsch | asech | asinh | atanh | coth | csch | sech | sinh | tanh

Introduced before R2006a
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coshint

Hyperbolic cosine integral function

Syntax

coshint (X)

Description

coshint (X) returns the hyperbolic cosine integral function on page 4-284 of X.

Examples

Hyperbolic Cosine Integral Function for Numeric and Symbolic
Arguments

Depending on its arguments, coshint returns floating-point or exact symbolic results.

Compute the hyperbolic cosine integral function for these numbers. Because these
numbers are not symbolic objects, coshint returns floating-point results.

A

coshint([-1, 0, 1/2, 1, pi/2, pil)
A:

0.8379 + 3.14161 -Inf + 0.00001 -0.0528 + 0.00001 0.8379...
+ 0.00001 1.7127 + 0.00001  5.4587 + 0.00001

Compute the hyperbolic cosine integral function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, coshint returns unresolved symbolic calls.

symA = coshint(sym([-1, 0, 1/2, 1, pi/2, pil))

SymA =
[ coshint(1l) + pi*1i, -Inf, coshint(1/2), coshint(1l), coshint(pi/2), coshint(pi)]
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Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)
ans =

[ 0.83786694098020824089467857943576. . .

+ 3.14159265358979323846264338327951, . ..
-Inf,...
-0.052776844956493615913136063326141, ...
0.83786694098020824089467857943576, . . .

1.7126607364844281079951569897796, . ..
5.4587340442160681980014878977798]

Plot Hyperbolic Cosine Integral Function

Plot the hyperbolic cosine integral function on the interval from 0 to 2*pi.

syms X
fplot(coshint(x),[0 2*pi])
grid on
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Handle Expressions Containing Hyperbolic Cosine Integral
Function

Many functions, such as diff and int, can handle expressions containing coshint.

Find the first and second derivatives of the hyperbolic cosine integral function:

syms X
diff(coshint(x), x)
diff(coshint(x), x, x)

ans =
cosh(x)/x
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ans =
sinh(x)/x - cosh(x)/x"2

Find the indefinite integral of the hyperbolic cosine integral function:
int(coshint(x), x)

ans =
x*coshint(x) - sinh(x)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Hyperbolic Cosine Integral Function

The hyperbolic cosine integral function is defined as follows:
* cosh(t) - 1
Chi(x) = y +1log(9) + [ coshll) = 1 g
0
Here, y is the Euler-Mascheroni constant:

Y= lim[(i%

n—o\\k=1

—In(n)
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References

[1] Cautschi, W. and W. E. Cahill. “Exponential Integral and Related Functions.” Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M.
Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

cos | cosint | eulergamma | int | sinhint | sinint | ssinint

Introduced in R2014a
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cosint

Cosine integral function

Syntax

cosint(X)

Description

cosint (X) returns the cosine integral function on page 4-289 of X.

Examples

Cosine Integral Function for Numeric and Symbolic Arguments
Depending on its arguments, cosint returns floating-point or exact symbolic results.

Compute the cosine integral function for these numbers. Because these numbers are not
symbolic objects, cosint returns floating-point results.

A = cosint([- 1, 0, pi/2, pi, 1])
A:

0.3374 + 3.14161 -Inf + 0.00001  0.4720 + 0.00001...
0.0737 + 0.00001 0.3374 + 0.00001

Compute the cosine integral function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, cosint returns unresolved symbolic calls.

symA = cosint(sym([- 1, O, pi/2, pi, 11))

SymA =
[ cosint(1l) + pi*li, -Inf, cosint(pi/2), cosint(pi), cosint(1l)]

Use vpa to approximate symbolic results with floating-point numbers:



cosint

vpa(symA)
ans =
[ 0.33740392290096813466264620388915. ..

+ 3.14159265358979323846264338327951, ...
-Inf,...
0.47200065143956865077760610761413, ...

0.07366791204642548599010096523015, ...
0.33740392290096813466264620388915]

Plot Cosine Integral Function

Plot the cosine integral function on the interval from 0 to 4*pi.

syms X
fplot(cosint(x),[0 4*pi])
grid on
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Handle Expressions Containing Cosine Integral Function
Many functions, such as diff and int, can handle expressions containing cosint.
Find the first and second derivatives of the cosine integral function:

syms X

diff(cosint(x), Xx)
diff(cosint(x), x, Xx)

ans =
cos(x)/x
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ans =
- €cos(Xx)/x"2 - sin(x)/x

Find the indefinite integral of the cosine integral function:
int(cosint(x), x)

ans =
x*cosint(x) - sin(x)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Cosine Integral Function

The cosine integral function is defined as follows:
J 1
Ci(x) = y +log() + [ cos(t) =1 5
p t
Here, y is the Euler-Mascheroni constant:

Y= lim[(i%

n—o\\k=1

—In(n)
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References

[1] Gautschi, W. and W. E. Cahill. “Exponential Integral and Related Functions.” Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M.
Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also

cos | coshint | eulergamma | int | sinhint | sinint | ssinint

Introduced before R2006a
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cot

Symbolic cotangent function

Syntax

cot(X)

Description

cot (X) returns the cotangent function on page 4-294 of X.

Examples

Cotangent Function for Numeric and Symbolic Arguments
Depending on its arguments, cot returns floating-point or exact symbolic results.

Compute the cotangent function for these numbers. Because these numbers are not
symbolic objects, cot returns floating-point results.

A

COt(['ZI 'p1/2: pl/61 5*p1/7; 11])
A

0.4577 -0.0000 1.7321 -0.7975 -0.0044

Compute the cotangent function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, cot returns unresolved symbolic calls.

symA = cot(sym([-2, -pi/2, pi/6, 5*pi/7, 111))

SymA =
[ -cot(2), 0, 37(1/2), -cot((2*pi)/7), cot(1ll)]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)
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ns =
0.45765755436028576375027741043205, . ..

o= Q9

1.7320508075688772935274463415059, . ..
-0.79747338888240396141568825421443, . ..
-0.0044257413313241136855482762848043]

Plot Cotangent Function

Plot the cotangent function on the interval from — to 1.

syms x
fplot(cot(x),[-pi pil)
grid on
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cot

Handle Expressions Containing Cotangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing cot.

Find the first and second derivatives of the cotangent function:
syms X

diff(cot(x), x)

diff(cot(x), x, x)

ans =
- cot(x)"2 -1

ans =
2*cot(x)*(cot(x)"2 + 1)

Find the indefinite integral of the cotangent function:
int(cot(x), x)

ans =
log(sin(x))

Find the Taylor series expansion of cot (x) around x = pi/2:
taylor(cot(x), x, pi/2)

ans =
pi/2 - x - (x - pi/2)"3/3 - (2*(x - pi/2)"5)/15

Rewrite the cotangent function in terms of the sine and cosine functions:
rewrite(cot(x), 'sincos')

ans =
cos(x)/sin(x)

Rewrite the cotangent function in terms of the exponential function:
rewrite(cot(x), 'exp')

ans =
(exp(x*21)*1i + 1i)/(exp(x*21i) - 1)
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Evaluate Units with cot Function

cot numerically evaluates these units automatically: radian, degree, arcmin, arcsec,
and revolution.

Show this behavior by finding the cotangent of x degrees and 2 radians.
u = symunit;

syms X

f = [x*u.degree 2*u.radian];

cotf = cot(f)

cotf =
[ cot((pi*x)/180), cot(2)]

You can calculate cotf by substituting for x using subs and then using double or vpa.

Input Arguments
X — Input

symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Cotangent Function

The cotangent of an angle, «, defined with reference to a right angled triangle is

cot(a) = 1 _ adjacent side

b
" tan(a) ~ opposite side ~ a



cot

h a

(hypotenuse) (opposite)

(adjacent)

The cotangent of a complex argument « is

i(ei“ + e‘i“)
cot(a) = ——+=.
(eux —e la)
See Also

acos | acot | acsc|asec|asin|atan|cos|csc|sec|sin|tan

Introduced before R2006a
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coth

Symbolic hyperbolic cotangent function

Syntax

coth(X)

Description

coth(X) returns the hyperbolic cotangent function of X

Examples

Hyperbolic Cotangent Function for Numeric and Symbolic
Arguments

Depending on its arguments, coth returns floating-point or exact symbolic results.

Compute the hyperbolic cotangent function for these numbers. Because these numbers
are not symbolic objects, coth returns floating-point results.

A = coth([-2, -pi*i/3, pi*i/6, 5*pi*i/7, 3*pi*i/2])

A =
-1.0373 + 0.00001 0.0000 + 0.57741 0.0000 - 1.7321i...
0.0000 + 0.79751 0.0000 - 0.0000i

Compute the hyperbolic cotangent function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, coth returns unresolved symbolic calls.

symA = coth(sym([-2, -pi*i/3, pi*i/6, 5*pi*i/7, 3*pi*i/2]))

SymA =
[ -coth(2), (3~(1/2)*1i)/3, -37(1/2)*1i, -coth((pi*2i)/7), 0]
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Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =

[ -1.0373147207275480958778097647678, ...
0.577350269189625764509148780501961, . . .
-1.73205080756887729352744634150591,, . . .
0.797473388882403961415688254214431, . ..
0]

Plot Hyperbolic Cotangent Function

Plot the hyperbolic cotangent function on the interval from -10 to 10.

syms X
fplot(coth(x),[-10 10])
grid on
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Handle Expressions Containing Hyperbolic Cotangent Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing coth.

Find the first and second derivatives of the hyperbolic cotangent function:

syms x
diff(coth(x), x)
diff(coth(x), x, x)

ans =
1 - coth(x)”"2
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ans =
2*coth(x)*(coth(x)"2 - 1)

Find the indefinite integral of the hyperbolic cotangent function:
int(coth(x), x)

ans =
log(sinh(x))

Find the Taylor series expansion of coth(x) around x = pi*i/2:
taylor(coth(x), x, pi*i/2)

ans =
X - (pi*1li)/2 - (x - (pi*1i)/2)"3/3 + (2*(x - (pi*1i)/2)"5)/15

Rewrite the hyperbolic cotangent function in terms of the exponential function:
rewrite(coth(x), 'exp')

ans =
(exp(2*x) + 1)/(exp(2*x) - 1)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth|acsch|asech|asinh|atanh| cosh|csch|sech|sinh|tanh

Introduced before R2006a
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CSC

Symbolic cosecant function

Syntax

csc(X)

Description

csc (X) returns the cosecant function on page 4-303 of X.

Examples

Cosecant Function for Numeric and Symbolic Arguments
Depending on its arguments, csc returns floating-point or exact symbolic results.

Compute the cosecant function for these numbers. Because these numbers are not
symbolic objects, csc returns floating-point results.

A

CSC(['ZI 'p1/2: pl/61 5*p1/7: 11])
A

-1.0998 -1.0000 2.0000 1.2790 -1.0000

Compute the cosecant function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, csc returns unresolved symbolic calls.

symA = csc(sym([-2, -pi/2, pi/6, 5*pi/7, 111))

SymA =
[ -1/sin(2), -1, 2, 1/sin((2*pi)/7), 1/sin(11)]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)
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ans =

[

-1.0997501702946164667566973970263, . . .

-1.0,...
2.0,...
1.2790480076899326057478506072714, . ..
-1.0000097935452091313874644503551]

Plot Cosecant Function

Plot the cosecant function on the interval from —4m to 4m.

syms x

fplot(csc(x), [-4*pi 4*pi])

grid on
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Handle Expressions Containing Cosecant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing csc.

Find the first and second derivatives of the cosecant function:
syms X

diff(csc(x), x)

diff(csc(x), x, X)

ans =
-coSs(x)/sin(x)"2

ans =
1/sin(x) + (2*cos(x)"2)/sin(x)"3

Find the indefinite integral of the cosecant function:
int(csc(x), Xx)

ans =
log(tan(x/2))

Find the Taylor series expansion of csc(x) around x = pi/2:
taylor(csc(x), x, pi/2)

ans =
(x - pi/2)72/2 + (5*(x - pi/2)"4)/24 + 1

Rewrite the cosecant function in terms of the exponential function:
rewrite(csc(x), 'exp')
ans =

1/((exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2)

Evaluate Units with csc Function

csc numerically evaluates these units automatically: radian, degree, arcmin, arcsec,
and revolution.
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Show this behavior by finding the cosecant of x degrees and 2 radians.
u = symunit;

syms x

f = [x*u.degree 2*u.radian];

cosecf = csc(f)

cosecf =
[ 1/sin((pi*x)/180), 1/sin(2)]

You can calculate cosecf by substituting for x using subs and then using double or
vpa.

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Cosecant Function
The cosecant of an angle, a, defined with reference to a right angled triangle is

1 _ hypotenuse h

0s¢(®) = Si(a) = opposite side ~ a °
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h a

(hypotenuse) (opposite)

(adjacent)

The cosecant of a complex argument, «, is

2i

CSC((X) = m .

See Also

acos | acot | acsc|asec|asin|atan|cos|cot|csc|sin|tan

Introduced before R2006a
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csch

Symbolic hyperbolic cosecant function

Syntax

csch(X)

Description

csch(X) returns the hyperbolic cosecant function of X.

Examples

Hyperbolic Cosecant Function for Numeric and Symbolic
Arguments

Depending on its arguments, csch returns floating-point or exact symbolic results.

Compute the hyperbolic cosecant function for these numbers. Because these numbers are
not symbolic objects, csch returns floating-point results.

A

csch([-2, -pi*i/2, 0, pi*i/3, S5*pi*i/7, pi*i/21)
A:

-0.2757 + 0.00001 0.0000 + 1.00001 Inf + 0.00001...
0.0000 - 1.15471i 0.0000 - 1.2790i 0.0000 - 1.00001

Compute the hyperbolic cosecant function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, csch returns unresolved symbolic calls.

symA = csch(sym([-2, -pi*i/2, 0, pi*i/3, 5*pi*i/7, pi*i/2]))

SymA =
[ -1/sinh(2), 1i, Inf, -(37(1/2)*21)/3, 1/sinh((pi*2i)/7), -1i]
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Use vpa to approximate symbolic results with floating-point numbers:
vpa(symA)

ans =

[ -0.27572056477178320775835148216303, . ..
1.01,...

Inf, ...
-1.15470053837925152901829756100391, . ..
-1.27904800768993260574785060727141, . ..
-1.0i]

Plot Hyperbolic Cosecant Function

Plot the hyperbolic cosecant function on the interval from -10 to 10.
syms X

fplot(csch(x),[-10 10])
grid on
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Handle Expressions Containing Hyperbolic Cosecant Function

Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing csch.

Find the first and second derivatives of the hyperbolic cosecant function:

syms X
diff(csch(x), x)
diff(csch(x), x, x)

ans =
-cosh(x)/sinh(x)"2
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ans =
(2*cosh(x)”"2)/sinh(x)"3 - 1/sinh(x)

Find the indefinite integral of the hyperbolic cosecant function:
int(csch(x), x)

ans =
log(tanh(x/2))

Find the Taylor series expansion of csch(x) around x = pi*i/2:
taylor(csch(x), x, pi*i/2)

ans =
((x - (pi*1i)/2)72*1i)/2 - ((x - (pi*1i)/2)"4*5i)/24 - 1i

Rewrite the hyperbolic cosecant function in terms of the exponential function:
rewrite(csch(x), 'exp')

ans =
-1/(exp(-x)/2 - exp(x)/2)

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also

acosh | acoth | acsch | asech | asinh | atanh | cosh | coth | sech | sinh | tanh

Introduced before R2006a
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ctranspose, '

Symbolic matrix complex conjugate transpose

Syntax

A 1
ctranspose(A)

Description

A' computes the complex conjugate transpose on page 4-311 of A.

ctranspose(A) is equivalent to A"'.

Examples

Conjugate Transpose of Real Matrix

Create a 2-by-3 matrix, the elements of which represent real numbers.

syms x y real
A=1[xxx;yyyl
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If all elements of a matrix represent real numbers, then its complex conjugate transform
equals to its nonconjugate transform.

isAlways(A' == A.")
ans =
3x2 logical array
1 1
1 1
1 1

Conjugate Transpose of Complex Matrix

Create a 2-by-2 matrix, the elements of which represent complex numbers.

syms x y real
A= [x+y*¥i x - y*¥i; y + x*1 y - x*i]

A

[
[

+ y*1li, x - y*1i]
+ x*¥1i, y - x*1i]

< X 1

Find the conjugate transpose of this matrix. The complex conjugate transpose operator,
A', performs a transpose and negates the sign of the imaginary portion of the complex
elements in A.

AI
ans =
[ x - y*1i, y - x*1i]

[ x + y*1i, y + x*1i]

For a matrix of complex numbers with nonzero imaginary parts, the complex conjugate
transform is not equal to the nonconjugate transform.

isAlways(A' == A.','Unknown', 'false')
ans =
2x2 logical array
0 0
0 0



ctranspose, '

Input Arguments

A — Input
number | symbolic number | symbolic variable | symbolic expression | symbolic vector |
symbolic matrix | symbolic multidimensional array

Input, specified as a number or a symbolic number, variable, expression, vector, matrix,
multidimensional array.

Definitions

Complex Conjugate Transpose

The complex conjugate transpose of a matrix interchanges the row and column index for
each element, reflecting the elements across the main diagonal. The operation also
negates the imaginary part of any complex numbers.

For example, if B = A' and A(1,2) is 1+11i, then the element B(2,1) is 1-11.

See Also
ldivide | minus | mldivide | mpower | mrdivide | mtimes | plus | power | rdivide |
times | transpose

Introduced before R2006a
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cumprod

Symbolic cumulative product

Syntax

cumprod(A)
cumprod(A,dim)

B
B
B = cumprod( _ ,direction)

Description

B = cumprod(A) returns an array the same size as A containing the cumulative product.

* If Ais avector, then cumprod(A) returns a vector containing the cumulative product
of the elements of A.

+ If Ais a matrix, then cumprod(A) returns a matrix containing the cumulative products
of each column of A.

B = cumprod(A,dim) returns the cumulative product along dimension dim. For
example, if A is a matrix, then cumprod (A, 2) returns the cumulative product of each
TOW.

B = cumprod( ,direction) specifies the direction using any of the previous
syntaxes. For instance, cumprod(A, 2, 'reverse') returns the cumulative product
within the rows of A by working from end to beginning of the second dimension.

Examples

Cumulative Product of Vector

Create a vector and find the cumulative product of its elements.

V = 1./factorial(sym([1:5]))
prod V = cumprod(V)



cumprod

V =
[ 1, 1/2, 1/6, 1/24, 1/120]

prod V =

[ 1, 1/2, 1/12, 1/288, 1/34560]

Cumulative Product of Each Column in Symbolic Matrix

Create matrix a 4-by-4 symbolic matrix X all elements of which equal x.
= x*ones(4,4)

x]
x]
x]
x]

X X X X |
X X X X
X X X X

Compute the cumulative product of the elements of X. By default, cumprod returns the
cumulative product of each column.

productX cumprod (X)

productX
[ X, X, X, x]
[ x*2, x*2, x*2, x"2]
[ x*3, x*3, x*3, x"3]
[ x™, x™, x™4, x™4]

Cumulative Product of Each Row in Symbolic Matrix
Create matrix a 4-by-4 symbolic matrix, all elements of which equal x.

= x*ones(4,4)

x]
x]
x]
x]

X X X X 1
X X X X
X X X X

’ ’ ’
’ ’ ’
’ ’ ’
’ ’ ’

Compute the cumulative product of each row of the matrix X.
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productX = cumprod(X,2)
productX =

[ x, x*2, x*3, x™4]

[ x, x*2, x™3, x™4]

[ x, x*2, x*3, x™4]

[ x, x*2, x*3, x™4]

Reverse Cumulative Product

Create matrix a 4-by-4 symbolic matrix X all elements of which equal x.

syms X

X = x*ones(4,4)
X =

[ x, x, x, x]

[ x, x, x, x]

[ x, x, x, x]

[ x, x, x, x]

Calculate the cumulative product along the columns in both directions. Specify the
'reverse' option to work from right to left in each row.

columnsDirect = cumprod(X)
columnsReverse = cumprod(X, 'reverse')

columnsDirect =
[ X, X, X,
[ x*2, x*2, x*2, X
[ x*3, x*3, x™3, X
[ x*4, x™4, x™4, X

>
A WN X

columnsReverse =
[ x*4, x™4, x™4, x™4]
[ x*3, x*3, x*3, x"3]
[ x*2, x*2, x*2, x"2]
[ X, X, X, x1]
Calculate the cumulative product along the rows in both directions. Specify the
"reverse' option to work from right to left in each row.

rowsDirect = cumprod(X,2)
rowsReverse = cumprod(X,2, 'reverse')
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rowsDirect =

[ x, x*2, x*3, x™4]
[ x, x*2, x*3, x™4]
[ x, x*2, x"3, x™4]
[ x, x*2, x*3, x™4]

rowsReverse =

[ x*4, x*3, x*2, x]
[ x*4, x*3, x*2, x]
[ x*4, x*3, x*2, x]
[ x*4, x*3, x*2, x]

Input Arguments

A — Input array
symbolic vector | symbolic matrix

Input array, specified as a vector or matrix.

dim — Dimension to operate along
positive integer

Dimension to operate along, specified as a positive integer. The default value is 1.
Consider a two-dimensional input array, A.

e cumprod(A,1) ) works on successive elements in the columns of A and returns the
cumulative product of each column.

* cumprod(A,2) works on successive elements in the rows of A and returns the
cumulative product of each row.

A cumprod(a, 1) cumprod(A, 2)

cumprod returns A if dim is greater than ndims (A).
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direction — Direction of cumulation
"forward' (default) | ' reverse’

Direction of cumulation, specified as the ' forward' (default) or ' reverse'.

o« 'forward' works from 1 to end of the active dimension.
* ‘'reverse' works from end to 1 of the active dimension.

Output Arguments

B — Cumulative product array
vector | matrix

Cumulative product array, returned as a vector or matrix of the same size as the input A.

See Also

cumsum | fold | int | symprod | symsum

Introduced in R2013b
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cumsum

Symbolic cumulative sum

Syntax

= cumsum(A)
cumsum(A,dim)
cumsum(  ,direction)

B
B
B

Description

B = cumsum(A) returns an array the same size as A containing the cumulative sum.
« If Ais avector, then cumsum(A) returns a vector containing the cumulative sum of the
elements of A.

« If Ais a matrix, then cumsum(A) returns a matrix containing the cumulative sums of
each column of A.

B = cumsum(A,dim) returns the cumulative sum along dimension dim. For example, if A
is a matrix, then cumsum(A, 2) returns the cumulative sum of each row.

B = cumsum( ,direction) specifies the direction using any of the previous
syntaxes. For instance, cumsum(A, 2, 'reverse') returns the cumulative sum within the
rows of A by working from end to beginning of the second dimension.

Examples

Cumulative Sum of Vector

Create a vector and find the cumulative sum of its elements.

/factorial(sym([1:5]))

1.
m V cumsum(V)
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V =
[ 1, 1/2, 1/6, 1/24, 1/120]

sum V =
[ 1, 3/2, 5/3, 41/24, 103/60]

Cumulative Sum of Each Column in Symbolic Matrix

Create matrix a 4-by-4 symbolic matrix A all elements of which equal 1.

sym(ones(4,4))

» 1]
» 1]
» 1]
» 1]

—_———— >
Ll el el ||

el
= e

’ ’
’ ’
’ ’
’ ’

Compute the cumulative sum of elements of A. By default, cumsum returns the cumulative

sum of each column.

SumA cumsum(A)

umA
, 1, 1]
, 2, 2]
, 3, 31
, 4, 4]

—r——r—
AWNRF3
BWNRI

’
’
’
’

Cumulative Sum of Each Row in Symbolic Matrix

Create matrix a 4-by-4 symbolic matrix A all elements of which equal 1.

sym(ones(4,4))

’ 1]
’ 1]
’ 1]
’ 1]

—_———— > >
Ll el el ||

e
=

’ ’
’ ’
’ ’
’ ’

Compute the cumulative sum of each row of the matrix A.

sumA = cumsum(A,?2)
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3, 4]
3, 4]
3, 4]
3, 4]

—r——— 0N
Ll e
NNNN

Reverse Cumulative Sum

Create matrix a 4-by-4 symbolic matrix, all elements of which equal 1.

A = sym(ones(4,4))
A =

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

[1, 1, 1, 1]

Calculate the cumulative sum along the columns in both directions. Specify the
'reverse' option to work from right to left in each row.

columnsDirect = cumsum(A)
columnsReverse = cumsum(A, 'reverse')

columnsDirect =
[ 1, 1, 1, 1]
[ 2, 2, 2, 2]
[ 3, 3, 3, 3]
[ 4, 4, 4, 4]
columnsReverse =
[ 4, 4, 4, 4]
[ 3, 3, 3, 3]
[ 2, 2, 2, 2]
[1, 1, 1, 1]

Calculate the cumulative sum along the rows in both directions. Specify the ' reverse'
option to work from right to left in each row.

rowsDirect = cumsum(A,2)
rowsReverse = cumsum(A,2, 'reverse')

rowsDirect =
[ 1, 2, 3, 4]
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= e
— e |

Input Arguments

A — Input array
symbolic vector | symbolic matrix

Input array, specified as a vector or matrix.

dim — Dimension to operate along
positive integer

Dimension to operate along, specified as a positive integer. The default value is 1.

Consider a two-dimensional input array, A:

e cumsum(A, 1) works on successive elements in the columns of A and returns the
cumulative sum of each column.

e cumsum(A,2) works on successive elements in the rows of A and returns the
cumulative sum of each row.

A cumsumiA, 1) cCUMsUMmM{A.2)

cumsum returns A if dim is greater than ndims (A).
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direction — Direction of cumulation
"forward' (default) | ' reverse’

Direction of cumulation, specified as the ' forward' (default) or ' reverse'.

o« 'forward' works from 1 to end of the active dimension.
* ‘'reverse' works from end to 1 of the active dimension.

Output Arguments

B — Cumulative sum array
vector | matrix

Cumulative sum array, returned as a vector or matrix of the same size as the input A.

See Also

cumprod | fold | int | symprod | symsum

Introduced in R2013b
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curl

Curl of vector field

Syntax

curl(V,X)
curl(V)

Description

curl(V, X) returns the curl of the vector field on page 4-324 V with respect to the vector
X. The vector field V and the vector X are both three-dimensional.

curl (V) returns the curl of the vector field V with respect to the vector of variables
returned by symvar(V, 3).

Examples

Compute Curl of Vector Field

Compute the curl of this vector field with respect to vector X = (x, y, z) in Cartesian
coordinates.

syms X y z

V = [Xx"3*y"2*z, y"3*%z72*x, z"3*x"2*y];
X =[xy zl;

curl(Vv,X)

ans =
X"2*z73 - 2¥x¥y"3*z
X"3¥yN2 - 2¥x¥y*z”3
- 2XXN3Rykz 4+ yN3*z72
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Show Curl of Gradient of Scalar Function is Zero

Compute the curl of the gradient of this scalar function. The curl of the gradient of any
scalar function is the vector of 0Os.

syms X y z
f=x"2+y*2 + 2°2;

vars = [x y z];
curl(gradient(f,vars),vars)

Compute Vector Laplacian of Vector Field

The vector Laplacian of a vector field V is defined as follows.
V2V =9Y(V- V)=V x(VxV)

Compute the vector Laplacian of this vector field using the curl, divergence, and
gradient functions.

Syms X y z
V = [x™"2*y, y"2*¥z, z72*x];

vars = [x y z];

gradient(divergence(V,vars)) - curl(curl(V,vars),vars)

ans =
2%y
2%z
2*X

Input Arguments

V — Input
three-dimensional symbolic vector

Input, specified as a three-dimensional vector of symbolic expressions or symbolic
functions.
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X — Variables
vector of three variables

Variables, specified as a vector of three variables

Definitions

Curl of a Vector Field

The curl of the vector field V = (V;, V,, V3) with respect to the vector X = (X, X;, X3) in
Cartesian coordinates is this vector.

aVy _ aVy
X, 0X3
_ _|9V1  aV3
curllV) =V xV = 3_X3_m
aVy  aVy
X, Xy
See Also
diff | divergence | gradient | hessian | jacobian | laplacian | potential |
vectorPotential

Introduced in R2012a
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daeFunction

Convert system of differential algebraic equations to MATLAB function handle suitable for
odel5i

Syntax

daeFunction(eqs,vars)
daeFunction(eqs,vars,pl,...,pN)

f
f
f = daeFunction(  ,Name,Value)

Description

f = daeFunction(eqs,vars) converts a system of symbolic first-order differential
algebraic equations (DAEs) to a MATLAB function handle acceptable as an input
argument to the numerical MATLAB DAE solver odel5i.

f = daeFunction(eqgs,vars,pl,...,pN) lets you specify the symbolic parameters of
the system as p1,...,pN.
f = daeFunction(  ,Name,Value) uses additional options specified by one or

more Name, Value pair arguments.

Examples

Convert DAE System to Function Handle

Create the system of differential algebraic equations. Here, the symbolic functions x1(t)
and x2 (t) represent the state variables of the system. The system also contains constant
symbolic parameters a, b, and the parameter function r(t). These parameters do not
represent state variables. Specify the equations and state variables as two symbolic
vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic
function calls.
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syms x1(t) x2(t) a b r(t)

eqs = [diff(x1(t),t) == a*x1(t) + b*x2(t)"2,...
x1(t)"2 + x2(t)"2 == r(t)"2];

vars = [x1(t), x2(t)]1;

Use daeFunction to generate a MATLAB function handle f depending on the variables
x1(t), x2(t) and on the parameters a, b, r(t).

f = daeFunction(eqs, vars, a, b, r(t))

f =

function handle with value:
@(t,in2,in3,paraml,param2,param3)[in3(1,:)-paraml.*in2(1,:)...

-param2.*in2(2,:).72;-param3.72+in2(1,:)."2+in2(2,:)."2]

Specify the parameter values, and create the reduced function handle F as follows.

-0.6;

-0.1;

@(t) cos(t)/(1 + t°2);

@(t, Y, YP) f(t,Y,YP,a,b,r(t));

Mm-S O w

Specify consistent initial conditions for the DAE system.

to 0;
yo [-r(t0)*sin(0.1); r(t0)*cos(0.1)]1;
ypO= [a*y0(1l) + b*y0(2)"2; 1.234];

Now, use odel5i to solve the system of equations.

odel5i(F, [t0, 1], yO, ypO)
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Write Function to File with Comments

Write the generated function handle to a file by specifying the File option. When writing
to a file, daeFunction optimizes the code using intermediate variables named t0, t1, ....
Include comments in the file using the Comments option.

Write the generated function handle to the file myfile.

syms x1(t) x2(t) a b r(t)

eqs = [diff(x1(t),t) == a*x1(t) + b*x2(t)"~2,...
x1(t)"2 + x2(t)"2 == r(t)"2];

vars = [x1(t), x2(t)]1;

daeFunction(eqs, vars, a, b, r(t), 'File', 'myfile')
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function eqs = myfile(t,in2,in3,paraml,param2,param3)
SMYFILE
EQS = MYFILE(T,IN2,IN3,PARAM1,PARAM2, PARAM3)

o°

This function was generated by the Symbolic Math Toolbox version 7.3.
01-Jan-2017 00:00:00

o° o°

YP1 = in3(1,:);

x1 = in2(1,:);
X2 = in2(2,:);
t2 = x2.72;

eqs = [YPl-param2.*t2-paraml.*x1;t2-param3.”2+x1.72];
Include the comment Version: 1.1.

daeFunction(eqs, vars, a, b, r(t), 'File', 'myfile',...
'Comments', 'Version: 1.1');

function eqs = myfile(t,in2,1in3,param4,param5,param6)

%Version: 1.1
YP3 = in3(1,:);

Input Arguments

eqs — System of first-order DAEs
vector of symbolic equations | vector of symbolic expressions

System of first-order DAEs, specified as a vector of symbolic equations or expressions.
Here, expressions represent equations with zero right side.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as x(t).
Example: [x(t),y(t)] or [x(t);y(t)]
pl,...,pN — Parameters of system

symbolic variables | symbolic functions | symbolic function calls | symbolic vector |
symbolic matrix
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Parameters of the system, specified as symbolic variables, functions, or function calls,
such as f(t). You can also specify parameters of the system as a vector or matrix of
symbolic variables, functions, or function calls. If eqs contains symbolic parameters other
than the variables specified in vars, you must specify these additional parameters as
pl,...,pN.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Namel,Valuel, ..., NameN,ValueN.

Example: daeFunction(egns,vars, 'File', 'myfile')

Comments — Comments to include in file header
character vector | cell array of character vectors | string vector

Comments to include in the file header, specified as a character vector, cell array of
character vectors, or string vector.

File — Path to file containing generated code
character vector

Path to the file containing generated code, specified as a character vector. The generated
file accepts arguments of type double, and can be used without Symbolic Math Toolbox.
If the value is an empty character vector, odeFunction generates an anonymous
function. If the character vector does not end in .m, the function appends .m.

By default, daeFunction with the File argument generates a file containing optimized
code. Optimized means intermediate variables are automatically generated to simplify or
speed up the code. MATLAB generates intermediate variables as a lowercase letter t
followed by an automatically generated number, for example t32. To disable code
optimization, use the Optimize argument.

Optimize — Flag preventing optimization of code written to function file
true (default) | false

Flag preventing optimization of code written to a function file, specified as false or
true.

By default, daeFunction with the File argument generates a file containing optimized
code. Optimized means intermediate variables are automatically generated to simplify or
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speed up the code. MATLAB generates intermediate variables as a lowercase letter t
followed by an automatically generated number, for example t32.

daeFunction without the File argument (or with a file path specified by an empty
character vector) creates a function handle. In this case, the code is not optimized. If you
try to enforce code optimization by setting Optimize to true, then daeFunction throws
an error.

Sparse — Flag that switches between sparse and dense matrix generation
false (default) | true

Flag that switches between sparse and dense matrix generation, specified as true or
false. When you specify 'Sparse', true, the generated function represents symbolic
matrices by sparse numeric matrices. Use 'Sparse', true when you convert symbolic
matrices containing many zero elements. Often, operations on sparse matrices are more
efficient than the same operations on dense matrices.

Output Arguments

f — Function handle that can serve as input argument to odel5i
MATLAB function handle

Function handle that can serve as input argument to ode151i, returned as a MATLAB
function handle.

See Also

decic | findDecoupledBlocks | incidenceMatrix | isLowIndexDAE |
massMatrixForm | matlabFunction | odel5i | odeFunction | reduceDAEIndex |
reduceDAEToODE | reduceDifferentialOrder | reduceRedundancies

Topics
“Solve Differential Algebraic Equations (DAEs)” on page 2-203

Introduced in R2014b
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dawson

Dawson integral

Syntax

dawson (X)

Description

dawson(X) represents the Dawson integral on page 4-334.

Examples

Dawson Integral for Numeric and Symbolic Arguments
Depending on its arguments, dawson returns floating-point or exact symbolic results.

Compute the Dawson integrals for these numbers. Because these numbers are not
symbolic objects, dawson returns floating-point results.

A = dawson([-Inf, -3/2, -1, 0, 2, Infl)

A:
0 -0.4282 -0.5381 0 0.3013 0

Compute the Dawson integrals for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, dawson returns unresolved symbolic calls.

symA = dawson(sym([-Inf, -3/2, -1, 0, 2, Inf]))

SymA =
[ ©, -dawson(3/2), -dawson(1l), 0, dawson(2), O]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)
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ans =

[ O,...
-0.42824907108539862547719010515175, ...
-0.53807950691276841913638742040756, . ..
0,...
0.30134038892379196603466443928642, . . .
0]

Plot the Dawson Integral

Plot the Dawson integral on the interval from -10 to 10.
syms x

fplot(dawson(x),[-10 10])
grid on
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Handle Expressions Containing Dawson Integral

Many functions, such as diff and 1imit, can handle expressions containing dawson.
Find the first and second derivatives of the Dawson integral:

syms X
diff(dawson(x), Xx)
diff(dawson(x), X, Xx)

ans =
1 - 2*x*dawson(x)
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ans =
2*x* (2*¥x*dawson(x) - 1) - 2*dawson(x)

Find the limit of this expression involving dawson:
limit(x*dawson(x), Inf)

ans =
172

Input Arguments

X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Dawson Integral
The Dawson integral, also called the Dawson function, is defined as follows:
2 (2
dawson(x) = D(x) = e fet dt
0
Symbolic Math Toolbox uses this definition to implement dawson.

The alternative definition of the Dawson integral is

X
2
D(x) = e [etar
0
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Tips

* dawson(0) returns 0.
* dawson(Inf) returns 0.

e dawson(-Inf) returns 0.

See Also

erf|erfc

Introduced in R2014a
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decic

Find consistent initial conditions for first-order implicit ODE system with algebraic
constraints

Syntax

[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0 est,fixedVars,yp0 est,
options)

Description

[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0 est,fixedVars,yp0 est,
options) finds consistent initial conditions for the system of first-order implicit ordinary
differential equations with algebraic constraints returned by the reduceDAEToODE
function.

The call [eqs, constraintEqs] = reduceDAEToODE (DA eqgs,vars) reduces the
system of differential algebraic equations DA _eqs to the system of implicit ODEs eqgs. It
also returns constraint equations encountered during system reduction. For the variables
of this ODE system and their derivatives, decic finds consistent initial conditions y0, yp®
at the time t0.

Substituting the numerical values y0, yp0 into the differential equations subs(eqs, [t;
vars(t); diff(vars(t))], [tO; yO; yp0O]) and the constraint equations
subs(constr, [t; vars(t); diff(vars(t))], [tO; y0O; ypO]) produces zero
vectors. Here, vars must be a column vector.

y0 est specifies numerical estimates for the values of the variables vars at the time t0,
and fixedVars indicates the values in yO est that must not change during the
numerical search. The optional argument yp@ est lets you specify numerical estimates
for the values of the derivatives of the variables vars at the time t0.
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Examples

Find Consistent Initial Conditions for ODE System

Reduce the DAE system to a system of implicit ODEs. Then, find consistent initial
conditions for the variables of the resulting ODE system and their first derivatives.

Create the following differential algebraic system.
syms x(t) y(t)
DA eqs = [diff(x(t),t) == cos(t) + y(t),...
x(t)"2 + y(t)"2 == 1];
vars = [x(t); y(t)];
Use reduceDAEToODE to convert this system to a system of implicit ODEs.
[eqs, constraintEqs] = reduceDAEToODE(DA eqs, vars)
eqs =
diff(x(t), t) - y(t) - cos(t)
- 2Rx(t)*diff(x(t), t) - 2*y(t)*diff(y(t), t)

constraintEgs =
1 - y(t)"2 - x(t)"2

Create an option set that specifies numerical tolerances for the numerical search.
options = odeset('RelTol', 10.07(-7), 'AbsTol', 10.0"(-7));

Fix values t0 = 0 for the time and numerical estimates for consistent values of the
variables and their derivatives.

t0 = 0;
yo est = [0.1, 0.9];
yp0 est = [0.0, 0.0];

You can treat the constraint as an algebraic equation for the variable x with the fixed
parameter y. For this, set fixedVars = [0 1]. Alternatively, you can treat it as an
algebraic equation for the variable y with the fixed parameter x. For this, set fixedVars
= [1 0].

First, set the initial value x(t0) = y0 est(1l) = 0.1.
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fixedVars = [1 0];
[yo,yp0] = decic(eqs,vars,constraintEqs,t0,y0 est,fixedVars,yp0 est,options)

yo =
0.1000
0.9950

ypo =
1.9950
-0.2005

Now, change fixedVars to [@ 1]. This fixes y(t0) = y0 est(2) = 0.9.

fixedVars = [0 1];
[yo,yp0] = decic(eqs,vars,constraintEqs,t0,y0 est,fixedVars,yp0 est,options)

yo =
-0.4359
0.9000

ypo =
1.9000
0.9202

Verify that these initial values are consistent initial values satisfying the equations and the
constraints.

subs(eqs, [t; vars; diff(vars,t)], [tO; yO; ypO])

ans
0
0

subs(constraintEqs, [t; vars; diff(vars,t)], [tO; y0O; yp@l)

ans =
0

Input Arguments

eqs — System of implicit ordinary differential equations
vector of symbolic equations | vector of symbolic expressions
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System of implicit ordinary differential equations, specified as a vector of symbolic
equations or expressions. Here, expressions represent equations with zero right side.

Typically, you use expressions returned by reduceDAEToODE.

vars — State variables of original DAE system
vector of symbolic functions | vector of symbolic function calls

State variables of original DAE system, specified as a vector of symbolic functions or
function calls, such as x(t).

Example: [x(t),y(t)] or [x(t);y(t)]

constraintEqs — Constraint equations found by reduceDAEToODE during system
reduction
vector of symbolic equations | vector of symbolic expressions

Constraint equations encountered during system reduction, specified as a vector of
symbolic equations or expressions. These expressions or equations depend on the
variables vars, but not on their derivatives.

Typically, you use constraint equations returned by reduceDAEToODE.

t0 — Initial time
number

Initial time, specified as a number.

y0_est — Estimates for values of variables vars at initial time t0
numeric vector

Estimates for the values of the variables vars at the initial time t0, specified as a
numeric vector.

fixedVars — Input vector indicating which elements of y0_est are fixed values
vector with elements 0 or 1

Input vector indicating which elements of y0 est are fixed values, specified as a vector
with Os or 1s. Fixed values of y0_est correspond to values 1 in fixedVars. These values
are not modified during the numerical search. The zero entries in fixedVars correspond
to those variables in y0_est for which decic solves the constraint equations. The
number of 0s must coincide with the number of constraint equations. The Jacobian matrix
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of the constraints with respect to the variables vars (fixedVars == 0) must be
invertible.

yp0_est — Estimates for values of first derivatives of variables vars at initial
time t0
numeric vector

Estimates for the values of the first derivatives of the variables vars at the initial time
t0, specified as a numeric vector.

options — Options for numerical search
options structure, returned by odeset

Options for numerical search, specified as an options structure, returned by odeset. For
example, you can specify tolerances for the numerical search here.

Output Arguments

y0 — Consistent initial values for variables
numeric column vector

Consistent initial values for variables, returned as a numeric column vector.

yp0 — Consistent initial values for first derivatives of variables
numeric column vector

Consistent initial values for first derivatives of variables, returned as a numeric column
vector.

See Also

daeFunction | findDecoupledBlocks | incidenceMatrix | isLowIndexDAE |
massMatrixForm | odeFunction | reduceDAEIndex | reduceDAEToODE |
reduceDifferentialOrder | reduceRedundancies

Topics
“Solve Differential Algebraic Equations (DAEs)” on page 2-203
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Introduced in R2014b
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derivedUnits

Derived units of unit system

Syntax

derivedUnits(unitSystem)

Description

derivedUnits(unitSystem) returns the derived units of the unit system unitSystem
as a vector of symbolic units. You can use the returned units to create new unit systems
by using newUnitSystem.

Examples

Derived Units of Unit System

Get the derived units of a unit system by using derivedUnits. Then, modify the derived
units and create a new unit system using the modified derived units. Available unit
systems include SI, CGS, and US. For all unit systems, see “Unit Systems List” on page 2-
36.

Get the derived units of the ST unit system.
dunits = derivedUnits('SI")
dunits =

[ [FI, [C], [S], [H], [Vvl, [3], IN], [ix], [lm], [wWb], [W], [Pa],...
[Ohm], [T], [Gyl, [Bql, [Sv], [Hz], [kat], [rad], [sr], [Celsius]]

Note Do not define a variable called derivedUnits because the variable will prevent
access to the derivedUnits function.
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Define derived units that use kilonewton for force and millibar for pressure by modifying
dunits using subs.

u = symunit;
newUnits = subs(dunits,[u.N u.Pal,[u.kN u.mbar])

newUnits =

[ [FI, [C], [S], [HI, [Vl, [3], [kN], [1x], [im], [Wbl, [W], [mbar],...
[Ohm], [T1, [Gyl, [Bql, [Sv], [Hz], [kat], [radl, [sr], [Celsius]]

Define the new unit system by using newUnitSystem. Keep the SI base units.

bunits = baseUnits('SI');
newUnitSystem('SI kN mbar',bunits,newUnits)

ans =
"SI kN mbar"

To convert between unit systems, see “Unit Conversions and Unit Systems” on page 2-39.

Input Arguments

unitSystem — Name of unit system
string | character vector

Name of the unit system, specified as a string or character vector.

See Also

baseUnits | newUnitSystem | removeUnitSystem | rewrite | symunit |
unitSystems

Topics

“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

External Websites
The International System of Units (SI)
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det

Determinant of symbolic matrix

Syntax

B = det(A)

B = det(A, 'Algorithm', 'minor-expansion')
Description

B = det(A) returns the determinant of the square matrix A.

B = det(A, 'Algorithm', 'minor-expansion') uses the minor expansion algorithm
to evaluate the determinant of A.

Examples

Compute Determinant of Symbolic Matrix

Compute the determinant of a symbolic matrix.

syms a b c d

M= [a b; cd];
B = det(M)
B =ad-bc

Compute Determinant of Matrix with Symbolic Numbers

Compute the determinant of a matrix that contain symbolic numbers.

A = sym([2/3 1/3; 1 1]);
B = det(A)
B —
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Compute Determinant Using Minor Expansion

Create a symbolic matrix that contains polynomial entries.

syms a X
A = [1, a*x™2+x, X;
0, a*x, 2;

3*x+2, a*x™2-1, 0]

1 ax®+x x
0 ax 2

3x+2ax*-10
Compute the determinant of the matrix using minor expansion.

B det (A, 'Algorithm', 'minor-expansion')

B=3ax3+6x2+4x+2

Input Arguments

A — Input matrix
square numeric matrix | square symbolic matrix

Input, specified as a square numeric or symbolic matrix.

Tips
* Matrix computations involving many symbolic variables can be slow. To increase the

computational speed, reduce the number of symbolic variables by substituting the
given values for some variables.
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* The minor expansion method is generally useful to evaluate the determinant of a
matrix that contains many symbolic variables. This method is often suited to matrices
that contain polynomial entries with multivariate coefficients.

References

[1] Khovanova, T. and Z. Scully. "Efficient Calculation of Determinants of Symbolic
Matrices with Many Variables." arXiv preprint arXiv:1304.4691 (2013).

See Also

eig | rank

Introduced before R2006a
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Create diagonal matrix or get diagonals from symbolic matrices

Syntax

D = diag(v)

D = diag(v,k)

x = diag(A)

x = diag(A, k)
Description

D = diag(v) returns a square diagonal matrix with vector v as the main diagonal.

D = diag(v, k) places vector v on the kth diagonal. kK = 0 represents the main
diagonal, K > 0 is above the main diagonal, and k < 0 is below the main diagonal.

x = diag(A) returns the main diagonal of A.
x = diag(A, k) returns the kth diagonal of A.
Examples

Create Matrix with Diagonal as Vector

Create a symbolic matrix with the main diagonal specified by the vector v.

syms a b ¢
v =1[abc];
diag(v)

ans =
[ a, 0, 0]
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[ 0, b, 0]
[ 0, 0, c]

Create Matrix with Subdiagonal as Vector

Create a symbolic matrix with the second diagonal below the main diagonal specified by

the vector v.

syms a b ¢
v =1[abc];
diag(v,-2)

n

—_————— Q)
[oNoNJNoNON]
[oNeoNONO)]
slcNoNoNO)

[cNoNoNoNO]

’ ’
’ ’
’ ’
’ ’
’ ’

Extract Diagonal from Matrix

Extract the main diagonal from a square matrix.

syms X y z
A = magic(3).*[x, vy, z];
diag(A)

ans =
8*x
5*y
2%z

Extract Superdiagonal from Matrix

Extract the first diagonal above the main diagonal.

syms X y z
A = magic(3).*[x, vy, zl;
diag(A,1)
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ans =

7*z

Input Arguments

v — Diagonal elements
symbolic vector

Diagonal elements, specified as a symbolic vector. If v is a vector with N elements, then
diag(v, k) is a square matrix of order N + abs (k).

A — Input matrix
symbolic matrix

Input matrix, specified as a symbolic matrix.

k — Diagonal number
integer

Diagonal number, specified as an integer. k = 0 represents the main diagonal, k > 0 is
above the main diagonal, and k < 0 is below the main diagonal.

Tips

» The trace of a matrix is equal to sum(diag(A)).

See Also

tril | triu

Introduced before R2006a
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Differentiate symbolic expression or function

Syntax

diff(F)

diff(F,var)

diff(F,n)

diff(F var, n)
(

diff(F,varl,...,varN)

Description

diff(F) differentiates F with respect to the variable determined by symvar(F,1).

diff(F,var) differentiates F with respect to the variable var.

diff(F,n) computes the nth derivative of F with respect to the variable determined by

symvar.

diff(F,var,n) computes the nth derivative of F with respect to the variable var.

diff(F,varl,...,varN) differentiates F with respect to the variables

varl,...,varN.

Examples

Differentiate Function

Find the derivative of the function sin(x”"2).

syms f(x)
f(x) = sin(x"2);
df = diff(f,x)
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df (x) =
2*x*cos(x"2)

Find the value of the derivative at x = 2. Convert the value to double.
df2 = df(2)

df2 =
4*cos(4)

double(df2)
ans

-2.6146

Differentiation with Respect to Particular Variable

Find the first derivative of this expression:

syms x t
diff(sin(x*t"2))

ans =
t72*cos (t"2*x)

Because you did not specify the differentiation variable, diff uses the default variable
defined by symvar. For this expression, the default variable is x:

symvar(sin(x*t~2),1)

ans =
X

Now, find the derivative of this expression with respect to the variable t:
diff(sin(x*t"2),1t)

ans =
2*¥t*x*cos (t"2*x)

Higher-Order Derivatives of Univariate Expression

Find the 4th, 5th, and 6th derivatives of this expression:



diff

syms t

d4 = diff(t"6,4)
d5 = diff(t"6,5)
d6 = diff(t"6,6)
d4 =

360*t"2

d5 =

720*t

dée =

720

Higher-Order Derivatives of Multivariate Expression with
Respect to Particular Variable

Find the second derivative of this expression with respect to the variable y:

syms X y
diff(x*cos(x*y), y, 2)

ans =
-X"3*cos (x*y)

Higher-Order Derivatives of Multivariate Expression with
Respect to Default Variable

Compute the second derivative of the expression x*y. If you do not specify the
differentiation variable, diff uses the variable determined by symvar. For this
expression, symvar (x*y, 1) returns x. Therefore, diff computes the second derivative
of x*y with respect to x.

syms X y
diff(x*y, 2)

ans =
0

If you use nested diff calls and do not specify the differentiation variable, diff
determines the differentiation variable for each call. For example, differentiate the
expression x*y by calling the diff function twice:
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diff(diff(x*y))

ans =
1

In the first call, diff differentiate x*y with respect to x, and returns y. In the second
call, diff differentiates y with respect to y, and returns 1.

Thus, diff(x*y, 2) isequivalent to diff(x*y, x, x),and diff(diff(x*y)) is
equivalent to diff(x*y, x, vy).

Mixed Derivatives

Differentiate this expression with respect to the variables x and y:

syms X y
diff(x*sin(x*y), X, y)

ans =
2*¥x*cos(x*y) - x"2*y*sin(x*y)

You also can compute mixed higher-order derivatives by providing all differentiation
variables:

syms X y
diff(x*sin(x*y), x, X, X, Vy)

ans =
X"2*¥y*3*sin(x*y) - 6*x*y*2*¥cos(x*y) - 6*y*sin(x*y)

Input Arguments

F — Expression or function to differentiate
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Expression or function to differentiate, specified as a symbolic expression or function or
as a vector or matrix of symbolic expressions or functions. If F is a vector or a matrix,
diff differentiates each element of F and returns a vector or a matrix of the same size as
