
Symbolic Math Toolbox™
User's Guide

R2019a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Symbolic Math Toolbox™ User's Guide
© COPYRIGHT 1993–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
August 1993 First printing
October 1994 Second printing
May 1997 Third printing Revised for Version 2
May 2000 Fourth printing Minor changes
June 2001 Fifth printing Minor changes
July 2002 Online only Revised for Version 2.1.3 (Release 13)
October 2002 Online only Revised for Version 3.0.1
December 2002 Sixth printing
June 2004 Seventh printing Revised for Version 3.1 (Release 14)
October 2004 Online only Revised for Version 3.1.1 (Release 14SP1)
March 2005 Online only Revised for Version 3.1.2 (Release 14SP2)
September 2005 Online only Revised for Version 3.1.3 (Release 14SP3)
March 2006 Online only Revised for Version 3.1.4 (Release 2006a)
September 2006 Online only Revised for Version 3.1.5 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.2.2 (Release 2007b)
March 2008 Online only Revised for Version 3.2.3 (Release 2008a)
October 2008 Online only Revised for Version 5.0 (Release 2008a+)
October 2008 Online only Revised for Version 5.1 (Release 2008b)
November 2008 Online only Revised for Version 4.9 (Release 2007b+)
March 2009 Online only Revised for Version 5.2 (Release 2009a)
September 2009 Online only Revised for Version 5.3 (Release 2009b)
March 2010 Online only Revised for Version 5.4 (Release 2010a)
September 2010 Online only Revised for Version 5.5 (Release 2010b)
April 2011 Online only Revised for Version 5.6 (Release 2011a)
September 2011 Online only Revised for Version 5.7 (Release 2011b)
March 2012 Online only Revised for Version 5.8 (Release 2012a)
September 2012 Online only Revised for Version 5.9 (Release 2012b)
March 2013 Online only Revised for Version 5.10 (Release 2013a)
September 2013 Online only Revised for Version 5.11 (Release 2013b)
March 2014 Online only Revised for Version 6.0 (Release 2014a)
October 2014 Online only Revised for Version 6.1 (Release 2014b)
March 2015 Online only Revised for Version 6.2 (Release 2015a)
September 2015 Online only Revised for Version 6.3 (Release 2015b)
March 2016 Online only Revised for Version 7.0 (Release 2016a)
September 2016 Online only Revised for Version 7.1 (Release 2016b)
March 2017 Online only Revised for Version 7.2 (Release 2017a)
September 2017 Online only Revised for Version 8.0 (Release 2017b)
March 2018 Online only Revised for Version 8.1 (Release 2018a)
September 2018 Online only Revised for Version 8.2 (Release 2018b)
March 2019 Online only Revised for Version 8.3 (Release 2019a)

Getting Started
1

Symbolic Math Toolbox Product Description 1-2
Key Features . 1-2

Create Symbolic Numbers, Variables, and Expressions 1-3
Create Symbolic Numbers . 1-3
Create Symbolic Variables . 1-4
Create Symbolic Expressions . 1-6
Reuse Names of Symbolic Objects . 1-7

Create Symbolic Functions . 1-8

Create Symbolic Matrices . 1-10
Use Existing Symbolic Variables . 1-10
Generate Elements While Creating a Matrix 1-11
Create Matrix of Symbolic Numbers 1-11

Perform Symbolic Computations . 1-13
Differentiate Symbolic Expressions . 1-13
Integrate Symbolic Expressions . 1-14
Solve Equations . 1-16
Simplify Symbolic Expressions . 1-18
Substitutions in Symbolic Expressions 1-19
Plot Symbolic Functions . 1-23

Use Assumptions on Symbolic Variables 1-29
Default Assumption . 1-29
Set Assumptions . 1-29
Check Existing Assumptions . 1-30
Delete Symbolic Objects and Their Assumptions 1-30

v

Contents

Using Symbolic Math Toolbox Software
2

Find Symbolic Variables in Expressions, Functions, Matrices
. 2-3

Find a Default Symbolic Variable . 2-4

Add Subscripts, Superscripts, and Accents to Symbolic
Variables . 2-5

Change Output Display Format of Symbolic Results 2-10

Units of Measurement Tutorial . 2-14
Define and Convert Units . 2-14
Use Temperature Units in Absolute or Difference Forms 2-15
Verify Dimensions . 2-16
Use Units in Differential Equations . 2-18

Units and Unit Systems List . 2-21
Units List . 2-21
SI Unit Prefixes List . 2-35
Unit Systems List . 2-36

Unit Conversions and Unit Systems . 2-39
Convert Units . 2-39
Temperature Unit Conversion . 2-40
Convert to SI, CGS, or US Unit Systems 2-41
Define Custom Unit System from Existing System 2-43
Define Custom Unit System Directly 2-45
Unit System Definition . 2-46

Differentiation . 2-48
Derivatives of Expressions with Several Variables 2-49
More Examples . 2-50

Functional Derivatives Tutorial . 2-54

Limits . 2-61
One-Sided Limits . 2-61

Integration . 2-64
Integration with Real Parameters . 2-67

vi Contents

Integration with Complex Parameters 2-69
High-Precision Numerical Integration Using Variable-Precision

Arithmetic . 2-70

Symbolic Summation . 2-72
Comparing symsum and sum . 2-72
Computational Speed of symsum versus sum 2-73
Output Format Differences Between symsum and sum 2-73

Taylor Series . 2-75

Padé Approximant . 2-77

Find Asymptotes, Critical and Inflection Points 2-86
Define a Function . 2-86
Find Asymptotes . 2-87
Find Maximum and Minimum . 2-88
Find Inflection Point . 2-90

Simplify Symbolic Expressions . 2-93
Simplify Using Options . 2-95
Simplify Using Assumptions . 2-97
Simplify Fractions . 2-97

Abbreviate Common Terms in Long Expressions 2-99

Choose Function to Rearrange Expression 2-101
Combine Terms of Same Algebraic Structures 2-101
Expand Expressions . 2-103
Factor Expressions . 2-104
Extract Subexpressions from Expression 2-106
Collect Terms with Same Powers . 2-107
Rewrite Expressions in Terms of Other Functions 2-108
Compute Partial Fraction Decompositions of Expressions . . 2-109
Compute Normal Forms of Rational Expressions 2-110
Represent Polynomials Using Horner Nested Forms 2-110

Extract Numerators and Denominators of Rational Expressions
. 2-112

Substitute Variables in Symbolic Expressions 2-114

Substitute Elements in Symbolic Matrices 2-116

vii

Substitute Scalars with Matrices . 2-118

Evaluate Symbolic Expressions Using subs 2-120

Choose Symbolic or Numeric Arithmetic 2-121
Symbolic Arithmetic . 2-121
Variable-Precision Arithmetic . 2-121
Double-Precision Arithmetic . 2-122

Increase Precision of Numeric Calculations 2-123

Recognize and Avoid Round-Off Errors 2-125
Use Symbolic Computations When Possible 2-125
Perform Calculations with Increased Precision 2-126
Compare Symbolic and Numeric Results 2-128
Plot the Function or Expression . 2-128

Increase Speed by Reducing Precision 2-130

Numeric to Symbolic Conversion . 2-132
Conversion to Rational Symbolic Form 2-134
Conversion by Using Floating-Point Expansion 2-134
Conversion to Rational Symbolic Form with Error Term . . . 2-134
Conversion to Decimal Form . 2-135

Basic Algebraic Operations . 2-136

Linear Algebraic Operations . 2-138
Symbolic Hilbert Matrix . 2-138
Symbolic Linear Algebra Operations 2-138
Variable-Precision Arithmetic . 2-139
Symbolic Investigation of Singular Value 2-141

Eigenvalues . 2-143

Jordan Canonical Form . 2-148

Singular Value Decomposition . 2-150

Solve Algebraic Equation . 2-152
Solve an Equation . 2-152
Return the Full Solution to an Equation 2-153

viii Contents

Work with the Full Solution, Parameters, and Conditions
Returned by solve . 2-153

Visualize and Plot Solutions Returned by solve 2-154
Simplify Complicated Results and Improve Performance . . . 2-157

Solve a Second-Order Differential Equation Numerically . . 2-158

Select Numeric or Symbolic Solver . 2-161

Solve System of Algebraic Equations 2-163
Handle the Output of solve . 2-163
Solve a Linear System of Equations 2-165
Return the Full Solution of a System of Equations 2-166
Solve a System of Equations Under Conditions 2-168
Work with Solutions, Parameters, and Conditions Returned by

solve . 2-169
Convert Symbolic Results to Numeric Values 2-173
Simplify Complicated Results and Improve Performance . . . 2-173

Troubleshoot Equation Solutions from solve Function 2-174
Return Only Real Solutions . 2-174
Apply Simplification Rules . 2-174
Use Assumptions to Narrow Results 2-175
Simplify Solutions . 2-177
Tips . 2-177

Solve System of Linear Equations . 2-179
Solve System of Linear Equations Using linsolve 2-179
Solve System of Linear Equations Using solve 2-180

Solve Equations Numerically . 2-182
Find All Roots of a Polynomial Function 2-182
Find Zeros of a Nonpolynomial Function Using Search Ranges

and Starting Points . 2-183
Obtain Solutions to Arbitrary Precision 2-187
Solve Multivariate Equations Using Search Ranges 2-188

Solve Differential Equation . 2-193
First-Order Linear ODE . 2-193
Solve Differential Equation with Condition 2-194
Nonlinear Differential Equation with Initial Condition 2-194
Second-Order ODE with Initial Conditions 2-194
Third-Order ODE with Initial Conditions 2-195

ix

More ODE Examples . 2-196

Solve a System of Differential Equations 2-197
Solve System of Differential Equations 2-197
Solve Differential Equations in Matrix Form 2-199

Solve Differential Algebraic Equations (DAEs) 2-203

Solve Semilinear DAE System . 2-215
Step 1. Reduce Differential Index with reduceDAEToODE . . 2-215
Step 2. ODEs to Function Handles for ode15s and ode23t . . 2-216
Step 3. Initial Conditions for ode15s and ode23t 2-217
Step 4. Solve an ODE System with ode15s or ode23t 2-219

Solve DAEs Using Mass Matrix Solvers 2-223
Step 1. Convert DAEs to Function Handles 2-223
Step 2. Find Initial Conditions . 2-224
Step 3. Solve DAE System . 2-226

Fourier and Inverse Fourier Transforms 2-230
Fourier Transform Definition . 2-230
Concept: Using Symbolic Workflows 2-230
Calculate Beam Deflection Using Fourier Transform 2-231

Solve Differential Equations Using Laplace Transform 2-235
Definition: Laplace Transform . 2-235
Concept: Using Symbolic Workflows 2-235
Workflow: Solve RLC Circuit Using Laplace Transform 2-235

Solve Difference Equations Using Z-Transform 2-243
Definition: Z-transform . 2-243
Concept: Using Symbolic Workflows 2-243
Workflow: Solve "Rabbit Growth" Problem Using Z-Transform

. 2-243
References . 2-248

Create Plots . 2-250
Plot with Symbolic Plotting Functions 2-250
Plot Functions Numerically . 2-252
Plot Multiple Symbolic Functions in One Graph 2-253
Plot Multiple Symbolic Functions in One Figure 2-255
Combine Symbolic Function Plots and Numeric Data Plots 2-257
Combine Numeric and Symbolic Plots in 3-D 2-259

x Contents

Generate C or Fortran Code from Symbolic Expressions . . . 2-262

Generate MATLAB Functions from Symbolic Expressions . . 2-264
Generating a Function Handle . 2-264
Control the Order of Variables . 2-265
Generate a File . 2-265
Name Output Variables . 2-267

Generate MATLAB Function Blocks from Symbolic Expressions
. 2-268

Generate and Edit a Block . 2-268
Control the Order of Input Ports . 2-269
Name the Output Ports . 2-269

Generate Simscape Equations from Symbolic Expressions 2-270
Convert Algebraic and Differential Equations 2-270
Limitations . 2-272

MuPAD in Symbolic Math Toolbox
3

MuPAD Engines and MATLAB Workspace 3-2

Create MuPAD Notebooks . 3-4
If You Need Communication Between Interfaces 3-4
If You Use MATLAB to Access MuPAD 3-5

Open MuPAD Notebooks . 3-7
If You Need Communication Between Interfaces 3-8
If You Use MATLAB to Access MuPAD 3-9
Open MuPAD Program Files and Graphics 3-10

Save MuPAD Notebooks . 3-13

Evaluate MuPAD Notebooks from MATLAB 3-14

Close MuPAD Notebooks from MATLAB 3-18

xi

Convert MuPAD Notebooks to MATLAB Live Scripts 3-20
Convert a MuPAD Notebook .mn to a MATLAB Live Script .mlx

. 3-20
Convert MuPAD Graphics to MATLAB Graphics 3-21
Known Issues . 3-21

Troubleshoot MuPAD to MATLAB Translation Errors 3-26

Troubleshoot MuPAD to MATLAB Translation Warnings 3-36

Edit MuPAD Code in MATLAB Editor . 3-45
Comments in MuPAD Procedures . 3-46

Notebook Files and Program Files . 3-48

Source Code of the MuPAD Library Functions 3-50

Differences Between MATLAB and MuPAD Syntax 3-52

Copy Variables and Expressions Between MATLAB and MuPAD
. 3-55

Copy and Paste Using the System Clipboard 3-57

Reserved Variable and Function Names 3-59

Call Built-In MuPAD Functions from MATLAB 3-61
evalin . 3-61
feval . 3-61
evalin vs. feval . 3-62
Floating-Point Arguments of evalin and feval 3-63

Use Your Own MuPAD Procedures . 3-65
Write MuPAD Procedures . 3-65
Steps to Take Before Calling a Procedure 3-66
Call Your Own MuPAD Procedures . 3-67

Clear Assumptions and Reset the Symbolic Engine 3-70
Check Assumptions Set On Variables 3-72
Effects of Assumptions on Computations 3-73

Create MATLAB Functions from MuPAD Expressions 3-75
Copy MuPAD Variables to the MATLAB Workspace 3-76
Generate MATLAB Code in a MuPAD Notebook 3-77

xii Contents

Create MATLAB Function Blocks from MuPAD Expressions
. 3-79

Create Simscape Equations from MuPAD Expressions 3-81
GenerateSimscape Equations in the MuPAD Notebook App . . 3-82
Generate Simscape Equations in the MATLAB Command

Window . 3-82

Functions — Alphabetical List
4

xiii

Getting Started

• “Symbolic Math Toolbox Product Description” on page 1-2
• “Create Symbolic Numbers, Variables, and Expressions” on page 1-3
• “Create Symbolic Functions” on page 1-8
• “Create Symbolic Matrices” on page 1-10
• “Perform Symbolic Computations” on page 1-13
• “Use Assumptions on Symbolic Variables” on page 1-29

1

Symbolic Math Toolbox Product Description
Perform symbolic math computations

Symbolic Math Toolbox provides functions for solving, plotting, and manipulating
symbolic math equations. You can create, run, and share symbolic math code using the
MATLAB Live Editor. The toolbox provides functions in common mathematical areas such
as calculus, linear algebra, algebraic and ordinary differential equations, equation
simplification, and equation manipulation.

Symbolic Math Toolbox lets you analytically perform differentiation, integration,
simplification, transforms, and equation solving. You can perform dimensional
computations and conversions using SI and US unit systems. Your computations can be
performed either analytically or using variable-precision arithmetic, with the results
displayed in mathematical typeset.

You can share your symbolic work with other MATLAB users as live scripts or convert
them to HTML or PDF for publication. You can generate MATLAB functions, Simulink®

function blocks, and Simscape™ equations directly from symbolic expressions.

Key Features
• Symbolic integration, differentiation, transforms, and linear algebra
• Algebraic and ordinary differential equation (ODE) solvers
• Simplification and manipulation of symbolic expressions
• Unit systems for specifying, converting, and computing using SI, US, and custom unit

systems
• Plotting of analytical functions in 2D and 3D
• Symbolic expression conversion to MATLAB, Simulink, Simscape, C, Fortran, and

LaTeX code
• Variable-precision arithmetic

1 Getting Started

1-2

Create Symbolic Numbers, Variables, and Expressions
This page shows how to create symbolic numbers, variables, and expressions. To learn
how to work with symbolic math, see “Perform Symbolic Computations” on page 1-13.

Create Symbolic Numbers
You can create symbolic numbers by using sym. Symbolic numbers are exact
representations, unlike floating-point numbers.

Create a symbolic number by using sym and compare it to the same floating-point
number.

sym(1/3)
1/3

ans =
1/3
ans =
 0.3333

The symbolic number is represented in exact rational form, while the floating-point
number is a decimal approximation. The symbolic result is not indented, while the
standard MATLAB result is indented.

Calculations on symbolic numbers are exact. Demonstrate this exactness by finding
sin(pi) symbolically and numerically. The symbolic result is exact, while the numeric
result is an approximation.

sin(sym(pi))
sin(pi)

ans =
0
ans =
 1.2246e-16

To learn more about symbolic representation of numbers, see “Numeric to Symbolic
Conversion” on page 2-132.

 Create Symbolic Numbers, Variables, and Expressions

1-3

Create Symbolic Variables
You can create symbolic variables using either syms or sym. Typical uses of these
functions include:

• sym – Create numbered symbolic variables or create symbolic variables in MATLAB
functions.

• syms – Create fresh symbolic variables for interactive symbolic workflows, that is, for
symbolic variable creation at the MATLAB command line or in MATLAB live scripts. A
fresh symbolic variable does not have any assumptions.

The syms command is shorthand for the sym syntax, but the two functions handle
assumptions differently. For more details, see “Reuse Names of Symbolic Objects” on
page 1-7.

Create the symbolic variables x and y using syms and sym, respectively.

syms x
y = sym('y')

The first command creates a symbolic variable x in the MATLAB workspace with the value
x assigned to the variable x. The second command creates a symbolic variable y with the
value y.

With syms, you can create multiple variables in one command. Create the variables a, b,
and c.

syms a b c

If you want to create a MATLAB array of numbered symbolic variables, the syms syntax is
inconvenient. Therefore, use sym instead to create an array of many numbered symbolic
variables.

Clear the workspace. Create a row vector containing the symbolic variables a1, ...,
a20 and assign it to the MATLAB variable A. Display the variable in the MATLAB
workspace.

clear all
A = sym('a', [1 20])
whos

A =
[a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,...

1 Getting Started

1-4

 a11, a12, a13, a14, a15, a16, a17, a18, a19, a20]

 Name Size Bytes Class Attributes

 A 1x20 8 sym

A is a 1-by-20 array of 20 symbolic variables.

By combining sym and syms, you can create many fresh symbolic variables with
corresponding variables name in the MATLAB workspace.

Clear the workspace. Create the fresh symbolic variables a1, ..., a10 and assign
them the MATLAB variable names a1, ..., a10, respectively. Display the variables in
the MATLAB workspace.

clear all
syms(sym('a', [1 10]))
whos

 Name Size Bytes Class Attributes

 a1 1x1 8 sym
 a10 1x1 8 sym
 a2 1x1 8 sym
 a3 1x1 8 sym
 a4 1x1 8 sym
 a5 1x1 8 sym
 a6 1x1 8 sym
 a7 1x1 8 sym
 a8 1x1 8 sym
 a9 1x1 8 sym

The MATLAB workspace contains 10 MATLAB variables that are symbolic variables.

The syms command is a convenient shorthand for the sym syntax, and its typical use is to
create fresh symbolic variables for interactive symbolic workflows. Use the sym syntax to
create the following:

• Symbolic variables in MATLAB functions
• Many numbered symbolic variables
• Symbolic variable whose value differs from its name in the MATLAB workspace
• Symbolic number, such as sym(5)

 Create Symbolic Numbers, Variables, and Expressions

1-5

• Symbolic variable that inherits the assumptions from a previously used symbolic
variable having the same name

Create Symbolic Expressions
Suppose you want to use a symbolic variable to represent the golden ratio

φ = 1 + 5
2

The command

phi = (1 + sqrt(sym(5)))/2;

achieves this goal. Now you can perform various mathematical operations on phi. For
example,

f = phi^2 - phi - 1

returns

f =
(5^(1/2)/2 + 1/2)^2 - 5^(1/2)/2 - 3/2

Now suppose you want to study the quadratic function f = ax2 + bx + c. First, create the
symbolic variables a, b, c, and x:

syms a b c x

Then, assign the expression to f:

f = a*x^2 + b*x + c;

Tip To create a symbolic number, use the sym command. Do not use the syms function to
create a symbolic expression that is a constant. For example, to create the expression
whose value is 5, enter f = sym(5). The command f = 5 does not define f as a
symbolic expression.

1 Getting Started

1-6

Reuse Names of Symbolic Objects
If you set a variable equal to a symbolic expression, and then apply the syms command to
the variable, MATLAB software removes the previously defined expression from the
variable. For example,

syms a b
f = a + b

returns

f =
a + b

If later you enter

syms f
f

then MATLAB removes the value a + b from the expression f:

f =
f

You can use the syms command to clear variables of definitions that you previously
assigned to them in your MATLAB session. syms clears the assumptions of the variables:
complex, real, integer, and positive. These assumptions are stored separately from the
symbolic object. However, recreating a variable using sym does not clear its assumptions.
For more information, see “Delete Symbolic Objects and Their Assumptions” on page 1-
30.

See Also

More About
• “Create Symbolic Functions” on page 1-8
• “Create Symbolic Matrices” on page 1-10
• “Perform Symbolic Computations” on page 1-13
• “Use Assumptions on Symbolic Variables” on page 1-29

 See Also

1-7

Create Symbolic Functions
Symbolic functions represent math functions. Use symbolic functions for differentiation,
integration, solving ODEs, and other math operations. Create symbolic functions by using
syms.

Create a symbolic function f with variables x and y by using syms. Creating f
automatically creates x and y.

syms f(x,y)

Assign a mathematical expression to f.

f(x,y) = x^2*y

f(x, y) =
x^2*y

Find the value of f at (3,2).

f(3,2)

ans =
18

Symbolic functions accept array inputs. Calculate f for multiple values of x and y.

xVal = 1:5;
yVal = 3:7;
f(xVal,yVal)

ans =
[3, 16, 45, 96, 175]

You can differentiate symbolic functions, integrate or simplify them, substitute their
arguments with values, and perform other mathematical operations. For example, find the
derivative of f(x,y) with respect to x. The result dfx is also a symbolic function.

dfx = diff(f,x)

dfx(x,y) =
2*x*y

Calculate df(x,y) at x = y + 1.

1 Getting Started

1-8

dfx(y+1,y)

ans =
2*y*(y + 1)

If you are creating a constant function, such as f(x,y) = 1, you must first create
f(x,y). If you do not create f(x,y), then the assignment f(x,y) = 1 throws an error.

See Also

More About
• “Create Symbolic Numbers, Variables, and Expressions” on page 1-3
• “Create Symbolic Matrices” on page 1-10
• “Perform Symbolic Computations” on page 1-13
• “Use Assumptions on Symbolic Variables” on page 1-29

 See Also

1-9

Create Symbolic Matrices
In this section...
“Use Existing Symbolic Variables” on page 1-10
“Generate Elements While Creating a Matrix” on page 1-11
“Create Matrix of Symbolic Numbers” on page 1-11

Use Existing Symbolic Variables
A circulant matrix has the property that each row is obtained from the previous one by
cyclically permuting the entries one step forward. For example, create the symbolic
circulant matrix whose elements are a, b, and c, using the commands:

syms a b c
A = [a b c; c a b; b c a]

A =
[a, b, c]
[c, a, b]
[b, c, a]

Since matrix A is circulant, the sum of elements over each row and each column is the
same. Find the sum of all the elements of the first row:

sum(A(1,:))

ans =
a + b + c

To check if the sum of the elements of the first row equals the sum of the elements of the
second column, use the isAlways function:

isAlways(sum(A(1,:)) == sum(A(:,2)))

The sums are equal:

ans =
 logical
 1

From this example, you can see that using symbolic objects is very similar to using
regular MATLAB numeric objects.

1 Getting Started

1-10

Generate Elements While Creating a Matrix
The sym function also lets you define a symbolic matrix or vector without having to define
its elements in advance. In this case, the sym function generates the elements of a
symbolic matrix at the same time that it creates a matrix. The function presents all
generated elements using the same form: the base (which must be a valid variable name),
a row index, and a column index. Use the first argument of sym to specify the base for the
names of generated elements. You can use any valid variable name as a base. To check
whether the name is a valid variable name, use the isvarname function. By default, sym
separates a row index and a column index by underscore. For example, create the 2-by-4
matrix A with the elements A1_1, ..., A2_4:

A = sym('A', [2 4])

A =
[A1_1, A1_2, A1_3, A1_4]
[A2_1, A2_2, A2_3, A2_4]

To control the format of the generated names of matrix elements, use %d in the first
argument:

A = sym('A%d%d', [2 4])

A =
[A11, A12, A13, A14]
[A21, A22, A23, A24]

Create Matrix of Symbolic Numbers
A particularly effective use of sym is to convert a matrix from numeric to symbolic form.
The command

A = hilb(3)

generates the 3-by-3 Hilbert matrix:

A =
 1.0000 0.5000 0.3333
 0.5000 0.3333 0.2500
 0.3333 0.2500 0.2000

By applying sym to A

A = sym(A)

 Create Symbolic Matrices

1-11

you can obtain the precise symbolic form of the 3-by-3 Hilbert matrix:

A =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

For more information on numeric to symbolic conversions, see “Numeric to Symbolic
Conversion” on page 2-132.

See Also

More About
• “Create Symbolic Numbers, Variables, and Expressions” on page 1-3
• “Create Symbolic Functions” on page 1-8
• “Perform Symbolic Computations” on page 1-13
• “Use Assumptions on Symbolic Variables” on page 1-29

1 Getting Started

1-12

Perform Symbolic Computations
In this section...
“Differentiate Symbolic Expressions” on page 1-13
“Integrate Symbolic Expressions” on page 1-14
“Solve Equations” on page 1-16
“Simplify Symbolic Expressions” on page 1-18
“Substitutions in Symbolic Expressions” on page 1-19
“Plot Symbolic Functions” on page 1-23

Differentiate Symbolic Expressions
With the Symbolic Math Toolbox software, you can find

• Derivatives of single-variable expressions
• Partial derivatives
• Second and higher order derivatives
• Mixed derivatives

For in-depth information on taking symbolic derivatives see “Differentiation” on page 2-
48.

Expressions with One Variable

To differentiate a symbolic expression, use the diff command. The following example
illustrates how to take a first derivative of a symbolic expression:

syms x
f = sin(x)^2;
diff(f)

ans =
2*cos(x)*sin(x)

Partial Derivatives

For multivariable expressions, you can specify the differentiation variable. If you do not
specify any variable, MATLAB chooses a default variable by its proximity to the letter x:

 Perform Symbolic Computations

1-13

syms x y
f = sin(x)^2 + cos(y)^2;
diff(f)

ans =
2*cos(x)*sin(x)

For the complete set of rules MATLAB applies for choosing a default variable, see “Find a
Default Symbolic Variable” on page 2-4.

To differentiate the symbolic expression f with respect to a variable y, enter:

syms x y
f = sin(x)^2 + cos(y)^2;
diff(f, y)

ans =
-2*cos(y)*sin(y)

Second Partial and Mixed Derivatives

To take a second derivative of the symbolic expression f with respect to a variable y,
enter:

syms x y
f = sin(x)^2 + cos(y)^2;
diff(f, y, 2)

ans =
2*sin(y)^2 - 2*cos(y)^2

You get the same result by taking derivative twice: diff(diff(f, y)). To take mixed
derivatives, use two differentiation commands. For example:

syms x y
f = sin(x)^2 + cos(y)^2;
diff(diff(f, y), x)

ans =
0

Integrate Symbolic Expressions
You can perform symbolic integration including:

1 Getting Started

1-14

• Indefinite and definite integration
• Integration of multivariable expressions

For in-depth information on the int command including integration with real and
complex parameters, see “Integration” on page 2-64.

Indefinite Integrals of One-Variable Expressions

Suppose you want to integrate a symbolic expression. The first step is to create the
symbolic expression:

syms x
f = sin(x)^2;

To find the indefinite integral, enter

int(f)

ans =
x/2 - sin(2*x)/4

Indefinite Integrals of Multivariable Expressions

If the expression depends on multiple symbolic variables, you can designate a variable of
integration. If you do not specify any variable, MATLAB chooses a default variable by the
proximity to the letter x:

syms x y n
f = x^n + y^n;
int(f)

ans =
x*y^n + (x*x^n)/(n + 1)

For the complete set of rules MATLAB applies for choosing a default variable, see “Find a
Default Symbolic Variable” on page 2-4.

You also can integrate the expression f = x^n + y^n with respect to y

syms x y n
f = x^n + y^n;
int(f, y)

ans =
x^n*y + (y*y^n)/(n + 1)

 Perform Symbolic Computations

1-15

If the integration variable is n, enter

syms x y n
f = x^n + y^n;
int(f, n)

ans =
x^n/log(x) + y^n/log(y)

Definite Integrals

To find a definite integral, pass the limits of integration as the final two arguments of the
int function:

syms x y n
f = x^n + y^n;
int(f, 1, 10)

ans =
piecewise(n == -1, log(10) + 9/y, n ~= -1,...
 (10*10^n - 1)/(n + 1) + 9*y^n)

If MATLAB Cannot Find a Closed Form of an Integral

If the int function cannot compute an integral, it returns an unresolved integral:

syms x
int(sin(sinh(x)))

ans =
int(sin(sinh(x)), x)

Solve Equations
You can solve different types of symbolic equations including:

• Algebraic equations with one symbolic variable
• Algebraic equations with several symbolic variables
• Systems of algebraic equations

For in-depth information on solving symbolic equations including differential equations,
see “Equation Solving”.

1 Getting Started

1-16

Solve Algebraic Equations with One Symbolic Variable

Use the double equal sign (==) to define an equation. Then you can solve the equation
by calling the solve function. For example, solve this equation:

syms x
solve(x^3 - 6*x^2 == 6 - 11*x)

ans =
 1
 2
 3

If you do not specify the right side of the equation, solve assumes that it is zero:

syms x
solve(x^3 - 6*x^2 + 11*x - 6)

ans =
 1
 2
 3

Solve Algebraic Equations with Several Symbolic Variables

If an equation contains several symbolic variables, you can specify a variable for which
this equation should be solved. For example, solve this multivariable equation with
respect to y:

syms x y
solve(6*x^2 - 6*x^2*y + x*y^2 - x*y + y^3 - y^2 == 0, y)

ans =
 1
 2*x
 -3*x

If you do not specify any variable, you get the solution of an equation for the
alphabetically closest to x variable. For the complete set of rules MATLAB applies for
choosing a default variable see “Find a Default Symbolic Variable” on page 2-4.

Solve Systems of Algebraic Equations

You also can solve systems of equations. For example:

 Perform Symbolic Computations

1-17

syms x y z
[x, y, z] = solve(z == 4*x, x == y, z == x^2 + y^2)

x =
 0
 2

y =
 0
 2

z =
 0
 8

Simplify Symbolic Expressions
Symbolic Math Toolbox provides a set of simplification functions allowing you to
manipulate the output of a symbolic expression. For example, the following polynomial of
the golden ratio phi

phi = (1 + sqrt(sym(5)))/2;
f = phi^2 - phi - 1

returns

f =
(5^(1/2)/2 + 1/2)^2 - 5^(1/2)/2 - 3/2

You can simplify this answer by entering

simplify(f)

and get a very short answer:

ans =
0

Symbolic simplification is not always so straightforward. There is no universal
simplification function, because the meaning of a simplest representation of a symbolic
expression cannot be defined clearly. Different problems require different forms of the
same mathematical expression. Knowing what form is more effective for solving your
particular problem, you can choose the appropriate simplification function.

1 Getting Started

1-18

For example, to show the order of a polynomial or symbolically differentiate or integrate a
polynomial, use the standard polynomial form with all the parentheses multiplied out and
all the similar terms summed up. To rewrite a polynomial in the standard form, use the
expand function:

syms x
f = (x ^2- 1)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1);
expand(f)

ans =
x^10 - 1

The factor simplification function shows the polynomial roots. If a polynomial cannot be
factored over the rational numbers, the output of the factor function is the standard
polynomial form. For example, to factor the third-order polynomial, enter:

syms x
g = x^3 + 6*x^2 + 11*x + 6;
factor(g)

ans =
[x + 3, x + 2, x + 1]

The nested (Horner) representation of a polynomial is the most efficient for numerical
evaluations:

syms x
h = x^5 + x^4 + x^3 + x^2 + x;
horner(h)

ans =
x*(x*(x*(x*(x + 1) + 1) + 1) + 1)

For a list of Symbolic Math Toolbox simplification functions, see “Choose Function to
Rearrange Expression” on page 2-101.

Substitutions in Symbolic Expressions
Substitute Symbolic Variables with Numbers

You can substitute a symbolic variable with a numeric value by using the subs function.
For example, evaluate the symbolic expression f at the point x = 1/3:

 Perform Symbolic Computations

1-19

syms x
f = 2*x^2 - 3*x + 1;
subs(f, 1/3)

ans =
2/9

The subs function does not change the original expression f:

f

f =
2*x^2 - 3*x + 1

Substitute in Multivariate Expressions

When your expression contains more than one variable, you can specify the variable for
which you want to make the substitution. For example, to substitute the value x = 3 in the
symbolic expression

syms x y
f = x^2*y + 5*x*sqrt(y);

enter the command

subs(f, x, 3)

ans =
9*y + 15*y^(1/2)

Substitute One Symbolic Variable for Another

You also can substitute one symbolic variable for another symbolic variable. For example
to replace the variable y with the variable x, enter

subs(f, y, x)

ans =
x^3 + 5*x^(3/2)

Substitute a Matrix into a Polynomial

You can also substitute a matrix into a symbolic polynomial with numeric coefficients.
There are two ways to substitute a matrix into a polynomial: element by element and
according to matrix multiplication rules.

1 Getting Started

1-20

Element-by-Element Substitution

To substitute a matrix at each element, use the subs command:

syms x
f = x^3 - 15*x^2 - 24*x + 350;
A = [1 2 3; 4 5 6];
subs(f,A)

ans =
[312, 250, 170]
[78, -20, -118]

You can do element-by-element substitution for rectangular or square matrices.

Substitution in a Matrix Sense

If you want to substitute a matrix into a polynomial using standard matrix multiplication
rules, a matrix must be square. For example, you can substitute the magic square A into a
polynomial f:

1 Create the polynomial:

syms x
f = x^3 - 15*x^2 - 24*x + 350;

2 Create the magic square matrix:

A = magic(3)

A =
 8 1 6
 3 5 7
 4 9 2

3 Get a row vector containing the numeric coefficients of the polynomial f:

b = sym2poly(f)

b =
 1 -15 -24 350

4 Substitute the magic square matrix A into the polynomial f. Matrix A replaces all
occurrences of x in the polynomial. The constant times the identity matrix eye(3)
replaces the constant term of f:

A^3 - 15*A^2 - 24*A + 350*eye(3)

 Perform Symbolic Computations

1-21

ans =
 -10 0 0
 0 -10 0
 0 0 -10

The polyvalm command provides an easy way to obtain the same result:

polyvalm(b,A)

ans =
 -10 0 0
 0 -10 0
 0 0 -10

Substitute the Elements of a Symbolic Matrix

To substitute a set of elements in a symbolic matrix, also use the subs command. Suppose
you want to replace some of the elements of a symbolic circulant matrix A

syms a b c
A = [a b c; c a b; b c a]

A =
[a, b, c]
[c, a, b]
[b, c, a]

To replace the (2, 1) element of A with beta and the variable b throughout the matrix
with variable alpha, enter

alpha = sym('alpha');
beta = sym('beta');
A(2,1) = beta;
A = subs(A,b,alpha)

The result is the matrix:

A =
[a, alpha, c]
[beta, a, alpha]
[alpha, c, a]

For more information, see “Substitute Elements in Symbolic Matrices” on page 2-116.

1 Getting Started

1-22

Plot Symbolic Functions
Symbolic Math Toolbox provides the plotting functions:

• fplot to create 2-D plots of symbolic expressions, equations, or functions in Cartesian
coordinates.

• fplot3 to create 3-D parametric plots.
• ezpolar to create plots in polar coordinates.
• fsurf to create surface plots.
• fcontour to create contour plots.
• fmesh to create mesh plots.

Explicit Function Plot

Create a 2-D line plot by using fplot. Plot the expression x3− 6x2 + 11x− 6.

syms x
f = x^3 - 6*x^2 + 11*x - 6;
fplot(f)

 Perform Symbolic Computations

1-23

Add labels for the x- and y-axes. Generate the title by using texlabel(f). Show the grid
by using grid on. For details, see “Add Title and Axis Labels to Chart” (MATLAB).

xlabel('x')
ylabel('y')
title(texlabel(f))
grid on

1 Getting Started

1-24

Implicit Function Plot

Plot equations and implicit functions using fimplicit.

Plot the equation (x2 + y2)4 = (x2− y2)2 over −1 < x < 1.

syms x y
eqn = (x^2 + y^2)^4 == (x^2 - y^2)^2;
fimplicit(eqn, [-1 1])

 Perform Symbolic Computations

1-25

3-D Plot

Plot 3-D parametric lines by using fplot3.

Plot the parametric line

x = t2sin(10t)
y = t2cos(10t)

z = t .

syms t
fplot3(t^2*sin(10*t), t^2*cos(10*t), t)

1 Getting Started

1-26

Create Surface Plot

Create a 3-D surface by using fsurf.

Plot the paraboloid z = x2 + y2.

syms x y
fsurf(x^2 + y^2)

 Perform Symbolic Computations

1-27

See Also

More About
• “Create Symbolic Numbers, Variables, and Expressions” on page 1-3
• “Create Symbolic Functions” on page 1-8
• “Create Symbolic Matrices” on page 1-10
• “Use Assumptions on Symbolic Variables” on page 1-29

1 Getting Started

1-28

Use Assumptions on Symbolic Variables
In this section...
“Default Assumption” on page 1-29
“Set Assumptions” on page 1-29
“Check Existing Assumptions” on page 1-30
“Delete Symbolic Objects and Their Assumptions” on page 1-30

Default Assumption
In Symbolic Math Toolbox, symbolic variables are complex variables by default. For
example, if you declare z as a symbolic variable using

syms z

then MATLAB assumes that z is a complex variable. You can always check if a symbolic
variable is assumed to be complex or real by using assumptions. If z is complex,
assumptions(z) returns an empty symbolic object:

assumptions(z)

ans =
Empty sym: 1-by-0

Set Assumptions
To set an assumption on a symbolic variable, use the assume function. For example,
assume that the variable x is nonnegative:

syms x
assume(x >= 0)

assume replaces all previous assumptions on the variable with the new assumption. If you
want to add a new assumption to the existing assumptions, use assumeAlso. For
example, add the assumption that x is also an integer. Now the variable x is a
nonnegative integer:

assumeAlso(x,'integer')

 Use Assumptions on Symbolic Variables

1-29

assume and assumeAlso let you state that a variable or an expression belongs to one of
these sets: integers, positive numbers, rational numbers, and real numbers.

Alternatively, you can set an assumption while declaring a symbolic variable using sym or
syms. For example, create the real symbolic variables a and b, and the positive symbolic
variable c:

a = sym('a', 'real');
b = sym('b', 'real');
c = sym('c', 'positive');

or more efficiently:

syms a b real
syms c positive

The assumptions that you can assign to a symbolic object with sym or syms are real,
rational, integer and positive.

Check Existing Assumptions
To see all assumptions set on a symbolic variable, use the assumptions function with the
name of the variable as an input argument. For example, this command returns the
assumptions currently used for the variable x:

assumptions(x)

To see all assumptions used for all symbolic variables in the MATLAB workspace, use
assumptions without input arguments:

assumptions

For details, see “Check Assumptions Set On Variables” on page 3-72.

Delete Symbolic Objects and Their Assumptions
Symbolic objects and their assumptions are stored separately. When you set an
assumption that x is real using

syms x
assume(x,'real')

1 Getting Started

1-30

you actually create a symbolic object x and the assumption that the object is real. The
object is stored in the MATLAB workspace, and the assumption is stored in the symbolic
engine. When you delete a symbolic object from the MATLAB workspace using

clear x

the assumption that x is real stays in the symbolic engine. If you declare a new symbolic
variable x later using sym, it inherits the assumption that x is real instead of getting a
default assumption. If later you solve an equation and simplify an expression with the
symbolic variable x, you could get incomplete results.

Note If you declare a variable using syms, existing assumptions are cleared. If you
declare a variable using sym, existing assumptions are not cleared.

For example, the assumption that x is real causes the polynomial x2 + 1 to have no roots:

syms x real
clear x
x = sym('x');
solve(x^2 + 1 == 0, x)

ans =
Empty sym: 0-by-1

The complex roots of this polynomial disappear because the symbolic variable x still has
the assumption that x is real stored in the symbolic engine. To clear the assumption, enter

syms x

After you clear the assumption, the symbolic object stays in the MATLAB workspace. If
you want to remove both the symbolic object and its assumption, use two commands:

1 To clear the assumption, enter

syms x
2 To delete the symbolic object, enter

clear x

For details on clearing symbolic variables, see “Clear Assumptions and Reset the
Symbolic Engine” on page 3-70.

 Use Assumptions on Symbolic Variables

1-31

See Also

More About
• “Create Symbolic Numbers, Variables, and Expressions” on page 1-3
• “Create Symbolic Functions” on page 1-8
• “Create Symbolic Matrices” on page 1-10
• “Perform Symbolic Computations” on page 1-13

1 Getting Started

1-32

Using Symbolic Math Toolbox
Software

• “Find Symbolic Variables in Expressions, Functions, Matrices” on page 2-3
• “Add Subscripts, Superscripts, and Accents to Symbolic Variables” on page 2-5
• “Change Output Display Format of Symbolic Results” on page 2-10
• “Units of Measurement Tutorial” on page 2-14
• “Units and Unit Systems List” on page 2-21
• “Unit Conversions and Unit Systems” on page 2-39
• “Differentiation” on page 2-48
• “Functional Derivatives Tutorial” on page 2-54
• “Limits” on page 2-61
• “Integration” on page 2-64
• “Symbolic Summation” on page 2-72
• “Taylor Series” on page 2-75
• “Padé Approximant” on page 2-77
• “Find Asymptotes, Critical and Inflection Points” on page 2-86
• “Simplify Symbolic Expressions” on page 2-93
• “Abbreviate Common Terms in Long Expressions” on page 2-99
• “Choose Function to Rearrange Expression” on page 2-101
• “Extract Numerators and Denominators of Rational Expressions” on page 2-112
• “Substitute Variables in Symbolic Expressions” on page 2-114
• “Substitute Elements in Symbolic Matrices” on page 2-116
• “Substitute Scalars with Matrices” on page 2-118
• “Evaluate Symbolic Expressions Using subs” on page 2-120
• “Choose Symbolic or Numeric Arithmetic” on page 2-121
• “Increase Precision of Numeric Calculations” on page 2-123

2

• “Recognize and Avoid Round-Off Errors” on page 2-125
• “Increase Speed by Reducing Precision” on page 2-130
• “Numeric to Symbolic Conversion” on page 2-132
• “Basic Algebraic Operations” on page 2-136
• “Linear Algebraic Operations” on page 2-138
• “Eigenvalues” on page 2-143
• “Jordan Canonical Form” on page 2-148
• “Singular Value Decomposition” on page 2-150
• “Solve Algebraic Equation” on page 2-152
• “Solve a Second-Order Differential Equation Numerically” on page 2-158
• “Select Numeric or Symbolic Solver” on page 2-161
• “Solve System of Algebraic Equations” on page 2-163
• “Troubleshoot Equation Solutions from solve Function” on page 2-174
• “Solve System of Linear Equations” on page 2-179
• “Solve Equations Numerically” on page 2-182
• “Solve Differential Equation” on page 2-193
• “Solve a System of Differential Equations” on page 2-197
• “Solve Differential Algebraic Equations (DAEs)” on page 2-203
• “Solve Semilinear DAE System” on page 2-215
• “Solve DAEs Using Mass Matrix Solvers” on page 2-223
• “Fourier and Inverse Fourier Transforms” on page 2-230
• “Solve Differential Equations Using Laplace Transform” on page 2-235
• “Solve Difference Equations Using Z-Transform” on page 2-243
• “Create Plots” on page 2-250
• “Generate C or Fortran Code from Symbolic Expressions” on page 2-262
• “Generate MATLAB Functions from Symbolic Expressions” on page 2-264
• “Generate MATLAB Function Blocks from Symbolic Expressions” on page 2-268
• “Generate Simscape Equations from Symbolic Expressions” on page 2-270

2 Using Symbolic Math Toolbox Software

2-2

Find Symbolic Variables in Expressions, Functions,
Matrices

To find symbolic variables in an expression, function, or matrix, use symvar. For example,
find all symbolic variables in symbolic expressions f and g:

syms a b n t x
f = x^n;
g = sin(a*t + b);
symvar(f)

ans =
[n, x]

Here, symvar sorts all returned variables alphabetically. Similarly, you can find the
symbolic variables in g by entering:

symvar(g)

ans =
[a, b, t]

symvar also can return the first n symbolic variables found in a symbolic expression,
matrix, or function. To specify the number of symbolic variables that you want symvar to
return, use the second parameter of symvar. For example, return the first two variables
found in symbolic expression g:

symvar(g, 2)

ans =
[b, t]

Notice that the first two variables in this case are not a and b. When you call symvar with
two arguments, it finds symbolic variables by their proximity to x before sorting them
alphabetically.

When you call symvar on a symbolic function, symvar returns the function inputs before
other variables.

syms x y w z
f(w, z) = x*w + y*z;
symvar(f)

 Find Symbolic Variables in Expressions, Functions, Matrices

2-3

ans =
[w, z, x, y]

When called with two arguments for symbolic functions, symvar also follows this
behavior.

symvar(f, 2)

ans =
[w, z]

Find a Default Symbolic Variable
If you do not specify an independent variable when performing substitution,
differentiation, or integration, MATLAB uses a default variable. The default variable is
typically the one closest alphabetically to x or, for symbolic functions, the first input
argument of a function. To find which variable is chosen as a default variable, use the
symvar(f, 1) command. For example:

syms s t
f = s + t;
symvar(f, 1)

ans =
t

syms sx tx
f = sx + tx;
symvar(f, 1)

ans =
tx

For more information on choosing the default symbolic variable, see symvar.

2 Using Symbolic Math Toolbox Software

2-4

Add Subscripts, Superscripts, and Accents to Symbolic
Variables

This example shows how to add subscripts, superscripts, and accents to symbolic
variables. MATLAB® Live Editor displays symbolic variables with subscripts,
superscripts, and accents in standard mathematical notation.

Add Subscripts and Superscripts

To add subscripts to symbolic variables in live scripts, append the corresponding index to
the variable using one underscore (_). For example, create two symbolic variables with
subscripts using syms. Use these variables in an expression.

syms F_a F_b
Ftot = F_a + F_b

Ftot = Fa + Fb

You can also use sym to create a symbolic variable with a subscript and assign the
variable to a symbolic expression.

Fa = sym('F_a')

Fa = Fa

To add superscripts to symbolic variables, append the corresponding index to the variable
using two underscores (__). For example, create two symbolic variables with
superscripts.

syms F__a F__b
Ftot = F__a + F__b

Ftot = Fa + Fb

When you assign symbolic variables to an expression, the symbolic expression is
displayed in ASCII format.

Add Accents

To add accents to symbolic variables in live scripts, append the corresponding suffix to
the variable using the underscore (_). For example, create symbolic variables with one
dot and two dots over the symbol x. Use these variables in an equation.

 Add Subscripts, Superscripts, and Accents to Symbolic Variables

2-5

syms x x_dot x_ddot c m k
eq1 = m*x_ddot - c*x_dot + k*x == 0

eq1 = k x− c ẋ + m ẍ = 0

When you compute the complex conjugate of a symbolic variable with an accent, a bar
notation is added above the variable. For example, find the complex conjugate of x_dot
using the conj function.

xConj = conj(x_dot)

xConj = ẋ

The supported accent suffixes for symbolic variables follow.

suffix = ["ast"; "hat"; "tilde"; "vec"; "bar"; ...
 "ubar"; "dot"; "ddot"; "tdot"; "qdot"; ...
 "prime"; "dprime"; "tprime"; "qprime"];
accentList = [suffix, sym("x_" + suffix)]

accentList =
ast x*
hat x
tilde x∼

vec x
bar x

ubar x
dot ẋ

ddot ẍ

tdot x ⃛

qdot x ⃜

prime x′
dprime x′′
tprime x′′′
qprime x′′′′

When you compute the complex conjugate transpose of a matrix containing symbolic
variables, a bar notation is also added above each variable. For example, find the
conjugate transpose of the symbolic variables in accentList(:,2) using the
ctranspose or ' function.

2 Using Symbolic Math Toolbox Software

2-6

conjVar = accentList(:,2)'

conjVar =

x* x x∼ x x x ẋ ẍ x ⃛ x ⃜ x′ x′′ x′′′ x′′′′

When you compute the nonconjugate transpose of a matrix containing symbolic variables,
the display output is unchanged. For example, find the nonconjugate transpose of the
symbolic variables in accentList(:,2) using the transpose or .' function.

nonconjVar = accentList(:,2).'

nonconjVar =

x* x x∼ x x x ẋ ẍ x ⃛ x ⃜ x′ x′′ x′′′ x′′′′

Add Multiple Subscripts, Superscripts, and Accents

You can create symbolic variables with multiple subscripts, superscripts, and accents. The
multiple suffixes are assigned to the symbolic variables from left to right.

Create symbolic variables with multiple subscripts and superscripts. If you add multiple
subscripts and superscripts, then the input indices are separated with a comma sign and
displayed from left to right.

x1 = sym('x_b_1__a__1')

x1 = xb, 1
a, 1

x2 = sym('x__b_1_a__1')

x2 = x1, a
b, 1

Now create symbolic variables with multiple accents. If you add multiple accents, then
the input accents are assigned from left to right to the closest preceding variable or
index. Some examples follow.

v1 = sym('v_prime_vec')

v1 =
v′

v2 = sym('v_vec_prime')

v2 =

 Add Subscripts, Superscripts, and Accents to Symbolic Variables

2-7

v ′

va = sym('v__a_bar_prime')

va = va′

vb = sym('v_bar__b_prime')

vb = vb′

Adding suffixes to the symbolic variables can produce similar output. However, the
variables are equal only if their suffixes are also in the same order. For example, create
three symbolic variables that produce similar output.

syms F_t__a
F1 = F_t__a

F1 = Ft
a

F2 = sym('F_t__a')

F2 = Ft
a

F3 = sym('F__a_t')

F3 = Ft
a

Determine if the symbolic variables are equal to each other using the isequal function.

TF_12 = isequal(F1,F2)

TF_12 = logical
 1

TF_23 = isequal(F2,F3)

2 Using Symbolic Math Toolbox Software

2-8

TF_23 = logical
 0

See Also

Related Examples
• “Create Symbolic Numbers, Variables, and Expressions” on page 1-3
• “Find Symbolic Variables in Expressions, Functions, Matrices” on page 2-3
• “Use Assumptions on Symbolic Variables” on page 1-29

 See Also

2-9

Change Output Display Format of Symbolic Results
This example shows how to modify the output display format of symbolic results in
Symbolic Math Toolbox™ by using the sympref function. To demonstrate the use of the
function, this example uses a third-degree polynomial.

Modify Output Order of Third-Degree Polynomial

Create a third-degree polynomial consisting of one variable and three coefficients. Define
the variable and coefficients as symbolic variables by using the syms command.

syms x a b c
f(x) = (a*x^2 + b)*(b*x - a) + c

f(x) = c− a x2 + b a− b x

Symbolic preferences persist through successive MATLAB® sessions. Restore all
symbolic preferences to the default values. Expand the polynomial and return the output
in the default order.

sympref('default');
poly = expand(f)

poly(x) = −a2 x2 + a b x3− a b + b2 x + c

The default output format displays the terms of a symbolic polynomial in alphabetical
order, without distinguishing the different symbolic variables in each monomial term.

To change the output order of a polynomial, set the 'PolynomialDisplayStyle'
preference. The 'ascend' option sorts the output in an ascending order based on the
standard mathematical notation for polynomials. Here, the variable x with the highest
order in a monomial term is displayed last.

sympref('PolynomialDisplayStyle','ascend');
poly

poly(x) = c− a b + b2 x− a2 x2 + a b x3

Modify Output Display of Polynomial Roots

By default, symbolic results in Live Scripts are typeset in standard mathematical notation,
long expressions are abbreviated, and matrices are set in parentheses (round brackets).
You can modify the output display format by setting the symbolic preferences.

2 Using Symbolic Math Toolbox Software

2-10

Find the roots or zeros of the third-degree polynomial using solve. In Symbolic Math
Toolbox, the root function represents the roots of a polynomial.

sols = solve(poly,x)

sols =
root σ1, z, 1
root σ1, z, 2
root σ1, z, 3

where

 σ1 = a b z3− a2 z2 + b2 z − a b + c

To display the results without being abbreviated, set 'AbbreviateOutput' preference
to false.

sympref('AbbreviateOutput',false);
sols

sols =
root a b z3− a2 z2 + b2 z − a b + c, z, 1

root a b z3− a2 z2 + b2 z − a b + c, z, 2

root a b z3− a2 z2 + b2 z − a b + c, z, 3

To display the symbolic matrix with square brackets, rather than parentheses, set
'MatrixWithSquareBrackets' preference to true.

sympref('MatrixWithSquareBrackets',true);
sols

sols =
root a b z3− a2 z2 + b2 z − a b + c, z, 1

root a b z3− a2 z2 + b2 z − a b + c, z, 2

root a b z3− a2 z2 + b2 z − a b + c, z, 3

To display the results in ASCII characters instead of in typeset mathematical notation, set
'TypesetOutput' preference to false.

 Change Output Display Format of Symbolic Results

2-11

sympref('TypesetOutput',false);
sols

sols =

 root(a*b*z^3 - a^2*z^2 + b^2*z - a*b + c, z, 1)
 root(a*b*z^3 - a^2*z^2 + b^2*z - a*b + c, z, 2)
 root(a*b*z^3 - a^2*z^2 + b^2*z - a*b + c, z, 3)

The preferences you set using sympref persist through your current and future
MATLAB® sessions. Restore the symbolic preferences to the default values for the next
step.

sympref('default');

Display Floating-Point Output of Symbolic Numbers

Replace the polynomial coefficients with symbolic numbers using subs. The function
returns the solutions without any approximation.

numSols = subs(sols,[a b c],[sqrt(2) pi 0.001])

numSols =
root σ1, z, 1
root σ1, z, 2
root σ1, z, 3

where

 σ1 = 1000 π 2 z3− 2000 z2 + 1000 z π2− 1000 π 2 + 1

To display the results in floating-point format, set 'FloatingPointOutput' preference
to true. This option displays symbolic numbers in fixed-decimal format with 4 digits after
the decimal point. For a complex result of class 'sym', this preference affects the real
and imaginary parts independently.

sympref('FloatingPointOutput',true);
numSols

numSols =
0.4501

4.6427e−05− 1.4904 i
4.6427e−05 + 1.4904 i

2 Using Symbolic Math Toolbox Software

2-12

The display preferences you set do not affect the computation of symbolic results. You can
use the vpa function to approximate symbolic numbers in floating-point precision with 4
significant digits.

vpaSols = vpa(numSols,4)

vpaSols =
0.4501

−1.4904 i
1.4904 i

 Change Output Display Format of Symbolic Results

2-13

Units of Measurement Tutorial
Use units of measurement with Symbolic Math Toolbox. This page shows how to define
units, use units in equations (including differential equations), and verify the dimensions
of expressions.

Define and Convert Units
Load units by using symunit.

u = symunit;

Specify a unit by using u.unit. For example, specify a distance of 5 meters, a weight of
50 kilograms, and a speed of 10 kilometers per hour. In displayed output, units are placed
in square brackets [].

d = 5*u.m
w = 50*u.kg
s = 10*u.km/u.hr

d =
5*[m]
w =
50*[kg]
s =
10*([km]/[h])

Tip Use tab expansion to find names of units. Type u., press Tab, and continue typing.

Units are treated like other symbolic expressions and can be used in any standard
operation or function. Units are not automatically simplified, which provides flexibility.
Common alternate names for units are supported. Plurals are not supported.

Add 500 meters and 2 kilometers. The resulting distance is not automatically simplified.

d = 500*u.m + 2*u.km

d =
2*[km] + 500*[m]

2 Using Symbolic Math Toolbox Software

2-14

Simplify d by using simplify. The simplify function automatically chooses the unit to
simplify to.

d = simplify(d)

d =
(5/2)*[km]

Instead of automatically choosing a unit, convert d to a specific unit by using
unitConvert. Convert d to meters.

d = unitConvert(d,u.m)

d =
2500*[m]

There are more unit conversion and unit system options. See “Unit Conversions and Unit
Systems” on page 2-39.

Find the speed if the distance d is crossed in 50 seconds. The result has the correct units.

t = 50*u.s;
s = d/t

s =
50*([m]/[s])

Use Temperature Units in Absolute or Difference Forms
By default, temperatures are assumed to represent differences and not absolute
measurements. For example, 5*u.Celsius is assumed to represent a temperature
difference of 5 degrees Celsius. This assumption allows arithmetical operations on
temperature values.

To represent absolute temperatures, use kelvin, so that you do not have to distinguish an
absolute temperature from a temperature difference.

Convert 23 degrees Celsius to kelvin, treating it first as a temperature difference and
then as an absolute temperature.

u = symunit;
T = 23*u.Celsius;
diffK = unitConvert(T,u.K)

 Units of Measurement Tutorial

2-15

diffK =
23*[K]

absK = unitConvert(T,u.K,'Temperature','absolute')

absK =
(5923/20)*[K]

Verify Dimensions
In longer expressions, visually checking for units is difficult. You can check the
dimensions of expressions automatically by verifying the dimensions of an equation.

First, define the kinematic equation v2 = v02 + 2as, where v represents velocity, a
represents acceleration, and s represents distance. Assume s is in kilometers and all
other units are in SI base units. To demonstrate dimension checking, the units of a are
intentionally incorrect.

syms v v0 a s
u = symunit;
eqn = (v*u.m/u.s)^2 == (v0*u.m/u.s)^2 + 2*a*u.m/u.s*s*u.km

eqn =
v^2*([m]^2/[s]^2) == v0^2*([m]^2/[s]^2) + (2*a*s)*(([km]*[m])/[s])

Observe the units that appear in eqn by using findUnits. The returned units show that
both kilometers and meters are used to represent distance.

findUnits(eqn)

ans =
[[km], [m], [s]]

Check if the units have the same dimensions (such as length or time) by using
checkUnits with the 'Compatible' input. MATLAB assumes symbolic variables are
dimensionless. checkUnits returns logical 0 (false), meaning the units are
incompatible and not of the same physical dimensions.

checkUnits(eqn,'Compatible')

ans =
 logical
 0

2 Using Symbolic Math Toolbox Software

2-16

Looking at eqn, the acceleration a has incorrect units. Correct the units and recheck for
compatibility again. eqn now has compatible units.

eqn = (v*u.m/u.s)^2 == (v0*u.m/u.s)^2 + 2*a*u.m/u.s^2*s*u.km;
checkUnits(eqn,'Compatible')

ans =
 logical
 1

Now, to check that each dimension is consistently represented by the same unit, use
checkUnits with the 'Consistent' input. checkUnits returns logical 0 (false)
because meters and kilometers are both used to represent distance in eqn.

checkUnits(eqn,'Consistent')

ans =
 logical
 0

Convert eqn to SI base units to make the units consistent. Run checkUnits again. eqn
has both compatible and consistent units.

eqn = unitConvert(eqn,'SI')

eqn =
 v^2*([m]^2/[s]^2) == v0^2*([m]^2/[s]^2) + (2000*a*s)*([m]^2/[s]^2)

checkUnits(eqn)

ans =
 struct with fields:

 Consistent: 1
 Compatible: 1

After you finish working with units and only need the dimensionless equation or
expression, separate the units and the equation by using separateUnits.

[eqn,units] = separateUnits(eqn)

eqn =
v^2 == v0^2 + 2000*a*s
units =
1*([m]^2/[s]^2)

 Units of Measurement Tutorial

2-17

You can return the original equation with units by multiplying eqn with units and
expanding the result.

expand(eqn*units)

ans =
v^2*([m]^2/[s]^2) == v0^2*([m]^2/[s]^2) + (2000*a*s)*([m]^2/[s]^2)

To calculate numeric values from your expression, substitute for symbolic variables using
subs, and convert to numeric values using double or vpa.

Solve eqn for v. Then find the value of v where v0 = 5, a = 2.5, and s = 10. Convert
the result to double.

v = solve(eqn,v);
v = v(2); % choose the positive solution
vSol = subs(v,[v0 a s],[5 2.5 10]);
vSol = double(vSol)

vSol =
 223.6627

Use Units in Differential Equations
Use units in differential equations just as in standard equations. This section shows how
to use units in differential equations by deriving the velocity relations v = v0 + at and
v2 = v02 + 2as starting from the definition of acceleration a = dv

dt .

Represent the definition of acceleration symbolically using SI units. Given that the
velocity V has units, V must be differentiated with respect to the correct units as T =
t*u.s and not just t.

syms V(t) a
u = symunit;
T = t*u.s; % time in seconds
A = a*u.m/u.s^2; % acceleration in meters per second
eqn1 = A == diff(V,T)

eqn1(t) =
a*([m]/[s]^2) == diff(V(t), t)*(1/[s])

Because the velocity V is unknown and does not have units, eqn1 has incompatible and
inconsistent units.

2 Using Symbolic Math Toolbox Software

2-18

checkUnits(eqn1)

ans =
 struct with fields:

 Consistent: 0
 Compatible: 0

Solve eqn1 for V with the condition that the initial velocity is v0. The result is the equation
v(t) = v0 + at.

syms v0
cond = V(0) == v0*u.m/u.s;
eqn2 = V == dsolve(eqn1,cond)

eqn2(t) =
V(t) == v0*([m]/[s]) + a*t*([m]/[s])

Check that the result has the correct dimensions by substituting rhs(eqn2) into eqn1
and using checkUnits.

checkUnits(subs(eqn1,V,rhs(eqn2)))

ans =
 struct with fields:

 Consistent: 1
 Compatible: 1

Now, derive v2 = v02 + 2as. Because velocity is the rate of change of distance, substitute V
with the derivative of distance S. Again, given that S has units, S must be differentiated
with respect to the correct units as T = t*u.s and not just t.

syms S(t)
eqn2 = subs(eqn2,V,diff(S,T))

eqn2(t) =
diff(S(t), t)*(1/[s]) == v0*([m]/[s]) + a*t*([m]/[s])

Solve eqn2 with the condition that the initial distance covered is 0. Get the expected form
of S by using expand.

cond2 = S(0) == 0;
eqn3 = S == dsolve(eqn2,cond2);
eqn3 = expand(eqn3)

 Units of Measurement Tutorial

2-19

eqn3(t) =
S(t) == t*v0*[m] + ((a*t^2)/2)*[m]

You can use this equation with the units in symbolic workflows. Alternatively, you can
remove the units by returning the right side using rhs, separating units by using
separateUnits, and using the resulting unitless expression.

[S units] = separateUnits(rhs(eqn3))

S(t) =
(a*t^2)/2 + v0*t

units(t) =
[m]

When you need to calculate numeric values from your expression, substitute for symbolic
variables using subs, and convert to numeric values using double or vpa.

Find the distance traveled in 8 seconds where v0 = 20 and a = 1.3. Convert the result
to double.

S = subs(S,[v0 a],[20 1.3]);
dist = S(8);
dist = double(dist)

dist =
 201.6000

See Also
checkUnits | findUnits | isUnit | newUnit | separateUnits | symunit2str |
unitConversionFactor | unitConvert

More About
• “Unit Conversions and Unit Systems” on page 2-39
• “Units and Unit Systems List” on page 2-21

External Websites
• The International System of Units (SI)

2 Using Symbolic Math Toolbox Software

2-20

https://www.bipm.org/en/publications/si-brochure/

Units and Unit Systems List
List of units, SI unit prefixes, and unit systems in Symbolic Math Toolbox. For details, see
“Units of Measurement Tutorial” on page 2-14. Common alternate names for units are
supported and map to the name listed here. Plurals are not supported.

In this section...
“Units List” on page 2-21
“SI Unit Prefixes List” on page 2-35
“Unit Systems List” on page 2-36

Units List
Length

• Ao - angstrom
• a_0 - Bohr radius
• au - astronomical unit
• ch - chain
• ft - foot
• ft_US - U.S. survey foot
• ftm - fathom
• fur - furlong
• gg - gauge
• hand
• in - inch
• inm - international nautical mile
• land - league
• li - link
• line
• ly - light-year
• m - meter (SI)

 Units and Unit Systems List

2-21

• mi - mile
• mi_US - U.S. survey mile
• mil
• nmile - British imperial nautical mile
• pc - parsec
• pt - point
• rod
• span
• xu - x unit
• xu_Cu - x unit (copper)
• xu_Mo - x unit (molybdenum)
• yd - yard

Mass

• Mt - metric megaton
• ct - carat
• cwt - U.S. customary short hundredweight
• cwt_UK - British imperial short hundredweight
• dalton - atomic mass constant
• dr - dram
• g - gram
• gr - grain
• hyl
• kt - metric kiloton
• lbm - pound mass
• m_e - electron mass
• oz - ounce
• quarter
• slug
• stone

2 Using Symbolic Math Toolbox Software

2-22

• t - metric ton
• tn - U.S. customary short ton
• ton_UK - British imperial ton

Time

• d - day
• fortnight - 14 days
• h - hour
• min - minute
• month_30 - 30-day month
• s - second (SI)
• week - 7-day week
• year_360 - 360-day year
• year_Julian - Julian year
• year_Gregorian - Gregorian year

Absorbed Dose or Dose Equivalent

• Gy - gray (SI)
• Rad - absorbed radiation dose
• Sv - sievert (SI)
• rem - roentgen equivalent man

Acceleration

• Gal - gal
• g_n - earth gravitational acceleration

Activity

• Bq - becquerel (SI)
• Ci - curie

 Units and Unit Systems List

2-23

Amount of Substance

• item - number of items
• mol - mole (SI)
• molecule - number of molecules

Angular Momentum

• Nms - newton meter second
• h_bar - reduced Planck constant
• h_c - Planck constant

Area

• a - are
• ac - U.S. survey acre
• barn
• circ_mil - circular mil
• circ_inch - circular inch
• ha - metric hectare
• ha_US - U.S. survey hectare
• ro - rood
• twp - township

Capacitance

• F - farad (SI)
• abF - abfarad
• statF - statfarad

Catalytic Activity

• kat - katal (SI)

Conductance

• S - siemens (SI)

2 Using Symbolic Math Toolbox Software

2-24

• abS - absiemens
• statS - statsiemens

Data Transfer Rate

• Bd - baud
• bps - bit per second

Digital Information

• B - byte
• bit - basic unit of information

Dose Equivalent

• Sv - sievert (SI)

Dynamic Viscosity

• P - poise
• reyn - reynolds

Electric Charge

• C - coulomb (SI)
• Fr - franklin
• abC - abcoulomb
• e - elementary charge
• statC - statcoulomb

Electric Current

• A - ampere (SI)
• Bi - biot
• abA - abampere
• statA - statampere

 Units and Unit Systems List

2-25

Electric Dipole Moment

• debye

Electric Potential

• V - volt (SI)
• abV - abvolt
• statV - statvolt

Electric Potential or Electromotive Force

• V - volt (SI)
• abV - abvolt
• statV - statvolt

Energy or Work or Heat

• Btu_IT - British thermal unit (International Table)
• Btu_th - British thermal unit (thermochemical)
• E_h - Hartree energy
• J - joule (SI)
• Nm - newton meter
• Wh - watt hour
• Ws - watt second
• cal_4 - calorie (4 degree Celsius)
• cal_20 - calorie (20 degree Celsius)
• cal_15 - calorie (15 degree Celsius)
• cal_IT - calorie (International Table)
• cal_th - calorie (thermochemical)
• cal_mean - calorie (mean)
• eV - electronvolt
• erg
• kcal_4 - kilocalorie (4 degree Celsius)
• kcal_20 - kilocalorie (20 degree Celsius)

2 Using Symbolic Math Toolbox Software

2-26

• kcal_15 - kilocalorie (15 degree Celsius)
• kcal_IT - kilocalorie (International Table)
• kcal_th - kilocalorie (thermochemical)
• kcal_mean - kilocalorie (mean)
• kpm - kilopond meter
• therm

Energy Per Temperature

• k_B - Boltzmann constant

European Currency

• Cent - cent
• EUR - Euro

Magnetic Field Strength

• Oe - oersted

Flow Rate

• gpm - U.S. customary gallon per minute
• gpm_UK - British imperial gallon per minute
• lpm - liter per minute

Force

• N - newton (SI)
• dyn - dyne
• kgf - kilogram force
• kip
• kp - kilopond
• lbf - pound force
• ozf - ounce force
• p - pond

 Units and Unit Systems List

2-27

• pdl - poundal
• sn - sthene
• tonf - short ton force

Former European Currency

• ATS - Austrian Schilling
• BEF - Belgian Franc
• DM - German Mark
• ESP - Spanish Peseta
• FIM - Finnish Markka
• FRF - French Franc
• IEP - Irish Pound
• ITL - Italian Lire
• LUF - Luxembourgian Franc
• NLG - Dutch Gulden
• PTE - Portuguese Escudo

Frequency

• Hz - hertz (SI)

Frequency of Rotation

• rpm - revolution per minute
• rps - revolution per second

Fuel Consumption

• l_100km - liter per 100 km

Fuel Economy

• mpg - mile per gallon

Gravity

• G_c - Newtonian constant of gravitation

2 Using Symbolic Math Toolbox Software

2-28

Heat

• Btu_IT - British thermal unit (International Table)
• Btu_th - British thermal unit (thermochemical)
• cal_4 - calorie (4 degree Celsius)
• cal_20 - calorie (20 degree Celsius)
• cal_15 - calorie (15 degree Celsius)
• cal_IT - calorie (International Table)
• cal_th - calorie (thermochemical)
• cal_mean - calorie (mean)
• kcal_4 - kilocalorie (4 degree Celsius)
• kcal_20 - kilocalorie (20 degree Celsius)
• kcal_15 - kilocalorie (15 degree Celsius)
• kcal_IT - kilocalorie (International Table)
• kcal_th - kilocalorie (thermochemical)
• kcal_mean - kilocalorie (mean)
• therm

Illuminance

• lx - lux (SI)
• nx - nox
• ph - phot

Inductance

• H - henry (SI)
• abH - abhenry
• statH - stathenry

Ionising Dosage

• R - roentgen

 Units and Unit Systems List

2-29

Kinematic Viscosity

• St - stokes
• newt

Luminance

• asb - apostilb
• sb - stilb

Luminous Flux

• lm - lumen (SI)

Luminous Intensity

• cd - candela (SI)
• cp - candlepower

Magnetic Flux

• Mx - maxwell
• Wb - weber (SI)
• abWb - abweber
• statWb - statweber

Magnetic Flux Density

• G - gauss
• T - tesla (SI)
• abT - abtesla
• statT - stattesla

Magnetic Force

• Gb - gilbert

Mass Per Length

• den - denier

2 Using Symbolic Math Toolbox Software

2-30

• tex - filament tex

Particle Per Amount of Substance

• N_A - Avogadro constant

Plane Angle

• arcsec - arcsecond
• arcmin - arcminute
• deg - degree
• rad - radian (SI)
• rev - revolution

Power

• HP_E - electrical horsepower
• HP_I - mechanical horsepower
• HP_UK - British imperial horsepower
• HP_DIN - metric horsepower (DIN 66036)
• PS_SAE - net horsepower (SAE J1349)
• PS_DIN - horsepower (DIN 70020)
• poncelet

Power

• HP_E - electrical horsepower
• HP_I - mechanical horsepower
• HP_UK - British imperial horsepower
• HP_DIN - metric horsepower (DIN 66036)
• PS_SAE - net horsepower (SAE J1349)
• PS_DIN - horsepower (DIN 70020)
• W - watt (SI)
• poncelet

 Units and Unit Systems List

2-31

Pressure

• Ba - barye
• Pa - pascal (SI)
• Torr - torr
• at - technical atmosphere
• atm - standard atmosphere
• bar
• cmHg - centimeter of mercury (conventional)
• cmH2O - centimeter of water (conventional)
• ftHg - foot of mercury (conventional)
• ftH2O - foot of water (conventional)
• inHg - inch of mercury (conventional)
• inH2O - inch of water (conventional)
• ksf - kip per square foot
• ksi - kip per square inch
• mH2O - meter of water (conventional)
• mHg - meter of mercury (conventional)
• mmHg - millimeter of mercury (conventional)
• mmH2O - millimeter of water (conventional)
• psf - pound force per square foot
• psi - pound force per square inch
• pz - pieze

Pressure or Stress

• Ba - barye
• Pa - pascal (SI)
• Torr - torr
• at - technical atmosphere
• atm - standard atmosphere
• bar

2 Using Symbolic Math Toolbox Software

2-32

• cmHg - centimeter of mercury (conventional)
• cmH2O - centimeter of water (conventional)
• ftHg - foot of mercury (conventional)
• ftH2O - foot of water (conventional)
• inHg - inch of mercury (conventional)
• inH2O - inch of water (conventional)
• ksf - kip per square foot
• ksi - kip per square inch
• mH2O - meter of water (conventional)
• mHg - meter of mercury (conventional)
• mmHg - millimeter of mercury (conventional)
• mmH2O - millimeter of water (conventional)
• psf - pound force per square foot
• psi - pound force per square inch
• pz - pieze

Radiation

• lan - langley

Radioactivity

• Bq - becquerel (SI)
• Ci - curie

Reciprocal Length

• kayser

Refractive Power of Lenses

• dpt - diopter

Resistance

• Ohm - ohm (SI)

 Units and Unit Systems List

2-33

• abOhm - abohm
• statOhm - statohm

Solid Angle

• sr - steradian (SI)

Substance Per Volume

• molarity

Temperature

• Celsius - degree Celsius (SI)
• Fahrenheit - degree Fahrenheit
• K - kelvin (SI)
• Rankine - degree Rankine
• Reaumur - degree Reaumur

Velocity

• Kyne - kyne
• c_0 - speed of light in vacuum
• fpm - foot per minute
• fps - foot per second
• kmh - kilometer per hour
• knot_UK - British imperial knot
• kts - international knot
• mach - speed of sound
• mph - mile per hour

Volume

• barrel
• bbl - U.S. customary dry barrel
• bu_UK - British imperial bushel

2 Using Symbolic Math Toolbox Software

2-34

• chaldron
• dry_bu - U.S. customary dry bushel
• dry_pk - U.S. customary dry peck
• dry_pt - U.S. customary dry pint
• dry_qt - U.S. customary dry quart
• dry_gal - U.S. customary dry gallon
• fldr - U.S. customary fluid dram
• fldr_UK - British imperial fluid drachm (dram)
• floz - U.S. customary fluid ounce
• floz_UK - British imperial fluid ounce
• gal - U.S. customary liquid gallon
• gal_UK - British imperial gallon
• gill - U.S. customary fluid gill
• gill_UK - British imperial gill
• igal - British imperial gallon
• l - liter
• liq_pt - U.S. customary liquid pint
• liq_qt - U.S. customary liquid quart
• minim - U.S. customary minim
• minim_UK - British imperial minim
• pint - U.S. customary liquid pint
• pint_UK - British imperial pint
• pk_UK - British imperial peck
• pottle - British imperial pottle
• qt_UK - British imperial quart
• quart - U.S. customary liquid quart

SI Unit Prefixes List
SI unit prefixes in Symbolic Math Toolbox. Every unit marked by SI in the units list
accepts SI prefixes. For example, m accepts nm, mcm, mm, cm, km and so on.

 Units and Unit Systems List

2-35

Prefix Input Forms Example using meters
u.m where u = symunit

Yotta 1024 Y, yotta u.Ym, u.yottam
Zetta 1021 Z, zetta u.Zm, u.zettam
Exa 1018 E, exa u.Em, u.exam
Peta 1015 P, peta u.Pm, u.petam
Tera 1012 T, tera u.Tm, u.teram
Giga 109 G, giga u.gigam, u.Gm
Mega 106 M, mega u.Mm, u.megam
Kilo 103 k, kilo u.km, u.kilom
Hecto 102 h, hecto u.hm, u.hectom
Deka 101 da, deka, deca u.dam, u.dekam, u.decam
Deci 10–1 d, deci u.dm, u.decim
Centi 10–2 c, centi u.cm, u.centim
Milli 10–3 m, milli u.m, u.millim
Micro 10–6 mc, micro, u u.mcm, u.microm, u.um
Nano 10–9 n, nano u.nm, u.nanom
Pico 10–12 p, pico u.pm, u.picom
Femto 10–15 f, femto u.fm, u.femtom
Atto 10–18 a, atto u.am, u.attom
Zepto 10–21 z, zepto u.zm, u.zeptom
Yocto 10–24 y, yocto u.ym, u.yoctom

Unit Systems List
Available units systems in Symbolic Math Toolbox are listed below. For details, see “Unit
Conversions and Unit Systems” on page 2-39.

Unit System Base Units Derived Units
SI units ('SI') As defined. As defined.

2 Using Symbolic Math Toolbox Software

2-36

Unit System Base Units Derived Units
CGS units ('CGS') baseUnits('CGS')

ans =
[[cm], [g], [s], [K]]

derivedUnits('CGS')

ans =
[[Gal], [dyn], [erg], [Ba], [P], [St], [Celsius]]

US units ('US') baseUnits('US')

ans =
[[lbm], [s], [ft], [A], [cd], [mol], [K]]

derivedUnits('US')

ans =
[[F], [C], [S], [H], [V], [Btu_IT], [lbf], [lx], [lm], [Wb],...
 [W], [psf], [Ohm], [T], [Gy], [Bq], [Sv], [Hz], [kat], [rad],...
 [sr], [Fahrenheit], [gal]]

Electrostatic units ('ESU') baseUnits('ESU')

ans =
[[cm], [g], [s], [K], [statC]]

derivedUnits('ESU')

ans =
[[Gal], [dyn], [erg], [Ba], [P], [St], [Celsius], [statA], [statF],...
 [statH], [statS], [statOhm], [statT], [statV], [statWb]]

Gaussian units ('GU') baseUnits('GU')

ans =
[[cm], [g], [s], [K], [Fr]]

derivedUnits('GU')

ans =
[[Gal], [dyn], [erg], [Ba], [P], [St], [Celsius], [G],...
 [Bi], [Mx], [Oe], [debye]]

Electromagnetic units
('EMU')

baseUnits('EMU')

ans =
[[cm], [g], [s], [K], [abA]]

derivedUnits('EMU')

ans =
[[Gal], [dyn], [erg], [Ba], [P], [St], [Celsius], [abC],...
 [abF], [abH], [abS], [abOhm], [abT], [abV], [abWb]]

See Also
checkUnits | isUnit | newUnit | rewrite | separateUnits | symunit |
symunit2str | unitConversionFactor

See Also

Related Examples
• “Units of Measurement Tutorial” on page 2-14
• “Unit Conversions and Unit Systems” on page 2-39

 See Also

2-37

External Websites
• The International System of Units (SI)

2 Using Symbolic Math Toolbox Software

2-38

https://www.bipm.org/en/publications/si-brochure/

Unit Conversions and Unit Systems
Convert between units with Symbolic Math Toolbox. This page shows conversions
between units and between systems of units, such as SI, CGS, or a user-defined unit
system.

Convert Units
Convert between units by using unitConvert.

Convert 1.2 meters to centimeters.

u = symunit;
len = 1.2*u.m;
len = unitConvert(len,u.cm)

len =
120*[cm]

Convert len to inches. The result is in exact symbolic form. Separate units and convert to
double.

len = unitConvert(len,u.in)

len =
(6000/127)*[in]

[len units] = separateUnits(len);
len = double(len)

len =
 47.2441

Calculate the force needed to accelerate a mass of 5 kg at 2 m/s2.

m = 5*u.kg;
a = 2*u.m/u.s^2;
F = m*a

F =
10*(([kg]*[m])/[s]^2)

Convert the result to newton.

 Unit Conversions and Unit Systems

2-39

F = unitConvert(F,u.N)

F =
10*[N]

Tip Use tab expansion to find names of units. Type u., press Tab, and continue typing.

Calculate the energy when force F is applied for 3 meters. Convert the result to joule.

d = 3*u.m;
E = F*d

E =
30*[N]*[m]

E = unitConvert(E,u.J)

E =
30*[J]

Convert E to kilowatt-hour.

E = unitConvert(E,u.kWh)

E =
(1/120000)*[kWh]

Temperature Unit Conversion
Temperatures can represent either absolute temperatures or temperature differences. By
default, temperatures are assumed to be differences. Convert temperatures assuming
temperatures are absolute by specifying the 'Temperature' input as 'absolute'.

Convert 23 degrees Celsius to degrees Kelvin, first as a temperature difference and then
as an absolute temperature.

u = symunit;
T = 23*u.Celsius;
relK = unitConvert(T,u.K,'Temperature','difference')

relK =
23*[K]

2 Using Symbolic Math Toolbox Software

2-40

absK = unitConvert(T,u.K,'Temperature','absolute')

absK =
(5923/20)*[K]

Because the value 0 is dimensionless and 0 degrees cannot be represented, convert 0
degrees between temperature units by using cell input.

Convert 0 degrees Celsius to degrees Fahrenheit.

tC = {0,u.Celsius};
tF = unitConvert(tC,u.Fahrenheit,'Temperature','Absolute')

tF =
32*[Fahrenheit]

Convert to SI, CGS, or US Unit Systems
Automatically convert to the correct units by converting to a unit system. Further,
converting to the derived units of a unit system attempts to select convenient units.
Available unit systems include SI, CGS, and US. For all unit systems, see “Unit Systems
List” on page 2-36. In addition, you can define custom unit systems.

Calculate the force due to a 5 kg mass accelerating at 2 m/s2. The resulting units are hard
to read. Convert them to convenient units by specifying the SI and Derived options.
unitConvert automatically chooses the correct units of newton.

u = symunit;
m = 5*u.kg;
a = 2*u.m/u.s^2;
F = m*a

F =
10*(([kg]*[m])/[s]^2)

F = unitConvert(F,'SI','Derived')

F =
10*[N]

Convert F to US units. By default, the converted units are base units. For convenience,
also convert into derived units by specifying the Derived option. The derived units are
easier to read.

 Unit Conversions and Unit Systems

2-41

F = unitConvert(F,'US')

F =
(1250000000000/17281869297)*(([ft]*[lbm])/[s]^2)

F = unitConvert(F,'US','Derived')

F =
(20000000000000/8896443230521)*[lbf]

Convert F to CGS derived units.

F = unitConvert(F,'CGS','Derived')

F =
1000000*[dyn]

Convert a specification in SI to US derived units. Specify the temperatures as absolute.

loadCell = [3*u.kg; % capacity
 50*u.mm; % length
 15*u.mm; % width
 10*u.mm; % height
 -10*u.Celsius; % minimum temperature
 40*u.Celsius; % maximum temperature
];
loadCell = unitConvert(loadCell,'US','derived','Temperature','absolute')

loadCell =
 (300000000/45359237)*[lbm]
 (125/762)*[ft]
 (25/508)*[ft]
 (25/762)*[ft]
 14*[Fahrenheit]
 104*[Fahrenheit]

If unitConvert does not choose your preferred unit, then adjust the result with further
unitConvert commands. Here, inches are more convenient than feet. Convert the result
to inches.

loadCell = unitConvert(loadCell,u.inch)

loadCell =
 (300000000/45359237)*[lbm]
 (250/127)*[in]
 (75/127)*[in]

2 Using Symbolic Math Toolbox Software

2-42

 (50/127)*[in]
 14*[Fahrenheit]
 104*[Fahrenheit]

The exact symbolic values are hard to read. Separate the units and convert to double.

[loadCellDouble loadCellUnits] = separateUnits(loadCell);
loadCellDouble = double(loadCellDouble)

loadCellDouble =
 6.6139
 1.9685
 0.5906
 0.3937
 14.0000
 104.0000

Alternatively, approximate the result to high precision by using vpa. The vpa function
also keeps the symbolic units because it returns symbolic output.

loadCell = vpa(loadCell)

loadCell =
 6.6138678655463274216892140403508*[lbm]
 1.968503937007874015748031496063*[in]
 0.5905511811023622047244094488189*[in]
 0.3937007874015748031496062992126*[in]
 14.0*[Fahrenheit]
 104.0*[Fahrenheit]

Convert five acres (ac), whose unit is a U.S. survey acre, to metric area.

u = symunit;
area = 5*u.ac;
area = unitConvert(area,'SI')

area =

(313632000000/15499969)*[m]^2

Define Custom Unit System from Existing System
Custom unit systems provide flexibility in converting units. You can easily define a custom
unit system by modifying a default unit system. Alternatively, you can define the system

 Unit Conversions and Unit Systems

2-43

directly. For definitions of unit system, base units, and derived units, see “Unit System
Definition” on page 2-46.

In photonics, commonly used units are nanosecond (ns), electron volt (eV), and
nanometer (nm). Define a unit system with these units by modifying the SI unit system.
Get SI base and derived units by using baseUnits and derivedUnits. Modify the units
by using subs.

u = symunit;
bunits = baseUnits('SI');
bunits = subs(bunits,[u.m u.s],[u.nm u.ns])

bunits =
[[kg], [ns], [nm], [A], [cd], [mol], [K]]

dunits = derivedUnits('SI');
dunits = subs(dunits,u.J,u.eV)

dunits =
[[F], [C], [S], [H], [V], [eV], [N], [lx], [lm], [Wb], [W], [Pa],...
 [Ohm], [T], [Gy], [Bq], [Sv], [Hz], [kat], [rad], [sr], [Celsius]]

Note Do not define variables called baseUnits and derivedUnits because the
variables prevent access to the baseUnits and derivedUnits functions.

Define the new unit system by using newUnitSystem.

phSys = newUnitSystem('photonics',bunits,dunits)

phSys =
 "photonics"

Calculate the energy of a photon of frequency 1 GHz and convert the result to derived
units of the phSys system. The result is in electron volts.

f = 1*u.GHz;
E = u.h_c*f;
E = unitConvert(E,phSys,'Derived')

E =
0.0000041356676623401643884479280999879*[eV]

The exact symbolic result is hard to read. Separate the units and convert to double.

2 Using Symbolic Math Toolbox Software

2-44

[E Eunits] = separateUnits(E);
E = double(E)

E =
 4.1357e-06

After completing calculations, remove the unit system.

removeUnitSystem(phSys)

Define Custom Unit System Directly
Define a custom unit system for atomic units (au).

Define these base units:

Dimension Unit Implementation
Mass Electron rest mass u.m_e
Elementary charge Electron charge u.e
Length Bohr radius (a0) u.Bohr
Time ħ/Eh Define by using newUnit.

u = symunit;
t_au = newUnit('t_au',u.hbar/u.E_h);
bunits = [u.m_e u.e u.Bohr u.t_au]

bunits =
[[m_e], [e], [a_0], [t_au]]

Define these derived units:

Dimension Unit Implementation
Angular momentum Reduced Planck's constant u.hbar
Energy Hartree u.E_h
Electric dipole moment ea0 Define by using newUnit.
Magnetic dipole moment 2 Bohr Magneton = eħ/2me Define by using newUnit.
Electric potential Eh/e Define by using newUnit.

edm_au = newUnit('edm_au',u.e*u.bohr);
mdm_au = newUnit('mdm_au', u.e*u.hbar/(2*u.me));

 Unit Conversions and Unit Systems

2-45

ep_au = newUnit('ep_au', u.E_h/u.e);
dunits = [u.hbar u.E_h u.edm_au u.mdm_au u.ep_au]

dunits =
[[h_bar], [E_h], [edm_au], [mdm_au], [ep_au]]

Define the unit system.

auSys = newUnitSystem('atomicUnits',bunits,dunits)

auSys =
 "atomicUnits"

Convert the properties of a proton to atomic units.

proton = [1.672624898e-27*u.kg; % mass
 1.6021766208e-19*u.C; % charge
 5.4e-24*u.e*u.cm; % electric dipole moment
 1.4106067873e-26*u.J/u.T; % magnetic dipole moment
];
proton = unitConvert(proton,auSys,'Derived')

proton =
 1836.1559670674356174696928918542*[m_e]
 1.0000000000000000578208778346486*[e]
 0.0000000000000010204521077472272506008435148061*[edm_au]
 0.0015210322058038370229109632800588*[mdm_au]

After completing calculations, remove the unit system and the added units.

removeUnitSystem(auSys)
removeUnit([u.t_au u.edm_au u.mdm_au u.ep_au])

Unit System Definition
A unit system is a collection of base units and derived units that follows these rules:

• Base units must be independent in terms of the dimensions mass, time, length, electric
current, luminous intensity, amount of substance, and temperature. Therefore, a unit
system has up to 7 base units. As long as the independence is satisfied, any unit can be
a base unit, including units such as newton or watt.

• A unit system can have less than 7 base units. For example, mechanical systems need
base units only for the dimensions length, mass, and time.

2 Using Symbolic Math Toolbox Software

2-46

• Derived units in a unit system must have a representation in terms of the products of
powers of the base units for that system. Unlike base units, derived units do not have
to be independent.

• Derived units are optional and added for convenience of representation. For example,
kg m/s2 is abbreviated by newton.

• An example of a unit system is the SI unit system, which has 7 base units: kilogram,
second, meter, ampere, candela, mol, and kelvin. There are 22 derived units found by
calling derivedUnits('SI').

See Also
baseUnits | derivedUnits | newUnitSystem | removeUnit | removeUnitSystem |
symunit | unitConvert

More About
• “Units of Measurement Tutorial” on page 2-14
• “Units and Unit Systems List” on page 2-21

External Websites
• The International System of Units (SI)

 See Also

2-47

https://www.bipm.org/en/publications/si-brochure/

Differentiation
To illustrate how to take derivatives using Symbolic Math Toolbox software, first create a
symbolic expression:

syms x
f = sin(5*x);

The command

diff(f)

differentiates f with respect to x:

ans =
5*cos(5*x)

As another example, let

g = exp(x)*cos(x);

where exp(x) denotes ex, and differentiate g:

y = diff(g)

y =
exp(x)*cos(x) - exp(x)*sin(x)

To find the derivative of g for a given value of x, substitute x for the value using subs and
return a numerical value using vpa. Find the derivative of g at x = 2.

vpa(subs(y,x,2))

ans =
-9.7937820180676088383807818261614

To take the second derivative of g, enter

diff(g,2)

ans =
-2*exp(x)*sin(x)

You can get the same result by taking the derivative twice:

diff(diff(g))

2 Using Symbolic Math Toolbox Software

2-48

ans =
-2*exp(x)*sin(x)

In this example, MATLAB software automatically simplifies the answer. However, in some
cases, MATLAB might not simplify an answer, in which case you can use the simplify
command. For an example of such simplification, see “More Examples” on page 2-50.

Note that to take the derivative of a constant, you must first define the constant as a
symbolic expression. For example, entering

c = sym('5');
diff(c)

returns

ans =
0

If you just enter

diff(5)

MATLAB returns

ans =
 []

because 5 is not a symbolic expression.

Derivatives of Expressions with Several Variables
To differentiate an expression that contains more than one symbolic variable, specify the
variable that you want to differentiate with respect to. The diff command then
calculates the partial derivative of the expression with respect to that variable. For
example, given the symbolic expression

syms s t
f = sin(s*t);

the command

diff(f,t)

calculates the partial derivative ∂ f / ∂t. The result is

 Differentiation

2-49

ans =
s*cos(s*t)

To differentiate f with respect to the variable s, enter

diff(f,s)

which returns:

ans =
t*cos(s*t)

If you do not specify a variable to differentiate with respect to, MATLAB chooses a default
variable. Basically, the default variable is the letter closest to x in the alphabet. See the
complete set of rules in “Find a Default Symbolic Variable” on page 2-4. In the preceding
example, diff(f) takes the derivative of f with respect to t because the letter t is
closer to x in the alphabet than the letter s is. To determine the default variable that
MATLAB differentiates with respect to, use symvar:

symvar(f, 1)

ans =
t

Calculate the second derivative of f with respect to t:

diff(f, t, 2)

This command returns

ans =
-s^2*sin(s*t)

Note that diff(f, 2) returns the same answer because t is the default variable.

More Examples
To further illustrate the diff command, define a, b, x, n, t, and theta in the MATLAB
workspace by entering

syms a b x n t theta

This table illustrates the results of entering diff(f).

2 Using Symbolic Math Toolbox Software

2-50

f diff(f)
syms x n
f = x^n;

diff(f)

ans =
n*x^(n - 1)

syms a b t
f = sin(a*t + b);

diff(f)

ans =
a*cos(b + a*t)

syms theta
f = exp(i*theta);

diff(f)

ans =
exp(theta*1i)*1i

To differentiate the Bessel function of the first kind, besselj(nu,z), with respect to z,
type

syms nu z
b = besselj(nu,z);
db = diff(b)

which returns

db =
(nu*besselj(nu, z))/z - besselj(nu + 1, z)

The diff function can also take a symbolic matrix as its input. In this case, the
differentiation is done element-by-element. Consider the example

syms a x
A = [cos(a*x),sin(a*x);-sin(a*x),cos(a*x)]

which returns

A =
[cos(a*x), sin(a*x)]
[-sin(a*x), cos(a*x)]

The command

diff(A)

returns

 Differentiation

2-51

ans =
[-a*sin(a*x), a*cos(a*x)]
[-a*cos(a*x), -a*sin(a*x)]

You can also perform differentiation of a vector function with respect to a vector
argument. Consider the transformation from Euclidean (x, y, z) to spherical (r, λ, φ)
coordinates as given by x = rcosλcosφ, y = rcosλsinϕ, and z = rsinλ. Note that λ
corresponds to elevation or latitude while φ denotes azimuth or longitude.

To calculate the Jacobian matrix, J, of this transformation, use the jacobian function.
The mathematical notation for J is

J = ∂(x, y, z)
∂ r, λ, φ .

For the purposes of toolbox syntax, use l for λ and f for φ. The commands

syms r l f
x = r*cos(l)*cos(f);
y = r*cos(l)*sin(f);
z = r*sin(l);
J = jacobian([x; y; z], [r l f])

return the Jacobian

J =
[cos(f)*cos(l), -r*cos(f)*sin(l), -r*cos(l)*sin(f)]
[cos(l)*sin(f), -r*sin(f)*sin(l), r*cos(f)*cos(l)]
[sin(l), r*cos(l), 0]

2 Using Symbolic Math Toolbox Software

2-52

and the command

detJ = simplify(det(J))

returns

detJ =
-r^2*cos(l)

The arguments of the jacobian function can be column or row vectors. Moreover, since
the determinant of the Jacobian is a rather complicated trigonometric expression, you can
use simplify to make trigonometric substitutions and reductions (simplifications).

A table summarizing diff and jacobian follows.

Mathematical Operator MATLAB Command
df
dx

diff(f) or diff(f, x)

df
da

diff(f, a)

d2f
db2

diff(f, b, 2)

J = ∂(r, t)
∂(u, v)

J = jacobian([r; t],[u; v])

 Differentiation

2-53

Functional Derivatives Tutorial
This example shows how to use functional derivatives in the Symbolic Math Toolbox™
using the example of the wave equation. The wave equation for a string fixed at its ends is
solved using functional derivatives. A functional derivative is the derivative of a functional
with respect to the function that the functional depends on. The Symbolic Math Toolbox™
implements functional derivatives using the functionalDerivative function.

Solving the wave equation is one application of functional derivatives. It describes the
motion of waves, from the motion of a string to the propagation of an electromagnetic
wave, and is an important equation in physics. You can apply the techniques illustrate in
this example to applications in the calculus of variations from solving the Brachistochrone
problem to finding minimal surfaces of soap bubbles.

Consider a string of length L suspended between the two points x = 0 and x = L. The
string has a characteristic density per unit length and a characteristic tension. Define the
length, density, and tension as constants for later use. For simplicity, set these constants
to 1.

Length = 1;
Density = 1;
Tension = 1;

If the string is in motion, the string's kinetic and potential energies are a function of its
displacement from rest S(x,t), which varies with position x and time t. If d is the
density per unit length, the kinetic energy is

T =∫0 L d
2

d
dtS(x, t)

2
dx .

The potential energy is

V =∫0 L r
2

d
dxS(x, t)

2
dx,

where r is the tension.

Enter these equations in MATLAB™. Since length must be positive, set this assumption.
This assumption allows simplify to simplify the resulting equations into the expected
form.

2 Using Symbolic Math Toolbox Software

2-54

syms S(x,t) d r v L
assume(L>0)
T(x,t) = int(d/2*diff(S,t)^2,x,0,L);
V(x,t) = int(r/2*diff(S,x)^2,x,0,L);

The action A is T-V. The Principle of Least Action states that action is always minimized.
Determine the condition for minimum action, by finding the functional derivative of A with
respect to S using functionalDerivative and equate it to zero.

A = T-V;
eqn = functionalDerivative(A,S) == 0

eqn(x, t) =

L r ∂2

∂x2 S x, t − L d ∂2

∂t2
 S x, t = 0

Simplify the equation using simplify. Convert the equation into its expected form by
substituting for r/d with the square of the wave velocity v.

eqn = simplify(eqn)/r;
eqn = subs(eqn,r/d,v^2)

eqn(x, t) =
∂2

∂t2
 S x, t

v2 = ∂2

∂x2 S x, t

Solve the equation using the method of separation of variables. Set S(x,t) =
U(x)*V(t) to separate the dependence on position x and time t. Separate both sides of
the resulting equation using children.

syms U(x) V(t)
eqn2 = subs(eqn,S(x,t),U(x)*V(t));
eqn2 = eqn2/(U(x)*V(t))

eqn2(x, t) =
∂2

∂t2
 V t

v2 V t
=

∂2

∂x2 U x

U x

tmp = children(eqn2);

 Functional Derivatives Tutorial

2-55

Both sides of the equation depend on different variables, yet are equal. This is only
possible if each side is a constant. Equate each side to an arbitrary constant C to get two
differential equations.

syms C
eqn3 = tmp(1) == C

eqn3 =
∂2

∂t2
 V t

v2 V t
= C

eqn4 = tmp(2) == C

eqn4 =
∂2

∂x2 U x

U x = C

Solve the differential equations using dsolve with the condition that displacement is 0 at
x = 0 and t = 0. Simplify the equations to their expected form using simplify with
the Steps option set to 50.

V(t) = dsolve(eqn3,V(0)==0,t);
U(x) = dsolve(eqn4,U(0)==0,x);
V(t) = simplify(V(t),'Steps',50)

V(t) = −2 C5 sinh C t v

U(x) = simplify(U(x),'Steps',50)

U(x) = 2 C8 sinh C x

Obtain the constants in the equations.

p1 = setdiff(symvar(U(x)),sym([C,x]))

p1 = C8

p2 = setdiff(symvar(V(t)),sym([C,v,t]))

p2 = C5

2 Using Symbolic Math Toolbox Software

2-56

The string is fixed at the positions x = 0 and x = L. The condition U(0) = 0 already
exists. Apply the boundary condition that U(L) = 0 and solve for C.

eqn_bc = U(L) == 0;
[solC,param,cond] = solve(eqn_bc,C,'ReturnConditions',true)

solC =

− k2 π2

L2

param = k

cond = C8 ≠ 0 ∧ 1 ≤ k ∧ k ∈ ℤ

assume(cond)

The solution S(x,t) is the product of U(x) and V(t). Find the solution, and substitute
the characteristic values of the string into the solution to obtain the final form of the
solution.

S(x,t) = U(x)*V(t);
S = subs(S,C,solC);
S = subs(S,[L v],[Length sqrt(Tension/Density)]);

The parameters p1 and p2 determine the amplitude of the vibrations. Set p1 and p2 to 1
for simplicity.

S = subs(S,[p1 p2],[1 1]);
S = simplify(S,'Steps',50)

S(x, t) = 4 sin π k t sin π k x

The string has different modes of vibration for different values of k. Plot the first four
modes for an arbitrary value of time t. Use the param argument returned by solve to
address parameter k. Prior to R2016a, use ezplot instead of fplot.

Splot(x) = S(x,0.3);
figure(1)
hold on
grid on
ymin = double(coeffs(Splot));
for i = 1:4
 yplot = subs(Splot,param,i);
 fplot(yplot,[0 Length])

 Functional Derivatives Tutorial

2-57

end
ylim([-ymin ymin])
legend('k = 1','k = 2','k = 3','k = 4','Location','best')
xlabel('Position (x)')
ylabel('Displacement (S)')
title('Modes of a string')

The wave equation is linear. This means that any linear combination of the allowed modes
is a valid solution to the wave equation. Hence, the full solution to the wave equation with
the given boundary conditions and initial values is a sum over allowed modes

F(x, t) = ∑
k = n

m
Aksin(πkt)sin(πkx),

2 Using Symbolic Math Toolbox Software

2-58

where Ak denotes arbitrary constants.

Use symsum to sum the first five modes of the string. On a new figure, display the
resulting waveform at the same instant of time as the previous waveforms for comparison.

figure(2)
S5(x) = 1/5*symsum(S,param,1,5);
fplot(subs(S5,t,0.3),[0 Length])
ylim([-ymin ymin])
grid on
xlabel('Position (x)')
ylabel('Displacement (S)')
title('Summation of first 5 modes')

 Functional Derivatives Tutorial

2-59

The figure shows that summing modes allows you to model a qualitatively different
waveform. Here, we specified the initial condition is S(x, t = 0) = 0 for all x.

You can calculate the values Ak in the equation F(x, t) = ∑
k = n

m
Aksin(πkt)sin(πkx) by

specifying a condition for initial velocity

ut(x, t = 0) = Ft(x, 0) .

The appropriate summation of modes can represent any waveform, which is the same as
using the Fourier series to represent the string's motion.

2 Using Symbolic Math Toolbox Software

2-60

Limits
The fundamental idea in calculus is to make calculations on functions as a variable “gets
close to” or approaches a certain value. Recall that the definition of the derivative is given
by a limit

f ′(x) = lim
h 0

f (x + h)− f (x)
h ,

provided this limit exists. Symbolic Math Toolbox software enables you to calculate the
limits of functions directly. The commands

syms h n x
limit((cos(x+h) - cos(x))/h, h, 0)

which return

ans =
-sin(x)

and

limit((1 + x/n)^n, n, inf)

which returns

ans =
exp(x)

illustrate two of the most important limits in mathematics: the derivative (in this case of
cos(x)) and the exponential function.

One-Sided Limits
You can also calculate one-sided limits with Symbolic Math Toolbox software. For
example, you can calculate the limit of x/|x|, whose graph is shown in the following figure,
as x approaches 0 from the left or from the right.

syms x
fplot(x/abs(x), [-1 1], 'ShowPoles', 'off')

 Limits

2-61

To calculate the limit as x approaches 0 from the left,

lim
x 0−

x
x ,

enter

syms x
limit(x/abs(x), x, 0, 'left')

ans =
 -1

To calculate the limit as x approaches 0 from the right,

2 Using Symbolic Math Toolbox Software

2-62

lim
x 0+

x
x = 1,

enter

syms x
limit(x/abs(x), x, 0, 'right')

ans =
1

Since the limit from the left does not equal the limit from the right, the two- sided limit
does not exist. In the case of undefined limits, MATLAB returns NaN (not a number). For
example,

syms x
limit(x/abs(x), x, 0)

returns

ans =
NaN

Observe that the default case, limit(f) is the same as limit(f,x,0). Explore the
options for the limit command in this table, where f is a function of the symbolic object
x.

Mathematical
Operation

MATLAB Command

lim
x 0

f (x) limit(f)

lim
x a

f (x) limit(f, x, a) or

limit(f, a)
lim

x a−
f (x) limit(f, x, a, 'left')

lim
x a +

f (x) limit(f, x, a, 'right')

 Limits

2-63

Integration
If f is a symbolic expression, then

int(f)

attempts to find another symbolic expression, F, so that diff(F) = f. That is, int(f)
returns the indefinite integral or antiderivative of f (provided one exists in closed form).
Similar to differentiation,

int(f,v)

uses the symbolic object v as the variable of integration, rather than the variable
determined by symvar. See how int works by looking at this table.

Mathematical Operation MATLAB Command

∫xndx =
log(x) if n = − 1
xn + 1

n + 1 otherwise.

int(x^n) or int(x^n,x)

∫
0

π/2
sin(2x)dx = 1

int(sin(2*x), 0, pi/2) or int(sin(2*x),
x, 0, pi/2)

g = cos(at + b)

∫g(t)dt = sin(at + b)/a

g = cos(a*t + b) int(g) or int(g, t)

∫ J1(z)dz = − J0(z) int(besselj(1, z)) or int(besselj(1, z),
z)

In contrast to differentiation, symbolic integration is a more complicated task. A number
of difficulties can arise in computing the integral:

• The antiderivative, F, may not exist in closed form.
• The antiderivative may define an unfamiliar function.
• The antiderivative may exist, but the software can't find it.
• The software could find the antiderivative on a larger computer, but runs out of time

or memory on the available machine.

2 Using Symbolic Math Toolbox Software

2-64

Nevertheless, in many cases, MATLAB can perform symbolic integration successfully. For
example, create the symbolic variables

syms a b theta x y n u z

The following table illustrates integration of expressions containing those variables.

f int(f)
syms x n
f = x^n;

int(f)

ans =
piecewise(n == -1, log(x), n ~= -1,...
 x^(n + 1)/(n + 1))

syms y
f = y^(-1);

int(f)

ans =
log(y)

syms x n
f = n^x;

int(f)

ans =
n^x/log(n)

syms a b theta
f = sin(a*theta+b);

int(f)

ans =
-cos(b + a*theta)/a

syms u
f = 1/(1+u^2);

int(f)

ans =
atan(u)

syms x
f = exp(-x^2);

int(f)

ans =
(pi^(1/2)*erf(x))/2

In the last example, exp(-x^2), there is no formula for the integral involving standard
calculus expressions, such as trigonometric and exponential functions. In this case,
MATLAB returns an answer in terms of the error function erf.

If MATLAB is unable to find an answer to the integral of a function f, it just returns
int(f).

Definite integration is also possible.

 Integration

2-65

Definite Integral Command

∫a b
f (x)dx int(f, a, b)

∫a b
f (v)dv int(f, v, a, b)

Here are some additional examples.

f a, b int(f, a, b)
syms x
f = x^7;

a = 0;
b = 1;

int(f, a, b)

ans =
1/8

syms x
f = 1/x;

a = 1;
b = 2;

int(f, a, b)

ans =
log(2)

syms x
f = log(x)*sqrt(x);

a = 0;
b = 1;

int(f, a, b)

ans =
-4/9

syms x
f = exp(-x^2);

a = 0;
b = inf;

int(f, a, b)

ans =
pi^(1/2)/2

syms z
f = besselj(1,z)^2;

a = 0;
b = 1;

int(f, a, b)

ans =
hypergeom([3/2, 3/2],...
 [2, 5/2, 3], -1)/12

For the Bessel function (besselj) example, it is possible to compute a numerical
approximation to the value of the integral, using the double function. The commands

syms z
a = int(besselj(1,z)^2,0,1)

return

a =
hypergeom([3/2, 3/2], [2, 5/2, 3], -1)/12

2 Using Symbolic Math Toolbox Software

2-66

and the command

a = double(a)

returns

a =
 0.0717

Integration with Real Parameters
One of the subtleties involved in symbolic integration is the “value” of various
parameters. For example, if a is any positive real number, the expression

e−ax2

is the positive, bell shaped curve that tends to 0 as x tends to ±∞. You can create an
example of this curve, for a = 1/2.

syms x
a = sym(1/2);
f = exp(-a*x^2);
fplot(f)

 Integration

2-67

However, if you try to calculate the integral

∫
−∞

∞
e−ax2dx

without assigning a value to a, MATLAB assumes that a represents a complex number,
and therefore returns a piecewise answer that depends on the argument of a. If you are
only interested in the case when a is a positive real number, use assume to set an
assumption on a:

syms a
assume(a > 0)

2 Using Symbolic Math Toolbox Software

2-68

Now you can calculate the preceding integral using the commands

syms x
f = exp(-a*x^2);
int(f, x, -inf, inf)

This returns

ans =
pi^(1/2)/a^(1/2)

Integration with Complex Parameters
To calculate the integral

∫
−∞

∞
1

a2 + x2 dx

for complex values of a, enter

syms a x
f = 1/(a^2 + x^2);
F = int(f, x, -inf, inf)

Use syms to clear the all assumptions on variables. For more information about symbolic
variables and assumptions on them, see “Delete Symbolic Objects and Their Assumptions”
on page 1-30.

The preceding commands produce the complex output

F =
(pi*signIm(1i/a))/a

The function signIm is defined as:

signIm(z) =
1 if Im(z) > 0, or Im(z) = 0 and z < 0
0 if z = 0
‐1 otherwise.

 Integration

2-69

signIm = 1

signIm = -1

signIm = 0

x

y

signIm = 1

signIm = -1

To evaluate F at a = 1 + i, enter

g = subs(F, 1 + i)

g =
pi*(1/2 - 1i/2)

double(g)

ans =
 1.5708 - 1.5708i

High-Precision Numerical Integration Using Variable-Precision
Arithmetic
High-precision numerical integration is implemented in the vpaintegral function of the
Symbolic Math Toolbox. vpaintegral uses variable-precision arithmetic in contrast to
the MATLAB integral function, which uses double-precision arithmetic.

Integrate besseli(5,25*u).*exp(-u*25) by using both integral and
vpaintegral. The integral function returns NaN and issues a warning while
vpaintegral returns the correct result.

syms u
f = besseli(5,25*x).*exp(-x*25);
fun = @(u)besseli(5,25*u).*exp(-u*25);

usingIntegral = integral(fun, 0, 30)
usingVpaintegral = vpaintegral(f, 0, 30)

2 Using Symbolic Math Toolbox Software

2-70

Warning: Infinite or Not-a-Number value encountered.
usingIntegral =
 NaN

usingVpaintegral =
0.688424

For more information, see vpaintegral.

 Integration

2-71

Symbolic Summation
Symbolic Math Toolbox provides two functions for calculating sums:

• sum finds the sum of elements of symbolic vectors and matrices. Unlike the MATLAB
sum, the symbolic sum function does not work on multidimensional arrays. For details,
follow the MATLAB sum page.

• symsum finds the sum of a symbolic series.

In this section...
“Comparing symsum and sum” on page 2-72
“Computational Speed of symsum versus sum” on page 2-73
“Output Format Differences Between symsum and sum” on page 2-73

Comparing symsum and sum
You can find definite sums by using both sum and symsum. The sum function sums the
input over a dimension, while the symsum function sums the input over an index.

Consider the definite sum S = ∑
k = 1

10 1
k2 . First, find the terms of the definite sum by

substituting the index values for k in the expression. Then, sum the resulting vector using
sum.

syms k
f = 1/k^2;
V = subs(f, k, 1:10)
S_sum = sum(V)

V =
[1, 1/4, 1/9, 1/16, 1/25, 1/36, 1/49, 1/64, 1/81, 1/100]
S_sum =
1968329/1270080

Find the same sum by using symsum by specifying the index and the summation limits.
sum and symsum return identical results.

S_symsum = symsum(f, k, 1, 10)

2 Using Symbolic Math Toolbox Software

2-72

S_symsum =
1968329/1270080

Computational Speed of symsum versus sum
For summing definite series, symsum can be faster than sum. For summing an indefinite
series, you can only use symsum.

You can demonstrate that symsum can be faster than sum by summing a large definite

series such as S = ∑
k = 1

100000
k2 .

To compare runtimes on your computer, use the following commands.

syms k
tic
sum(sym(1:100000).^2);
toc
tic
symsum(k^2, k, 1, 100000);
toc

Output Format Differences Between symsum and sum
symsum can provide a more elegant representation of sums than sum provides.
Demonstrate this difference by comparing the function outputs for the definite series

S = ∑
k = 1

10
xk . To simplify the solution, assume x > 1.

syms x
assume(x > 1)
S_sum = sum(x.^(1:10))
S_symsum = symsum(x^k, k, 1, 10)

S_sum =
x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x
S_symsum =
x^11/(x - 1) - x/(x - 1)

Show that the outputs are equal by using isAlways. The isAlways function returns
logical 1 (true), meaning that the outputs are equal.

 Symbolic Summation

2-73

isAlways(S_sum == S_symsum)

ans =
 logical
 1

For further computations, clear the assumptions.

assume(x, 'clear')

2 Using Symbolic Math Toolbox Software

2-74

Taylor Series
The statements

syms x
f = 1/(5 + 4*cos(x));
T = taylor(f, 'Order', 8)

return

T =
(49*x^6)/131220 + (5*x^4)/1458 + (2*x^2)/81 + 1/9

which is all the terms up to, but not including, order eight in the Taylor series for f(x):

∑
n = 0

∞
(x− a)n f (n)(a)

n! .

Technically, T is a Maclaurin series, since its expansion point is a = 0.

These commands

syms x
g = exp(x*sin(x));
t = taylor(g, 'ExpansionPoint', 2, 'Order', 12);

generate the first 12 nonzero terms of the Taylor series for g about x = 2.

t is a large expression; enter

size(char(t))

ans =
 1 99791

to find that t has about 100,000 characters in its printed form. In order to proceed with
using t, first simplify its presentation:

t = simplify(t);
size(char(t))

ans =
 1 6988

 Taylor Series

2-75

Next, plot these functions together to see how well this Taylor approximation compares to
the actual function g:

xd = 1:0.05:3;
yd = subs(g,x,xd);
fplot(t, [1, 3])
hold on
plot(xd, yd, 'r-.')
title('Taylor approximation vs. actual function')
legend('Taylor','Function')

Special thanks is given to Professor Gunnar Bäckstrøm of UMEA in Sweden for this
example.

2 Using Symbolic Math Toolbox Software

2-76

Padé Approximant
The Padé approximant of order [m, n] approximates the function f(x) around x = x0 as

a0 + a1 x− x0 + ... + am x− x0
m

1 + b1 x− x0 + ... + bn x− x0
n .

The Padé approximant is a rational function formed by a ratio of two power series.
Because it is a rational function, it is more accurate than the Taylor series in
approximating functions with poles. The Padé approximant is represented by the
Symbolic Math Toolbox function pade.

When a pole or zero exists at the expansion point x = x0, the accuracy of the Padé
approximant decreases. To increase accuracy, an alternative form of the Padé
approximant can be used which is

x− x0
p a0 + a1 x− x0 + ... + am x− x0

m

1 + b1 x− x0 + ... + bn x− x0
n .

The pade function returns the alternative form of the Padé approximant when you set the
OrderMode input argument to Relative.

The Padé approximant is used in control system theory to model time delays in the
response of the system. Time delays arise in systems such as chemical and transport
processes where there is a delay between the input and the system response. When these
inputs are modeled, they are called dead-time inputs. This example shows how to use the
Symbolic Math Toolbox to model the response of a first-order system to dead-time inputs
using Padé approximants.

The behavior of a first-order system is described by this differential equation

τdy t
dt + y t = ax t .

Enter the differential equation in MATLAB.

syms tau a x(t) y(t) xS(s) yS(s) H(s) tmp
F = tau*diff(y)+y == a*x;

Find the Laplace transform of F using laplace.

 Padé Approximant

2-77

F = laplace(F,t,s)

F = laplace y t , t, s − τ y 0 − s laplace y t , t, s = a laplace x t , t, s

Assume the response of the system at t = 0 is 0. Use subs to substitute for y(0) = 0.

F = subs(F,y(0),0)

F = laplace y t , t, s + s τ laplace y t , t, s = a laplace x t , t, s

To collect common terms, use simplify.

F = simplify(F)

F = s τ + 1 laplace y t , t, s = a laplace x t , t, s

For readability, replace the Laplace transforms of x(t) and y(t) with xS(s) and yS(s).

F = subs(F,[laplace(x(t),t,s) laplace(y(t),t,s)],[xS(s) yS(s)])

F = yS s s τ + 1 = a xS s

The Laplace transform of the transfer function is yS(s)/xS(s). Divide both sides of the
equation by xS(s) and use subs to replace yS(s)/xS(s) with H(s).

F = F/xS(s);
F = subs(F,yS(s)/xS(s),H(s))

F = H s s τ + 1 = a

Solve the equation for H(s). Substitute for H(s) with a dummy variable, solve for the
dummy variable using solve, and assign the solution back to H(s).

F = subs(F,H(s),tmp);
H(s) = solve(F,tmp)

H(s) =
a

s τ + 1

The input to the first-order system is a time-delayed step input. To represent a step input,
use heaviside. Delay the input by three time units. Find the Laplace transform using
laplace.

step = heaviside(t - 3);
step = laplace(step)

2 Using Symbolic Math Toolbox Software

2-78

step =
e−3 s

s

Find the response of the system, which is the product of the transfer function and the
input.

y = H(s)*step

y =
a e−3 s

s s τ + 1

To allow plotting of the response, set parameters a and tau to their values. For a and
tau, choose values 1 and 3, respectively.

y = subs(y,[a tau],[1 3]);
y = ilaplace(y,s);

Find the Padé approximant of order [2 2] of the step input using the Order input
argument to pade.

stepPade22 = pade(step,'Order',[2 2])

stepPade22 =
3 s2− 4 s + 2

2 s s + 1

Find the response to the input by multiplying the transfer function and the Padé
approximant of the input.

yPade22 = H(s)*stepPade22

yPade22 =
a 3 s2− 4 s + 2

2 s s τ + 1 s + 1

Find the inverse Laplace transform of yPade22 using ilaplace.

yPade22 = ilaplace(yPade22,s)

yPade22 =

a + 9 a e−s
2 τ − 2 −

a e−
s
τ 2 τ2 + 4 τ + 3
τ 2 τ − 2

 Padé Approximant

2-79

To plot the response, set parameters a and tau to their values of 1 and 3, respectively.

yPade22 = subs(yPade22,[a tau],[1 3])

yPade22 =

9 e−s
4 − 11 e−

s
3

4 + 1

Plot the response of the system y and the response calculated from the Padé approximant
yPade22.

hold on
grid on
fplot([y yPade22],[0 20])
title('Pade Approximant for dead-time step input')
legend('Response to dead-time step input',...
 'Pade approximant [2 2]',...
 'Location', 'Best')

2 Using Symbolic Math Toolbox Software

2-80

The [2 2] Padé approximant does not represent the response well because a pole exists
at the expansion point of 0. To increase the accuracy of pade when there is a pole or zero
at the expansion point, set the OrderMode input argument to Relative and repeat the
steps. For details, see pade.

stepPade22Rel = pade(step,'Order',[2 2],'OrderMode','Relative')

stepPade22Rel =
3 s2− 6 s + 4

s 3 s2 + 6 s + 4

yPade22Rel = H(s)*stepPade22Rel

yPade22Rel =

 Padé Approximant

2-81

a 3 s2− 6 s + 4
s s τ + 1 3 s2 + 6 s + 4

yPade22Rel = ilaplace(yPade22Rel)

yPade22Rel =

a−
a e−

t
τ 4 τ2 + 6 τ + 3

σ1
+

12 a τ e−t cos 3 t
3 − 3 sin 3 t

3
36 a− 72 a τ

36 a τ + 1
σ1

where

 σ1 = 4 τ2− 6 τ + 3

yPade22Rel = subs(yPade22Rel,[a tau],[1 3])

yPade22Rel =

12 e−t cos 3 t
3 +

2 3 sin 3 t
3

3

7 − 19 e−
t
3

7 + 1

fplot(yPade22Rel,[0 20],'DisplayName','Relative Pade approximant [2 2]')

2 Using Symbolic Math Toolbox Software

2-82

The accuracy of the Padé approximant can also be increased by increasing its order.
Increase the order to [4 5] and repeat the steps. The [n-1 n] Padé approximant is
better at approximating the response at t = 0 than the [n n] Padé approximant.

stepPade45 = pade(step,'Order',[4 5])

stepPade45 =
27 s4− 180 s3 + 540 s2− 840 s + 560

s 27 s4 + 180 s3 + 540 s2 + 840 s + 560

yPade45 = H(s)*stepPade45

yPade45 =

 Padé Approximant

2-83

a 27 s4− 180 s3 + 540 s2− 840 s + 560
s s τ + 1 27 s4 + 180 s3 + 540 s2 + 840 s + 560

yPade45 = subs(yPade45,[a tau],[1 3])

yPade45 =
27 s4− 180 s3 + 540 s2− 840 s + 560

s 3 s + 1 27 s4 + 180 s3 + 540 s2 + 840 s + 560

yPade45 = ilaplace(yPade45)

yPade45 =

294120 ∑k = 1
4 et σ2 σ22

σ1
1001 − 2721 e−

t
3

1001 +
46440 ∑k = 1

4 et σ2 σ23

σ1
1001 +

172560 ∑k = 1
4 et σ2

σ1
143 +

101520 ∑k = 1
4 eσ2 t σ2

12 90 σ2 + 45 σ22 + 9 σ23 + 70
143 + 1

where

 σ1 = 12 9 σ23 + 45 σ22 + 90 σ2 + 70

 σ2 = root s54 +
20 s53

3 + 20 s52 +
280 s5

9 + 560
27 , s5, k

yPade45 = vpa(yPade45)

yPade45 = 3.2418384981662546679005910164486 e−1.930807068546914778929595950184 t

cos 0.57815608595633583454598214328008 t − 2.7182817182817182817182817182817
e−0.33333333333333333333333333333333 t − 1.5235567798845363861823092981669
e−1.4025262647864185544037373831494 t cos 1.7716120279045018112388813990878 t

+ 11.595342871672681856604670597166 e−1.930807068546914778929595950184 t

sin 0.57815608595633583454598214328008 t − 1.7803798379230333426855987436911
e−1.4025262647864185544037373831494 t sin 1.7716120279045018112388813990878 t + 1.0

fplot(yPade45,[0 20],'DisplayName','Pade approximant [4 5]')

2 Using Symbolic Math Toolbox Software

2-84

The following points have been shown:

• Padé approximants can model dead-time step inputs.
• The accuracy of the Padé approximant increases with the increase in the order of the

approximant.
• When a pole or zero exists at the expansion point, the Padé approximant is inaccurate

about the expansion point. To increase the accuracy of the approximant, set the
OrderMode option to Relative. You can also use increase the order of the
denominator relative to the numerator.

 Padé Approximant

2-85

Find Asymptotes, Critical and Inflection Points
This example describes how to analyze a simple function to find its asymptotes, maximum,
minimum, and inflection point.

Define a Function
The function in this example is

f (x) = 3x2 + 6x− 1
x2 + x− 3

.

To create the function, enter the following commands:

syms x
num = 3*x^2 + 6*x -1;
denom = x^2 + x - 3;
f = num/denom

f =
(3*x^2 + 6*x - 1)/(x^2 + x - 3)

Plot the function f by using fplot. The fplot function automatically shows horizontal
asymptotes.

fplot(f)

2 Using Symbolic Math Toolbox Software

2-86

Find Asymptotes
To mathematically find the horizontal asymptote of f, take the limit of f as x approaches
positive infinity:

limit(f, inf)

ans =
3

The limit as x approaches negative infinity is also 3. This result means the line y = 3 is a
horizontal asymptote to f.

 Find Asymptotes, Critical and Inflection Points

2-87

To find the vertical asymptotes of f, set the denominator equal to 0 and solve by entering
the following command:

roots = solve(denom)

roots =
 - 13^(1/2)/2 - 1/2
 13^(1/2)/2 - 1/2

Note MATLAB does not always return the roots to an equation in the same order.

roots indicates that the vertical asymptotes are the lines

x = −1 + 13
2 ,

and

x = −1− 13
2 .

Find Maximum and Minimum
You can see from the graph that f has a local maximum between the points x = –2 and x =
0, and might have a local minimum between x = –6 and x = –2. To find the x-coordinates
of the maximum and minimum, first take the derivative of f:

f1 = diff(f)

f1 =
(6*x + 6)/(x^2 + x - 3) - ((2*x + 1)*(3*x^2 + 6*x - 1))/(x^2 + x - 3)^2

To simplify this expression, enter

f1 = simplify(f1)

f1 =
 -(3*x^2 + 16*x + 17)/(x^2 + x - 3)^2

Next, set the derivative equal to 0 and solve for the critical points:

crit_pts = solve(f1)

2 Using Symbolic Math Toolbox Software

2-88

crit_pts =
 - 13^(1/2)/3 - 8/3
 13^(1/2)/3 - 8/3

It is clear from the graph of f that it has a local minimum at

x1 = −8− 13
3 ,

and a local maximum at

x2 = −8 + 13
3 .

You can plot the maximum and minimum of f with the following commands:

fplot(f)
hold on
plot(double(crit_pts), double(subs(f,crit_pts)),'ro')
title('Maximum and Minimum of f')
text(-4.8,5.5,'Local minimum')
text(-2,4,'Local maximum')
hold off

 Find Asymptotes, Critical and Inflection Points

2-89

Find Inflection Point
To find the inflection point of f, set the second derivative equal to 0 and solve.

f2 = diff(f1);
inflec_pt = solve(f2,'MaxDegree',3);
double(inflec_pt)

This returns

ans =
 -5.2635 + 0.0000i
 -1.3682 - 0.8511i
 -1.3682 + 0.8511i

2 Using Symbolic Math Toolbox Software

2-90

In this example, only the first element is a real number, so this is the only inflection point.
The order of the roots can vary.

Rather than selecting the real root by indexing into inter_pt, identify the real root by
determining which roots have a zero-valued imaginary part.

idx = imag(double(inflec_pt)) == 0;
inflec_pt = inflec_pt(idx);

To obtain the value of the inflection point, enter

vpa(inflec_pt)

ans =

-5.2635217342053210183437823783747

Plot the inflection point. The extra argument, [-9 6], in fplot extends the range of x
values in the plot so that you see the inflection point more clearly, as shown in the
following figure.

fplot(f, [-9 6])
hold on
plot(double(inflec_pt), double(subs(f,inflec_pt)),'ro')
title('Inflection Point of f')
text(-7,1,'Inflection point')
hold off

 Find Asymptotes, Critical and Inflection Points

2-91

2 Using Symbolic Math Toolbox Software

2-92

Simplify Symbolic Expressions
Simplification of a mathematical expression is not a clearly defined subject. There is no
universal idea as to which form of an expression is simplest. The form of a mathematical
expression that is simplest for one problem turns out to be complicated or even
unsuitable for another problem. For example, the following two mathematical expressions
present the same polynomial in different forms:

(x + 1)(x - 2)(x + 3)(x - 4),

 x4 - 2x3 - 13x2 + 14x + 24.

The first form clearly shows the roots of this polynomial. This form is simpler for working
with the roots. The second form serves best when you want to see the coefficients of the
polynomial. For example, this form is convenient when you differentiate or integrate
polynomials.

If the problem you want to solve requires a particular form of an expression, the best
approach is to choose the appropriate simplification function. See “Choose Function to
Rearrange Expression” on page 2-101.

Besides specific simplifiers, Symbolic Math Toolbox offers a general simplifier, simplify.

If you do not need a particular form of expressions (expanded, factored, or expressed in
particular terms), use simplify to shorten mathematical expressions. For example, use
this simplifier to find a shorter form for a final result of your computations.

simplify works on various types of symbolic expressions, such as polynomials,
expressions with trigonometric, logarithmic, and special functions. For example, simplify
these polynomials.

syms x y
simplify((1 - x^2)/(1 - x))
simplify((x - 1)*(x + 1)*(x^2 + x + 1)*(x^2 + 1)*(x^2 - x + 1)*(x^4 - x^2 + 1))

ans =
x + 1

ans =
x^12 - 1

Simplify expressions involving trigonometric functions.

 Simplify Symbolic Expressions

2-93

simplify(cos(x)^(-2) - tan(x)^2)
simplify(cos(x)^2 - sin(x)^2)

ans =
1

ans =
cos(2*x)

Simplify expressions involving exponents and logarithms. In the third expression, use
log(sym(3)) instead of log(3). If you use log(3), then MATLAB calculates log(3)
with the double precision, and then converts the result to a symbolic number.

simplify(exp(x)*exp(y))
simplify(exp(x) - exp(x/2)^2)
simplify(log(x) + log(sym(3)) - log(3*x) + (exp(x) - 1)/(exp(x/2) + 1))

ans =
exp(x + y)

ans =
0

ans =
exp(x/2) - 1

Simplify expressions involving special functions.

simplify(gamma(x + 1) - x*gamma(x))
simplify(besselj(2, x) + besselj(0, x))

ans =
0

ans =
(2*besselj(1, x))/x

You also can simplify symbolic functions by using simplify.

syms f(x,y)
f(x,y) = exp(x)*exp(y)
f = simplify(f)

f(x, y) =
exp(x)*exp(y)

2 Using Symbolic Math Toolbox Software

2-94

f(x, y) =
exp(x + y)

Simplify Using Options
By default, simplify uses strict simplification rules and ensures that simplified
expressions are always mathematically equivalent to initial expressions. For example, it
does not combine logarithms.

syms x
simplify(log(x^2) + log(x))

ans =
log(x^2) + log(x)

You can apply additional simplification rules which are not correct for all values of
parameters and all cases, but using which simplify can return shorter results. For this
approach, use IgnoreAnalyticConstraints. For example, simplifying the same
expression with IgnoreAnalyticConstraints, you get the result with combined
logarithms.

simplify(log(x^2) + log(x),'IgnoreAnalyticConstraints',true)

ans =
3*log(x)

IgnoreAnalyticConstraints provides a shortcut allowing you to simplify expressions
under commonly used assumptions about values of the variables. Alternatively, you can
set appropriate assumptions on variables explicitly. For example, combining logarithms is
not valid for complex values in general. If you assume that x is a real value, simplify
combines logarithms without IgnoreAnalyticConstraints.

assume(x,'real')
simplify(log(x^2) + log(x))

ans =
log(x^3)

For further computations, clear the assumption on x by recreating it using syms.

syms x

Another approach that can improve simplification of an expression or function is the
syntax simplify(f,'Steps',n), where n is a positive integer that controls how many

 Simplify Symbolic Expressions

2-95

steps simplify takes. Specifying more simplification steps can help you simplify the
expression better, but it takes more time. By default, n = 1. For example, create and
simplify this expression. The result is shorter than the original expression, but it can be
simplified further.

syms x
y = (cos(x)^2 - sin(x)^2)*sin(2*x)*(exp(2*x) - 2*exp(x) + 1)/...
 ((cos(2*x)^2 - sin(2*x)^2)*(exp(2*x) - 1));
simplify(y)

ans =
(sin(4*x)*(exp(x) - 1))/(2*cos(4*x)*(exp(x) + 1))

Specify the number of simplification steps for the same expression. First, use 25 steps.

simplify(y,'Steps',25)

ans =
(tan(4*x)*(exp(x) - 1))/(2*(exp(x) + 1))

Use 50 steps to simplify the expression even further.

simplify(y,'Steps',50)

ans =
(tan(4*x)*tanh(x/2))/2

Suppose, you already simplified an expression or function, but want to simplify it further.
The more efficient approach is to simplify the result instead of simplifying the original
expression.

syms x
y = (cos(x)^2 - sin(x)^2)*sin(2*x)*(exp(2*x) - 2*exp(x) + 1)/...
 ((cos(2*x)^2 - sin(2*x)^2)*(exp(2*x) - 1));
 y = simplify(y)

y =
(sin(4*x)*(exp(x) - 1))/(2*cos(4*x)*(exp(x) + 1))

y = simplify(y,'Steps',25)

y =
(tan(4*x)*(exp(x) - 1))/(2*(exp(x) + 1))

y = simplify(y,'Steps',50)

2 Using Symbolic Math Toolbox Software

2-96

y =
(tan(4*x)*tanh(x/2))/2

Simplify Using Assumptions
Some expressions cannot be simplified in general, but become much shorter under
particular assumptions. For example, simplifying this trigonometric expression without
additional assumptions returns the original expression.

syms n
simplify(sin(2*n*pi))

ans =
sin(2*pi*n)

However, if you assume that variable n represents an integer, the same trigonometric
expression simplifies to 0.

assume(n,'integer')
simplify(sin(2*n*pi))

ans =
0

For further computations, clear the assumption.

syms n

Simplify Fractions
You can use the general simplification function, simplify, to simplify fractions. However,
Symbolic Math Toolbox offers a more efficient function specifically for this task:
simplifyFraction. The statement simplifyFraction(f) represents the expression
f as a fraction, where both the numerator and denominator are polynomials whose
greatest common divisor is 1. For example, simplify these expressions.

syms x y
simplifyFraction((x^3 - 1)/(x - 1))

ans =
x^2 + x + 1

simplifyFraction((x^3 - x^2*y - x*y^2 + y^3)/(x^3 + y^3))

 Simplify Symbolic Expressions

2-97

ans =
(x^2 - 2*x*y + y^2)/(x^2 - x*y + y^2)

By default, simplifyFraction does not expand expressions in the numerator and
denominator of the returned result. To expand the numerator and denominator in the
resulting expression, use the Expand option. For comparison, first simplify this fraction
without Expand.

simplifyFraction((1 - exp(x)^4)/(1 + exp(x))^4)

ans =
(exp(2*x) - exp(3*x) - exp(x) + 1)/(exp(x) + 1)^3

Now, simplify the same expressions with Expand.

simplifyFraction((1 - exp(x)^4)/(1 + exp(x))^4,'Expand',true)

ans =
(exp(2*x) - exp(3*x) - exp(x) + 1)/(3*exp(2*x) + exp(3*x) + 3*exp(x) + 1)

2 Using Symbolic Math Toolbox Software

2-98

Abbreviate Common Terms in Long Expressions
Often, long expressions contain several instances of the same subexpression. Such
expressions look shorter if you replace the subexpression with an abbreviation. For
example, solve this equation.

syms x
s = solve(sqrt(x) + 1/x == 1, x)

s =
 (1/(18*(25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)) -...
 (3^(1/2)*(1/(9*(25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)) -...
 (25/54 - (23^(1/2)*108^(1/2))/108)^(1/3))*1i)/2 +...
 (25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)/2 + 1/3)^2
 ...
 ((3^(1/2)*(1/(9*(25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)) -...
 (25/54 - (23^(1/2)*108^(1/2))/108)^(1/3))*1i)/2 + 1/(18*(25/54 -...
 (23^(1/2)*108^(1/2))/108)^(1/3)) +...
 (25/54 - (23^(1/2)*108^(1/2))/108)^(1/3)/2 + 1/3)^2

The returned result is a long expression that might be difficult to parse. To represent it in
a more familiar typeset form, use pretty. When displaying results, the pretty function
can use abbreviations to shorten long expressions.

pretty(s)

/ / 1 #2 1 \2 \
| | ----- - #1 + -- + - | |
| \ 18 #2 2 3 / |
| |
| / 1 #2 1 \2 |
| | #1 + ----- + -- + - | |
\ \ 18 #2 2 3 / /

where

 / 1 \
 sqrt(3) | ---- - #2 | 1i
 \ 9 #2 /
 #1 == ------------------------
 2

 / 25 sqrt(23) sqrt(108) \1/3

 Abbreviate Common Terms in Long Expressions

2-99

 #2 == | -- - ------------------ |
 \ 54 108 /

pretty uses an internal algorithm to choose which subexpressions to abbreviate. It also
can use nested abbreviations. For example, the term #1 contains the subexpression
abbreviated as #2. This function does not provide any options to enable, disable, or
control abbreviations.

subexpr is another function that you can use to shorten long expressions. This function
abbreviates only one common subexpression and, unlike pretty, it does not support
nested abbreviations. It also does not let you choose which subexpressions to replace.

Use the second input argument of subexpr to specify the variable name that replaces the
common subexpression. For example, replace the common subexpression in s by variable
t.

[s1,t] = subexpr(s,'t')

s1 =
 (1/(18*t^(1/3)) - (3^(1/2)*(1/(9*t^(1/3)) -...
 t^(1/3))*1i)/2 + t^(1/3)/2 + 1/3)^2
 ...
 ((3^(1/2)*(1/(9*t^(1/3)) - t^(1/3))*1i)/2 +...
 1/(18*t^(1/3)) + t^(1/3)/2 + 1/3)^2

t =
25/54 - (23^(1/2)*108^(1/2))/108

For the syntax with one input argument, subexpr uses variable sigma to abbreviate the
common subexpression. Output arguments do not affect the choice of abbreviation
variable.

[s2,sigma] = subexpr(s)

s2 =
 (1/(18*sigma^(1/3)) - (3^(1/2)*(1/(9*sigma^(1/3)) -...
 sigma^(1/3))*1i)/2 + sigma^(1/3)/2 + 1/3)^2
 ...
 ((3^(1/2)*(1/(9*sigma^(1/3)) - sigma^(1/3))*1i)/2 +...
 1/(18*sigma^(1/3)) + sigma^(1/3)/2 + 1/3)^2

sigma =
25/54 - (23^(1/2)*108^(1/2))/108

2 Using Symbolic Math Toolbox Software

2-100

Choose Function to Rearrange Expression
Type of Transformation Function
“Combine Terms of Same Algebraic
Structures” on page 2-101

combine

“Expand Expressions” on page 2-103 expand
“Factor Expressions” on page 2-104 factor
“Extract Subexpressions from Expression”
on page 2-106

children

“Collect Terms with Same Powers” on page
2-107

collect

“Rewrite Expressions in Terms of Other
Functions” on page 2-108

rewrite

“Compute Partial Fraction Decompositions
of Expressions” on page 2-109

partfrac

“Compute Normal Forms of Rational
Expressions” on page 2-110

simplifyFraction

“Represent Polynomials Using Horner
Nested Forms” on page 2-110

horner

Combine Terms of Same Algebraic Structures
Symbolic Math Toolbox provides the combine function for combining subexpressions of
an original expression. The combine function uses mathematical identities for the
functions you specify. For example, combine the trigonometric expression.

syms x y
combine(2*sin(x)*cos(x),'sincos')

ans =
sin(2*x)

If you do not specify a target function, combine uses the identities for powers wherever
these identities are valid:

• ab ac = ab + c

 Choose Function to Rearrange Expression

2-101

• ac bc = (a b)c

• (ab)c = abc

For example, by default the function combines the following square roots.

combine(sqrt(2)*sqrt(x))

ans =
(2*x)^(1/2)

The function does not combine these square roots because the identity is not valid for
negative values of variables.

combine(sqrt(x)*sqrt(y))

ans =
x^(1/2)*y^(1/2)

To combine these square roots, use the IgnoreAnalyticConstraints option.

combine(sqrt(x)*sqrt(y),'IgnoreanalyticConstraints',true)

ans =
(x*y)^(1/2)

IgnoreAnalyticConstraints provides a shortcut allowing you to combine expressions
under commonly used assumptions about values of the variables. Alternatively, you can
set appropriate assumptions on variables explicitly. For example, assume that x and y are
positive values.

assume([x,y],'positive')
combine(sqrt(x)*sqrt(y))

ans =
(x*y)^(1/2)

For further computations, clear the assumptions on x and y by recreating them using
syms.

syms x y

As target functions, combine accepts atan, exp, gamma, int, log, sincos, and
sinhcosh.

2 Using Symbolic Math Toolbox Software

2-102

Expand Expressions
For elementary expressions, use the expand function to transform the original expression
by multiplying sums of products. This function provides an easy way to expand
polynomials.

expand((x - 1)*(x - 2)*(x - 3))

ans =
 x^3 - 6*x^2 + 11*x - 6

expand(x*(x*(x - 6) + 11) - 6)

ans =
x^3 - 6*x^2 + 11*x - 6

The function also expands exponential and logarithmic expressions. For example, expand
this expression containing exponentials.

expand(exp(x + y)*(x + exp(x - y)))

ans =
exp(2*x) + x*exp(x)*exp(y)

Expand this logarithm. Expanding logarithms is not valid for generic complex values, but
it is valid for positive values.

syms a b c positive
expand(log(a*b*c))

ans =
log(a) + log(b) + log(c)

For further computations, clear the assumptions.

syms a b c

Alternatively, use the IgnoreAnalyticConstraints option when expanding
logarithms.

expand(log(a*b*c),'IgnoreAnalyticConstraints',true)

ans =
log(a) + log(b) + log(c)

expand also works on trigonometric expressions. For example, expand this expression.

 Choose Function to Rearrange Expression

2-103

expand(cos(x + y))

ans =
cos(x)*cos(y) - sin(x)*sin(y)

expand uses mathematical identities between the functions.

expand(sin(5*x))

ans =
sin(x) - 12*cos(x)^2*sin(x) + 16*cos(x)^4*sin(x)

expand(cos(3*acos(x)))

ans =
4*x^3 - 3*x

expand works recursively for all subexpressions.

expand((sin(3*x) + 1)*(cos(2*x) - 1))

ans =
2*sin(x) + 2*cos(x)^2 - 10*cos(x)^2*sin(x) + 8*cos(x)^4*sin(x) - 2

To prevent the expansion of all trigonometric, logarithmic, and exponential
subexpressions, use the option ArithmeticOnly.

expand(exp(x + y)*(x + exp(x - y)),'ArithmeticOnly',true)

ans =
exp(x - y)*exp(x + y) + x*exp(x + y)

expand((sin(3*x) + 1)*(cos(2*x) - 1),'ArithmeticOnly',true)

ans =
cos(2*x) - sin(3*x) + cos(2*x)*sin(3*x) - 1

Factor Expressions
To return all irreducible factors of an expression, use the factor function. For example,
find all irreducible polynomial factors of this polynomial expression. The result shows that
this polynomial has three roots: x = 1, x = 2, and x = 3.

syms x
factor(x^3 - 6*x^2 + 11*x - 6)

2 Using Symbolic Math Toolbox Software

2-104

ans =
[x - 3, x - 1, x - 2]

If a polynomial expression is irreducible, factor returns the original expression.

factor(x^3 - 6*x^2 + 11*x - 5)

ans =
x^3 - 6*x^2 + 11*x - 5

Find irreducible polynomial factors of this expression. By default, factor uses
factorization over rational numbers keeping rational numbers in their exact symbolic
form. The resulting factors for this expression do not show polynomial roots.

factor(x^6 + 1)

ans =
[x^2 + 1, x^4 - x^2 + 1]

Using other factorization modes lets you factor this expression further. For example,
factor the same expression over complex numbers.

factor(x^6 + 1,'FactorMode','complex')

ans =
[x + 0.86602540378443864676372317075294 + 0.5i,...
 x + 0.86602540378443864676372317075294 - 0.5i,...
 x + 1.0i,...
 x - 1.0i,...
 x - 0.86602540378443864676372317075294 + 0.5i,...
 x - 0.86602540378443864676372317075294 - 0.5i]

factor also works on expressions other than polynomials and rational expressions. For
example, you can factor the following expression that contains logarithm, sine, and cosine
functions. Internally, factor converts such expressions into polynomials and rational
expressions by substituting subexpressions with variables. After computing irreducible
factors, the function restores original subexpressions.

factor((log(x)^2 - 1)/(cos(x)^2 - sin(x)^2))

ans =
[log(x) - 1, log(x) + 1, 1/(cos(x) - sin(x)), 1/(cos(x) + sin(x))]

Use factor to factor symbolic integers and symbolic rational numbers.

 Choose Function to Rearrange Expression

2-105

factor(sym(902834092))
factor(1/sym(210))

ans =
[2, 2, 47, 379, 12671]

ans =
[1/2, 1/3, 1/5, 1/7]

factor also can factor numbers larger than flintmax that the MATLAB factor cannot.
To represent a large number accurately, place the number in quotation marks.

factor(sym('41758540882408627201'))

ans =
[479001599, 87178291199]

Extract Subexpressions from Expression
The children function returns the subexpressions of an expression.

Define an expression f with several subexpressions.

syms x y
f = exp(3*x)*y^3 + exp(2*x)*y^2 + exp(x)*y;

Extract the subexpressions of f by using children.

expr = children(f)

expr =
[y^2*exp(2*x), y^3*exp(3*x), y*exp(x)]

You can extract lower-level subexpressions by calling children repeatedly on the
results.

Extract the subexpressions of expr(1) by calling children repeatedly. When the input
to children is a vector, the output is a cell array.

expr1 = children(expr(1))
expr2 = children(expr1)

expr1 =
[y^2, exp(2*x)]
expr2 =

2 Using Symbolic Math Toolbox Software

2-106

 1×2 cell array
 {1×2 sym} {1×1 sym}

Access the contents of the cell array expr2 using braces.

expr2{1}
expr2{2}

ans =
[y, 2]
ans =
2*x

Collect Terms with Same Powers
If a mathematical expression contains terms with the same powers of a specified variable
or expression, the collect function reorganizes the expression by grouping such terms.
When calling collect, specify the variables that the function must consider as
unknowns. The collect function regards the original expression as a polynomial in the
specified unknowns, and groups the coefficients with equal powers. Group the terms of an
expression with the equal powers of x.

syms x y z
expr = x*y^4 + x*z + 2*x^3 + x^2*y*z +...
 3*x^3*y^4*z^2 + y*z^2 + 5*x*y*z;
collect(expr, x)

ans =
(3*y^4*z^2 + 2)*x^3 + y*z*x^2 + (y^4 + 5*z*y + z)*x + y*z^2

Group the terms of the same expression with the equal powers of y.

collect(expr, y)

ans =
(3*x^3*z^2 + x)*y^4 + (x^2*z + 5*x*z + z^2)*y + 2*x^3 + z*x

Group the terms of the same expression with the equal powers of z.

collect(expr, z)

ans =
(3*x^3*y^4 + y)*z^2 + (x + 5*x*y + x^2*y)*z + 2*x^3 + x*y^4

 Choose Function to Rearrange Expression

2-107

If you do not specify variables that collect must consider as unknowns, the function
uses symvar to determine the default variable.

collect(expr)

ans =
(3*y^4*z^2 + 2)*x^3 + y*z*x^2 + (y^4 + 5*z*y + z)*x + y*z^2

Collect terms of an expression with respect to several unknowns by specifying those
unknowns as a vector.

collect(expr, [y,z])

ans =
3*x^3*y^4*z^2 + x*y^4 + y*z^2 + (x^2 + 5*x)*y*z + x*z + 2*x^3

Rewrite Expressions in Terms of Other Functions
To present an expression in terms of a particular function, use rewrite. This function
uses mathematical identities between functions. For example, rewrite an expression
containing trigonometric functions in terms of a particular trigonometric function.

syms x
rewrite(sin(x),'tan')

ans =
(2*tan(x/2))/(tan(x/2)^2 + 1)

rewrite(cos(x),'tan')

ans =
-(tan(x/2)^2 - 1)/(tan(x/2)^2 + 1)

rewrite(sin(2*x) + cos(3*x)^2,'tan')

ans =
(tan((3*x)/2)^2 - 1)^2/(tan((3*x)/2)^2 + 1)^2 +...
(2*tan(x))/(tan(x)^2 + 1)

Use rewrite to express these trigonometric functions in terms of the exponential
function.

rewrite(sin(x),'exp')

ans =
(exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2

2 Using Symbolic Math Toolbox Software

2-108

rewrite(cos(x),'exp')

ans =
exp(-x*1i)/2 + exp(x*1i)/2

Use rewrite to express these hyperbolic functions in terms of the exponential function.

rewrite(sinh(x),'exp')

ans =
exp(x)/2 - exp(-x)/2

rewrite(cosh(x),'exp')

ans =
exp(-x)/2 + exp(x)/2

rewrite also expresses inverse hyperbolic functions in terms of logarithms.

rewrite(asinh(x),'log')

ans =
log(x + (x^2 + 1)^(1/2))

rewrite(acosh(x),'log')

ans =
log(x + (x - 1)^(1/2)*(x + 1)^(1/2))

Compute Partial Fraction Decompositions of Expressions
The partfrac function returns a rational expression in the form of a sum of a polynomial
and rational terms. In each rational term, the degree of the numerator is smaller than the
degree of the denominator. For some expressions, partfrac returns visibly simpler
forms.

syms x
n = x^6 + 15*x^5 + 94*x^4 + 316*x^3 + 599*x^2 + 602*x + 247;
d = x^6 + 14*x^5 + 80*x^4 + 238*x^3 + 387*x^2 + 324*x + 108;
partfrac(n/d, x)

ans =
1/(x + 1) + 1/(x + 2)^2 + 1/(x + 3)^3 + 1

The denominators in rational terms represent the factored common denominator of the
original expression.

 Choose Function to Rearrange Expression

2-109

factor(d)

ans =
[x + 1, x + 2, x + 2, x + 3, x + 3, x + 3]

Compute Normal Forms of Rational Expressions
The simplifyFraction function represents the original rational expression as a single
rational term with expanded numerator and denominator. The greatest common divisor of
the numerator and denominator of the returned expression is 1. This function is more
efficient for simplifying fractions than the simplify function.

syms x y
simplifyFraction((x^3 + 3*y^2)/(x^2 - y^2) + 3)

ans =
(x^3 + 3*x^2)/(x^2 - y^2)

simplifyFraction cancels common factors that appear in numerator and denominator.

simplifyFraction(x^2/(x + y) - y^2/(x + y))

ans =
x - y

simplifyFraction also handles expressions other than polynomials and rational
functions. Internally, it converts such expressions into polynomials or rational functions
by substituting subexpressions with identifiers. After normalizing the expression with
temporary variables, simplifyFraction restores the original subexpressions.

simplifyFraction((exp(2*x) - exp(2*y))/(exp(x) - exp(y)))

ans =
exp(x) + exp(y)

Represent Polynomials Using Horner Nested Forms
The Horner, or nested, form of a polynomial expression is efficient for numerical
evaluation because it often involves fewer arithmetical operations than other
mathematically equivalent forms of the same polynomial. Typically, this form of an
expression is numerically stable. To represent a polynomial expression in a nested form,
use the horner function.

2 Using Symbolic Math Toolbox Software

2-110

syms x
horner(x^3 - 6*x^2 + 11*x - 6)

ans =
x*(x*(x - 6) + 11) - 6

If polynomial coefficients are floating-point numbers, the resulting Horner form
represents them as rational numbers.

horner(1.1 + 2.2*x + 3.3*x^2)

ans =
x*((33*x)/10 + 11/5) + 11/10

To convert the coefficients in the result to floating-point numbers, use vpa.

vpa(ans)

ans =
x*(3.3*x + 2.2) + 1.1

 Choose Function to Rearrange Expression

2-111

Extract Numerators and Denominators of Rational
Expressions

To extract the numerator and denominator of a rational symbolic expression, use the
numden function. The first output argument of numden is a numerator, the second output
argument is a denominator. Use numden to find numerators and denominators of symbolic
rational numbers.

[n,d] = numden(1/sym(3))

n =
1

d =
3

Use numden to find numerators and denominators of a symbolic expressions.

syms x y
[n,d] = numden((x^2 - y^2)/(x^2 + y^2))

n =
x^2 - y^2

d =
x^2 + y^2

Use numden to find numerators and denominators of symbolic functions. If the input is a
symbolic function, numden returns the numerator and denominator as symbolic functions.

syms f(x) g(x)
f(x) = sin(x)/x^2;
g(x) = cos(x)/x;
[n,d] = numden(f)

n(x) =
sin(x)

d(x) =
x^2

[n,d] = numden(f/g)

n(x) =
sin(x)

2 Using Symbolic Math Toolbox Software

2-112

d(x) =
x*cos(x)

numden converts the input to its one-term rational form, such that the greatest common
divisor of the numerator and denominator is 1. Then it returns the numerator and
denominator of that form of the expression.

[n,d] = numden(x/y + y/x)

n =
x^2 + y^2

d =
x*y

numden works on vectors and matrices. If an input is a vector or matrix, numden returns
two vectors or two matrices of the same size as the input. The first vector or matrix
contains numerators of each element. The second vector or matrix contains denominators
of each element. For example, find numerators and denominators of each element of the
3-by-3 Hilbert matrix.

H = sym(hilb(3))

H =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

[n,d] = numden(H)

n =
[1, 1, 1]
[1, 1, 1]
[1, 1, 1]

d =
[1, 2, 3]
[2, 3, 4]
[3, 4, 5]

 Extract Numerators and Denominators of Rational Expressions

2-113

Substitute Variables in Symbolic Expressions
Solve the following trigonometric equation using the ReturnConditions option of the
solver to obtain the complete solution. The solver returns the solution, parameters used in
the solution, and conditions on those parameters.

syms x
eqn = sin(2*x) + cos(x) == 0;
[solx, params, conds] = solve(eqn, x, 'ReturnConditions', true)

solx =
 pi/2 + pi*k
 2*pi*k - pi/6
 (7*pi)/6 + 2*pi*k

params =
k

conds =
 in(k, 'integer')
 in(k, 'integer')
 in(k, 'integer')

Replace the parameter k with a new symbolic variable a. First, create symbolic variables
k and a. (The solver does not create variable k in the MATLAB workspace.)

syms k a

Now, use the subs function to replace k by a in the solution vector solx, parameters
params, and conditions conds.

solx = subs(solx, k, a)
params = subs(params, k, a)
conds = subs(conds, k, a)

solx =
 pi/2 + pi*a
 2*pi*a - pi/6
 (7*pi)/6 + 2*pi*a
params =
a
conds =
 in(a, 'integer')
 in(a, 'integer')
 in(a, 'integer')

2 Using Symbolic Math Toolbox Software

2-114

Suppose, you know that the value of the parameter a is 2. Substitute a with 2 in the
solution vector solx.

subs(solx, a, 2)

ans =
 (5*pi)/2
 (23*pi)/6
 (31*pi)/6

Alternatively, substitute params with 2. This approach returns the same result.

subs(solx, params, 2)

ans =
 (5*pi)/2
 (23*pi)/6
 (31*pi)/6

Substitute parameter a with a floating-point number. The toolbox converts numbers to
floating-point values, but it keeps intact the symbolic expressions, such as sym(pi),
exp(sym(1)), and so on.

subs(solx, params, vpa(2))

ans =
 2.5*pi
 3.8333333333333333333333333333333*pi
 5.1666666666666666666666666666667*pi

Approximate the result of substitution with floating-point values by using vpa on the
result returned by subs.

vpa(subs(solx, params, 2))

ans =
 7.8539816339744830961566084581988
 12.042771838760874080773466302571
 16.231562043547265065390324146944

 Substitute Variables in Symbolic Expressions

2-115

Substitute Elements in Symbolic Matrices
Create a 3-by-3 circulant matrix using the backward shift.

syms a b c
M = [a b c; b c a; c a b]

M =
[a, b, c]
[b, c, a]
[c, a, b]

Replace variable b in this matrix by the expression a + 1. The subs function replaces all
b elements in matrix M with the expression a + 1.

M = subs(M, b, a + 1)

M =
[a, a + 1, c]
[a + 1, c, a]
[c, a, a + 1]

You also can specify the value to replace by indexing into matrix. That is, to replace all
elements whose value is c, you can specify the value to replace as c, M(1,3) or M(3,1).

Replace all elements whose value is M(1,3) = c with the expression a + 2.

M = subs(M, M(1,3), a + 2)

M =
[a, a + 1, a + 2]
[a + 1, a + 2, a]
[a + 2, a, a + 1]

Tip To replace a particular element of a matrix with a new value while keeping all other
elements unchanged, use the assignment operation. For example, M(1,1) = 2 replaces
only the first element of the matrix M with the value 2.

Find eigenvalues and eigenvectors of the matrix.

[V,E] = eig(M)

V =
[1, 3^(1/2)/2 - 1/2, - 3^(1/2)/2 - 1/2]

2 Using Symbolic Math Toolbox Software

2-116

[1, - 3^(1/2)/2 - 1/2, 3^(1/2)/2 - 1/2]
[1, 1, 1]

E =
[3*a + 3, 0, 0]
[0, 3^(1/2), 0]
[0, 0, -3^(1/2)]

Replace the symbolic parameter a with the value 1.

subs(E, a, 1)

ans =
[6, 0, 0]
[0, 3^(1/2), 0]
[0, 0, -3^(1/2)]

 Substitute Elements in Symbolic Matrices

2-117

Substitute Scalars with Matrices
Create the following expression representing the sine function.

syms w t
f = sin(w*t);

Suppose, your task involves creating a matrix whose elements are sine functions with
angular velocities represented by a Toeplitz matrix. First, create a 4-by-4 Toeplitz matrix.

W = toeplitz(sym([3 2 1 0]))

W =
[3, 2, 1, 0]
[2, 3, 2, 1]
[1, 2, 3, 2]
[0, 1, 2, 3]

Next, replace the variable w in the expression f with the Toeplitz matrix W. When you
replace a scalar in a symbolic expression with a matrix, subs expands the expression into
a matrix. In this example, subs expands f = sin(w*t) into a 4-by-4 matrix whose
elements are sin(w*t). Then it replaces w in that matrix with the corresponding
elements of the Toeplitz matrix W.

F = subs(f, w, W)

F =
[sin(3*t), sin(2*t), sin(t), 0]
[sin(2*t), sin(3*t), sin(2*t), sin(t)]
[sin(t), sin(2*t), sin(3*t), sin(2*t)]
[0, sin(t), sin(2*t), sin(3*t)]

Find the sum of these sine waves at t = π, t = π/2, t = π/3, t = π/4, t = π/5, and
t = π/6. First, find the sum of all elements of matrix F. Here, the first call to sum returns
a row vector containing sums of elements in each column. The second call to sum returns
the sum of elements of that row vector.

S = sum(sum(F))

S =
6*sin(2*t) + 4*sin(3*t) + 4*sin(t)

Now, use subs to evaluate S for particular values of the variable t.

subs(S, t, sym(pi)./[1:6])

2 Using Symbolic Math Toolbox Software

2-118

[0,...
 0,...
 5*3^(1/2), 4*2^(1/2) + 6,...
 2^(1/2)*(5 - 5^(1/2))^(1/2) + (5*2^(1/2)*(5^(1/2) + 5)^(1/2))/2,...
 3*3^(1/2) + 6]

You also can use subs to replace a scalar element of a matrix with another matrix. In this
case, subs expands the matrix to accommodate new elements. For example, replace zero
elements of the matrix F with a column vector [1;2]. The original 4-by-4 matrix F
expands to an 8-by-4 matrix. The subs function duplicates each row of the original
matrix, not only the rows containing zero elements.

F = subs(F, 0, [1;2])

F =
[sin(3*t), sin(2*t), sin(t), 1]
[sin(3*t), sin(2*t), sin(t), 2]
[sin(2*t), sin(3*t), sin(2*t), sin(t)]
[sin(2*t), sin(3*t), sin(2*t), sin(t)]
[sin(t), sin(2*t), sin(3*t), sin(2*t)]
[sin(t), sin(2*t), sin(3*t), sin(2*t)]
[1, sin(t), sin(2*t), sin(3*t)]
[2, sin(t), sin(2*t), sin(3*t)]

 Substitute Scalars with Matrices

2-119

Evaluate Symbolic Expressions Using subs
When you assign a value to a symbolic variable, expressions containing the variable are
not automatically evaluated. Instead, evaluate expressions by using subs.

Define the expression y = x^2.

syms x
y = x^2;

Assign 2 to x. The value of y is still x^2 instead of 4.

x = 2;
y

y =
x^2

If you change the value of x again, the value of y stays x^2. Instead, evaluate y with the
new value of x by using subs.

subs(y)

ans =
4

The evaluated result is 4. However, y has not changed. Change the value of y by
assigning the result to y.

y = subs(y)

y =
4

Show that y is independent of x after this assignment.

x = 5;
subs(y)

ans =
4

2 Using Symbolic Math Toolbox Software

2-120

Choose Symbolic or Numeric Arithmetic
Symbolic Math Toolbox operates on numbers by using either symbolic or numeric
arithmetic. Numeric arithmetic is either variable precision or double precision. The
following information compares symbolic, variable-precision, and double-precision
arithmetic.

 Symbolic Variable Precision Double Precision
Example: Find sin(π) a = sym(pi)

sin(a)

a =
pi
ans =
0

b = vpa(pi)
sin(b)

b =
3.1415926535897932384626433832795
ans =
-3.2101083013100396069547145883568e-40

pi
sin(pi)

ans =
 3.1416
ans =
 1.2246e-16

Functions Used sym vpa
digits

double

Round-Off Errors No, finds exact
results

Yes, magnitude
depends on precision
used

Yes, has 16 digits of
precision

Speed Slowest Faster, depends on
precision used

Faster

Memory Usage Greatest Adjustable, depends
on precision used

Least

Symbolic Arithmetic
By default, Symbolic Math Toolbox uses exact numbers, such as 1/3, sqrt(2), or pi, to
perform exact symbolic computations on page 1-13.

Variable-Precision Arithmetic
Variable-precision arithmetic using vpa is the recommended approach for numeric
calculations in Symbolic Math Toolbox. For greater precision, increase the number of
significant digits on page 2-123. For faster computations and decreased memory usage,
decrease the number of significant digits on page 2-130.

 Choose Symbolic or Numeric Arithmetic

2-121

Double-Precision Arithmetic
Double-precision, floating-point arithmetic uses the same precision as most numeric
computations in MATLAB. This arithmetic is recommended when you do not have
Symbolic Math Toolbox or are using functions that do not accept symbolic input.
Otherwise, exact symbolic numbers and variable-precision arithmetic are recommended.
To approximate a value with double precision, use the double function.

2 Using Symbolic Math Toolbox Software

2-122

Increase Precision of Numeric Calculations
By default, MATLAB uses 16 digits of precision. For higher precision, use the vpa
function in Symbolic Math Toolbox. vpa provides variable precision which can be
increased without limit.

When you choose variable-precision arithmetic, by default, vpa uses 32 significant
decimal digits of precision. For details, see “Choose Symbolic or Numeric Arithmetic” on
page 2-121. You can set a higher precision by using the digits function.

Approximate a sum using the default precision of 32 digits. If at least one input is
wrapped with vpa, all other inputs are converted to variable precision automatically.

vpa(1/3) + 1/2

ans =
0.83333333333333333333333333333333

You must wrap all inner inputs with vpa, such as exp(vpa(200)). Otherwise, the inputs
are automatically converted to double by MATLAB.

Increase the precision to 50 digits by using digits and save the old value of digits in
digitsOld. Repeat the sum.

digitsOld = digits(50);
sum50 = vpa(1/3) + 1/2

sum50 =
0.8333

Restore the old value of digits for further calculations.

digits(digitsOld)

Note vpa output is symbolic. To use symbolic output with a MATLAB function that does
not accept symbolic values, convert symbolic values to double precision by using double.

Check the current digits setting by calling digits.

digits

Digits = 32

 Increase Precision of Numeric Calculations

2-123

Change the precision for a single vpa call by specifying the precision as the second input
to vpa. This call does not affect digits. For example, approximate pi with 100 digits.

vpa(pi,100)

ans =
3.14159265358979323846264338327950288419716939937510582097494
4592307816406286208998628034825342117068

digits % digits remains 32

Digits = 32

Variable precision can be increased arbitrarily. Find pi to 500 digits.

digitsOld = digits(500);
vpa(pi)
digits(digitsOld)

ans =
3.1415926535897932384626433832795028841971693993751058209749
445923078164062862089986280348253421170679821480865132823066
470938446095505822317253594081284811174502841027019385211055
596446229489549303819644288109756659334461284756482337867831
652712019091456485669234603486104543266482133936072602491412
737245870066063155881748815209209628292540917153643678925903
600113305305488204665213841469519415116094330572703657595919
530921861173819326117931051185480744623799627495673518857527
248912279381830119491

digits and vpa control the number of significant decimal digits. For example,
approximating 1/111 with four-digit accuracy returns six digits after the decimal point
because the first two digits are zeros.

vpa(1/111,4)

ans =
0.009009

Note If you want to increase performance by decreasing precision, see “Increase Speed
by Reducing Precision” on page 2-130.

2 Using Symbolic Math Toolbox Software

2-124

Recognize and Avoid Round-Off Errors
When approximating a value numerically, remember that floating-point results can be
sensitive to the precision used. Also, floating-point results are prone to round-off errors.
The following approaches can help you recognize and avoid incorrect results.

In this section...
“Use Symbolic Computations When Possible” on page 2-125
“Perform Calculations with Increased Precision” on page 2-126
“Compare Symbolic and Numeric Results” on page 2-128
“Plot the Function or Expression” on page 2-128

Use Symbolic Computations When Possible
Performing computations symbolically on page 2-121 is recommended because exact
symbolic computations are not prone to round-off errors. For example, standard
mathematical constants have their own symbolic representations in Symbolic Math
Toolbox:

pi
sym(pi)

ans =
 3.1416

ans =
pi

Avoid unnecessary use of numeric approximations. A floating-point number approximates
a constant; it is not the constant itself. Using this approximation, you can get incorrect
results. For example, the heaviside special function returns different results for the sine
of sym(pi) and the sine of the numeric approximation of pi:

heaviside(sin(sym(pi)))
heaviside(sin(pi))

ans =
1/2

ans =
 1

 Recognize and Avoid Round-Off Errors

2-125

Perform Calculations with Increased Precision
The Riemann hypothesis states that all nontrivial zeros of the Riemann Zeta function ζ(z)
have the same real part ℜ(z) = 1/2. To locate possible zeros of the Zeta function, plot its
absolute value |ζ(1/2 + iy)|. The following plot shows the first three nontrivial roots of the
Zeta function |ζ(1/2 + iy)|.

syms y
fplot(abs(zeta(1/2 + i*y)), [0 30])

Use the numeric solver vpasolve to approximate the first three zeros of this Zeta
function:

2 Using Symbolic Math Toolbox Software

2-126

vpasolve(zeta(1/2 + i*y), y, 15)
vpasolve(zeta(1/2 + i*y), y, 20)
vpasolve(zeta(1/2 + i*y), y, 25)

ans =
14.134725141734693790457251983562

ans =
21.022039638771554992628479593897

ans =
25.010857580145688763213790992563

Now, consider the same function, but slightly increase the real part, ζ 1000000001
2000000000 + iy .

According to the Riemann hypothesis, this function does not have a zero for any real
value y. If you use vpasolve with the 10 significant decimal digits, the solver finds the
following (nonexisting) zero of the Zeta function:

old = digits;
digits(10)
vpasolve(zeta(1000000001/2000000000 + i*y), y, 15)

ans =
14.13472514

Increasing the number of digits shows that the result is incorrect. The Zeta function
ζ 1000000001

2000000000 + iy does not have a zero for any real value 14 < y < 15:

digits(15)
vpasolve(zeta(1000000001/2000000000 + i*y), y, 15)
digits(old)

ans =
14.1347251417347 + 0.000000000499989207306345i

For further computations, restore the default number of digits:

digits(old)

 Recognize and Avoid Round-Off Errors

2-127

Compare Symbolic and Numeric Results
Bessel functions with half-integer indices return exact symbolic expressions.
Approximating these expressions by floating-point numbers can produce very unstable
results. For example, the exact symbolic expression for the following Bessel function is:

B = besselj(53/2, sym(pi))

B =
(351*2^(1/2)*(119409675/pi^4 - 20300/pi^2 - 315241542000/pi^6...
 + 445475704038750/pi^8 - 366812794263762000/pi^10 +...
 182947881139051297500/pi^12 - 55720697512636766610000/pi^14...
 + 10174148683695239020903125/pi^16 - 1060253389142977540073062500/pi^18...
 + 57306695683177936040949028125/pi^20 - 1331871030107060331702688875000/pi^22...
 + 8490677816932509614604641578125/pi^24 + 1))/pi^2

Use vpa to approximate this expression with the 10-digit accuracy:

vpa(B, 10)

ans =
-2854.225191

Now, call the Bessel function with the floating-point parameter. Significant difference
between these two approximations indicates that one or both results are incorrect:

besselj(53/2, pi)

ans =
 6.9001e-23

Increase the numeric working precision to obtain a more accurate approximation for B:

vpa(B, 50)

ans =
0.000000000000000000000069001456069172842068862232841396473796597233761161

Plot the Function or Expression
Plotting the results can help you recognize incorrect approximations. For example, the
numeric approximation of the following Bessel function returns:

B = besselj(53/2, sym(pi));
vpa(B, 10)

2 Using Symbolic Math Toolbox Software

2-128

ans =
-2854.225191

Plot this Bessel function for the values of x around 53/2. The function plot shows that the
approximation is incorrect:

syms x
fplot(besselj(x, sym(pi)), [26 27])

 Recognize and Avoid Round-Off Errors

2-129

Increase Speed by Reducing Precision
Increase MATLAB’s speed by reducing the precision of your calculations. Reduce
precision by using variable-precision arithmetic provided by the vpa and digits
functions in Symbolic Math Toolbox. When you reduce precision, you are gaining
performance by reducing accuracy. For details, see “Choose Symbolic or Numeric
Arithmetic” on page 2-121.

For example, finding the Riemann zeta function of the large matrix C takes a long time.
First, initialize C.

[X,Y] = meshgrid((0:0.0025:.75),(5:-0.05:0));
C = X + Y*i;

Then, find the time taken to calculate zeta(C).

tic
zeta(C);
toc

Elapsed time is 340.204407 seconds.

Now, repeat this operation with a lower precision by using vpa. First, change the
precision used by vpa to a lower precision of 10 digits by using digits. Then, use vpa to
reduce the precision of C and find zeta(C) again. The operation is significantly faster.

digits(10)
vpaC = vpa(C);
tic
zeta(vpaC);
toc

Elapsed time is 113.792543 seconds.

Note vpa output is symbolic. To use symbolic output with a MATLAB function that does
not accept symbolic values, convert symbolic values to double precision by using double.

For larger matrices, the difference in computation time can be even more significant. For
example, consider the 1001-by-301 matrix C.

 [X,Y] = meshgrid((0:0.0025:.75),(5:-0.005:0));
C = X + Y*i;

2 Using Symbolic Math Toolbox Software

2-130

Running zeta(vpa(C)) with 10-digit precision takes 15 minutes, while running
zeta(C) takes three times as long.

digits(10)
vpaC = vpa(C);
tic
zeta(vpaC);
toc

Elapsed time is 886.035806 seconds.

tic
zeta(C);
toc

Elapsed time is 2441.991572 seconds.

Note If you want to increase precision, see “Increase Precision of Numeric Calculations”
on page 2-123.

 Increase Speed by Reducing Precision

2-131

Numeric to Symbolic Conversion
This topic shows how Symbolic Math Toolbox converts numbers into symbolic form. For
an overview of symbolic and numeric arithmetic, see “Choose Symbolic or Numeric
Arithmetic” on page 2-121.

To convert numeric input to symbolic form, use the sym command. By default, sym
returns a rational approximation of a numeric expression.

t = 0.1;
sym(t)

ans =
1/10

sym determines that the double-precision value 0.1 approximates the exact symbolic
value 1/10. In general, sym tries to correct the round-off error in floating-point inputs to
return the exact symbolic form. Specifically, sym corrects round-off error in numeric
inputs that match the forms p/q, pπ/q, (p/q)1/2, 2q, and 10q, where p and q are modest-
sized integers.

For these forms, demonstrate that sym converts floating-point inputs to the exact

symbolic form. First, numerically approximate 1/7, pi, and 1 2/ .

N1 = 1/7
N2 = pi
N3 = 1/sqrt(2)

N1 =
 0.1429
N2 =
 3.1416
N3 =
 0.7071

Convert the numeric approximations to exact symbolic form. sym corrects the round-off
error.

S1 = sym(N1)
S2 = sym(N2)
S3 = sym(N3)

S1 =
1/7

2 Using Symbolic Math Toolbox Software

2-132

S2 =
pi
S3 =
2^(1/2)/2

To return the error between the input and the estimated exact form, use the syntax
sym(num,'e'). See “Conversion to Rational Symbolic Form with Error Term” on page 2-
134.

You can force sym to accept the input as is by placing the input in quotes. Demonstrate
this behavior on the previous input 0.142857142857143. The sym function does not
convert the input to 1/7.

sym('0.142857142857143')

ans =
0.142857142857143

When you convert large numbers, use quotes to exactly represent them. Demonstrate this
behavior by comparing sym(133333333333333333333) with
sym('133333333333333333333').

sym(1333333333333333333)
sym('1333333333333333333')

ans =
1333333333333333248
ans =
1333333333333333333

You can specify the technique used by sym to convert floating-point numbers using the
optional second argument, which can be 'f', 'r', 'e', or 'd'. The default flag is 'r',
for rational form on page 2-134.

In this section...
“Conversion to Rational Symbolic Form” on page 2-134
“Conversion by Using Floating-Point Expansion” on page 2-134
“Conversion to Rational Symbolic Form with Error Term” on page 2-134
“Conversion to Decimal Form” on page 2-135

 Numeric to Symbolic Conversion

2-133

Conversion to Rational Symbolic Form
Convert input to exact rational form by calling sym with the 'r' flag. This is the default
behavior when you call sym without flags.

sym(t, 'r')

ans =
1/10

Conversion by Using Floating-Point Expansion
If you call sym with the flag 'f', sym converts double-precision, floating-point numbers to
their numeric value by using N*2^e, where N and e are the exponent and mantissa
respectively.

Convert t by using a floating-point expansion.

sym(t, 'f')

ans =
3602879701896397/36028797018963968

Conversion to Rational Symbolic Form with Error Term
If you call sym with the flag 'e', sym returns the rational form of t plus the error
between the estimated, exact value for t and its floating-point representation. This error
is expressed in terms of eps (the floating-point relative precision).

Convert t to symbolic form. Return the error between its estimated symbolic form and its
floating-point value.

sym(t, 'e')

ans =
eps/40 + 1/10

The error term eps/40 is the difference between sym('0.1') and sym(0.1).

2 Using Symbolic Math Toolbox Software

2-134

Conversion to Decimal Form
If you call sym with the flag 'd', sym returns the decimal expansion of the input. The
digits function specifies the number of significant digits used. The default value of
digits is 32.

sym(t,'d')

ans =
0.10000000000000000555111512312578

Change the number of significant digits by using digits.

digitsOld = digits(7);
sym(t,'d')

ans =
0.1

For further calculations, restore the old value of digits.

digits(digitsOld)

 Numeric to Symbolic Conversion

2-135

Basic Algebraic Operations
Basic algebraic operations on symbolic objects are the same as operations on MATLAB
objects of class double. This is illustrated in the following example.

The Givens transformation produces a plane rotation through the angle t. The statements

syms t
G = [cos(t) sin(t); -sin(t) cos(t)]

create this transformation matrix.

G =
[cos(t), sin(t)]
[-sin(t), cos(t)]

Applying the Givens transformation twice should simply be a rotation through twice the
angle. The corresponding matrix can be computed by multiplying G by itself or by raising
G to the second power. Both

A = G*G

and

A = G^2

produce

A =
[cos(t)^2 - sin(t)^2, 2*cos(t)*sin(t)]
[-2*cos(t)*sin(t), cos(t)^2 - sin(t)^2]

The simplify function

A = simplify(A)

uses a trigonometric identity to return the expected form by trying several different
identities and picking the one that produces the shortest representation.

A =
[cos(2*t), sin(2*t)]
[-sin(2*t), cos(2*t)]

The Givens rotation is an orthogonal matrix, so its transpose is its inverse. Confirming
this by

2 Using Symbolic Math Toolbox Software

2-136

I = G.' *G

which produces

I =
[cos(t)^2 + sin(t)^2, 0]
[0, cos(t)^2 + sin(t)^2]

and then

I = simplify(I)

I =
[1, 0]
[0, 1]

 Basic Algebraic Operations

2-137

Linear Algebraic Operations
In this section...
“Symbolic Hilbert Matrix” on page 2-138
“Symbolic Linear Algebra Operations” on page 2-138
“Variable-Precision Arithmetic” on page 2-139
“Symbolic Investigation of Singular Value” on page 2-141

Symbolic Hilbert Matrix
The following examples, which show how to perform basic linear algebraic operations, are
based on a symbolic version of the 3-by-3 Hilbert matrix.

Generate the 3-by-3 Hilbert matrix. With format short, MATLAB prints the output
shown.

H = hilb(3)

H =
 1.0000 0.5000 0.3333
 0.5000 0.3333 0.2500
 0.3333 0.2500 0.2000

The computed elements of H are floating-point numbers that are the ratios of small
integers. H is a MATLAB array of class double.

Convert H to a symbolic matrix.

H = sym(H)

H =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Symbolic Linear Algebra Operations
Symbolic operations on H produce results that correspond to the infinite-precision Hilbert
matrix, sym(hilb(3)), not its floating-point approximation, hilb(3).

2 Using Symbolic Math Toolbox Software

2-138

Find the inverse of H.

inv(H)

ans =
[9, -36, 30]
[-36, 192, -180]
[30, -180, 180]

Find the determinant of H.

det(H)

ans =
1/2160

You can use the backslash operator to solve a system of simultaneous linear equations.
For example, solve H*x = b.

b = [1; 1; 1];
x = H\b

 x =
 3
 -24
 30

All three results—the inverse, the determinant, and the solution to the linear system—are
the exact results corresponding to the infinite-precision, rational, Hilbert matrix.

Variable-Precision Arithmetic
Contrast the preceding operations with variable-precision arithmetic using 20 digits of
precision.

digits(20)
V = vpa(H)

V =

[1.0, 0.5, 0.33333333333333333333]
[0.5, 0.33333333333333333333, 0.25]
[0.33333333333333333333, 0.25, 0.2]

 Linear Algebraic Operations

2-139

The decimal points in the representation of the individual elements indicate that MATLAB
is using variable-precision arithmetic. The result of each arithmetic operation is rounded
to 20 significant decimal digits.

Invert the matrix and note that errors are magnified by the matrix condition number,
which for hilb(3) is about 500.

cond(V)

ans =

524.0567775860608

Compute the difference of the inverses of the infinite-precision and variable-precision
versions.

ih = inv(H)

ih =

[9, -36, 30]
[-36, 192, -180]
[30, -180, 180]

iv = inv(V)

iv =

[9.0, -36.0, 30.0]
[-36.0, 192.0, -180.0]
[30.0, -180.0, 180.0]

Although these matrices look the same, calculate the difference to see that they are not.

dhv = ih - iv

dhv =

[-5.4929962552349494034e-26, 2.4556924435168009098e-25, -2.1971985020939797614e-25]
[2.4556924435168009098e-25, -1.2666203129718236271e-24, 1.1373733422604130529e-24]
[-2.1971985020939797614e-25, 1.1373733422604130529e-24, -1.0856745539758488233e-24]

Solve the equation V*y = b. The answer looks the same as the solution to H*x = b.

y = V\b

2 Using Symbolic Math Toolbox Software

2-140

y =

 3.0
 -24.0
 30.0

Calculate the difference between x and y to see the small difference between the two
solutions.

x-y

ans =

 8.0779356694631608874e-27
 -6.4623485355705287099e-26
 7.1085833891275815809e-26

Using vpa with digits(16) offers comparable precision to using standard double-
precision MATLAB routines.

Symbolic Investigation of Singular Value
Find a value s for H(1,1) that makes H singular.

syms s
Hs = H;
Hs(1,1) = s
Z = det(Hs)
sol = solve(Z)

Hs =
[s, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Z =
s/240 - 1/270

sol =
8/9

Substitute the solution for s into Hs.

Hs = subs(Hs, s, sol)

 Linear Algebraic Operations

2-141

Hs =
[8/9, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Verify that the determinant of Hs is zero.

det(Hs)

ans =
0

Find the null space and column space of Hs. Both spaces are nontrivial.

N = null(Hs)
C = colspace(Hs)

N=
3/10
 -6/5
 1

C =
[1, 0]
[0, 1]
[-3/10, 6/5]

Check that N is in the null space of Hs.

Hs*N

ans =

 0
 0
 0

2 Using Symbolic Math Toolbox Software

2-142

Eigenvalues
The symbolic eigenvalues of a square matrix A or the symbolic eigenvalues and
eigenvectors of A are computed, respectively, using the commands E = eig(A) and
[V,E] = eig(A).

The variable-precision counterparts are E = eig(vpa(A)) and [V,E] =
eig(vpa(A)).

The eigenvalues of A are the zeros of the characteristic polynomial of A, det(A-x*I),
which is computed by charpoly(A).

The matrix H from the last section provides the first example:

H = sym([8/9 1/2 1/3; 1/2 1/3 1/4; 1/3 1/4 1/5])

H =
[8/9, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

The matrix is singular, so one of its eigenvalues must be zero. The statement

[T,E] = eig(H)

produces the matrices T and E. The columns of T are the eigenvectors of H and the
diagonal elements of E are the eigenvalues of H:
T =
[3/10, 218/285 - (4*12589^(1/2))/285, (4*12589^(1/2))/285 + 218/285]
[-6/5, 292/285 - 12589^(1/2)/285, 12589^(1/2)/285 + 292/285]
[1, 1, 1]

E =
[0, 0, 0]
[0, 32/45 - 12589^(1/2)/180, 0]
[0, 0, 12589^(1/2)/180 + 32/45]

It may be easier to understand the structure of the matrices of eigenvectors, T, and
eigenvalues, E, if you convert T and E to decimal notation. To do so, proceed as follows.
The commands

Td = double(T)
Ed = double(E)

return

 Eigenvalues

2-143

Td =
 0.3000 -0.8098 2.3397
 -1.2000 0.6309 1.4182
 1.0000 1.0000 1.0000

Ed =
 0 0 0
 0 0.0878 0
 0 0 1.3344

The first eigenvalue is zero. The corresponding eigenvector (the first column of Td) is the
same as the basis for the null space found in the last section. The other two eigenvalues
are the result of applying the quadratic formula to x2− 64

45x + 253
2160 which is the

quadratic factor in factor(charpoly(H, x)):

syms x
g = factor(charpoly(H, x))/x
solve(g(3))

g =
[1/(2160*x), 1, (2160*x^2 - 3072*x + 253)/x]
ans =
 32/45 - 12589^(1/2)/180
 12589^(1/2)/180 + 32/45

Closed form symbolic expressions for the eigenvalues are possible only when the
characteristic polynomial can be expressed as a product of rational polynomials of degree
four or less. The Rosser matrix is a classic numerical analysis test matrix that illustrates
this requirement. The statement

R = sym(rosser)

generates

R =
[611, 196, -192, 407, -8, -52, -49, 29]
[196, 899, 113, -192, -71, -43, -8, -44]
[-192, 113, 899, 196, 61, 49, 8, 52]
[407, -192, 196, 611, 8, 44, 59, -23]
[-8, -71, 61, 8, 411, -599, 208, 208]
[-52, -43, 49, 44, -599, 411, 208, 208]
[-49, -8, 8, 59, 208, 208, 99, -911]
[29, -44, 52, -23, 208, 208, -911, 99]

2 Using Symbolic Math Toolbox Software

2-144

The commands

p = charpoly(R, x);
factor(p)

produce
ans =

[x, x - 1020, x^2 - 1040500, x^2 - 1020*x + 100, x - 1000, x - 1000]

The characteristic polynomial (of degree 8) factors nicely into the product of two linear
terms and three quadratic terms. You can see immediately that four of the eigenvalues
are 0, 1020, and a double root at 1000. The other four roots are obtained from the
remaining quadratics. Use

eig(R)

to find all these values

ans =
 0
 1000
 1000
 1020
 510 - 100*26^(1/2)
 100*26^(1/2) + 510
 -10*10405^(1/2)
 10*10405^(1/2)

The Rosser matrix is not a typical example; it is rare for a full 8-by-8 matrix to have a
characteristic polynomial that factors into such simple form. If you change the two
“corner” elements of R from 29 to 30 with the commands

S = R;
S(1,8) = 30;
S(8,1) = 30;

and then try

p = charpoly(S, x)

you find

p =
x^8 - 4040*x^7 + 5079941*x^6 + 82706090*x^5...

 Eigenvalues

2-145

 - 5327831918568*x^4 + 4287832912719760*x^3...
 - 1082699388411166000*x^2 + 51264008540948000*x...
 + 40250968213600000

You also find that factor(p) is p itself. That is, the characteristic polynomial cannot be
factored over the rationals.

For this modified Rosser matrix

F = eig(S)

returns

F =
 -1020.053214255892
 -0.17053529728769
 0.2180398054830161
 999.9469178604428
 1000.120698293384
 1019.524355263202
 1019.993550129163
 1020.420188201505

Notice that these values are close to the eigenvalues of the original Rosser matrix.

It is also possible to try to compute eigenvalues of symbolic matrices, but closed form
solutions are rare. The Givens transformation is generated as the matrix exponential of
the elementary matrix

A =
0 1
−1 0

.

Symbolic Math Toolbox commands

syms t
A = sym([0 1; -1 0]);
G = expm(t*A)

return

G =
[exp(-t*1i)/2 + exp(t*1i)/2,
 (exp(-t*1i)*1i)/2 - (exp(t*1i)*1i)/2]
[- (exp(-t*1i)*1i)/2 + (exp(t*1i)*1i)/2,
 exp(-t*1i)/2 + exp(t*1i)/2]

2 Using Symbolic Math Toolbox Software

2-146

You can simplify this expression using simplify:

G = simplify(G)

G =
[cos(t), sin(t)]
[-sin(t), cos(t)]

Next, the command

g = eig(G)

produces

g =
 cos(t) - sin(t)*1i
 cos(t) + sin(t)*1i

You can rewrite g in terms of exponents:

g = rewrite(g, 'exp')

g =
 exp(-t*1i)
 exp(t*1i)

 Eigenvalues

2-147

Jordan Canonical Form
The Jordan canonical form (Jordan normal form) results from attempts to convert a matrix
to its diagonal form by a similarity transformation. For a given matrix A, find a
nonsingular matrix V, so that inv(V)*A*V, or, more succinctly, J = V\A*V, is “as close
to diagonal as possible.” For almost all matrices, the Jordan canonical form is the diagonal
matrix of eigenvalues and the columns of the transformation matrix are the eigenvectors.
This always happens if the matrix is symmetric or if it has distinct eigenvalues. Some
nonsymmetric matrices with multiple eigenvalues cannot be converted to diagonal forms.
The Jordan form has the eigenvalues on its diagonal, but some of the superdiagonal
elements are one, instead of zero. The statement

J = jordan(A)

computes the Jordan canonical form of A. The statement

[V,J] = jordan(A)

also computes the similarity transformation where J = inv(V)*A*V. The columns of V
are the generalized eigenvectors of A.

The Jordan form is extremely sensitive to changes. Almost any change in A causes its
Jordan form to be diagonal. This implies that A must be known exactly (i.e., without
round-off error, etc.) and makes it very difficult to compute the Jordan form reliably with
floating-point arithmetic. Thus, computing the Jordan form with floating-point values is
unreliable and not recommended.

For example, let

A = sym([12,32,66,116;-25,-76,-164,-294;
 21,66,143,256;-6,-19,-41,-73])

A =
[12, 32, 66, 116]
[-25, -76, -164, -294]
[21, 66, 143, 256]
[-6, -19, -41, -73]

Then

[V,J] = jordan(A)

produces

2 Using Symbolic Math Toolbox Software

2-148

V =
[4, -2, 4, 3]
[-6, 8, -11, -8]
[4, -7, 10, 7]
[-1, 2, -3, -2]

J =
[1, 1, 0, 0]
[0, 1, 0, 0]
[0, 0, 2, 1]
[0, 0, 0, 2]

Show that J and inv(V)*A*V are equal by using isequal. The isequal function
returns logical 1 (true) meaning that the inputs are equal.

isequal(J, inv(V)*A*V)

ans =
 logical
 1

From J, we see that A has a double eigenvalue at 1, with a single Jordan block, and a
double eigenvalue at 2, also with a single Jordan block. The matrix has only two
eigenvectors, V(:,1) and V(:,3). They satisfy

A*V(:,1) = 1*V(:,1)
A*V(:,3) = 2*V(:,3)

The other two columns of V are generalized eigenvectors of grade 2. They satisfy

A*V(:,2) = 1*V(:,2) + V(:,1)
A*V(:,4) = 2*V(:,4) + V(:,3)

In mathematical notation, with vj = v(:,j), the columns of V and eigenvalues satisfy the
relationships

(A− λ1I)v2 = v1

(A− λ2I)v4 = v3 .

 Jordan Canonical Form

2-149

Singular Value Decomposition
Singular value decomposition expresses an m-by-n matrix A as A = U*S*V'. Here, S is an
m-by-n diagonal matrix with singular values of A on its diagonal. The columns of the m-by-m
matrix U are the left singular vectors for corresponding singular values. The columns of
the n-by-n matrix V are the right singular vectors for corresponding singular values. V' is
the Hermitian transpose (the complex conjugate of the transpose) of V.

To compute the singular value decomposition of a matrix, use svd. This function lets you
compute singular values of a matrix separately or both singular values and singular
vectors in one function call. To compute singular values only, use svd without output
arguments

svd(A)

or with one output argument

S = svd(A)

To compute singular values and singular vectors of a matrix, use three output arguments:

[U,S,V] = svd(A)

svd returns two unitary matrices, U and V, the columns of which are singular vectors. It
also returns a diagonal matrix, S, containing singular values on its diagonal. The elements
of all three matrices are floating-point numbers. The accuracy of computations is
determined by the current setting of digits.

Create the n-by-n matrix A with elements defined by A(i,j) = 1/(i - j + 1/2). The
most obvious way of generating this matrix is

n = 3;
for i = 1:n
 for j = 1:n
 A(i,j) = sym(1/(i-j+1/2));
 end
end

For n = 3, the matrix is

A

A =
[2, -2, -2/3]

2 Using Symbolic Math Toolbox Software

2-150

[2/3, 2, -2]
[2/5, 2/3, 2]

Compute the singular values of this matrix. If you use svd directly, it will return exact
symbolic result. For this matrix, the result is very long. If you prefer a shorter numeric
result, convert the elements of A to floating-point numbers using vpa. Then use svd to
compute singular values of this matrix using variable-precision arithmetic:

S = svd(vpa(A))

S =
 3.1387302525015353960741348953506
 3.0107425975027462353291981598225
 1.6053456783345441725883965978052

Now, compute the singular values and singular vectors of A:

[U,S,V] = svd(A)

U =
[0.53254331027335338470683368360204, 0.76576895948802052989304092179952,...
 0.36054891952096214791189887728353]
[-0.82525689650849463222502853672224, 0.37514965283965451993171338605042,...
 0.42215375485651489522488031917364]
[0.18801243961043281839917114171742, -0.52236064041897439447429784257224,...
 0.83173955292075192178421874331406]

S =
[3.1387302525015353960741348953506, 0,...
 0]
[0, 3.0107425975027462353291981598225,...
 0]
[0, 0,...
 1.6053456783345441725883965978052]

V =
[0.18801243961043281839917114171742, 0.52236064041897439447429784257224,...
 0.83173955292075192178421874331406]
[-0.82525689650849463222502853672224, -0.37514965283965451993171338605042,...
 0.42215375485651489522488031917364]
[0.53254331027335338470683368360204, -0.76576895948802052989304092179952,...
 0.36054891952096214791189887728353]

 Singular Value Decomposition

2-151

Solve Algebraic Equation
Symbolic Math Toolbox offers both symbolic and numeric equation solvers. This topic
shows you how to solve an equation symbolically using the symbolic solver solve. To
compare symbolic and numeric solvers, see “Select Numeric or Symbolic Solver” on page
2-161.

In this section...
“Solve an Equation” on page 2-152
“Return the Full Solution to an Equation” on page 2-153
“Work with the Full Solution, Parameters, and Conditions Returned by solve” on page 2-
153
“Visualize and Plot Solutions Returned by solve” on page 2-154
“Simplify Complicated Results and Improve Performance” on page 2-157

Solve an Equation
If eqn is an equation, solve(eqn, x) solves eqn for the symbolic variable x.

Use the == operator to specify the familiar quadratic equation and solve it using solve.

syms a b c x
eqn = a*x^2 + b*x + c == 0;
solx = solve(eqn, x)

solx =
 -(b + (b^2 - 4*a*c)^(1/2))/(2*a)
 -(b - (b^2 - 4*a*c)^(1/2))/(2*a)

solx is a symbolic vector containing the two solutions of the quadratic equation. If the
input eqn is an expression and not an equation, solve solves the equation eqn == 0.

To solve for a variable other than x, specify that variable instead. For example, solve eqn
for b.

solb = solve(eqn, b)

solb =
-(a*x^2 + c)/x

2 Using Symbolic Math Toolbox Software

2-152

If you do not specify a variable, solve uses symvar to select the variable to solve for. For
example, solve(eqn) solves eqn for x.

Return the Full Solution to an Equation
solve does not automatically return all solutions of an equation. Solve the equation
cos(x) == -sin(x). The solve function returns one of many solutions.

syms x
solx = solve(cos(x) == -sin(x), x)

solx =
-pi/4

To return all solutions along with the parameters in the solution and the conditions on the
solution, set the ReturnConditions option to true. Solve the same equation for the full
solution. Provide three output variables: for the solution to x, for the parameters in the
solution, and for the conditions on the solution.

syms x
[solx, param, cond] = solve(cos(x) == -sin(x), x, 'ReturnConditions', true)

solx =
pi*k - pi/4
param =
k
cond =
in(k, 'integer')

solx contains the solution for x, which is pi*k - pi/4. The param variable specifies
the parameter in the solution, which is k. The cond variable specifies the condition in(k,
'integer') on the solution, which means k must be an integer. Thus, solve returns a
periodic solution starting at pi/4 which repeats at intervals of pi*k, where k is an
integer.

Work with the Full Solution, Parameters, and Conditions
Returned by solve
You can use the solutions, parameters, and conditions returned by solve to find solutions
within an interval or under additional conditions.

 Solve Algebraic Equation

2-153

To find values of x in the interval -2*pi<x<2*pi, solve solx for k within that interval
under the condition cond. Assume the condition cond using assume.

assume(cond)
solk = solve(-2*pi<solx, solx<2*pi, param)

solk =
 -1
 0
 1
 2

To find values of x corresponding to these values of k, use subs to substitute for k in
solx.

xvalues = subs(solx, solk)

xvalues =
 -(5*pi)/4
 -pi/4
 (3*pi)/4
 (7*pi)/4

To convert these symbolic values into numeric values for use in numeric calculations, use
vpa.

xvalues = vpa(xvalues)

xvalues =
 -3.9269908169872415480783042290994
 -0.78539816339744830961566084581988
 2.3561944901923449288469825374596
 5.4977871437821381673096259207391

Visualize and Plot Solutions Returned by solve
The previous sections used solve to solve the equation cos(x) == -sin(x). The
solution to this equation can be visualized using plotting functions such as fplot and
scatter.

Plot both sides of equation cos(x) == -sin(x).

fplot(cos(x))
hold on

2 Using Symbolic Math Toolbox Software

2-154

grid on
fplot(-sin(x))
title('Both sides of equation cos(x) = -sin(x)')
legend('cos(x)','-sin(x)','Location','best','AutoUpdate','off')

Calculate the values of the functions at the values of x, and superimpose the solutions as
points using scatter.

yvalues = cos(xvalues)

yvalues =

 Solve Algebraic Equation

2-155

−0.70710678118654752440084436210485
0.70710678118654752440084436210485
−0.70710678118654752440084436210485
0.70710678118654752440084436210485

scatter(xvalues, yvalues)

As expected, the solutions appear at the intersection of the two plots.

2 Using Symbolic Math Toolbox Software

2-156

Simplify Complicated Results and Improve Performance
If results look complicated, solve is stuck, or if you want to improve performance, see,
“Troubleshoot Equation Solutions from solve Function” on page 2-174.

 Solve Algebraic Equation

2-157

Solve a Second-Order Differential Equation Numerically
This example shows you how to convert a second-order differential equation into a system
of differential equations that can be solved using the numerical solver ode45 of
MATLAB®.

A typical approach to solving higher-order ordinary differential equations is to convert
them to systems of first-order differential equations, and then solve those systems. The
example uses Symbolic Math Toolbox™ to convert a second-order ODE to a system of
first-order ODEs. Then it uses the MATLAB solver ode45 to solve the system.

Rewrite the Second-Order ODE as a System of First-Order ODEs

Use odeToVectorField to rewrite this second-order differential equation

dy2

dt = (1− y2)dy
dt − y

using a change of variables. Let y(t) = Y1and dy
dt = Y2 such that differentiating both

equations we obtain a system of first-order differential equations.

dY1
dt = Y2

dY2
dt = − (Y1

2− 1)Y2− Y1

syms y(t)
[V] = odeToVectorField(diff(y, 2) == (1 - y^2)*diff(y) - y)

V =
Y2

− Y1
2− 1 Y2− Y1

Generate MATLAB function

The MATLAB ODE solvers do not accept symbolic expressions as an input. Therefore,
before you can use a MATLAB ODE solver to solve the system, you must convert that
system to a MATLAB function. Generate a MATLAB function from this system of first-
order differential equations using matlabFunction with V as an input.

2 Using Symbolic Math Toolbox Software

2-158

M = matlabFunction(V,'vars', {'t','Y'})

M = function_handle with value:
 @(t,Y)[Y(2);-(Y(1).^2-1.0).*Y(2)-Y(1)]

Solve the System of First-Order ODEs

To solve this system, call the MATLAB ode45 numerical solver using the generated
MATLAB function as an input.

sol = ode45(M,[0 20],[2 0]);

Plot the Solution

Plot the solution using linspace to generate 100 points in the interval [0,20] and deval
to evaluate the solution for each point.

fplot(@(x)deval(sol,x,1), [0, 20])

 Solve a Second-Order Differential Equation Numerically

2-159

See Also
dsolve | matlabFunction | ode45 | odeToVectorField

2 Using Symbolic Math Toolbox Software

2-160

Select Numeric or Symbolic Solver
You can solve equations to obtain a symbolic or numeric answer. For example, a solution
to cos x = − 1 is pi in symbolic form and 3.14159 in numeric form. The symbolic
solution is exact, while the numeric solution approximates the exact symbolic solution.
Symbolic Math Toolbox offers both symbolic and numeric equation solvers. This table can
help you choose either the symbolic solver (solve) or the numeric solver (vpasolve). A
possible strategy is to try the symbolic solver first, and use the numeric solver if the
symbolic solver is stuck.

Solve Equations Symbolically Using
solve

Solve Equations Numerically Using
vpasolve

Returns exact solutions. Solutions can then
be approximated using vpa.

Returns approximate solutions. Precision
can be controlled arbitrarily using digits.

Returns a general form of the solution. For polynomial equations, returns all
numeric solutions that exist. For
nonpolynomial equations, returns the first
numeric solution found.

General form allows insight into the
solution.

Numeric solutions provide less insight.

Runs slower. Runs faster.
Search ranges can be specified using
inequalities.

Search ranges and starting points can be
specified.

solve solves equations and inequalities
that contain parameters.

vpasolve does not solve inequalities, nor
does it solve equations that contain
parameters.

solve can return parameterized solutions. vpasolve does not return parameterized
solutions.

vpasolve uses variable-precision arithmetic. You can control precision arbitrarily using
digits. For examples, see “Increase Precision of Numeric Calculations” on page 2-123.

See Also
solve | vpasolve

 Select Numeric or Symbolic Solver

2-161

Related Examples
• “Solve Algebraic Equation” on page 2-152
• “Solve Equations Numerically” on page 2-182
• “Solve System of Linear Equations” on page 2-179

2 Using Symbolic Math Toolbox Software

2-162

Solve System of Algebraic Equations
This topic shows you how to solve a system of equations symbolically using Symbolic
Math Toolbox. This toolbox offers both numeric and symbolic equation solvers. For a
comparison of numeric and symbolic solvers, see “Select Numeric or Symbolic Solver” on
page 2-161.

In this section...
“Handle the Output of solve” on page 2-163
“Solve a Linear System of Equations” on page 2-165
“Return the Full Solution of a System of Equations” on page 2-166
“Solve a System of Equations Under Conditions” on page 2-168
“Work with Solutions, Parameters, and Conditions Returned by solve” on page 2-169
“Convert Symbolic Results to Numeric Values” on page 2-173
“Simplify Complicated Results and Improve Performance” on page 2-173

Handle the Output of solve
Suppose you have the system

x2y2 = 0

x− y
2 = α,

and you want to solve for x and y. First, create the necessary symbolic objects.

syms x y a

There are several ways to address the output of solve. One way is to use a two-output
call.

[solx,soly] = solve(x^2*y^2 == 0, x-y/2 == a)

The call returns the following.

solx =
 0
 a

 Solve System of Algebraic Equations

2-163

soly =
 -2*a
 0

Modify the first equation to x2y2 = 1. The new system has more solutions.

[solx,soly] = solve(x^2*y^2 == 1, x-y/2 == a)

Four distinct solutions are produced.

solx =
 a/2 - (a^2 - 2)^(1/2)/2
 a/2 - (a^2 + 2)^(1/2)/2
 a/2 + (a^2 - 2)^(1/2)/2
 a/2 + (a^2 + 2)^(1/2)/2
soly =
 - a - (a^2 - 2)^(1/2)
 - a - (a^2 + 2)^(1/2)
 (a^2 - 2)^(1/2) - a
 (a^2 + 2)^(1/2) - a

Since you did not specify the dependent variables, solve uses symvar to determine the
variables.

This way of assigning output from solve is quite successful for “small” systems. For
instance, if you have a 10-by-10 system of equations, typing the following is both awkward
and time consuming.

[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10] = solve(...)

To circumvent this difficulty, solve can return a structure whose fields are the solutions.
For example, solve the system of equations u^2 - v^2 = a^2, u + v = 1, a^2 - 2*a
= 3.

syms u v a
S = solve(u^2 - v^2 == a^2, u + v == 1, a^2 - 2*a == 3)

The solver returns its results enclosed in this structure.

S =
 struct with fields:

 a: [2×1 sym]
 u: [2×1 sym]
 v: [2×1 sym]

2 Using Symbolic Math Toolbox Software

2-164

The solutions for a reside in the “a-field” of S.

S.a

ans =
 -1
 3

Similar comments apply to the solutions for u and v. The structure S can now be
manipulated by the field and index to access a particular portion of the solution. For
example, to examine the second solution, you can use the following statement to extract
the second component of each field.

s2 = [S.a(2), S.u(2), S.v(2)]

s2 =
[3, 5, -4]

The following statement creates the solution matrix M whose rows comprise the distinct
solutions of the system.

M = [S.a, S.u, S.v]

M =
[-1, 1, 0]
[3, 5, -4]

Clear solx and soly for further use.

clear solx soly

Solve a Linear System of Equations
Linear systems of equations can also be solved using matrix division. For example, solve
this system.

clear u v x y
syms u v x y
eqns = [x + 2*y == u, 4*x + 5*y == v];
S = solve(eqns);
sol = [S.x; S.y]

[A,b] = equationsToMatrix(eqns,x,y);
z = A\b

 Solve System of Algebraic Equations

2-165

sol =
 (2*v)/3 - (5*u)/3
 (4*u)/3 - v/3

z =
 (2*v)/3 - (5*u)/3
 (4*u)/3 - v/3

Thus,sol and z produce the same solution, although the results are assigned to different
variables.

Return the Full Solution of a System of Equations
solve does not automatically return all solutions of an equation. To return all solutions
along with the parameters in the solution and the conditions on the solution, set the
ReturnConditions option to true.

Consider the following system of equations:

sin x + cos y = 4
5

sin x cos y = 1
10

Visualize the system of equations using fimplicit. To set the x-axis and y-axis values in
terms of pi, get the axes handles using axes in a. Create the symbolic array S of the
values -2*pi to 2*pi at intervals of pi/2. To set the ticks to S, use the XTick and
YTick properties of a. To set the labels for the x-and y-axes, convert S to character
vectors. Use arrayfun to apply char to every element of S to return T. Set the
XTickLabel and YTickLabel properties of a to T.

syms x y
eqn1 = sin(x)+cos(y) == 4/5;
eqn2 = sin(x)*cos(y) == 1/10;
a = axes;
fimplicit(eqn1,[-2*pi 2*pi],'b');
hold on
grid on
fimplicit(eqn2,[-2*pi 2*pi],'m');
L = sym(-2*pi:pi/2:2*pi);
a.XTick = double(L);
a.YTick = double(L);

2 Using Symbolic Math Toolbox Software

2-166

M = arrayfun(@char, L, 'UniformOutput', false);
a.XTickLabel = M;
a.YTickLabel = M;
title('Plot of System of Equations')
legend('sin(x)+cos(y) == 4/5','sin(x)*cos(y) == 1/10',...
 'Location','best','AutoUpdate','off')

The solutions lie at the intersection of the two plots. This shows the system has repeated,
periodic solutions. To solve this system of equations for the full solution set, use solve
and set the ReturnConditions option to true.

S = solve(eqn1, eqn2, 'ReturnConditions', true)

 Solve System of Algebraic Equations

2-167

S =
 struct with fields:

 x: [2×1 sym]
 y: [2×1 sym]
 parameters: [1×2 sym]
 conditions: [2×1 sym]

solve returns a structure S with the fields S.x for the solution to x, S.y for the solution
to y, S.parameters for the parameters in the solution, and S.conditions for the
conditions on the solution. Elements of the same index in S.x, S.y, and S.conditions
form a solution. Thus, S.x(1), S.y(1), and S.conditions(1) form one solution to the
system of equations. The parameters in S.parameters can appear in all solutions.

Index into S to return the solutions, parameters, and conditions.

S.x
S.y
S.parameters
S.conditions

ans =
 z1
 z1
ans =
 z
 z
ans =
[z, z1]
ans =
 (in((z - acos(6^(1/2)/10 + 2/5))/(2*pi), 'integer') |...
 in((z + acos(6^(1/2)/10 + 2/5))/(2*pi), 'integer')) &...
 (in(-(pi - z1 + asin(6^(1/2)/10 - 2/5))/(2*pi), 'integer') |...
 in((z1 + asin(6^(1/2)/10 - 2/5))/(2*pi), 'integer'))
 (in((z1 - asin(6^(1/2)/10 + 2/5))/(2*pi), 'integer') |...
 in((z1 - pi + asin(6^(1/2)/10 + 2/5))/(2*pi), 'integer')) &...
 (in((z - acos(2/5 - 6^(1/2)/10))/(2*pi), 'integer') |...
 in((z + acos(2/5 - 6^(1/2)/10))/(2*pi), 'integer'))

Solve a System of Equations Under Conditions
To solve the system of equations under conditions, specify the conditions in the input to
solve.

2 Using Symbolic Math Toolbox Software

2-168

Solve the system of equations considered above for x and y in the interval -2*pi to
2*pi. Overlay the solutions on the plot using scatter.

Srange = solve(eqn1, eqn2, -2*pi<x, x<2*pi, -2*pi<y, y<2*pi, 'ReturnConditions', true);
scatter(Srange.x, Srange.y,'k')

Work with Solutions, Parameters, and Conditions Returned by
solve
You can use the solutions, parameters, and conditions returned by solve to find solutions
within an interval or under additional conditions. This section has the same goal as the
previous section, to solve the system of equations within a search range, but with a

 Solve System of Algebraic Equations

2-169

different approach. Instead of placing conditions directly, it shows how to work with the
parameters and conditions returned by solve.

For the full solution S of the system of equations, find values of x and y in the interval
-2*pi to 2*pi by solving the solutions S.x and S.y for the parameters S.parameters
within that interval under the condition S.conditions.

Before solving for x and y in the interval, assume the conditions in S.conditions using
assume so that the solutions returned satisfy the condition. Assume the conditions for the
first solution.

assume(S.conditions(1))

Find the parameters in S.x and S.y.

paramx = intersect(symvar(S.x), S.parameters)
paramy = intersect(symvar(S.y), S.parameters)

paramx =
z1
paramy =
z

Solve the first solution of x for the parameter paramx.

solparamx(1,:) = solve(S.x(1) > -2*pi, S.x(1) < 2*pi, paramx)

solparamx =
[pi + asin(6^(1/2)/10 - 2/5), asin(6^(1/2)/10 - 2/5) - pi,
 -asin(6^(1/2)/10 - 2/5), - 2*pi - asin(6^(1/2)/10 - 2/5)]

Similarly, solve the first solution of y for paramy.

solparamy(1,:) = solve(S.y(1) > -2*pi, S.y(1) < 2*pi, paramy)

solparamy =
[acos(6^(1/2)/10 + 2/5), acos(6^(1/2)/10 + 2/5) - 2*pi,
 -acos(6^(1/2)/10 + 2/5), 2*pi - acos(6^(1/2)/10 + 2/5)]

Clear the assumptions set by S.conditions(1) using assume. Call asumptions to
check that the assumptions are cleared.

assume(S.parameters,'clear')
assumptions

2 Using Symbolic Math Toolbox Software

2-170

ans =
Empty sym: 1-by-0

Assume the conditions for the second solution.

assume(S.conditions(2))

Solve the second solution to x and y for the parameters paramx and paramy.

solparamx(2,:) = solve(S.x(2) > -2*pi, S.x(2) < 2*pi, paramx)
solparamy(2,:) = solve(S.y(2) > -2*pi, S.y(2) < 2*pi, paramy)

solparamx =
[pi + asin(6^(1/2)/10 - 2/5), asin(6^(1/2)/10 - 2/5) - pi,
 -asin(6^(1/2)/10 - 2/5), - 2*pi - asin(6^(1/2)/10 - 2/5)]
[asin(6^(1/2)/10 + 2/5), pi - asin(6^(1/2)/10 + 2/5),
 asin(6^(1/2)/10 + 2/5) - 2*pi, - pi - asin(6^(1/2)/10 + 2/5)]
solparamy =
[acos(6^(1/2)/10 + 2/5), acos(6^(1/2)/10 + 2/5) - 2*pi,
 -acos(6^(1/2)/10 + 2/5), 2*pi - acos(6^(1/2)/10 + 2/5)]
[acos(2/5 - 6^(1/2)/10), acos(2/5 - 6^(1/2)/10) - 2*pi,
 -acos(2/5 - 6^(1/2)/10), 2*pi - acos(2/5 - 6^(1/2)/10)]

The first rows of paramx and paramy form the first solution to the system of equations,
and the second rows form the second solution.

To find the values of x and y for these values of paramx and paramy, use subs to
substitute for paramx and paramy in S.x and S.y.

solx(1,:) = subs(S.x(1), paramx, solparamx(1,:));
solx(2,:) = subs(S.x(2), paramx, solparamx(2,:))
soly(1,:) = subs(S.y(1), paramy, solparamy(1,:));
soly(2,:) = subs(S.y(2), paramy, solparamy(2,:))

solx =
[pi + asin(6^(1/2)/10 - 2/5), asin(6^(1/2)/10 - 2/5) - pi,
 -asin(6^(1/2)/10 - 2/5), - 2*pi - asin(6^(1/2)/10 - 2/5)]
[asin(6^(1/2)/10 + 2/5), pi - asin(6^(1/2)/10 + 2/5),
 asin(6^(1/2)/10 + 2/5) - 2*pi, - pi - asin(6^(1/2)/10 + 2/5)]
soly =
[acos(6^(1/2)/10 + 2/5), acos(6^(1/2)/10 + 2/5) - 2*pi,
 -acos(6^(1/2)/10 + 2/5), 2*pi - acos(6^(1/2)/10 + 2/5)]
[acos(2/5 - 6^(1/2)/10), acos(2/5 - 6^(1/2)/10) - 2*pi,
 -acos(2/5 - 6^(1/2)/10), 2*pi - acos(2/5 - 6^(1/2)/10)]

 Solve System of Algebraic Equations

2-171

Note that solx and soly are the two sets of solutions to x and to y. The full sets of
solutions to the system of equations are the two sets of points formed by all possible
combinations of the values in solx and soly.

Plot these two sets of points using scatter. Overlay them on the plot of the equations.
As expected, the solutions appear at the intersection of the plots of the two equations.

for i = 1:length(solx(1,:))
 for j = 1:length(soly(1,:))
 scatter(solx(1,i), soly(1,j), 'k')
 scatter(solx(2,i), soly(2,j), 'k')
 end
end

2 Using Symbolic Math Toolbox Software

2-172

Convert Symbolic Results to Numeric Values
Symbolic calculations provide exact accuracy, while numeric calculations are
approximations. Despite this loss of accuracy, you might need to convert symbolic results
to numeric approximations for use in numeric calculations. For a high-accuracy
conversion, use variable-precision arithmetic provided by the vpa function. For standard
accuracy and better performance, convert to double precision using double.

Use vpa to convert the symbolic solutions solx and soly to numeric form.

vpa(solx)
vpa(soly)

ans =
[2.9859135500977407388300518406219,...
 -3.2972717570818457380952349259371,...
 0.15567910349205249963259154265761,...
 -6.1275062036875339772926952239014]
...
[0.70095651347102524787213653614929,...
 2.4406361401187679905905068471302,...
 -5.5822287937085612290531502304097,...
 -3.8425491670608184863347799194288]

ans =
[0.86983981332387137135918515549046,...
 -5.4133454938557151055661016110685,...
 -0.86983981332387137135918515549046,...
 5.4133454938557151055661016110685]
...
[1.4151172233028441195987301489821,...
 -4.8680680838767423573265566175769,...
 -1.4151172233028441195987301489821,...
 4.8680680838767423573265566175769]

Simplify Complicated Results and Improve Performance
If results look complicated, solve is stuck, or if you want to improve performance, see,
“Troubleshoot Equation Solutions from solve Function” on page 2-174.

 Solve System of Algebraic Equations

2-173

Troubleshoot Equation Solutions from solve Function
If solve returns solutions that look complicated, or if solve cannot handle an input,
there are many options. These options simplify the solution space for solve. These
options also help solve when the input is complicated, and might allow solve to return
a solution where it was previously stuck.

In this section...
“Return Only Real Solutions” on page 2-174
“Apply Simplification Rules” on page 2-174
“Use Assumptions to Narrow Results” on page 2-175
“Simplify Solutions” on page 2-177
“Tips” on page 2-177

Return Only Real Solutions
Solve the equation x^5 - 1 == 0. This equation has five solutions.

syms x
solve(x^5 - 1 == 0, x)

ans =
 1
 - (2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 - 5^(1/2)/4 - 1/4
 (2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 - 5^(1/2)/4 - 1/4
 5^(1/2)/4 - (2^(1/2)*(5^(1/2) + 5)^(1/2)*1i)/4 - 1/4
 5^(1/2)/4 + (2^(1/2)*(5^(1/2) + 5)^(1/2)*1i)/4 - 1/4

If you only need real solutions, specify the Real option as true. The solve function
returns the one real solution.

solve(x^5 - 1, x, 'Real', true)

ans =
1

Apply Simplification Rules
Solve the following equation. The solve function returns a complicated solution.

2 Using Symbolic Math Toolbox Software

2-174

syms x
solve(x^(5/2) + 1/x^(5/2) == 1, x)

ans =
 1/(1/2 - (3^(1/2)*1i)/2)^(2/5)
 1/((3^(1/2)*1i)/2 + 1/2)^(2/5)
 -(5^(1/2)/4 - (2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 + 1/4)/(1/2 - (3^(1/2)*1i)/2)^(2/5)
 -((2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 + 5^(1/2)/4 + 1/4)/(1/2 - (3^(1/2)*1i)/2)^(2/5)
 -(5^(1/2)/4 - (2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 + 1/4)/(1/2 + (3^(1/2)*1i)/2)^(2/5)
 -((2^(1/2)*(5 - 5^(1/2))^(1/2)*1i)/4 + 5^(1/2)/4 + 1/4)/(1/2 + (3^(1/2)*1i)/2)^(2/5)

To apply simplification rules when solving equations, specify the
IgnoreAnalyticConstraints option as true. The applied simplification rules are not
generally correct mathematically but might produce useful solutions, especially in physics
and engineering. With this option, the solver does not guarantee the correctness and
completeness of the result.

solve(x^(5/2) + 1/x^(5/2) == 1, x, 'IgnoreAnalyticConstraints', true)

ans =
 1/(1/2 - (3^(1/2)*1i)/2)^(2/5)
 1/((3^(1/2)*1i)/2 + 1/2)^(2/5)

This solution is simpler and more usable.

Use Assumptions to Narrow Results
For solutions to specific cases, set assumptions to return appropriate solutions. Solve the
following equation. The solve function returns seven solutions.

syms x
solve(x^7 + 2*x^6 - 59*x^5 - 106*x^4 + 478*x^3 + 284*x^2 - 1400*x + 800, x)

ans =
 1
 - 5^(1/2) - 1
 - 17^(1/2)/2 - 1/2
 17^(1/2)/2 - 1/2
 -5*2^(1/2)
 5*2^(1/2)
 5^(1/2) - 1

Assume x is a positive number and solve the equation again. The solve function only
returns the four positive solutions.

 Troubleshoot Equation Solutions from solve Function

2-175

assume(x > 0)
solve(x^7 + 2*x^6 - 59*x^5 - 106*x^4 + 478*x^3 + 284*x^2 - 1400*x + 800, x)

ans =
 1
 17^(1/2)/2 - 1/2
 5*2^(1/2)
 5^(1/2) - 1

Place the additional assumption that x is an integer using in(x,'integer'). Place
additional assumptions on variables using assumeAlso.

assumeAlso(in(x,'integer'))
solve(x^7 + 2*x^6 - 59*x^5 - 106*x^4 + 478*x^3 + 284*x^2 - 1400*x + 800, x)

ans =
1

solve returns the only positive, integer solution to x.

Clear the assumptions on x for further computations by recreating it using syms.

syms x

Alternatively, to make several assumptions, use the & operator. Make the following
assumptions, and solve the following equations.

syms a b c f g h y
assume(f == c & a == h & a~= 0)
S = solve([a*x + b*y == c, h*x - g*y == f], [x, y], 'ReturnConditions', true);
S.x
S.y
S.conditions

ans =
f/h
ans =
0
ans =
b + g ~= 0

Under the specified assumptions, the solution is x = f/h and y = 0 under the condition
b + g ~= 0.

Clear the assumptions on the variables for further computations by recreating them using
syms.

2 Using Symbolic Math Toolbox Software

2-176

syms a c f h

Simplify Solutions
The solve function does not call simplification functions for the final results. To simplify
the solutions, call simplify.

Solve the following equation. Convert the numbers to symbolic numbers using sym to
return a symbolic result.
syms x
S = solve((sin(x) - 2*cos(x))/(sin(x) + 2*cos(x)) == 1/2, x)

S =
 -log(-(- 140/37 + 48i/37)^(1/2)/2)*1i
 -log((- 140/37 + 48i/37)^(1/2)/2)*1i

Call simplify to simplify solution S.

simplify(S)

ans =
 -log(37^(1/2)*(- 1/37 - 6i/37))*1i
 log(2)*1i - (log(- 140/37 + 48i/37)*1i)/2

Call simplify with more steps to simplify the result even further.

simplify(S, 'Steps', 50)

ans =
 atan(6) - pi
 atan(6)

Tips
• To represent a number exactly, use sym to convert the number to a floating-point

object. For example, use sym(13)/5 instead of 13/5. This represents 13/5 exactly
instead of converting 13/5 to a floating-point number. For a large number, place the
number in quotes. Compare sym(13)/5, sym(133333333333333333333)/5, and
sym('133333333333333333333')/5.

sym(13)/5
sym(133333333333333333333)/5
sym('133333333333333333333')/5

 Troubleshoot Equation Solutions from solve Function

2-177

ans =
13/5
ans =
133333333333333327872/5
ans =
133333333333333333333/5

Placing the number in quotes and using sym provides the highest accuracy.
• If possible, simplify the system of equations manually before using solve. Try to

reduce the number of equations, parameters, and variables.

2 Using Symbolic Math Toolbox Software

2-178

Solve System of Linear Equations
This section shows you how to solve a system of linear equations using the Symbolic Math
Toolbox.

In this section...
“Solve System of Linear Equations Using linsolve” on page 2-179
“Solve System of Linear Equations Using solve” on page 2-180

Solve System of Linear Equations Using linsolve
A system of linear equations

a11x1 + a12x2 + … + a1nxn = b1
a21x1 + a22x2 + … + a2nxn = b2

⋯
am1x1 + am2x2 + … + amnxn = bm

can be represented as the matrix equation A ⋅ x = b , where A is the coefficient matrix,

A =
a11 … a1n

⋮ ⋱ ⋮
am1 ⋯ amn

and b is the vector containing the right sides of equations,

b =
b1

⋮
bm

If you do not have the system of linear equations in the form AX = B, use
equationsToMatrix to convert the equations into this form. Consider the following
system.

2x + y + z = 2
−x + y − z = 3
x + 2y + 3z = − 10

 Solve System of Linear Equations

2-179

Declare the system of equations.

syms x y z
eqn1 = 2*x + y + z == 2;
eqn2 = -x + y - z == 3;
eqn3 = x + 2*y + 3*z == -10;

Use equationsToMatrix to convert the equations into the form AX = B. The second
input to equationsToMatrix specifies the independent variables in the equations.

[A,B] = equationsToMatrix([eqn1, eqn2, eqn3], [x, y, z])

A =
[2, 1, 1]
[-1, 1, -1]
[1, 2, 3]

B =
 2
 3
 -10

Use linsolve to solve AX = B for the vector of unknowns X.

X = linsolve(A,B)

X =
 3
 1
 -5

From X, x = 3, y = 1 and z = -5.

Solve System of Linear Equations Using solve
Use solve instead of linsolve if you have the equations in the form of expressions and
not a matrix of coefficients. Consider the same system of linear equations.

2x + y + z = 2
−x + y − z = 3
x + 2y + 3z = − 10

Declare the system of equations.

2 Using Symbolic Math Toolbox Software

2-180

syms x y z
eqn1 = 2*x + y + z == 2;
eqn2 = -x + y - z == 3;
eqn3 = x + 2*y + 3*z == -10;

Solve the system of equations using solve. The inputs to solve are a vector of
equations, and a vector of variables to solve the equations for.

sol = solve([eqn1, eqn2, eqn3], [x, y, z]);
xSol = sol.x
ySol = sol.y
zSol = sol.z

xSol =
3
ySol =
1
zSol =
-5

solve returns the solutions in a structure array. To access the solutions, index into the
array.

See Also

More About
• “Solve Algebraic Equation” on page 2-152
• “Solve System of Algebraic Equations” on page 2-163

 See Also

2-181

Solve Equations Numerically
The Symbolic Math Toolbox offers both numeric and symbolic equation solvers. For a
comparison of numeric and symbolic solvers, please see “Select Numeric or Symbolic
Solver” on page 2-161. An equation or a system of equations can have multiple solutions.
To find these solutions numerically, use the function vpasolve. For polynomial equations,
vpasolve returns all solutions. For nonpolynomial equations, vpasolve returns the first
solution it finds. This shows you how to use vpasolve to find solutions to both polynomial
and nonpolynomial equations, and how to obtain these solutions to arbitrary precision.

In this section...
“Find All Roots of a Polynomial Function” on page 2-182
“Find Zeros of a Nonpolynomial Function Using Search Ranges and Starting Points” on
page 2-183
“Obtain Solutions to Arbitrary Precision” on page 2-187
“Solve Multivariate Equations Using Search Ranges” on page 2-188

Find All Roots of a Polynomial Function

Use vpasolve to find all the solutions to function f x = 6x7− 2x6 + 3x3− 8.

syms f(x)
f(x) = 6*x^7-2*x^6+3*x^3-8;
sol = vpasolve(f)

sol =
 1.0240240759053702941448316563337
 - 0.88080620051762149639205672298326 + 0.50434058840127584376331806592405i
 - 0.88080620051762149639205672298326 - 0.50434058840127584376331806592405i
 - 0.22974795226118163963098570610724 + 0.96774615576744031073999010695171i
 - 0.22974795226118163963098570610724 - 0.96774615576744031073999010695171i
 0.7652087814927846556172932675903 + 0.83187331431049713218367239317121i
 0.7652087814927846556172932675903 - 0.83187331431049713218367239317121i

vpasolve returns seven roots of the function, as expected, because the function is a
polynomial of degree seven.

2 Using Symbolic Math Toolbox Software

2-182

Find Zeros of a Nonpolynomial Function Using Search Ranges
and Starting Points
Consider the function f x = e x/7 cos(2x). A plot of the function reveals periodic zeros,
with increasing slopes at the zero points as x increases.

syms x
h = fplot(exp(x/7)*cos(2*x),[-2 25]);
grid on

Use vpasolve to find a zero of the function f. Note that vpasolve returns only one
solution of a nonpolynomial equation, even if multiple solutions exist. On repeated calls,
vpasolve returns the same result, even if multiple zeros exist.

 Solve Equations Numerically

2-183

f = exp(-x/20)*cos(2*x);
for i = 1:3
 vpasolve(f,x)
end

ans =
19.634954084936207740391521145497
ans =
19.634954084936207740391521145497
ans =
19.634954084936207740391521145497

To find multiple solutions, set the option random to true. This makes vpasolve choose
starting points randomly. For information on the algorithm that chooses random starting
points, see “Algorithms” on page 4-1878 on the vpasolve page.

for i = 1:3
 vpasolve(f,x,'random',true)
end

ans =
-226.98006922186256147892598444194
ans =
98.174770424681038701957605727484
ans =
58.904862254808623221174563436491

To find a zero close to x = 10 and to x = 1000, set the starting point to 10, and then to
1000.

vpasolve(f,x,10)
vpasolve(f,x,1000)

ans =
10.210176124166828025003590995658
ans =
999.8118620049516981407362567287

To find a zero in the range 15 ≤ x ≤ 25, set the search range to [15 25].

vpasolve(f,x,[15 25])

ans =
21.205750411731104359622842837137

2 Using Symbolic Math Toolbox Software

2-184

To find multiple zeros in the range [15 25], you cannot call vpasolve repeatedly as it
returns the same result on each call, as previously shown. Instead, set random to true in
conjunction with the search range.

for i = 1:3
vpasolve(f,x,[15 25],'random',true)
end

ans =
21.205750411731104359622842837137
ans =
16.493361431346414501928877762217
ans =
16.493361431346414501928877762217

If you specify the random option while also specifying a starting point, vpasolve warns
you that the two options are incompatible.

vpasolve(f,x,15,'random',true)

Warning: 'Random' has no effect because
 all variables have a starting value.
> In sym/vpasolve (line 168)
ans =
14.922565104551517882697556070578

Create the function findzeros below to systematically find all zeros for f in a given
search range, within the error tolerance. It starts with the input search range and calls
vpasolve to find a zero. Then, it splits the search range into two around the zero’s value,
and recursively calls itself with the new search ranges as inputs to find more zeros. The
first input is the function, the second input is the range, and the optional third input
allows you to specify the error between a zero and the higher and lower bounds
generated from it.

The function is explained section by section here.

Declare the function with the two inputs and one output.

function sol = findzeros(f,range,err)

If you do not specify the optional argument for error tolerance, findzeros sets err to
0.001.

 Solve Equations Numerically

2-185

if nargin < 2
 err = 1e-3;
end

Find a zero in the search range using vpasolve.

sol = vpasolve(f,range);

If vpasolve does not find a zero, exit.

if(isempty(sol))
 return

If vpasolve finds a zero, split the search range into two search ranges above and below
the zero.

else
 lowLimit = sol-err;
 highLimit = sol+err;

Call findzeros with the lower search range. If findzeros returns zeros, copy the
values into the solution array and sort them.

 temp = findzeros(f,[range(1) lowLimit],1);
 if ~isempty(temp)
 sol = sort([sol temp]);
 end

Call findzeros with the higher search range. If findzeros returns zeros, copy the
values into the solution array and sort them.

 temp = findzeros(f,[highLimit range(2)],1);
 if ~isempty(temp)
 sol = sort([sol temp]);
 end
 return
end
end

The entire function findzeros is as follows.

function sol = findzeros(f,range,err)
if nargin < 3
 err = 1e-3;
end

2 Using Symbolic Math Toolbox Software

2-186

sol = vpasolve(f,range);
if(isempty(sol))
 return
else
 lowLimit = sol-err;
 highLimit = sol+err;
 temp = findzeros(f,[range(1) lowLimit],1);
 if ~isempty(temp)
 sol = sort([sol temp]);
 end
 temp = findzeros(f,[highLimit range(2)],1);
 if ~isempty(temp)
 sol = sort([sol temp]);
 end
 return
end
end

Call findzeros with search range [10 20] to find all zeros in that range for f(x) =
exp(-x/20)*cos(2*x), within the default error tolerance.

syms f(x)
f(x) = exp(-x/20)*cos(2*x);
findzeros(f,[10 20])

ans =
[10.210176124166828025003590995658, 11.780972450961724644234912687298,...
 13.351768777756621263466234378938, 14.922565104551517882697556070578,...
 16.493361431346414501928877762217, 18.064157758141311121160199453857,...
 19.634954084936207740391521145497]

Obtain Solutions to Arbitrary Precision
Use digits to set the precision of the solutions. By default, vpasolve returns solutions
to a precision of 32 significant figures. Use digits to increase the precision to 64
significant figures. When modifying digits, ensure that you save its current value so
that you can restore it.

f = exp(x/7)*cos(2*x);
vpasolve(f)
digitsOld = digits;
digits(64)
vpasolve(f)
digits(digitsOld)

 Solve Equations Numerically

2-187

ans =
-7.0685834705770347865409476123789
ans =
-7.068583470577034786540947612378881489443631148593988097193625333

Solve Multivariate Equations Using Search Ranges
Consider the following system of equations.

z = 10 cos x + cos y
z = x + y2− 0.1x2y
x + y − 2.7 = 0

A plot of the equations for 0 ≤ x ≤ 2.5 and 0 ≤ x ≤ 2.5 shows that the three surfaces
intersect in two points. To better visualize the plot, use view. To scale the colormap
values, use caxis.

syms x y z
eqn1 = z == 10*(cos(x) + cos(y));
eqn2 = z == x+y^2-0.1*x^2*y;
eqn3 = x+y-2.7 == 0;
equations = [eqn1 eqn2 eqn3];
fimplicit3(equations)
axis([0 2.5 0 2.5 -20 10])
title('System of Multivariate Equations')
view(69, 28)
caxis([-15 10])

2 Using Symbolic Math Toolbox Software

2-188

Use vpasolve to find a point where the surfaces intersect. The function vpasolve
returns a structure. To access the solution, index into the structure.

sol = vpasolve(equations);
[sol.x sol.y sol.z]

ans = 2.3697 0.3303 2.2934

To search a region of the solution space, specify search ranges for the variables. If you
specify the ranges 0 ≤ x ≤ 1.5 and 1.5 ≤ y ≤ 2.5, then vpasolve function searches the
bounded area shown in the picture.

 Solve Equations Numerically

2-189

Use vpasolve to find a solution for this search range0 ≤ x ≤ 1.5 and 1.5 ≤ y ≤ 2.5. To
omit a search range for z, set the search range to [NaN NaN].

vars = [x y z];
range = [0 1.5; 1.5 2.5; NaN NaN];
sol = vpasolve(equations, vars, range);
[sol.x sol.y sol.z]

ans = 0.9106 1.7894 3.9641

To find multiple solutions, you can set the random option to true. This makes vpasolve
use random starting points on successive runs. The random option can be used in
conjunction with search ranges to make vpasolve use random starting points within a

2 Using Symbolic Math Toolbox Software

2-190

search range. Because random selects starting points randomly, the same solution might
be found on successive calls. Call vpasolve repeatedly to ensure you find both solutions.

clear sol
range = [0 3; 0 3; NaN NaN];
for i = 1:5
 temp = vpasolve(equations, vars, range, 'random', true);
 sol(i,1) = temp.x;
 sol(i,2) = temp.y;
 sol(i,3) = temp.z;
end
sol

sol =
0.9106 1.7894 3.9641
2.3697 0.3303 2.2934
0.9106 1.7894 3.9641
0.9106 1.7894 3.9641
0.9106 1.7894 3.9641

Plot the equations. Superimpose the solutions as a scatter plot of points with yellow X
markers using scatter3. To better visualize the plot, make two of the surfaces
transparent using alpha. Scale the colormap to the plot values using caxis, and change
the perspective using view.

vpasolve finds solutions at the intersection of the surfaces formed by the equations as
shown.

clf
ax = axes;
h = fimplicit3(equations);
h(2).FaceAlpha = 0;
h(3).FaceAlpha = 0;
axis([0 2.5 0 2.5 -20 10])
hold on
scatter3(sol(:,1),sol(:,2),sol(:,3),600,'yellow','X','LineWidth',2)
title('Randomly found solutions in specified search range')
cz = ax.Children;
caxis([0 20])
view(69,28)
hold off

 Solve Equations Numerically

2-191

2 Using Symbolic Math Toolbox Software

2-192

Solve Differential Equation
Solve a differential equation analytically by using the dsolve function, with or without
initial conditions. To solve a system of differential equations, see “Solve a System of
Differential Equations” on page 2-197.

In this section...
“First-Order Linear ODE” on page 2-193
“Solve Differential Equation with Condition” on page 2-194
“Nonlinear Differential Equation with Initial Condition” on page 2-194
“Second-Order ODE with Initial Conditions” on page 2-194
“Third-Order ODE with Initial Conditions” on page 2-195
“More ODE Examples” on page 2-196

First-Order Linear ODE
Solve this differential equation.

dy
dt = ty .

First, represent y by using syms to create the symbolic function y(t).

syms y(t)

Define the equation using == and represent differentiation using the diff function.

ode = diff(y,t) == t*y

ode(t) =
diff(y(t), t) == t*y(t)

Solve the equation using dsolve.

ySol(t) = dsolve(ode)

ySol(t) =
C1*exp(t^2/2)

 Solve Differential Equation

2-193

Solve Differential Equation with Condition
In the previous solution, the constant C1 appears because no condition was specified.
Solve the equation with the initial condition y(0) == 2. The dsolve function finds a
value of C1 that satisfies the condition.

cond = y(0) == 2;
ySol(t) = dsolve(ode,cond)

ySol(t) =
2*exp(t^2/2)

If dsolve cannot solve your equation, then try solving the equation numerically. See
“Solve a Second-Order Differential Equation Numerically” on page 2-158.

Nonlinear Differential Equation with Initial Condition
Solve this nonlinear differential equation with an initial condition. The equation has
multiple solutions.

dy
dt + y

2
= 1,

y 0 = 0.

syms y(t)
ode = (diff(y,t)+y)^2 == 1;
cond = y(0) == 0;
ySol(t) = dsolve(ode,cond)

ySol(t) =
 exp(-t) - 1
 1 - exp(-t)

Second-Order ODE with Initial Conditions
Solve this second-order differential equation with two initial conditions.

d2y
dx2 = cos 2x − y,

y 0 = 1,
y′ 0 = 0.

2 Using Symbolic Math Toolbox Software

2-194

Define the equation and conditions. The second initial condition involves the first
derivative of y. Represent the derivative by creating the symbolic function Dy =
diff(y) and then define the condition using Dy(0)==0.

syms y(x)
Dy = diff(y);

ode = diff(y,x,2) == cos(2*x)-y;
cond1 = y(0) == 1;
cond2 = Dy(0) == 0;

Solve ode for y. Simplify the solution using the simplify function.

conds = [cond1 cond2];
ySol(x) = dsolve(ode,conds);
ySol = simplify(ySol)

ySol(x) =
1 - (8*sin(x/2)^4)/3

Third-Order ODE with Initial Conditions
Solve this third-order differential equation with three initial conditions.

d3u
dx3 = u,

u(0) = 1,
u′(0) = − 1,
u′′(0) = π .

Because the initial conditions contain the first- and second-order derivatives, create two
symbolic functions, Du = diff(u,x) and D2u = diff(u,x,2), to specify the initial
conditions.

syms u(x)
Du = diff(u,x);
D2u = diff(u,x,2);

Create the equation and initial conditions, and solve it.

ode = diff(u,x,3) == u;
cond1 = u(0) == 1;

 Solve Differential Equation

2-195

cond2 = Du(0) == -1;
cond3 = D2u(0) == pi;
conds = [cond1 cond2 cond3];

uSol(x) = dsolve(ode,conds)

uSol(x) =

(pi*exp(x))/3 - exp(-x/2)*cos((3^(1/2)*x)/2)*(pi/3 - 1) -...
(3^(1/2)*exp(-x/2)*sin((3^(1/2)*x)/2)*(pi + 1))/3

More ODE Examples
This table shows examples of differential equations and their Symbolic Math Toolbox
syntax. The last example is the Airy differential equation, whose solution is called the Airy
function.

Differential Equation MATLAB Commands
dy
dt + 4y(t) = e−t,

y 0 = 1.

syms y(t)
ode = diff(y)+4*y == exp(-t);
cond = y(0) == 1;
ySol(t) = dsolve(ode,cond)

ySol(t) =
exp(-t)/3 + (2*exp(-4*t))/3

2x2d2y
dx2 + 3xdy

dx − y = 0.
syms y(x)
ode = 2*x^2*diff(y,x,2)+3*x*diff(y,x)-y == 0;
ySol(x) = dsolve(ode)

ySol(x) =
C2/(3*x) + C3*x^(1/2)

The Airy equation.

d2y
dx2 = xy(x) .

syms y(x)
ode = diff(y,x,2) == x*y;
ySol(x) = dsolve(ode)

ySol(x) =
C1*airy(0,x) + C2*airy(2,x)

See Also
“Solve a System of Differential Equations” on page 2-197

2 Using Symbolic Math Toolbox Software

2-196

Solve a System of Differential Equations
Solve a system of several ordinary differential equations in several variables by using the
dsolve function, with or without initial conditions. To solve a single differential equation,
see “Solve Differential Equation” on page 2-193.

In this section...
“Solve System of Differential Equations” on page 2-197
“Solve Differential Equations in Matrix Form” on page 2-199

Solve System of Differential Equations
Solve this system of linear first-order differential equations.

du
dt = 3u + 4v,

dv
dt = − 4u + 3v .

First, represent u and v by using syms to create the symbolic functions u(t) and v(t).

syms u(t) v(t)

Define the equations using == and represent differentiation using the diff function.

ode1 = diff(u) == 3*u + 4*v;
ode2 = diff(v) == -4*u + 3*v;
odes = [ode1; ode2]

odes(t) =
 diff(u(t), t) == 3*u(t) + 4*v(t)
 diff(v(t), t) == 3*v(t) - 4*u(t)

Solve the system using the dsolve function which returns the solutions as elements of a
structure.

S = dsolve(odes)

S =
 struct with fields:

 Solve a System of Differential Equations

2-197

 v: [1×1 sym]
 u: [1×1 sym]

If dsolve cannot solve your equation, then try solving the equation numerically. See
“Solve a Second-Order Differential Equation Numerically” on page 2-158.

To access u(t) and v(t), index into the structure S.

uSol(t) = S.u
vSol(t) = S.v

uSol(t) =
C2*cos(4*t)*exp(3*t) + C1*sin(4*t)*exp(3*t)
vSol(t) =
C1*cos(4*t)*exp(3*t) - C2*sin(4*t)*exp(3*t)

Alternatively, store u(t) and v(t) directly by providing multiple output arguments.

[uSol(t), vSol(t)] = dsolve(odes)

uSol(t) =
C2*cos(4*t)*exp(3*t) + C1*sin(4*t)*exp(3*t)
vSol(t) =
C1*cos(4*t)*exp(3*t) - C2*sin(4*t)*exp(3*t)

The constants C1 and C2 appear because no conditions are specified. Solve the system
with the initial conditions u(0) == 0 and v(0) == 0. The dsolve function finds values
for the constants that satisfy these conditions.

cond1 = u(0) == 0;
cond2 = v(0) == 1;
conds = [cond1; cond2];
[uSol(t), vSol(t)] = dsolve(odes,conds)

uSol(t) =
sin(4*t)*exp(3*t)
vSol(t) =
cos(4*t)*exp(3*t)

Visualize the solution using fplot.

fplot(uSol)
hold on
fplot(vSol)
grid on
legend('uSol','vSol','Location','best')

2 Using Symbolic Math Toolbox Software

2-198

Solve Differential Equations in Matrix Form
Solve differential equations in matrix form by using dsolve.

Consider this system of differential equations.

dx
dt = x + 2y + 1,

dy
dt = − x + y + t .

The matrix form of the system is

 Solve a System of Differential Equations

2-199

x′
y′

=
1 2
−1 1

x
y

+
1
t

.

Let

Y =
x
y

, A =
1 2
−1 1

, B =
1
t

.

The system is now Y′ = AY + B.

Define these matrices and the matrix equation.

syms x(t) y(t)
A = [1 2; -1 1];
B = [1; t];
Y = [x; y];
odes = diff(Y) == A*Y + B

odes(t) =
 diff(x(t), t) == x(t) + 2*y(t) + 1
 diff(y(t), t) == t - x(t) + y(t)

Solve the matrix equation using dsolve. Simplify the solution by using the simplify
function.

[xSol(t), ySol(t)] = dsolve(odes);
xSol(t) = simplify(xSol(t))
ySol(t) = simplify(ySol(t))

xSol(t) =
(2*t)/3 + 2^(1/2)*C2*exp(t)*cos(2^(1/2)*t) + 2^(1/2)*C1*exp(t)*sin(2^(1/2)*t) + 1/9
ySol(t) =
C1*exp(t)*cos(2^(1/2)*t) - t/3 - C2*exp(t)*sin(2^(1/2)*t) - 2/9

The constants C1 and C2 appear because no conditions are specified.

Solve the system with the initial conditions u(0) = 2 and v(0) = –1. When specifying
equations in matrix form, you must specify initial conditions in matrix form too. dsolve
finds values for the constants that satisfy these conditions.

C = Y(0) == [2; -1];
[xSol(t), ySol(t)] = dsolve(odes,C)

xSol(t) =
(2*t)/3 + (17*exp(t)*cos(2^(1/2)*t))/9 - (7*2^(1/2)*exp(t)*sin(2^(1/2)*t))/9 + 1/9

2 Using Symbolic Math Toolbox Software

2-200

ySol(t) =
- t/3 - (7*exp(t)*cos(2^(1/2)*t))/9 - (17*2^(1/2)*exp(t)*sin(2^(1/2)*t))/18 - 2/9

Visualize the solution using fplot.

clf
fplot(ySol)
hold on
fplot(xSol)
grid on
legend('ySol','xSol','Location','best')

 Solve a System of Differential Equations

2-201

See Also
“Solve Differential Equation” on page 2-193

2 Using Symbolic Math Toolbox Software

2-202

Solve Differential Algebraic Equations (DAEs)
This example show how to solve differential algebraic equations (DAEs) by using
MATLAB® and Symbolic Math Toolbox™.

Differential algebraic equations involving functions, or state variables,
x t = x1 t , . . . , xn t have the form

F(t, x(t), ẋ(t)) = 0

where t is the independent variable. The number of equations F = F1, . . . , Fn must
match the number of state variables x t = x1 t , . . . , xn t .

Because most DAE systems are not suitable for direct input to MATLAB® solvers, such as
ode15i, first convert them to a suitable form by using Symbolic Math Toolbox™
functionality. This functionality reduces the differential index (number of differentiations
needed to reduce the system to ODEs) of the DAEs to 1 or 0, and then converts the DAE
system to numeric function handles suitable for MATLAB® solvers. Then, use MATLAB®
solvers, such as ode15i, ode15s, or ode23t, to solve the DAEs.

Solve your DAE system by completing these steps.

Step 1: Specify Equations and Variables

The following figure shows the DAE workflow by solving the DAEs for a pendulum.

 Solve Differential Algebraic Equations (DAEs)

2-203

The state variables are:

• Horizontal position of pendulum x t
• Vertical position of pendulum y t
• Force preventing pendulum from flying away T t

The variables are:

• Pendulum mass m
• Pendulum length r
• Gravitational constant g

The DAE system of equations is:

2 Using Symbolic Math Toolbox Software

2-204

md2x
dt2 = T t x t

r

md2y
dt2 = T t y t

r −mg

x t 2 + y t 2 = r2

Specify independent variables and state variables by using syms.

syms x(t) y(t) T(t) m r g

Specify equations by using the == operator.

eqn1 = m*diff(x(t), 2) == T(t)/r*x(t);
eqn2 = m*diff(y(t), 2) == T(t)/r*y(t) - m*g;
eqn3 = x(t)^2 + y(t)^2 == r^2;
eqns = [eqn1 eqn2 eqn3];

Place the state variables in a column vector. Store the number of original variables for
reference.

vars = [x(t); y(t); T(t)];
origVars = length(vars);

Step 2: Reduce Differential Order

2.1 (Optional) Check Incidence of Variables

This step is optional. You can check where variables occur in the DAE system by viewing
the incidence matrix. This step finds any variables that do not occur in your input and can
be removed from the vars vector.

Display the incidence matrix by using incidenceMatrix. The output of
incidenceMatrix has a row for each equation and a column for each variable. Because
the system has three equations and three state variables, incidenceMatrix returns a 3-
by-3 matrix. The matrix has 1s and 0s, where 1s represent the occurrence of a state
variable. For example, the 1 in position (2,3) means the second equation contains the
third state variable T(t).

M = incidenceMatrix(eqns,vars)

M = 3×3

 Solve Differential Algebraic Equations (DAEs)

2-205

 1 0 1
 0 1 1
 1 1 0

If a column of the incidence matrix is all 0s, then that state variable does not occur in the
DAE system and should be removed.

2.2 Reduce Differential Order

The differential order of a DAE system is the highest differential order of its equations. To
solve DAEs using MATLAB, the differential order must be reduced to 1. Here, the first and
second equations have second-order derivatives of x(t) and y(t). Thus, the differential
order is 2.

Reduce the system to a first-order system by using reduceDifferentialOrder. The
reduceDifferentialOrder function substitutes derivatives with new variables, such as
Dxt(t) and Dyt(t). The right side of the expressions in eqns is 0.

[eqns,vars] = reduceDifferentialOrder(eqns,vars)

eqns =

m ∂
∂t Dxt t − T t x t

r

g m + m ∂
∂t Dyt t − T t y t

r

−r2 + x t 2 + y t 2

Dxt t − ∂
∂t x t

Dyt t − ∂
∂t y t

vars =
x t
y t
T t

Dxt t
Dyt t

Step 3: Check and Reduce Differential Index

3.1 Check Differential Index of System

2 Using Symbolic Math Toolbox Software

2-206

Check the differential index of the DAE system by using isLowIndexDAE. If the index is 0
or 1, then isLowIndexDAE returns logical 1 (true) and you can skip step 3.2 and go to
Step 4. Convert DAE Systems to MATLAB Function Handles. Here, isLowIndexDAE
returns logical 0 (false), which means the differential index is greater than 1 and must
be reduced.

isLowIndexDAE(eqns,vars)

ans = logical
 0

3.2 Reduce Differential Index with reduceDAEIndex

To reduce the differential index, the reduceDAEIndex function adds new equations that
are derived from the input equations, and then replaces higher-order derivatives with
new variables. If reduceDAEIndex fails and issues a warning, then use the alternative
function reduceDAEToODE as described in the workflow “Solve Semilinear DAE System”
on page 2-215.

Reduce the differential index of the DAEs described by eqns and vars.

[DAEs,DAEvars] = reduceDAEIndex(eqns,vars)

DAEs =

m Dxtt t − T t x t
r

g m + m Dytt t − T t y t
r

−r2 + x t 2 + y t 2

Dxt t − Dxt1 t
Dyt t − Dyt1 t

2 Dxt1 t x t + 2 Dyt1 t y t

2 y t ∂
∂t Dyt1 t + 2 Dxt1 t 2 + 2 Dyt1 t 2 + 2 Dxt1t t x t

Dxtt t − Dxt1t t

Dytt t − ∂
∂t Dyt1 t

Dyt1 t − ∂
∂t y t

DAEvars =

 Solve Differential Algebraic Equations (DAEs)

2-207

x t
y t
T t

Dxt t
Dyt t
Dytt t
Dxtt t
Dxt1 t
Dyt1 t
Dxt1t t

If reduceDAEIndex an error or a warning, use the alternative workflow described in
“Solve Semilinear DAE System” on page 2-215.

Often, reduceDAEIndex introduces redundant equations and variables that can be
eliminated. Eliminate redundant equations and variables using reduceRedundancies.

[DAEs,DAEvars] = reduceRedundancies(DAEs,DAEvars)

DAEs =

−T t x t −m r Dxtt t
r

g m r − T t y t + m r Dytt t
r

−r2 + x t 2 + y t 2

2 Dxt t x t + 2 Dyt t y t

2 Dxt t 2 + 2 Dyt t 2 + 2 Dxtt t x t + 2 Dytt t y t

Dytt t − ∂
∂t Dyt t

Dyt t − ∂
∂t y t

DAEvars =

2 Using Symbolic Math Toolbox Software

2-208

x t
y t
T t

Dxt t
Dyt t
Dytt t
Dxtt t

Check the differential index of the new system. Now, isLowIndexDAE returns logical 1
(true), which means that the differential index of the system is 0 or 1.

isLowIndexDAE(DAEs,DAEvars)

ans = logical
 1

Step 4: Convert DAE Systems to MATLAB Function Handles

This step creates function handles for the MATLAB® ODE solver ode15i, which is a
general purpose solver. To use specialized mass matrix solvers such as ode15s and
ode23t, see “Solve DAEs Using Mass Matrix Solvers” on page 2-223 and “Choose an
ODE Solver” (MATLAB).

reduceDAEIndex outputs a vector of equations in DAEs and a vector of variables in
DAEvars. To use ode15i, you need a function handle that describes the DAE system.

First, the equations in DAEs can contain symbolic parameters that are not specified in the
vector of variables DAEvars. Find these parameters by using setdiff on the output of
symvar from DAEs and DAEvars.

pDAEs = symvar(DAEs);
pDAEvars = symvar(DAEvars);
extraParams = setdiff(pDAEs,pDAEvars)

extraParams = g m r

The extra parameters that you need to specify are the mass m, radius r, and gravitational
constant g.

Create the function handle by using daeFunction. Specify the extra symbolic
parameters as additional input arguments of daeFunction.

 Solve Differential Algebraic Equations (DAEs)

2-209

f = daeFunction(DAEs,DAEvars,g,m,r);

The rest of the workflow is purely numerical. Set the parameter values and create the
function handle for ode15i.

g = 9.81;
m = 1;
r = 1;
F = @(t,Y,YP) f(t,Y,YP,g,m,r);

Step 5: Find Initial Conditions For Solvers

The ode15i solver requires initial values for all variables in the function handle. Find
initial values that satisfy the equations by using the MATLAB decic function. decic
accepts guesses (which might not satisfy the equations) for the initial conditions and tries
to find satisfactory initial conditions using those guesses. decic can fail, in which case
you must manually supply consistent initial values for your problem.

First, check the variables in DAEvars.

DAEvars

DAEvars =
x t
y t
T t

Dxt t
Dyt t
Dytt t
Dxtt t

Here, Dxt(t) is the first derivative of x(t), Dytt(t) is the second derivative of y(t),
and so on. There are 7 variables in a 7-by-1 vector. Therefore, guesses for initial values of
variables and their derivatives must also be 7-by-1 vectors.

Assume the initial angular displacement of the pendulum is 30° or pi/6, and the origin of
the coordinates is at the suspension point of the pendulum. Given that we used a radius r
of 1, the initial horizontal position x(t) is r*sin(pi/6). The initial vertical position
y(t) is -r*cos(pi/6). Specify these initial values of the variables in the vector y0est.

Arbitrarily set the initial values of the remaining variables and their derivatives to 0.
These are not good guesses. However, they suffice for this problem. In your problem, if
decic errors, then provide better guesses and refer to decic.

2 Using Symbolic Math Toolbox Software

2-210

y0est = [r*sin(pi/6); -r*cos(pi/6); 0; 0; 0; 0; 0];
yp0est = zeros(7,1);

Create an option set that specifies numerical tolerances for the numerical search.

opt = odeset('RelTol', 10.0^(-7),'AbsTol',10.0^(-7));

Find consistent initial values for the variables and their derivatives by using decic.

[y0,yp0] = decic(F,0,y0est,[],yp0est,[],opt)

y0 = 7×1

 0.4771
 -0.8788
 -8.6214
 0
 0.0000
 -2.2333
 -4.1135

yp0 = 7×1

 0
 0.0000
 0
 0
 -2.2333
 0
 0

Step 6: Solve DAEs Using ode15i

Solve the system integrating over the time span 0 ≤ t ≤ 0.5. Add the grid lines and the
legend to the plot.

[tSol,ySol] = ode15i(F,[0 0.5],y0,yp0,opt);
plot(tSol,ySol(:,1:origVars),'LineWidth',2)

for k = 1:origVars
 S{k} = char(DAEvars(k));
end

 Solve Differential Algebraic Equations (DAEs)

2-211

legend(S,'Location','Best')
grid on

Solve the system for different parameter values by setting the new value and
regenerating the function handle and initial conditions.

Set r to 2 and regenerate the function handle and initial conditions.

r = 2;
F = @(t,Y,YP)f(t,Y,YP,g,m,r);

y0est = [r*sin(pi/6); -r*cos(pi/6); 0; 0; 0; 0; 0];
[y0,yp0] = decic(F,0,y0est,[],yp0est,[],opt);

Solve the system for the new parameter value.

2 Using Symbolic Math Toolbox Software

2-212

[tSol,y] = ode15i(F,[0 0.5],y0,yp0,opt);
plot(tSol,y(:,1:origVars),'LineWidth',2)

for k = 1:origVars
 S{k} = char(DAEvars(k));
end
legend(S,'Location','Best')
grid on

 Solve Differential Algebraic Equations (DAEs)

2-213

See Also

Related Examples
• “Solve Semilinear DAE System” on page 2-215
• “Solve DAEs Using Mass Matrix Solvers” on page 2-223

2 Using Symbolic Math Toolbox Software

2-214

Solve Semilinear DAE System
This workflow is an alternative workflow to solving semilinear DAEs, used only if
reduceDAEIndex failed in the standard workflow with the warning below. For the
standard workflow, see “Solve Differential Algebraic Equations (DAEs)” on page 2-203.

Warning: The index of the reduced DAEs is larger...
than 1. [daetools::reduceDAEIndex]

To solve your DAE system complete these steps.

• “Step 1. Reduce Differential Index with reduceDAEToODE” on page 2-215
• “Step 2. ODEs to Function Handles for ode15s and ode23t” on page 2-216
• “Step 3. Initial Conditions for ode15s and ode23t” on page 2-217
• “Step 4. Solve an ODE System with ode15s or ode23t” on page 2-219

Step 1. Reduce Differential Index with reduceDAEToODE
Complete steps 1 and 2 in “Solve Differential Algebraic Equations (DAEs)” on page 2-203
before beginning this step. Then, in step 3 when reduceDAEIndex fails, reduce the
differential index using reduceDAEToODE. The advantage of reduceDAEToODE is that it
reliably reduces semilinear DAEs to ODEs (DAEs of index 0). However, this function is
slower and works only on semilinear DAE systems. reduceDAEToODE can fail if the
system is not semilinear.

To reduce the differential index of the DAEs described by eqns and vars, use
reduceDAEToODE. To reduce the index, reduceDAEToODE adds new variables and
equations to the system. reduceDAEToODE also returns constraints, which are conditions
that help find initial values to ensure that the resulting ODEs are equal to the initial
DAEs.

[ODEs,constraints] = reduceDAEToODE(eqns,vars)

ODEs =
 Dxt(t) - diff(x(t), t)
 Dyt(t) - diff(y(t), t)
 m*diff(Dxt(t), t) - (T(t)*x(t))/r
 m*diff(Dyt(t), t) - (T(t)*y(t) - g*m*r)/r
 -(4*T(t)*y(t) - 2*g*m*r)*diff(y(t), t) -...
 diff(T(t), t)*(2*x(t)^2 + 2*y(t)^2) -...
 4*T(t)*x(t)*diff(x(t), t) -...

 Solve Semilinear DAE System

2-215

 4*m*r*Dxt(t)*diff(Dxt(t), t) -...
 4*m*r*Dyt(t)*diff(Dyt(t), t)

constraints =
 2*g*m*r*y(t) - 2*T(t)*y(t)^2 - 2*m*r*Dxt(t)^2 -...
 2*m*r*Dyt(t)^2 - 2*T(t)*x(t)^2
 r^2 - y(t)^2 - x(t)^2
 2*Dxt(t)*x(t) + 2*Dyt(t)*y(t)

Step 2. ODEs to Function Handles for ode15s and ode23t
From the output of reduceDAEToODE, you have a vector of equations in ODEs and a
vector of variables in vars. To use ode15s or ode23t, you need two function handles:
one representing the mass matrix of the ODE system, and the other representing the
vector containing the right sides of the mass matrix equations. These function handles are
the equivalent mass matrix representation of the ODE system where M(t,y(t))y’
(t) = f(t,y(t)).

Find these function handles by using massMatrixForm to get the mass matrix massM (M
in the equation) and right sides f.

[massM,f] = massMatrixForm(ODEs,vars)

massM =
[-1, 0, 0, 0, 0]
[0, -1, 0, 0, 0]
[0, 0, 0, m, 0]
[0, 0, 0, 0, m]
[-4*T(t)*x(t), 2*g*m*r - 4*T(t)*y(t), - 2*x(t)^2 - 2*y(t)^2, -4*m*r*Dxt(t), -4*m*r*Dyt(t)]

f =
 -Dxt(t)
 -Dyt(t)
 (T(t)*x(t))/r
 (T(t)*y(t) - g*m*r)/r
 0

The equations in ODEs can contain symbolic parameters that are not specified in the
vector of variables vars. Find these parameters by using setdiff on the output of
symvar from ODEs and vars.

pODEs = symvar(ODEs);
pvars = symvar(vars);
extraParams = setdiff(pODEs, pvars)

extraParams =
[g, m, r]

2 Using Symbolic Math Toolbox Software

2-216

The extra parameters that you need to specify are the mass m, radius r, and gravitational
constant g.

Convert massM and f to function handles using odeFunction. Specify the extra symbolic
parameters as additional inputs to odeFunction.

massM = odeFunction(massM, vars, m, r, g);
f = odeFunction(f, vars, m, r, g);

The rest of the workflow is purely numerical. Set the parameter values and substitute the
parameter values in DAEs and constraints.

m = 1;
r = 1;
g = 9.81;
ODEsNumeric = subs(ODEs);
constraintsNumeric = subs(constraints);

Create the function handle suitable for input to ode15s or ode23s.

M = @(t, Y) massM(t, Y, m, r, g);
F = @(t, Y) f(t, Y, m, r, g);

Step 3. Initial Conditions for ode15s and ode23t
The solvers require initial values for all variables in the function handle. Find initial
values that satisfy the equations by using the MATLAB decic function. The decic
accepts guesses (which might not satisfy the equations) for the initial conditions and tries
to find satisfactory initial conditions using those guesses. decic can fail, in which case
you must manually supply consistent initial values for your problem.

First, check the variables in vars.

vars

vars =
 x(t)
 y(t)
 T(t)
 Dxt(t)
 Dyt(t)

 Solve Semilinear DAE System

2-217

Here, Dxt(t) is the first derivative of x(t), and so on. There are 5 variables in a 5-by-1
vector. Therefore, guesses for initial values of variables and their derivatives must also be
5-by-1 vectors.

Assume the initial angular displacement of the pendulum is 30° or pi/6, and the origin of
the coordinates is at the suspension point of the pendulum. Given that we used a radius r
of 1, the initial horizontal position x(t) is r*sin(pi/6). The initial vertical position
y(t) is -r*cos(pi/6). Specify these initial values of the variables in the vector y0est.

Arbitrarily set the initial values of the remaining variables and their derivatives to 0.
These are not good guesses. However, they suffice for this problem. In your problem, if
decic errors, then provide better guesses and refer to the decic page.

y0est = [r*sin(pi/6); -r*cos(pi/6); 0; 0; 0];
yp0est = zeros(5,1);

Create an option set that contains the mass matrix M of the system and specifies
numerical tolerances for the numerical search.

opt = odeset('Mass', M, 'RelTol', 10.0^(-7), 'AbsTol' , 10.0^(-7));

Find initial values consistent with the system of ODEs and with the algebraic constraints
by using decic. The parameter [1,0,0,0,1] in this function call fixes the first and the
last element in y0est, so that decic does not change them during the numerical search.
Here, this fixing is necessary to ensure decic finds satisfactory initial conditions.

[y0, yp0] = decic(ODEsNumeric, vars, constraintsNumeric, 0,...
 y0est, [1,0,0,0,1], yp0est, opt)

y0 =
 0.5000
 -0.8660
 -8.4957
 0
 0

yp0 =
 0
 0
 0
 -4.2479
 -2.4525

2 Using Symbolic Math Toolbox Software

2-218

Now create an option set that contains the mass matrix M of the system and the vector
yp0 of consistent initial values for the derivatives. You will use this option set when
solving the system.

opt = odeset(opt, 'InitialSlope', yp0);

Step 4. Solve an ODE System with ode15s or ode23t
Solve the system integrating over the time span 0 ≤ t ≤ 0.5. Add the grid lines and the
legend to the plot. Use ode23s by replacing ode15s with ode23s.

[tSol,ySol] = ode15s(F, [0, 0.5], y0, opt);
plot(tSol,ySol(:,1:origVars),'-o')

for k = 1:origVars
 S{k} = char(vars(k));
end

legend(S, 'Location', 'Best')
grid on

 Solve Semilinear DAE System

2-219

Solve the system for different parameter values by setting the new value and
regenerating the function handle and initial conditions.

Set r to 2 and repeat the steps.

r = 2;

ODEsNumeric = subs(ODEs);
constraintsNumeric = subs(constraints);
M = @(t, Y) massM(t, Y, m, r, g);
F = @(t, Y) f(t, Y, m, r, g);

y0est = [r*cos(pi/6); -r*sin(pi/6); 0; 0; 0];
opt = odeset('Mass', M, 'RelTol', 10.0^(-7), 'AbsTol' , 10.0^(-7));

2 Using Symbolic Math Toolbox Software

2-220

[y0, yp0] = decic(ODEsNumeric, vars, constraintsNumeric, 0,...
 y0est, [1,0,0,0,1], yp0est, opt);

opt = odeset(opt, 'InitialSlope', yp0);

Solve the system for the new parameter value.

[tSol,ySol] = ode15s(F, [0, 0.5], y0, opt);
plot(tSol,ySol(:,1:origVars),'-o')

for k = 1:origVars
 S{k} = char(vars(k));
end

legend(S, 'Location', 'Best')
grid on

 Solve Semilinear DAE System

2-221

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix |
isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEIndex |
reduceDAEToODE | reduceDifferentialOrder | reduceRedundancies

Related Examples
• “Solve Differential Algebraic Equations (DAEs)” on page 2-203
• “Solve DAEs Using Mass Matrix Solvers” on page 2-223

2 Using Symbolic Math Toolbox Software

2-222

Solve DAEs Using Mass Matrix Solvers
Solve differential algebraic equations by using one of the mass matrix solvers available in
MATLAB. To use this workflow, first complete steps 1, 2, and 3 from “Solve Differential
Algebraic Equations (DAEs)” on page 2-203. Then, use a mass matrix solver instead of
ode15i.

This example demonstrates the use of ode15s or ode23t. For details on the other
solvers, see “Choose an ODE Solver” (MATLAB) and adapt the workflow on this page.

In this section...
“Step 1. Convert DAEs to Function Handles” on page 2-223
“Step 2. Find Initial Conditions” on page 2-224
“Step 3. Solve DAE System” on page 2-226

Step 1. Convert DAEs to Function Handles
From the output of reduceDAEIndex, you have a vector of equations DAEs and a vector
of variables DAEvars. To use ode15s or ode23t, you need two function handles: one
representing the mass matrix of a DAE system, and the other representing the right sides
of the mass matrix equations. These function handles form the equivalent mass matrix
representation of the ODE system where M(t,y(t))y’(t) = f(t,y(t)).

Find these function handles by using massMatrixForm to get the mass matrix M and the
right sides F.

[M,f] = massMatrixForm(DAEs,DAEvars)

M =
[0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, -1, 0, 0]
[0, -1, 0, 0, 0, 0, 0]

f =
 (T(t)*x(t) - m*r*Dxtt(t))/r
 -(g*m*r - T(t)*y(t) + m*r*Dytt(t))/r

 Solve DAEs Using Mass Matrix Solvers

2-223

 r^2 - y(t)^2 - x(t)^2
 - 2*Dxt(t)*x(t) - 2*Dyt(t)*y(t)
 - 2*Dxtt(t)*x(t) - 2*Dytt(t)*y(t) - 2*Dxt(t)^2 - 2*Dyt(t)^2
 -Dytt(t)
 -Dyt(t)

The equations in DAEs can contain symbolic parameters that are not specified in the
vector of variables DAEvars. Find these parameters by using setdiff on the output of
symvar from DAEs and DAEvars.

pDAEs = symvar(DAEs);
pDAEvars = symvar(DAEvars);
extraParams = setdiff(pDAEs, pDAEvars)

extraParams =
[g, m, r]

The mass matrix M does not have these extra parameters. Therefore, convert M directly to
a function handle by using odeFunction.

M = odeFunction(M, DAEvars);

Convert f to a function handle. Specify the extra parameters as additional inputs to
odeFunction.

f = odeFunction(f, DAEvars, g, m, r);

The rest of the workflow is purely numerical. Set parameter values and create the
function handle.

g = 9.81;
m = 1;
r = 1;
F = @(t, Y) f(t, Y, g, m, r);

Step 2. Find Initial Conditions
The solvers require initial values for all variables in the function handle. Find initial
values that satisfy the equations by using the MATLAB decic function. The decic
accepts guesses (which might not satisfy the equations) for the initial conditions, and
tries to find satisfactory initial conditions using those guesses. decic can fail, in which
case you must manually supply consistent initial values for your problem.

First, check the variables in DAEvars.

2 Using Symbolic Math Toolbox Software

2-224

DAEvars

DAEvars =
 x(t)
 y(t)
 T(t)
 Dxt(t)
 Dyt(t)
 Dytt(t)
 Dxtt(t)

Here, Dxt(t) is the first derivative of x(t), Dytt(t) is the second derivative of y(t),
and so on. There are 7 variables in a 7-by-1 vector. Thus, guesses for initial values of
variables and their derivatives must also be 7-by-1 vectors.

Assume the initial angular displacement of the pendulum is 30° or pi/6, and the origin of
the coordinates is at the suspension point of the pendulum. Given that we used a radius r
of 1, the initial horizontal position x(t) is r*sin(pi/6). The initial vertical position
y(t) is -r*cos(pi/6). Specify these initial values of the variables in the vector y0est.

Arbitrarily set the initial values of the remaining variables and their derivatives to 0.
These are not good guesses. However, they suffice for our problem. In your problem, if
decic errors, then provide better guesses and refer to the decic page.

y0est = [r*sin(pi/6); -r*cos(pi/6); 0; 0; 0; 0; 0];
yp0est = zeros(7,1);

Create an option set that contains the mass matrix M and initial guesses yp0est, and
specifies numerical tolerances for the numerical search.

opt = odeset('Mass', M, 'InitialSlope', yp0est,...
 'RelTol', 10.0^(-7), 'AbsTol' , 10.0^(-7));

Find consistent initial values for the variables and their derivatives by using the MATLAB
decic function. The first argument of decic must be a function handle describing the
DAE as f(t,y,yp) = f(t,y,y') = 0. In terms of M and F, this means f(t,y,yp) =
M(t,y)*yp - F(t,y).

implicitDAE = @(t,y,yp) M(t,y)*yp - F(t,y);
[y0, yp0] = decic(implicitDAE, 0, y0est, [], yp0est, [], opt)

y0 =
 0.4771
 -0.8788

 Solve DAEs Using Mass Matrix Solvers

2-225

 -8.6214
 0
 0.0000
 -2.2333
 -4.1135

yp0 =
 0
 0.0000
 0
 0
 -2.2333
 0
 0

Now create an option set that contains the mass matrix M of the system and the vector
yp0 of consistent initial values for the derivatives. You will use this option set when
solving the system.

opt = odeset(opt, 'InitialSlope', yp0);

Step 3. Solve DAE System
Solve the system integrating over the time span 0 ≤ t ≤ 0.5. Add the grid lines and the
legend to the plot. The code uses ode15s. Instead, you can use ode23s by replacing
ode15s with ode23s.

[tSol,ySol] = ode15s(F, [0, 0.5], y0, opt);
plot(tSol,ySol(:,1:origVars),'-o')

for k = 1:origVars
 S{k} = char(DAEvars(k));
end

legend(S, 'Location', 'Best')
grid on

2 Using Symbolic Math Toolbox Software

2-226

Solve the system for different parameter values by setting the new value and
regenerating the function handle and initial conditions.

Set r to 2 and regenerate the function handle and initial conditions.

r = 2;

F = @(t, Y) f(t, Y, g, m, r);
y0est = [r*sin(pi/6); -r*cos(pi/6); 0; 0; 0; 0; 0];
implicitDAE = @(t,y,yp) M(t,y)*yp - F(t,y);
[y0, yp0] = decic(implicitDAE, 0, y0est, [], yp0est, [], opt);

opt = odeset(opt, 'InitialSlope', yp0);

 Solve DAEs Using Mass Matrix Solvers

2-227

Solve the system for the new parameter value.

[tSol,ySol] = ode15s(F, [0, 0.5], y0, opt);
plot(tSol,ySol(:,1:origVars),'-o')

for k = 1:origVars
 S{k} = char(DAEvars(k));
end

legend(S, 'Location', 'Best')
grid on

2 Using Symbolic Math Toolbox Software

2-228

See Also

Related Examples
• “Solve Differential Algebraic Equations (DAEs)” on page 2-203
• “Solve Semilinear DAE System” on page 2-215

 See Also

2-229

Fourier and Inverse Fourier Transforms
This page shows the workflow for Fourier and inverse Fourier transforms in Symbolic
Math Toolbox. For simple examples, see fourier and ifourier. Here, the workflow for
Fourier transforms is demonstrated by calculating the deflection of a beam due to a force.
The associated differential equation is solved by the Fourier transform.

Fourier Transform Definition
The Fourier transform of f(x) with respect to x at w is

F(w) = ∫
−∞

∞
f (x)e−iwxdx .

The inverse Fourier transform is

f (x) = 1
2π ∫

−∞

∞
F(w)eiwxdw .

Concept: Using Symbolic Workflows
Symbolic workflows keep calculations in the natural symbolic form instead of numeric
form. This approach helps you understand the properties of your solution and use exact
symbolic values. You substitute numbers in place of symbolic variables only when you
require a numeric result or you cannot continue symbolically. For details, see “Choose
Symbolic or Numeric Arithmetic” on page 2-121. Typically, the steps are:

1 Declare equations.
2 Solve equations.
3 Substitute values.
4 Plot results.
5 Analyze results.

2 Using Symbolic Math Toolbox Software

2-230

Calculate Beam Deflection Using Fourier Transform
Define Equations

Fourier transform can be used to solve ordinary and partial differential equations. For
example, you can model the deflection of an infinitely long beam resting on an elastic
foundation under a point force. A corresponding real-world example is railway tracks on a
foundation. The railway tracks are the infinitely long beam while the foundation is elastic.

Let

• E be the elasticity of the beam (or railway track).
• I be the second moment of area of the cross-section of the beam.
• k be the spring stiffness of the foundation.

The differential equation is

d4y
dx4 + k

EI y = 1
EIδ(x), −∞ < x < ∞ .

Define the function y(x) and the variables. Assume E, I, and k are positive.

syms Y(x) w E I k f
assume([E I k] > 0)

Assign units to the variables by using symunit.

 Fourier and Inverse Fourier Transforms

2-231

u = symunit;
Eu = E*u.Pa; % Pascal
Iu = I*u.m^4; % meter^4
ku = k*u.N/u.m^2; % Newton/meter^2
X = x*u.m;
F = f*u.N/u.m;

Define the differential equation.

eqn = diff(Y,X,4) + ku/(Eu*Iu)*Y == F/(Eu*Iu)

eqn(x) =
diff(Y(x), x, x, x, x)*(1/[m]^4) + ((k*Y(x))/(E*I))*([N]/([Pa]*[m]^6)) == ...
 (f/(E*I))*([N]/([Pa]*[m]^5))

Represent the force f by the Dirac delta function δ(x).

eqn = subs(eqn,f,dirac(x))

eqn(x) =
diff(Y(x), x, x, x, x)*(1/[m]^4) + ((k*Y(x))/(E*I))*([N]/([Pa]*[m]^6)) ==...
 (dirac(x)/(E*I))*([N]/([Pa]*[m]^5))

Solve Equations

Calculate the Fourier transform of eqn by using fourier on both sides of eqn. The
Fourier transform converts differentiation into exponents of w.

eqnFT = fourier(lhs(eqn)) == fourier(rhs(eqn))

eqnFT =
w^4*fourier(Y(x), x, w)*(1/[m]^4) + ((k*fourier(Y(x), x, w))/(E*I))*([N]/([Pa]*[m]^6)) == (1/(E*I))*([N]/([Pa]*[m]^5))

Isolate fourier(Y(x),x,w) in the equation.

eqnFT = isolate(eqnFT, fourier(Y(x),x,w))

eqnFT =
fourier(Y(x), x, w) == (1/(E*I*w^4*[Pa]*[m]^2 + k*[N]))*[N]*[m]

Calculate Y(x) by calculating the inverse Fourier transform of the right side. Simplify the
result.

YSol = ifourier(rhs(eqnFT));
YSol = simplify(YSol)

2 Using Symbolic Math Toolbox Software

2-232

YSol =
((exp(-(2^(1/2)*k^(1/4)*abs(x))/(2*E^(1/4)*I^(1/4)))*sin((2*2^(1/2)*k^(1/4)*abs(x) +...
 pi*E^(1/4)*I^(1/4))/(4*E^(1/4)*I^(1/4))))/(2*E^(1/4)*I^(1/4)*k^(3/4)))*[m]

Check that YSol has the correct dimensions by substituting YSol into eqn and using the
checkUnits function. checkUnits returns logical 1 (true), meaning eqn now has
compatible units of the same physical dimensions.

checkUnits(subs(eqn,Y,YSol))

ans =
 struct with fields:

 Consistent: 1
 Compatible: 1

Separate the expression from the units by using separateUnits.

YSol = separateUnits(YSol)

YSol =
(exp(-(2^(1/2)*k^(1/4)*abs(x))/(2*E^(1/4)*I^(1/4)))*sin((2*2^(1/2)*k^(1/4)*abs(x) + pi*E^(1/4)*I^(1/4))/(4*E^(1/4)*I^(1/4))))/(2*E^(1/4)*I^(1/4)*k^(3/4))

Substitute Values

Use the values E = 106 Pa, I = 10-3 m4, and k = 106 N/m2. Substitute these values into
YSol and convert to floating point by using vpa with 16 digits of accuracy.

values = [1e6 1e-3 1e5];
YSol = subs(YSol,[E I k],values);
YSol = vpa(YSol,16)

YSol =
0.0000158113883008419*exp(-2.23606797749979*abs(x))*sin(2.23606797749979*abs(x) + 0.7853981633974483)

Plot Results

Plot the result by using fplot.

fplot(YSol)
xlabel('x')
ylabel('Deflection y(x)')

 Fourier and Inverse Fourier Transforms

2-233

Analyze Results

The plot shows that the deflection of a beam due to a point force is highly localized. The
deflection is greatest at the point of impact and then decreases quickly. The symbolic
result enables you to analyze the properties of the result, which is not possible with
numeric results.

Notice that YSol is a product of terms. The term with sin shows that the response is
vibrating oscillatory behavior. The term with exp shows that the oscillatory behavior is
quickly damped by the exponential decay as the distance from the point of impact
increases.

2 Using Symbolic Math Toolbox Software

2-234

Solve Differential Equations Using Laplace Transform
Solve differential equations by using Laplace transforms in Symbolic Math Toolbox with
this workflow. For simple examples on the Laplace transform, see laplace and
ilaplace.

Definition: Laplace Transform
The Laplace transform of a function f(t) is

F s = ∫
0

∞
f (t)e−tsdt .

Concept: Using Symbolic Workflows
Symbolic workflows keep calculations in the natural symbolic form instead of numeric
form. This approach helps you understand the properties of your solution and use exact
symbolic values. You substitute numbers in place of symbolic variables only when you
require a numeric result or you cannot continue symbolically. For details, see “Choose
Symbolic or Numeric Arithmetic” on page 2-121. Typically, the steps are:

1 Declare equations.
2 Solve equations.
3 Substitute values.
4 Plot results.
5 Analyze results.

Workflow: Solve RLC Circuit Using Laplace Transform
Declare Equations

You can use the Laplace transform to solve differential equations with initial conditions.
For example, you can solve resistance-inductor-capacitor (RLC) circuits, such as this
circuit.

 Solve Differential Equations Using Laplace Transform

2-235

• Resistances in ohm: R1, R2, R3

• Currents in ampere: I1, I2, I3

• Inductance in henry: L
• Capacitance in farad: C
• Electromotive force in volts: E(t)
• Charge in coulomb: Q(t)

Apply Kirchhoff's voltage and current laws to get the differential equations for the RLC
circuit.

dI1
dt +

R2
L

dQ
dt =

R2− R1
L I1 .

dQ
dt = 1

R3 + R2
E(t)− 1

CQ(t) +
R2

R3 + R2
I1 .

Declare the variables. Because the physical quantities have positive values, set the
corresponding assumptions on the variables. Let E(t) be an alternating voltage of 1 V.

2 Using Symbolic Math Toolbox Software

2-236

syms L C I1(t) Q(t) s
R = sym('R%d',[1 3]);
assume([t L C R] > 0)
E(t) = 1*sin(t); % Voltage = 1 V

Declare the differential equations.

dI1 = diff(I1,t);
dQ = diff(Q,t);
eqn1 = dI1 + (R(2)/L)*dQ == (R(2)-R(1))/L*I1
eqn2 = dQ == (1/(R(2)+R(3))*(E-Q/C)) + R(2)/(R(2)+R(3))*I1

eqn1(t) =
diff(I1(t), t) + (R2*diff(Q(t), t))/L == -(I1(t)*(R1 - R2))/L
eqn2(t) =
diff(Q(t), t) == (sin(t) - Q(t)/C)/(R2 + R3) + (R2*I1(t))/(R2 + R3)

Assume that the initial current and charge, I0 and Q0, are both 0. Declare these initial
conditions.

cond1 = I1(0) == 0
cond2 = Q(0) == 0

cond1 =
I1(0) == 0
cond2 =
Q(0) == 0

Solve Equations

Compute the Laplace transform of eqn1 and eqn2.

eqn1LT = laplace(eqn1,t,s)
eqn2LT = laplace(eqn2,t,s)

eqn1LT =
s*laplace(I1(t), t, s) - I1(0) - (R2*(Q(0) - s*laplace(Q(t), t, s)))/L == ...
-((R1 - R2)*laplace(I1(t), t, s))/L
eqn2LT =
s*laplace(Q(t), t, s) - Q(0) == (R2*laplace(I1(t), t, s))/(R2 + R3) + ...
(C/(s^2 + 1) - laplace(Q(t), t, s))/(C*(R2 + R3))

The function solve solves only for symbolic variables. Therefore, to use solve, first
substitute laplace(I1(t),t,s) and laplace(Q(t),t,s) with the variables I1_LT
and Q_LT.

 Solve Differential Equations Using Laplace Transform

2-237

syms I1_LT Q_LT
eqn1LT = subs(eqn1LT,[laplace(I1,t,s) laplace(Q,t,s)],[I1_LT Q_LT])

eqn1LT =
I1_LT*s - I1(0) - (R2*(Q(0) - Q_LT*s))/L == -(I1_LT*(R1 - R2))/L

eqn2LT = subs(eqn2LT,[laplace(I1,t,s) laplace(Q,t,s)],[I1_LT Q_LT])

eqn2LT =
Q_LT*s - Q(0) == (I1_LT*R2)/(R2 + R3) - (Q_LT - C/(s^2 + 1))/(C*(R2 + R3))

Solve the equations for I1_LT and Q_LT.

eqns = [eqn1LT eqn2LT];
vars = [I1_LT Q_LT];
[I1_LT, Q_LT] = solve(eqns,vars)

I1_LT =
(R2*Q(0) + L*I1(0) - C*R2*s + L*s^2*I1(0) + R2*s^2*Q(0) + C*L*R2*s^3*I1(0) + ...
C*L*R3*s^3*I1(0) + C*L*R2*s*I1(0) + C*L*R3*s*I1(0))/((s^2 + 1)*(R1 - R2 + L*s + ...
C*L*R2*s^2 + C*L*R3*s^2 + C*R1*R2*s + C*R1*R3*s - C*R2*R3*s))
Q_LT =
(C*(R1 - R2 + L*s + L*R2*I1(0) + R1*R2*Q(0) + R1*R3*Q(0) - R2*R3*Q(0) + ...
L*R2*s^2*I1(0) + L*R2*s^3*Q(0) + L*R3*s^3*Q(0) + R1*R2*s^2*Q(0) + R1*R3*s^2*Q(0) - ...
R2*R3*s^2*Q(0) + L*R2*s*Q(0) + ...
L*R3*s*Q(0)))/((s^2 + 1)*(R1 - R2 + L*s + C*L*R2*s^2 + C*L*R3*s^2 + ...
 C*R1*R2*s + C*R1*R3*s - C*R2*R3*s))

Calculate I1 and Q by computing the inverse Laplace transform of I1_LT and Q_LT.
Simplify the result. Suppress the output because it is long.

I1sol = ilaplace(I1_LT,s,t);
Qsol = ilaplace(Q_LT,s,t);
I1sol = simplify(I1sol);
Qsol = simplify(Qsol);

Substitute Values

Before plotting the result, substitute symbolic variables by the numeric values of the
circuit elements. Let R1 = 4 Ω , R2 = 2 Ω, R3 = 3 Ω, C = 1/4 F, L = 1.6 H, I1(0) = 15 A ,
and Q(0) = 2 C.

vars = [R L C I1(0) Q(0)];
values = [4 2 3 1.6 1/4 15 2];
I1sol = subs(I1sol,vars,values)
Qsol = subs(Qsol,vars,values)

I1sol =
15*exp(-(51*t)/40)*(cosh((1001^(1/2)*t)/40) - (293*1001^(1/2)*sinh((1001^(1/2)*t)/40))/21879) - (5*sin(t))/51

2 Using Symbolic Math Toolbox Software

2-238

Qsol =
(4*sin(t))/51 - (5*cos(t))/51 + (107*exp(-(51*t)/40)*(cosh((1001^(1/2)*t)/40) + (2039*1001^(1/2)*sinh((1001^(1/2)*t)/40))/15301))/51

Plot Results

Plot the current I1sol and charge Qsol. Show both the transient and steady state
behavior by using two different time intervals: 0 ≤ t ≤ 10 and 5 ≤ t ≤ 25.

subplot(2,2,1)
fplot(I1sol,[0 10])
title('Current')
ylabel('I1(t)')
xlabel('t')

subplot(2,2,2)
fplot(Qsol,[0 10])
title('Charge')
ylabel('Q(t)')
xlabel('t')

subplot(2,2,3)
fplot(I1sol,[5 25])
title('Current')
ylabel('I1(t)')
xlabel('t')
text(7,0.25,'Transient')
text(16,0.125,'Steady State')

subplot(2,2,4)
fplot(Qsol,[5 25])
title('Charge')
ylabel('Q(t)')
xlabel('t')
text(7,0.25,'Transient')
text(15,0.16,'Steady State')

 Solve Differential Equations Using Laplace Transform

2-239

Analyze Results

Initially, the current and charge decrease exponentially. However, over the long term, they
are oscillatory. These behaviors are called "transient" and "steady state", respectively.
With the symbolic result, you can analyze the result's properties, which is not possible
with numeric results.

Visually inspect I1sol and Qsol. They are a sum of terms. Find the terms by using
children. Then, find the contributions of the terms by plotting them over [0 15]. The
plots show the transient and steady state terms.

I1terms = children(I1sol);
Qterms = children(Qsol);

2 Using Symbolic Math Toolbox Software

2-240

subplot(1,2,1)
fplot(I1terms,[0 15])
ylim([-2 2])
title('Current terms')

subplot(1,2,2)
fplot(Qterms,[0 15])
ylim([-2 2])
title('Charge terms')

The plots show that I1sol has a transient and steady state term, while Qsol has a
transient and two steady state terms. From visual inspection, notice I1sol and Qsol
have a term containing the exp function. Assume that this term causes the transient

 Solve Differential Equations Using Laplace Transform

2-241

exponential decay. Separate the transient and steady state terms in I1sol and Qsol by
checking terms for exp using has.

I1transient = I1terms(has(I1terms,'exp'))
I1steadystate = I1terms(~has(I1terms,'exp'))

I1transient =
15*exp(-(51*t)/40)*(cosh((1001^(1/2)*t)/40) - (293*1001^(1/2)*sinh((1001^(1/2)*t)/40))/21879)
I1steadystate =
-(5*sin(t))/51

Similarly, separate Qsol into transient and steady state terms. This result demonstrates
how symbolic calculations help you analyze your problem.

Qtransient = Qterms(has(Qterms,'exp'))
Qsteadystate = Qterms(~has(Qterms,'exp'))

Qtransient =
(107*exp(-(51*t)/40)*(cosh((1001^(1/2)*t)/40) + (2039*1001^(1/2)*sinh((1001^(1/2)*t)/40))/15301))/51
Qsteadystate =
[-(5*cos(t))/51, (4*sin(t))/51]

2 Using Symbolic Math Toolbox Software

2-242

Solve Difference Equations Using Z-Transform
Solve difference equations by using Z-transforms in Symbolic Math Toolbox with this
workflow. For simple examples on the Z-transform, see ztrans and iztrans.

Definition: Z-transform
The Z-transform of a function f(n) is defined as

F z = ∑
n = 0

∞ f n
zn .

Concept: Using Symbolic Workflows
Symbolic workflows keep calculations in the natural symbolic form instead of numeric
form. This approach helps you understand the properties of your solution and use exact
symbolic values. You substitute numbers in place of symbolic variables only when you
require a numeric result or you cannot continue symbolically. For details, see “Choose
Symbolic or Numeric Arithmetic” on page 2-121. Typically, the steps are:

1 Declare equations.
2 Solve equations.
3 Substitute values.
4 Plot results.
5 Analyze results.

Workflow: Solve "Rabbit Growth" Problem Using Z-Transform
Declare Equations

You can use the Z-transform to solve difference equations, such as the well-known "Rabbit
Growth" problem. If a pair of rabbits matures in one year, and then produces another pair
of rabbits every year, the rabbit population p(n) at year n is described by this difference
equation.

p(n+2) = p(n+1) + p(n).

 Solve Difference Equations Using Z-Transform

2-243

Declare the equation as an expression assuming the right side is 0. Because n represents
years, assume that n is a positive integer. This assumption simplifies the results.

syms p(n) z
assume(n>=0 & in(n,'integer'))
f = p(n+2) - p(n+1) - p(n)

f =
p(n + 2) - p(n + 1) - p(n)

Solve Equations

Find the Z-transform of the equation.

fZT = ztrans(f,n,z)

fZT =
z*p(0) - z*ztrans(p(n), n, z) - z*p(1) + z^2*ztrans(p(n), n, z) - z^2*p(0) - ztrans(p(n), n, z)

The function solve solves only for symbolic variables. Therefore, to use solve, first
substitute ztrans(p(n),n,z) with the variables pZT.

syms pZT
fZT = subs(fZT,ztrans(p(n),n,z),pZT)

fZT =
z*p(0) - pZT - z*p(1) - pZT*z - z^2*p(0) + pZT*z^2

Solve for pZT.

pZT = solve(fZT,pZT)

pZT =
-(z*p(1) - z*p(0) + z^2*p(0))/(- z^2 + z + 1)

Calculate p(n) by computing the inverse Z-transform of pZT. Simplify the result.

pSol = iztrans(pZT,z,n);
pSol = simplify(pSol)

pSol =
2*(-1)^(n/2)*cos(n*(pi/2 + asinh(1/2)*1i))*p(1) + ...
 (2^(2 - n)*5^(1/2)*(5^(1/2) + 1)^(n - 1)*(p(0)/2 - p(1)))/...
 5 - (2*2^(1 - n)*5^(1/2)*(1 - 5^(1/2))^(n - 1)*(p(0)/2 - p(1)))/5

2 Using Symbolic Math Toolbox Software

2-244

Substitute Values

To plot the result, first substitute the values of the initial conditions. Let p(0) and p(1)
be 1 and 2, respectively.

pSol = subs(pSol,[p(0) p(1)],[1 2])

pSol =
4*(-1)^(n/2)*cos(n*(pi/2 + asinh(1/2)*1i)) - (3*2^(2 - n)*5^(1/2)*(5^(1/2) + 1)^(n - 1))/10 + (3*2^(1 - n)*5^(1/2)*(1 - 5^(1/2))^(n - 1))/5

Plot Results

Show the growth in rabbit population over time by plotting pSol.

nValues = 1:10;
pSolValues = subs(pSol,n,nValues);
pSolValues = double(pSolValues);
pSolValues = real(pSolValues);
stem(nValues,pSolValues)
title('Rabbit Population')
xlabel('Years (n)')
ylabel('Population p(n)')
grid on

 Solve Difference Equations Using Z-Transform

2-245

Analyze Results

The plot shows that the solution appears to increase exponentially. However, because the
solution pSol contains many terms, finding the terms that produce this behavior requires
analysis.

Because all the functions in pSol can be expressed in terms of exp, rewrite pSol to exp.
Simplify the result by using simplify with 80 additional simplification steps. Now, you
can analyze pSol.

pSol = rewrite(pSol,'exp');
pSol = simplify(pSol,'Steps',80)

2 Using Symbolic Math Toolbox Software

2-246

pSol =
(2*2^n)/(- 5^(1/2) - 1)^n - (3*5^(1/2)*(1/2 - 5^(1/2)/2)^n)/10 + (3*5^(1/2)*(5^(1/2)/2 + 1/2)^n)/10 - (3*(1/2 - 5^(1/2)/2)^n)/2 + (5^(1/2)/2 + 1/2)^n/2

Visually inspect pSol. Notice that pSol is a sum of terms. Each term is a ratio that can
increase or decrease as n increases. For each term, you can confirm this hypothesis in
several ways:

• Check if the limit at n = Inf goes to 0 or Inf by using limit.
• Plot the term for increasing n and check behavior.
• Calculate the value at a large value of n.

For simplicity, use the third approach. Calculate the terms at n = 100, and then verify
the approach. First, find the individual terms by using children, substitute for n, and
convert to double.

pSolTerms = children(pSol);
pSolTermsDbl = subs(pSolTerms,n,100);
pSolTermsDbl = double(pSolTermsDbl)

pSolTermsDbl =
 1.0e+20 *
 0.0000 -0.0000 5.3134 -0.0000 3.9604

The result shows that some terms are 0 while other terms have a large magnitude.
Hypothesize that the large-magnitude terms produce the exponential behavior.
Approximate pSol with these terms.

idx = abs(pSolTermsDbl)>1; % use arbitrary cutoff
pApprox = pSolTerms(idx);
pApprox = sum(pApprox)

pApprox =
(3*5^(1/2)*(5^(1/2)/2 + 1/2)^n)/10 + (5^(1/2)/2 + 1/2)^n/2

Verify the hypothesis by plotting the approximation error between pSol and pApprox. As
expected, the error goes to 0 as n increases. This result demonstrates how symbolic
calculations help you analyze your problem.

Perror = pSol - pApprox;
nValues = 1:30;
Perror = subs(Perror,n,nValues);
stem(nValues,Perror)
xlabel('Years (n)')

 Solve Difference Equations Using Z-Transform

2-247

ylabel('Error (pSol - pApprox)')
title('Error in Approximation')

References

[1] Andrews, L.C., Shivamoggi, B.K., Integral Transforms for Engineers and Applied
Mathematicians, Macmillan Publishing Company, New York, 1986

[2] Crandall, R.E., Projects in Scientific Computation, Springer-Verlag Publishers, New
York, 1994

2 Using Symbolic Math Toolbox Software

2-248

[3] Strang, G., Introduction to Applied Mathematics, Wellesley-Cambridge Press,
Wellesley, MA, 1986

 Solve Difference Equations Using Z-Transform

2-249

Create Plots
In this section...
“Plot with Symbolic Plotting Functions” on page 2-250
“Plot Functions Numerically” on page 2-252
“Plot Multiple Symbolic Functions in One Graph” on page 2-253
“Plot Multiple Symbolic Functions in One Figure” on page 2-255
“Combine Symbolic Function Plots and Numeric Data Plots” on page 2-257
“Combine Numeric and Symbolic Plots in 3-D” on page 2-259

Plot with Symbolic Plotting Functions
MATLAB provides many techniques for plotting numerical data. Graphical capabilities of
MATLAB include plotting tools, standard plotting functions, graphic manipulation and
data exploration tools, and tools for printing and exporting graphics to standard formats.
Symbolic Math Toolbox expands these graphical capabilities and lets you plot symbolic
functions using:

• fplot to create 2-D plots of symbolic expressions, equations, or functions in Cartesian
coordinates.

• fplot3 to create 3-D parametric plots.
• ezpolar to create plots in polar coordinates.
• fsurf to create surface plots.
• fcontour to create contour plots.
• fmesh to create mesh plots.

Plot the symbolic expression sin(6x) by using fplot. By default, fplot uses the range
−5 < x < 5.

syms x
fplot(sin(6*x))

2 Using Symbolic Math Toolbox Software

2-250

Plot a symbolic expression or function in polar coordinates r (radius) and θ (polar angle)
by using ezpolar. By default, ezpolar plots a symbolic expression or function over the
interval 0 < θ < 2π.

Plot the symbolic expression sin(6t) in polar coordinates.

syms t
ezpolar(sin(6*t))

 Create Plots

2-251

Plot Functions Numerically
As an alternative to plotting expressions symbolically, you can substitute symbolic
variables with numeric values by using subs. Then, you can use these numeric values
with plotting functions in MATLAB™.

In the following expressions u and v, substitute the symbolic variables x and y with the
numeric values defined by meshgrid.

syms x y
u = sin(x^2 + y^2);
v = cos(x*y);
[X, Y] = meshgrid(-1:.1:1,-1:.1:1);

2 Using Symbolic Math Toolbox Software

2-252

U = subs(u, [x y], {X,Y});
V = subs(v, [x y], {X,Y});

Now, you can plot U and V by using standard MATLAB plotting functions.

Create a plot of the vector field defined by the functions U(X,Y) and V(X,Y) by using the
MATLAB quiver function.

quiver(X, Y, U, V)

Plot Multiple Symbolic Functions in One Graph
Plot several functions on one graph by adding the functions sequentially. After plotting
the first function, add successive functions by using the hold on command. The hold

 Create Plots

2-253

on command keeps the existing plots. Without the hold on command, each new plot
replaces any existing plot. After the hold on command, each new plot appears on top of
existing plots. Switch back to the default behavior of replacing plots by using the hold
off command.

Plot f = exsin(20x) using fplot. Show the bounds of f by superimposing plots of ex and
e−x as dashed red lines. Set the title by using the DisplayName property of the object
returned by fplot.

syms x y
f = exp(x)*sin(20*x)

f = sin 20 x ex

obj = fplot(f,[0 3]);
hold on
fplot(exp(x), [0 3], '--r')
fplot(-exp(x), [0 3], '--r')
title(obj.DisplayName)
hold off

2 Using Symbolic Math Toolbox Software

2-254

Plot Multiple Symbolic Functions in One Figure
Display several functions side-by-side in one figure by dividing the figure window into
several subplots using subplot. The command subplot(m,n,p) divides the figure into
a m by n matrix of subplots and selects the subplot p. Display multiple plots in separate
subplots by selecting the subplot and using plotting commands. Plotting into multiple
subplots is useful for side-by-side comparisons of plots.

Compare plots of sin((x2 + y2)/a) for a = 10, 20, 50, 100 by using subplot to create side-
by-side subplots.

syms x y a
f = sin((x^2 + y^2)/a);

 Create Plots

2-255

subplot(2, 2, 1)
fsurf(subs(f, a, 10))
title('a = 10')

subplot(2, 2, 2)
fsurf(subs(f, a, 20))
title('a = 20')

subplot(2, 2, 3)
fsurf(subs(f, a, 50))
title('a = 50')

subplot(2, 2, 4)
fsurf(subs(f, a, 100))
title('a = 100')

2 Using Symbolic Math Toolbox Software

2-256

Combine Symbolic Function Plots and Numeric Data Plots
Plot numeric and symbolic data on the same graph by using MATLAB and Symbolic Math
Toolbox functions together.

For numeric values of x between [− 5, 5], return a noisy sine curve by finding y = sin(x)
and adding random values to y. View the noisy sine curve by using scatter to plot the
points (x1, y1), (x2, y2),⋯.

x = linspace(-5,5);
y = sin(x) + (-1).^randi(10, 1, 100).*rand(1, 100)./2;
scatter(x, y)

 Create Plots

2-257

Show the underlying structure in the points by superimposing a plot of the sine function.
First, use hold on to retain the scatter plot. Then, use fplot to plot the sine function.

hold on
syms t
fplot(sin(t))
hold off

2 Using Symbolic Math Toolbox Software

2-258

Combine Numeric and Symbolic Plots in 3-D
Combine symbolic and numeric plots in 3-D by using MATLAB and Symbolic Math Toolbox
plotting functions. Symbolic Math Toolbox provides these 3-D plotting functions:

• fplot3 creates 3-D parameterized line plots.
• fsurf creates 3-D surface plots.
• fmesh creates 3-D mesh plots.

Create a spiral plot by using fplot3 to plot the parametric line

 Create Plots

2-259

x = (1− t)sin(100t)
y = (1− t)cos(100t)

z = 1− x2− y2 .

syms t
x = (1-t)*sin(100*t);
y = (1-t)*cos(100*t);
z = sqrt(1 - x^2 - y^2);
fplot3(x, y, z, [0 1])
title('Symbolic 3-D Parametric Line')

2 Using Symbolic Math Toolbox Software

2-260

Superimpose a plot of a sphere with radius 1 and center at (0, 0, 0). Find points on the
sphere numerically by using sphere. Plot the sphere by using mesh. The resulting plot
shows the symbolic parametric line wrapped around the top hemisphere.

hold on
[X,Y,Z] = sphere;
mesh(X, Y, Z)
colormap(gray)
title('Symbolic Parametric Plot and a Sphere')
hold off

 Create Plots

2-261

Generate C or Fortran Code from Symbolic Expressions
You can generate C or Fortran code fragments from a symbolic expression, or generate
files containing code fragments, using the ccode and fortran functions. These code
fragments calculate numerical values as if substituting numbers for variables in the
symbolic expression.

To generate code from a symbolic expression g, enter either ccode(g) or fortran(g).

For example:

syms x y
z = 30*x^4/(x*y^2 + 10) - x^3*(y^2 + 1)^2;
fortran(z)

ans =
 ' t0 = (x**4*3.0D+1)/(x*y**2+1.0D+1)-x**3*(y**2+1.0D0)**2'

ccode(z)

ans =
 ' t0 = ((x*x*x*x)*3.0E+1)/(x*(y*y)+1.0E+1)-(x*x*x)*pow(y*y+1.0,2.0);'

To generate a file containing code, either enter ccode(g,'file','filename') or
fortran(g,'file','filename'). For the example above,

fortran(z, 'file', 'fortrantest')

generates a file named fortrantest in the current folder. fortrantest consists of the
following:

 t2 = y**2
 t0 = (x**4*3.0D+1)/(t2*x+1.0D+1)-x**3*(t2+1.0D0)**2

Similarly, the command

ccode(z,'file','ccodetest')

generates a file named ccodetest that consists of the lines

 t2 = y*y;
 t0 = ((x*x*x*x)*3.0E+1)/(t2*x+1.0E+1)-(x*x*x)*pow(t2+1.0,2.0);

ccode and fortran generate many intermediate variables. This is called optimized code.
MATLAB generates intermediate variables as a lowercase letter t followed by an

2 Using Symbolic Math Toolbox Software

2-262

automatically generated number, such as t2. Intermediate variables can make the
resulting code more efficient by reusing intermediate expressions (such as t2 in
fortrantest and ccodetest). They can also make the code easier to read by keeping
expressions short.

 Generate C or Fortran Code from Symbolic Expressions

2-263

Generate MATLAB Functions from Symbolic Expressions
You can use matlabFunction to generate a MATLAB function handle that calculates
numerical values as if you were substituting numbers for variables in a symbolic
expression. Also, matlabFunction can create a file that accepts numeric arguments and
evaluates the symbolic expression applied to the arguments. The generated file is
available for use in any MATLAB calculation, whether or not the computer running the file
has a license for Symbolic Math Toolbox functions.

If you work in the MuPAD® Notebook, see “Create MATLAB Functions from MuPAD
Expressions” on page 3-75.

Generating a Function Handle
matlabFunction can generate a function handle from any symbolic expression. For
example:

syms x y
r = sqrt(x^2 + y^2);
ht = matlabFunction(tanh(r))

ht =
 function_handle with value:
 @(x,y)tanh(sqrt(x.^2+y.^2))

You can use this function handle to calculate numerically:

ht(.5,.5)

ans =
 0.6089

You can pass the usual MATLAB double-precision numbers or matrices to the function
handle. For example:

cc = [.5,3];
dd = [-.5,.5];
ht(cc, dd)

ans =
 0.6089 0.9954

2 Using Symbolic Math Toolbox Software

2-264

Tip Some symbolic expressions cannot be represented using MATLAB functions.
matlabFunction cannot convert these symbolic expressions, but issues a warning. Since
these expressions might result in undefined function calls, always check conversion
results and verify the results by executing the resulting function.

Control the Order of Variables
matlabFunction generates input variables in alphabetical order from a symbolic
expression. That is why the function handle in “Generating a Function Handle” on page 2-
264 has x before y:

ht = @(x,y)tanh((x.^2 + y.^2).^(1./2))

You can specify the order of input variables in the function handle using the vars option.
You specify the order by passing a cell array of character vectors or symbolic arrays, or a
vector of symbolic variables. For example:

syms x y z
r = sqrt(x^2 + 3*y^2 + 5*z^2);
ht1 = matlabFunction(tanh(r), 'vars', [y x z])

ht1 =
 function_handle with value:
 @(y,x,z)tanh(sqrt(x.^2+y.^2.*3.0+z.^2.*5.0))

ht2 = matlabFunction(tanh(r), 'vars', {'x', 'y', 'z'})

ht2 =
 function_handle with value:
 @(x,y,z)tanh(sqrt(x.^2+y.^2.*3.0+z.^2.*5.0))

ht3 = matlabFunction(tanh(r), 'vars', {'x', [y z]})

ht3 =
 function_handle with value:
 @(x,in2)tanh(sqrt(x.^2+in2(:,1).^2.*3.0+in2(:,2).^2.*5.0))

Generate a File
You can generate a file from a symbolic expression, in addition to a function handle.
Specify the file name using the file option. Pass a character vector containing the file
name or the path to the file. If you do not specify the path to the file, matlabFunction
creates this file in the current folder.

 Generate MATLAB Functions from Symbolic Expressions

2-265

This example generates a file that calculates the value of the symbolic matrix F for
double-precision inputs t, x, and y:

syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w,(1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];
matlabFunction(F,'file','testMatrix.m')

The file testMatrix.m contains the following code:

function F = testMatrix(t,x,y)
%TESTMATRIX
% F = TESTMATRIX(T,X,Y)

t2 = x.^2;
t3 = tan(y);
t4 = t2.*x;
t5 = t.^2;
t6 = t5 + 1;
t7 = 1./y;
t8 = t6.*t7.*x;
t9 = t3 + t4;
t10 = 1./t9;
F = [-(t10.*(t3 - t4))./t6,t8; t8,- t10.*(3.*t3 - 3.*t2.*x) - 1];

matlabFunction generates many intermediate variables. This is called optimized code.
MATLAB generates intermediate variables as a lowercase letter t followed by an
automatically generated number, for example t32. Intermediate variables can make the
resulting code more efficient by reusing intermediate expressions (such as t4, t6, t8, t9,
and t10 in the calculation of F). Using intermediate variables can make the code easier to
read by keeping expressions short.

If you don't want the default alphabetical order of input variables, use the vars option to
control the order. Continuing the example,

matlabFunction(F,'file','testMatrix.m','vars',[x y t])

generates a file equivalent to the previous one, with a different order of inputs:

function F = testMatrix(x,y,t)
...

2 Using Symbolic Math Toolbox Software

2-266

Name Output Variables
By default, the names of the output variables coincide with the names you use calling
matlabFunction. For example, if you call matlabFunction with the variable F

syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w, (1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];
matlabFunction(F,'file','testMatrix.m','vars',[x y t])

the generated name of an output variable is also F:

function F = testMatrix(x,y,t)
...

If you call matlabFunction using an expression instead of individual variables

syms x y t
z = (x^3 - tan(y))/(x^3 + tan(y));
w = z/(1 + t^2);
F = [w,(1 + t^2)*x/y; (1 + t^2)*x/y,3*z - 1];
matlabFunction(w + z + F,'file','testMatrix.m',...
'vars',[x y t])

the default names of output variables consist of the word out followed by the number, for
example:

function out1 = testMatrix(x,y,t)
...

To customize the names of output variables, use the output option:

syms x y z
r = x^2 + y^2 + z^2;
q = x^2 - y^2 - z^2;
f = matlabFunction(r, q, 'file', 'new_function',...
'outputs', {'name1','name2'})

The generated function returns name1 and name2 as results:

function [name1,name2] = new_function(x,y,z)
...

 Generate MATLAB Functions from Symbolic Expressions

2-267

Generate MATLAB Function Blocks from Symbolic
Expressions

Using matlabFunctionBlock, you can generate a MATLAB Function block. The
generated block is available for use in Simulink models, whether or not the computer
running the simulations has a license for Symbolic Math Toolbox.

If you work in the MuPAD Notebook, see “Create MATLAB Function Blocks from MuPAD
Expressions” on page 3-79.

Generate and Edit a Block
Suppose, you want to create a model involving the symbolic expression r = sqrt(x^2 +
y^2). Before you can convert a symbolic expression to a MATLAB Function block, create
an empty model or open an existing one:

new_system('my_system')
open_system('my_system')

Create a symbolic expression and pass it to the matlabFunctionBlock command. Also
specify the block name:

syms x y
r = sqrt(x^2 + y^2);
matlabFunctionBlock('my_system/my_block', r)

If you use the name of an existing block, the matlabFunctionBlock command replaces
the definition of an existing block with the converted symbolic expression.

You can open and edit the generated block. To open a block, double-click it.

function r = my_block(x,y)
%#codegen

r = sqrt(x.^2+y.^2);

Tip Some symbolic expressions cannot be represented using MATLAB functions.
matlabFunctionBlock cannot convert these symbolic expressions, but issues a
warning. Since these expressions might result in undefined function calls, always check
conversion results and verify results by running the simulation containing the resulting
block.

2 Using Symbolic Math Toolbox Software

2-268

Control the Order of Input Ports
matlabFunctionBlock generates input variables and the corresponding input ports in
alphabetical order from a symbolic expression. To change the order of input variables, use
the vars option:

syms x y
mu = sym('mu');
dydt = -x - mu*y*(x^2 - 1);
matlabFunctionBlock('my_system/vdp', dydt,'vars', [y mu x])

Name the Output Ports
By default, matlabFunctionBlock generates the names of the output ports as the word
out followed by the output port number, for example, out3. The output option allows
you to use the custom names of the output ports:

syms x y
mu = sym('mu');
dydt = -x - mu*y*(x^2 - 1);
matlabFunctionBlock('my_system/vdp', dydt,'outputs',{'name1'})

 Generate MATLAB Function Blocks from Symbolic Expressions

2-269

Generate Simscape Equations from Symbolic
Expressions

Simscape software extends the Simulink product line with tools for modeling and
simulating multidomain physical systems, such as those with mechanical, hydraulic,
pneumatic, thermal, and electrical components. Unlike other Simulink blocks, which
represent mathematical operations or operate on signals, Simscape blocks represent
physical components or relationships directly. With Simscape blocks, you build a model of
a system just as you would assemble a physical system. For more information about
Simscape software see “Simscape”.

You can extend the Simscape modeling environment by creating custom components.
When you define a component, use the equation section of the component file to establish
the mathematical relationships among a component's variables, parameters, inputs,
outputs, time, and the time derivatives of each of these entities. The Symbolic Math
Toolbox and Simscape software let you perform symbolic computations and use the
results of these computations in the equation section. The simscapeEquation function
translates the results of symbolic computations to Simscape language equations.

If you work in the MuPAD Notebook, see “Create Simscape Equations from MuPAD
Expressions” on page 3-81.

Convert Algebraic and Differential Equations
Suppose, you want to generate a Simscape equation from the solution of the following
ordinary differential equation. As a first step, use the dsolve function to solve the
equation:

syms a y(t)
Dy = diff(y);
s = dsolve(diff(y, 2) == -a^2*y, y(0) == 1, Dy(pi/a) == 0);
s = simplify(s)

The solution is:

s =
cos(a*t)

Then, use the simscapeEquation function to rewrite the solution in the Simscape
language:

2 Using Symbolic Math Toolbox Software

2-270

simscapeEquation(s)

simscapeEquation generates the following code:

ans =
 's == cos(a*time);'

The variable time replaces all instances of the variable t except for derivatives with
respect to t. To use the generated equation, copy the equation and paste it to the equation
section of the Simscape component file. Do not copy the automatically generated variable
ans and the equal sign that follows it.

simscapeEquation converts any derivative with respect to the variable t to the
Simscape notation, X.der, where X is the time-dependent variable. For example, convert
the following differential equation to a Simscape equation. Also, here you explicitly
specify the left and the right sides of the equation by using the syntax
simscapeEquation(LHS, RHS):

syms a x(t)
simscapeEquation(diff(x), -a^2*x)

ans =
 'x.der == -a^2*x;'

simscapeEquation also translates piecewise expressions to the Simscape language. For
example, the result of the following Fourier transform is a piecewise function:

syms v u x
assume(x, 'real')
f = exp(-x^2*abs(v))*sin(v)/v;
s = fourier(f, v, u)

s =
piecewise(x ~= 0, atan((u + 1)/x^2) - atan((u - 1)/x^2))

From this symbolic piecewise equation, simscapeEquation generates valid code for the
equation section of a Simscape component file:

simscapeEquation(s)

ans =
 'if (x ~= 0.0)
 s == -atan(1.0/x^2*(u-1.0))+atan(1.0/x^2*(u+1.0));
 else

 Generate Simscape Equations from Symbolic Expressions

2-271

 s == NaN;
 end'

Clear the assumption that x is real by recreating it using syms:

syms x

Limitations
The equation section of a Simscape component file supports a limited number of
functions. For details and the list of supported functions, see Simscape equations. If a
symbolic expression contains functions that are not supported by Simscape, then
simscapeEquation cannot represent the symbolic expression as a Simscape equation
and issues a warning instead. Always verify the conversion result. Expressions with
infinities are prone to invalid conversion.

2 Using Symbolic Math Toolbox Software

2-272

MuPAD in Symbolic Math Toolbox

• “MuPAD Engines and MATLAB Workspace” on page 3-2
• “Create MuPAD Notebooks” on page 3-4
• “Open MuPAD Notebooks” on page 3-7
• “Save MuPAD Notebooks” on page 3-13
• “Evaluate MuPAD Notebooks from MATLAB” on page 3-14
• “Close MuPAD Notebooks from MATLAB” on page 3-18
• “Convert MuPAD Notebooks to MATLAB Live Scripts” on page 3-20
• “Troubleshoot MuPAD to MATLAB Translation Errors” on page 3-26
• “Troubleshoot MuPAD to MATLAB Translation Warnings” on page 3-36
• “Edit MuPAD Code in MATLAB Editor” on page 3-45
• “Notebook Files and Program Files” on page 3-48
• “Source Code of the MuPAD Library Functions” on page 3-50
• “Differences Between MATLAB and MuPAD Syntax” on page 3-52
• “Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-55
• “Reserved Variable and Function Names” on page 3-59
• “Call Built-In MuPAD Functions from MATLAB” on page 3-61
• “Use Your Own MuPAD Procedures” on page 3-65
• “Clear Assumptions and Reset the Symbolic Engine” on page 3-70
• “Create MATLAB Functions from MuPAD Expressions” on page 3-75
• “Create MATLAB Function Blocks from MuPAD Expressions” on page 3-79
• “Create Simscape Equations from MuPAD Expressions” on page 3-81

3

MuPAD Engines and MATLAB Workspace

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

A MuPAD engine is a separate process that runs on your computer in addition to a
MATLAB process. A MuPAD engine starts when you first call a function that needs a
symbolic engine, such as syms. Symbolic Math Toolbox functions that use the symbolic
engine use standard MATLAB syntax, such as y = int(x^2).

Conceptually, each MuPAD notebook has its own symbolic engine, with an associated
workspace. You can have any number of MuPAD notebooks open simultaneously.

3 MuPAD in Symbolic Math Toolbox

3-2

The engine workspace associated with the MATLAB workspace is generally empty, except
for assumptions you make about variables. For details, see “Clear Assumptions and Reset
the Symbolic Engine” on page 3-70.

 MuPAD Engines and MATLAB Workspace

3-3

Create MuPAD Notebooks

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

Before creating a MuPAD notebook, it is best to decide which interface you intend to use
primarily for your task. The two approaches are:

• Perform your computations in the MATLAB Live Editor while using MuPAD notebooks
as an auxiliary tool. This approach is recommended and implies that you create a
MuPAD notebook, and then execute it, transfer data and results, or close it from the
MATLAB Live Editor.

• Perform your computations and obtain the results in the MuPAD Notebook. This
approach is not recommended and implies that you use the MATLAB Live Editor only
to access MuPAD, but do not intend to copy data and results between MATLAB and
MuPAD.

If you created a MuPAD notebook without creating a handle, and then realized that you
need to transfer data and results between MATLAB and MuPAD, use
allMuPADNotebooks to create a handle to this notebook:

mupad
nb = allMuPADNotebooks

nb =
Notebook1

This approach does not require saving the notebook. Alternatively, you can save the
notebook and then open it again, creating a handle.

If You Need Communication Between Interfaces
If you perform computations in both interfaces, use handles to notebooks. The toolbox
uses this handle for communication between the MATLAB workspace and the MuPAD
notebook.

3 MuPAD in Symbolic Math Toolbox

3-4

To create a blank MuPAD notebook from the MATLAB Command Window, type

nb = mupad

The variable nb is a handle to the notebook. You can use any variable name instead of nb.

To create several notebooks, use this syntax repeatedly, assigning a notebook handle to
different variables. For example, use the variables nb1, nb2, and so on.

If You Use MATLAB to Access MuPAD
Use the mupad Command

To create a new blank notebook, type mupad in the MATLAB Command Window.

Use the Welcome to MuPAD Dialog Box

The Welcome to MuPAD dialog box lets you create a new notebook or program file, open
an existing notebook or program file, and access documentation. To open this dialog box,
type mupadwelcome in the MATLAB Command Window.

 Create MuPAD Notebooks

3-5

Create New Notebooks from MuPAD

If you already opened a notebook, you can create new notebooks and program files
without switching to the MATLAB Live Editor:

• To create a new notebook, select File > New Notebook from the main menu or use
the toolbar.

• To open a new Editor window, where you can create a program file, select File > New
Editor from the main menu or use the toolbar.

3 MuPAD in Symbolic Math Toolbox

3-6

Open MuPAD Notebooks

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

Before opening a MuPAD notebook, it is best to decide which interface you intend to use
primarily for your task. The two approaches are:

• Perform your computations in the MATLAB Live Editor using MuPAD notebooks as an
auxiliary tool. This approach is recommended and implies that you open a MuPAD
notebook, and then execute it, transfer data and results, or close it from the MATLAB
Live Editor. If you perform computations in both interfaces, use handles to notebooks.
The toolbox uses these handles for communication between the MATLAB workspace
and the MuPAD notebook.

• Perform your computations and obtain the results in MuPAD. This approach is not
recommended. It implies that you use the MATLAB Live Editor only to access the
MuPAD Notebook app, but do not intend to copy data and results between MATLAB
and MuPAD. If you use the MATLAB Live Editor only to open a notebook, and then
perform all your computations in that notebook, you can skip using a handle.

Tip MuPAD notebook files open in an unevaluated state. In other words, the notebook
is not synchronized with its engine when it opens. To synchronize a notebook with its
engine, select Notebook > Evaluate All or use evaluateMuPADNotebook. For
details, see “Evaluate MuPAD Notebooks from MATLAB” on page 3-14.

If you opened a MuPAD notebook without creating a handle, and then realized that you
need to transfer data and results between MATLAB and MuPAD, use
allMuPADNotebooks to create a handle to this notebook:

mupad
nb = allMuPADNotebooks

nb =
Notebook1

 Open MuPAD Notebooks

3-7

This approach does not require saving changes in the notebook. Alternatively, you can
save the notebook and open it again, this time creating a handle.

If You Need Communication Between Interfaces
The following commands are also useful if you lose the handle to a notebook, in which
case, you can save the notebook file and then reopen it with a new handle.

Use the mupad or openmn Command

Open an existing MuPAD notebook file and create a handle to it by using mupad or
openmn in the MATLAB Command Window:

nb = mupad('file_name')

nb1 = openmn('file_name')

Here, file_name must be a full path, such as H:\Documents\Notes\myNotebook.mn,
unless the notebook is in the current folder.

To open a notebook and automatically jump to a particular location, create a link target at
that location inside a notebook, and refer to it when opening a notebook. For information
about creating link targets, see “Work with Links”. To refer to a link target when opening
a notebook, enter:

nb = mupad('file_name#linktarget_name')

nb = openmn('file_name#linktarget_name')

Use the open Command

Open an existing MuPAD notebook file and create a handle to it by using the open
function in the MATLAB Command Window:

nb1 = open('file_name')

Here, file_name must be a full path, such as H:\Documents\Notes\myNotebook.mn,
unless the notebook is in the current folder.

3 MuPAD in Symbolic Math Toolbox

3-8

If You Use MATLAB to Access MuPAD
Double-Click the File Name

You can open an existing MuPAD notebook, program file, or graphic file (.xvc or .xvz)
by double-clicking the file name. The system opens the file in the appropriate interface.

Use the mupad or openmn Command

Open an existing MuPAD notebook file by using the mupad or openmn function in the
MATLAB Command Window:

mupad('file_name')

openmn('file_name')

Here, file_name must be a full path, such as H:\Documents\Notes\myNotebook.mn,
unless the notebook is in the current folder.

To open a notebook and automatically jump to a particular location, create a link target at
that location inside a notebook, and refer to it when opening a notebook. For information
about creating link targets, see “Work with Links”. To refer to a link target when opening
a notebook, enter:

mupad('file_name#linktarget_name')

openmn('file_name#linktarget_name')

Use the open Command

Open an existing MuPAD notebook file by using open in the MATLAB Command Window:

open('file_name')

Here, file_name must be a full path, such as H:\Documents\Notes\myNotebook.mn,
unless the notebook is in the current folder.

Use the Welcome to MuPAD Dialog Box

The Welcome to MuPAD dialog box lets you create a new notebook or program file, open
an existing notebook or program file, and access documentation. To open this dialog box,
type mupadwelcome in the MATLAB Command Window.

 Open MuPAD Notebooks

3-9

Open Notebooks in MuPAD

If you already opened a notebook, you can start new notebooks and open existing ones
without switching to the MATLAB Live Editor. To open an existing notebook, select
File > Open from the main menu or use the toolbar. Also, you can open the list of
notebooks you recently worked with.

Open MuPAD Program Files and Graphics
Besides notebooks, MuPAD lets you create and use program files (.mu) and graphic files
(.xvc or .xvz). Also, you can use the MuPAD Debugger to diagnose problems in your
MuPAD code.

Do not use a handle when opening program files and graphic files because there is no
communication between these files and the MATLAB Live Editor.

Double-Click the File Name

You can open an existing MuPAD notebook, program file, or graphic file by double-clicking
the file name. The system opens the file in the appropriate interface.

3 MuPAD in Symbolic Math Toolbox

3-10

Use the openmn Command

Symbolic Math Toolbox provides these functions for opening MuPAD files in the interfaces
with which these files are associated:

• openmu opens a program file with the extension .mu in the MATLAB Editor.
• openxvc opens an XVC graphic file in the MuPAD Graphics window.
• openxvz opens an XVZ graphic file in the MuPAD Graphics window.

For example, open an existing MuPAD program file by using the openmu function in the
MATLAB Command Window:

openmu('H:\Documents\Notes\myProcedure.mu')

You must specify a full path unless the file is in the current folder.

Use the open Command

Open an existing MuPAD file by using open in the MATLAB Command Window:

open('file_name')

Here, file_name must be a full path, such as H:\Documents\Notes
\myProcedure.mu, unless the notebook is in the current folder.

Use the Welcome to MuPAD Dialog Box

The Welcome to MuPAD dialog box lets you create a new notebook or program file, open
an existing notebook or program file, and access documentation. To open this dialog box,
type mupadwelcome in the MATLAB Command Window.

 Open MuPAD Notebooks

3-11

Open Program Files and Graphics from MuPAD

If you already opened a notebook, you can create new notebooks and program files and
open existing ones without switching to the MATLAB Command Window. To open an
existing file, select File > Open from the main menu or use the toolbar.

You also can open the Debugger window from within a MuPAD notebook. For details, see
“Open the Debugger”.

Note You cannot access the MuPAD Debugger from the MATLAB Command Window.

3 MuPAD in Symbolic Math Toolbox

3-12

Save MuPAD Notebooks

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

To save changes in a notebook:

1 Switch to the notebook. (You cannot save changes in a MuPAD notebook from the
MATLAB Command Window.)

2 Select File > Save or File > Save As from the main menu or use the toolbar.

If you want to save and close a notebook, you can use the close function in the MATLAB
Command Window. If the notebook has been modified, then MuPAD brings up the dialog
box asking if you want to save changes. Click Yes to save the modified notebook.

Note You can lose data when saving a MuPAD notebook. A notebook saves its inputs and
outputs, but not the state of its engine. In particular, MuPAD does not save variables
copied into a notebook using setVar(nb,...).

 Save MuPAD Notebooks

3-13

Evaluate MuPAD Notebooks from MATLAB

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

When you open a saved MuPAD notebook file, the notebook displays the results (outputs),
but the engine does not “remember” them. For example, suppose that you saved the
notebook myFile1.mn in your current folder and then opened it:

nb = mupad('myFile1.mn');

Suppose that myFile1.mn performs these computations.

Open that file and try to use the value w without synchronizing the notebook with its
engine. The variable w currently has no assigned value.

3 MuPAD in Symbolic Math Toolbox

3-14

To synchronize a MuPAD notebook with its engine, you must evaluate the notebook as
follows:

1 Open the notebooks that you want to evaluate. Symbolic Math Toolbox cannot
evaluate MuPAD notebooks without opening them.

2 Use evaluateMuPADNotebook. Alternatively, you can evaluate the notebook by
selecting Notebook > Evaluate All from the main menu of the MuPAD notebook.

3 Perform your computations using data and results obtained from MuPAD notebooks.
4 Close the notebooks. This step is optional.

For example, evaluate the notebook myFile1.mn located in your current folder:

evaluateMuPADNotebook(nb)

 Evaluate MuPAD Notebooks from MATLAB

3-15

Now, you can use the data and results from that notebook in your computations. For
example, copy the variables y and w to the MATLAB workspace:

y = getVar(nb,'y')
w = getVar(nb,'w')

y =
sin(x)/(sin(x)^2 + 1)

w =
sin(x)/(sin(x)^2 - sin(x) + 1)

You can evaluate several notebooks in a single call by passing a vector of notebook
handles to evaluateMuPADNotebook:

nb1 = mupad('myFile1.mn');
nb2 = mupad('myFile2.mn');
evaluateMuPADNotebook([nb1,nb2])

Also, you can use allMuPADNotebooks that returns handles to all currently open
notebooks. For example, if you want to evaluate the notebooks with the handles nb1 and
nb2, and no other notebooks are currently open, then enter:

evaluateMuPADNotebook(allMuPADNotebooks)

3 MuPAD in Symbolic Math Toolbox

3-16

If any calculation in a notebook throws an error, then evaluateMuPADNotebook stops.
The error messages appear in the MATLAB Command Window and in the MuPAD
notebook. When you evaluate several notebooks and one of them throws an error,
evaluateMuPADNotebook does not proceed to the next notebook. It stops and displays
an error message immediately. If you want to skip calculations that cause errors and
evaluate all input regions that run without errors, use 'IgnoreErrors',true:

evaluateMuPADNotebook(allMuPADNotebooks,'IgnoreErrors',true)

 Evaluate MuPAD Notebooks from MATLAB

3-17

Close MuPAD Notebooks from MATLAB

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

To close notebooks from the MATLAB Command Window, use the close function and
specify the handle to that notebook. For example, create the notebook with the handle nb:

nb = mupad;

Now, close the notebook:

close(nb)

If you do not have a handle to the notebook (for example, if you created it without
specifying a handle or accidentally deleted the handle later), use allMuPADNotebooks to
return handles to all currently open notebooks. This function returns a vector of handles.
For example, create three notebooks without handles:

mupad
mupad
mupad

Use allMuPADNotebooks to get a vector of handles to these notebooks:

nbhandles = allMuPADNotebooks

nbhandles =
Notebook1
Notebook2
Notebook3

Close the first notebook (Notebook1):

close(nbhandles(1))

Close all notebooks:

3 MuPAD in Symbolic Math Toolbox

3-18

close(allMuPADNotebooks)

If you modify a notebook and then try to close it, MuPAD brings up the dialog box asking
if you want to save changes. To suppress this dialog box, call close with the 'force'
flag. You might want to use this flag if your task requires opening many notebooks,
evaluating them, and then closing them. For example, suppose that you want to evaluate
the notebooks myFile1.mn, myFile2.mn, ..., myFile10.mn located in your current
folder. First, open the notebooks. If you do not have any other notebooks open, you can
skip specifying the handles and later use allMuPADNotebooks. Otherwise, do not forget
to specify the handles.

mupad('myFile1.mn')
mupad('myFile2.mn')
...
mupad('myFile10.mn')

Evaluate all notebooks:

evaluateMuPADNotebook(allMuPADNotebooks)

When you evaluate MuPAD notebooks, you also modify them. Therefore, when you try to
close them, the dialog box asking you to save changes will appear for each notebook. To
suppress the dialog box and discard changes, use the 'force' flag:

close(allMuPADNotebooks,'force')

 Close MuPAD Notebooks from MATLAB

3-19

Convert MuPAD Notebooks to MATLAB Live Scripts
Migrate MuPAD notebooks to MATLAB live scripts that use MATLAB code. Live scripts
are an interactive way to run MATLAB code. For details, see “What Is a Live Script or
Function?” (MATLAB) MuPAD notebooks are converted to live scripts by using Symbolic
Math Toolbox. For more information, see “Getting Started with Symbolic Math Toolbox”.

Convert a MuPAD Notebook .mn to a MATLAB Live Script .mlx
1 Prepare the notebook: This step is optional, but helps avoid conversion errors and

warnings. Check if your notebook contains untranslatable objects from “MuPAD
Objects That Are Not Converted” on page 3-22. These objects cause translation
errors or warnings.

2 Convert the notebook: Use convertMuPADNotebook. For example, convert
myNotebook.mn in the current folder to myScript.mlx in the same folder.

convertMuPADNotebook('myNotebook.mn','myScript.mlx')

Alternatively, right-click the notebook in the Current Folder browser and select Open
as Live Script.

3 Check for errors or warnings: Check the output of convertMuPADNotebook for
errors or warnings. If there are none, go to step 7. For example, this output means
that the converted live script myScript.mlx has 4 errors and 1 warning.

Created ''myScript.mlx': 4 translation errors, 1 warnings. For verifying...
 the document, see help.

A translation error means that the translated code will not run correctly while a
translation warning indicates that the code requires inspection. If the code only
contains warnings, it will likely run without issues.

4 Fix translation errors: Open the converted live script by clicking the link in the
output. Find errors by searching for ERROR. The error explains which MuPAD
command did not translate correctly. For details and fixes, click ERROR. After fixing
the error, delete the error message. For the list of translation errors, see
“Troubleshoot MuPAD to MATLAB Translation Errors” on page 3-26. If you cannot
fix your error, and the “Known Issues” on page 3-21 do not help, please contact
technical support.

5 Fix translation warnings: Find warnings by searching for WARNING. The warning
text explains the issue. For details and fixes, click WARNING. Decide to either adapt

3 MuPAD in Symbolic Math Toolbox

3-20

https://www.mathworks.com/support/contact_us.html

the code or ignore the warning. Then delete the warning message. For the list of
translation warnings, see “Troubleshoot MuPAD to MATLAB Translation Warnings”
on page 3-36.

6 Verify the live script: Open the live script and check for unexpected commands,
comments, formatting, and so on. For readability, the converted code may require
manual cleanup, such as eliminating auxiliary variables.

7 Execute the live script: Ensure that the code runs properly and returns expected
results. If the results are not expected, check your MuPAD code for the “Known
Issues” on page 3-21 listed below.

Convert MuPAD Graphics to MATLAB Graphics
To convert MuPAD graphics, first try to convert the MuPAD plot commands that generated
the graphics. This approach ensures you can control the graphical output in MATLAB
similar to MuPAD. If you cannot convert the MuPAD commands, then export the graphic.
See “Save and Export Graphics”.

Known Issues
These are the known issues when converting MuPAD notebooks to MATLAB live scripts
with the convertMuPADNotebook function. If your issue is not described, please contact
technical support.

• “MuPAD Objects That Are Not Converted” on page 3-22
• “No Automatic Substitution in MATLAB” on page 3-22
• “last(1) in MuPAD Is Not ans in MATLAB” on page 3-23
• “Some solve Results Are Wrongly Accessed” on page 3-23
• “break Inside case Is Wrongly Translated” on page 3-23
• “Some MuPAD Graphics Options Are Not Translated” on page 3-24
• “Some Operations on Matrices Are Wrongly Translated” on page 3-24
• “indets Behavior in MATLAB Differs” on page 3-25
• “Return Type of factor Differs in MATLAB” on page 3-25
• “Layout Issues” on page 3-25
• “Syntax Differences Between MATLAB and MuPAD” on page 3-25

 Convert MuPAD Notebooks to MATLAB Live Scripts

3-21

https://www.mathworks.com/support/contact_us.html

MuPAD Objects That Are Not Converted

Expand the list to view MuPAD objects that are not converted. To avoid conversion errors
and warnings, remove these objects or commands from your notebook before conversion.

Objects Not Converted

• Reading code from files. Replace commands such as read("filename.mu") by the
content of filename.mu.

• Function calls with expression sequences as input arguments.
• Function calls where the function is generated by the preceding code instead of being
specified explicitly.

• Domains, and commands that create domains and their elements.
• Assignments to slots of domains and function environments.
• Commands using the history mechanism, such as last(2) or HISTORY := 30.
• MuPAD environment variables, such as ORDER, HISTORY, and LEVEL.

No Automatic Substitution in MATLAB

In MATLAB, when symbolic variables are assigned values, then expressions containing
those values are not automatically updated.

Fixing This Issue

When values are assigned to variables, update any expressions that contain those
variables by calling subs on those expressions.

syms a b
f = a + b;
a = 1;
b = 2;
f % f is still a + b
subs(f) % f is updated

f =
a + b
ans =
3

3 MuPAD in Symbolic Math Toolbox

3-22

last(1) in MuPAD Is Not ans in MATLAB

In MuPAD, last(1) always returns the last result. In MATLAB, ans returns the result of
the last unassigned command. For example, in MATLAB if you run x = 1, then calling
ans does not return 1.

Fixing This Issue

Instead of using ans, assign the result to a variable and use that variable.

Some solve Results Are Wrongly Accessed

When results of MuPAD solve are accessed, convertMuPADNotebook assumes that the
result is a finite set. However, if the result is a non-finite set then the code is wrongly
translated.

Fixing This Issue

There is no general solution. Further, non-finite solution sets are not translatable.

If you are accessing parameters or conditions, use the parameters or conditions
output arguments of MATLAB solve.

syms x
S = solve(sin(x) == 1, x, 'ReturnConditions', true);
S.x % solution
S.parameters % parameters in solution
S.conditions % conditions on solution

ans =
pi/2 + 2*pi*k
ans =
k
ans =
in(k, 'integer')

break Inside case Is Wrongly Translated

In MuPAD, a break ends a case in a switch case. However, MATLAB does not require a
break to end a case. Thus, a MuPAD break introduces an unnecessary break in
MATLAB. Also, if a MuPAD case omits a break, then the MATLAB case will not fall-
through.

 Convert MuPAD Notebooks to MATLAB Live Scripts

3-23

Fixing This Issue

In the live script, delete break statements that end cases in a switch-case statement.

For fall-through in MATLAB, specify all values with their conditions in one case.

Some MuPAD Graphics Options Are Not Translated

While the most commonly used MuPAD graphics options are translated, there are some
options that are not translated.

Fixing This Issue

Find the corresponding option in MATLAB by using the properties of the figure handle
gcf or axis handle gca. For example, the MuPAD command plot(sin(x), Width =
80*unit::mm, Height = 4*unit::cm) sets height and width. Translate it to MATLAB
code.

syms x
fplot(sin(x));
g = gcf;
g.Units = 'centimeters';
g.Position(3:4) = [8 4];

Some Operations on Matrices Are Wrongly Translated

Operations on matrices are not always translated correctly. For example, if M is a matrix,
then exp(M) in MuPAD is wrongly translated to exp(M) instead of the matrix exponential
expm(M).

3 MuPAD in Symbolic Math Toolbox

3-24

Fixing This Issue

When performing operations on matrices, search for the matrix operation and use it
instead. For example, in MATLAB:

• Use expm instead of exp.
• Use funm(M,'sin') instead of sin(M).
• A == [1 2; 3 4] displays differently from A = matrix([[1, 2], [3, 4]]) in

MuPAD but is programmatically equivalent.

indets Behavior in MATLAB Differs

indets is translated to MATLAB symvar. However, symvar does not find bound
variables or constant identifiers like PI.

Return Type of factor Differs in MATLAB

The return type of MuPAD factor has no equivalent in MATLAB. Subsequent operations
on the results of factor in MATLAB might return incorrect results.

Fixing This Issue

Check and modify the output of factor in MATLAB as required such that subsequent
commands run correctly.

Layout Issues

• MuPAD notebook frames are not converted.
• MuPAD notebook tables are not converted.
• MuPAD plots are not interactive in live scripts.
• Titles or headings in MuPAD notebooks are not always detected.
• MuPAD text attribute underline is not converted
• Text formatting: Font, font size, and color are not converted. All text in live scripts

looks the same.

Syntax Differences Between MATLAB and MuPAD

For the syntax differences between MATLAB and MuPAD, see “Differences Between
MATLAB and MuPAD Syntax” on page 3-52.

 Convert MuPAD Notebooks to MATLAB Live Scripts

3-25

Troubleshoot MuPAD to MATLAB Translation Errors
This page helps troubleshoot all errors generated by the convertMuPADNotebook
function when converting MuPAD notebooks to MATLAB live scripts. For the conversion
steps, see “Convert MuPAD Notebooks to MATLAB Live Scripts” on page 3-20. To
troubleshoot warnings, see “Troubleshoot MuPAD to MATLAB Translation Warnings” on
page 3-36.

Error Message Details Recommendations
No equivalent code in
MATLAB.

convertMuPADNotebook
cannot find the
corresponding functionality
in MATLAB.

Adjust the code so that it
uses only the functionality
that can be expressed in the
MATLAB language.
Alternatively, in the
target .mlx file, some
functionality can be
replaced with MATLAB
functionality, such as in
statistics or file input-
output.

Unable to translate the
second and higher
derivatives of Airy functions.
Express these derivatives in
terms of Airy functions and
their first derivatives.

The MATLAB airy function
represents Airy functions of
the first and second kind
and their first derivatives. In
MuPAD, airyAi(z,n) and
airyBi(z,n) can
represent second and higher
derivatives of Airy functions,
that is, n can be greater
than 1.

Rewrite second and higher
derivatives of Airy functions
in terms of Airy functions
and their first derivatives.
Then convert the result to
MATLAB code.

The MuPAD airyAi and
airyBi functions return
results in terms of Airy
functions and their first
derivatives. You can replace
second and higher
derivatives by their outputs
in MuPAD, before converting
the code to MATLAB.

3 MuPAD in Symbolic Math Toolbox

3-26

Error Message Details Recommendations
Unable to translate
assignment to MuPAD
environment variable.

Environment variables are
global variables, such as
HISTORY, LEVEL, ORDER,
and so on, that affect the
behavior of MuPAD
algorithms.

In some cases, you can use
name-value pair arguments
in each function call, such
as setting the value Order
in the taylor function call.

In other cases, there is no
appropriate replacement.
Adjust the code so that it
does not require a global
setting.

Unable to translate
assignments to the
remember table of a
procedure.

MuPAD uses remember
tables to speed up
computations, especially
when you use recursive
procedure calls. The system
stores the arguments of a
procedure call as indices of
the remember table entries,
and the corresponding
results as values of these
entries. When you call a
procedure using the same
arguments as in previous
calls, MuPAD accesses
the remember table of that
procedure. If
the remember table contain
s the entry with the required
arguments, MuPAD returns
the value of that entry. For
details, see “Remember
Mechanism”.

The remember tables are
not available in MATLAB.

Adjust the code so that it
does not use remember
tables.

 Troubleshoot MuPAD to MATLAB Translation Errors

3-27

Error Message Details Recommendations
Unable to translate
assignments to slots of
domains and function
environments.

In MuPAD, the slot
function defines methods
and entries of data types
(domains) or for defining
attributes of function
environments. These
methods and entries (slots)
let you overload system
functions by your own
domains and function
environments.

Domains, function
environments, and their
slots are not available in
MATLAB.

Adjust the code so that it
does not use assignments to
slots of domains and
function environments.

Unable to translate explicitly
given coefficient ring.

MuPAD lets you use special
coefficient rings that cannot
be represented by
arithmetical expressions.
Specifying coefficient rings
of polynomials is not
available in MATLAB.

Adjust the code so that it
does not use polynomials
over special rings.

Unable to translate
complexInfinity.

MuPAD uses the value
complexInfinity. This
value is not available in
MATLAB.

Adjust the code so that it
does not use
complexInfinity.

Unable to translate MuPAD
code because it uses an
obsolete calling syntax.

MuPAD syntax has changed
and the code uses obsolete
syntax that is no longer
supported.

Update code to use current
MuPAD syntax by checking
MuPAD documentation and
then run
convertMuPADNotebook
again.

Unable to translate a call to
the function 'D' with more
than one argument.

The indices in the first
argument of D cannot be
translated to variable names
in MATLAB.

Use the MuPAD diff
function instead of D.

3 MuPAD in Symbolic Math Toolbox

3-28

Error Message Details Recommendations
Unable to translate MuPAD
domains, or commands to
create domains or their
elements.

Domains represent data
types in MuPAD. They are
not available in MATLAB.

Adjust the code so that it
does not create or explicitly
use domains and their
elements.

Unable to translate the
MuPAD environment variable
''{0}''.

Environment variables are
global variables, such as
HISTORY, LEVEL, ORDER,
and so on, that affect the
behavior of MuPAD
algorithms.

convertMuPADNotebook
cannot translate MuPAD
environment variables
because they are not
available in MATLAB.

Adjust the code so that it
does not require accessing
MuPAD environment
variables.

Unable to translate function
calls with expression
sequences as input
arguments.

In MuPAD, a function call
f(x), where x is a sequence
of n operands, resolves to a
call with n arguments.

MATLAB cannot resolve
function calls with
expression sequences to
calls with multiple
arguments.

Adjust the code so that it
does not contain function
calls with expression
sequences as input
arguments.

Unable to translate infinite
sets.

MuPAD recognizes infinite
sets. For example, solve
can return a solution as an
infinite set:
solve(sin(x*PI/2) =
0, x) returns 2k k ∈ ℤ .
You can create such sets by
using Dom::ImageSet.

MATLAB does not support
infinite sets.

Adjust the code so that it
does not use infinite sets as
inputs.

 Troubleshoot MuPAD to MATLAB Translation Errors

3-29

Error Message Details Recommendations
Unable to translate a call
accessing previously
computed results. The
MATLAB ans function lets
you access only the most
recent result.

The MuPAD last function
and its shortcut % typically
let you access the last 20
commands stored in an
internal history table.

In MATLAB, ans lets you
access only one most recent
command.

Adjust the code so that it
uses assignments instead of
relying on last or %.

Unable to translate the
variable "{0}" representing a
MuPAD library.

Libraries contain most of
the MuPAD functionality.
Each library includes a
collection of functions for
solving particular types of
mathematical problems.
While MuPAD library
functions are translated to
MATLAB code, the libraries
themselves are not.

Adjust the code so that it
does not use MuPAD library
names as identifiers.

Unable to map a function to
objects of this class.

Objects of this class do not
have an equivalent
representation in MATLAB.
The mapping cannot be
translated.

In the target .mlx file,
implement the mapping by
writing a loop.

3 MuPAD in Symbolic Math Toolbox

3-30

Error Message Details Recommendations
Unable to translate this form
of matrix definition.

MuPAD provides a few
different approaches for
creating a matrix. You can
create a matrix from an
array, list of elements, a
nested list of rows, or a
table. Also, you can create a
matrix by specifying only
the nonzero entries, such as
A[i1,j1] = value1,
A[i2,j2] = value2, and
so on.

Some of these approaches
cannot be translated to
MATLAB code.

Adjust the code so that it
defines matrices by using an
array, list of elements, or a
nested list of rows.

Cannot translate division
with respect to several
variables.

Polynomial division with
respect to several variables
is not available in MATLAB.

Adjust the code so that it
does not use polynomial
division with respect to
several variables.

Unable to translate nested
indexed assignment.

Nested indexed assignment
is not available in MATLAB.

Replace the nested indexed
assignment with multiple
assignments.

Unable to create a
polynomial from a coefficient
list.

Cannot translate polynomial
creation from the given
coefficient list.

Make the first argument to
poly an arithmetical
expression instead of a list.

 Troubleshoot MuPAD to MATLAB Translation Errors

3-31

Error Message Details Recommendations
Unable to translate nontrivial
procedures.

For code that you want to
execute repeatedly, MuPAD
lets you create procedures
by using the proc
command.

convertMuPADNotebook
can translate simple
procedures to anonymous
functions. Simple
procedures do not contain
loops, assignments, multiple
statements, or nested
functions where the inner
function accesses variables
of the outer function.

More complicated
procedures cannot be
translated to MATLAB code.

Adjust the code so that it
does not use complicated
procedures.

Unable to translate the
global table of properties.

convertMuPADNotebook
cannot translate the MuPAD
global table of properties,
PROPERTIES, because this
functionality is not available
in MATLAB.

Set properties and
assumptions as described in
“Properties and
Assumptions”.

Unable to create random
generators with individual
seed values.

MuPAD lets you set a
separate seed value for each
random number generator.
MATLAB has one seed value
for all random number
generators. See rng for
details.

Adjust the code so that it
does not rely on individual
seed values for different
random number generators.

3 MuPAD in Symbolic Math Toolbox

3-32

Error Message Details Recommendations
Unable to translate target
''{0}'' for MATLAB function
''rewrite''.

The MuPAD rewrite
function can rewrite an
expression in terms of the
following targets: andor,
arccos, arccosh, arccot,
arccoth, arcsin,
arcsinh, arctan,
arctanh, arg, bernoulli,
cos, cosh, cot, coth,
diff, D, erf, erfc, erfi,
exp, fact, gamma,
harmonic, heaviside,
inverf, inverfc,
lambertW, ln, max, min,
piecewise, psi, sign,
sin, sincos, sinh,
sinhcosh, tan, tanh.

The MATLAB rewrite
function supports fewer
targets:
exp, log, sincos, sin, cos
, tan, cot, sqrt,
heaviside, asin, acos,
atan, acot, sinh, cosh,
tanh, coth, sinhcosh,
asinh, acosh, atanh,
acoth, piecewise.

Adjust the code so that it
uses the target options
available in MATLAB. If
needed, use a sequence of
function calls to rewrite
with different target
options.

Unable to translate slots of
domains and function
environments.

Slots and domains are not
available in MATLAB.

Adjust the code so that it
does not use slots or
domains.

 Troubleshoot MuPAD to MATLAB Translation Errors

3-33

Error Message Details Recommendations
Unable to substitute only one
occurrence of a
subexpression.

Substituting only one
occurrence of a
subexpression is not
available in MATLAB.

In the target .mlx file,
break up the expression
using the function
children to get the
subexpression, and then
substitute for it using the
function subs.

Syntax error in MuPAD code. MuPAD code contains a
syntax error, for example, a
missing bracket.

Check and correct the
MuPAD code that you are
translating.

Test environment of MuPAD
not available in MATLAB.

The MuPAD test
environment is not available
in MATLAB.

Adjust the code so that it
does not use the MuPAD test
environment.

Unknown domain or library
"{0}".

Most likely, a custom
domain or library is used
and cannot be translated.

Check and correct the
MuPAD code that you are
translating.

Unknown MuPAD function
"{0}".

The function is not available
in MuPAD.

Check and correct the
MuPAD code that you are
translating.

Unable to translate calls to
the function ''{0}''.

The function is a valid
MuPAD function, but the
function call is invalid. For
example, the number of
input arguments or types of
arguments can be incorrect.

Check and correct the
MuPAD code that you are
translating.

Unable to translate calls to
functions of the library
''{0}''.

The functions of this library
are available in MuPAD, but
there are no corresponding
functions in MATLAB.

Adjust the code so that it
does not use the functions of
this library.

MuPAD function ''{0}''
cannot be converted to
function handle.

The MuPAD function does
not have an equivalent
function handle in MATLAB.

Adjust the code to use a
function that has an
equivalent in MATLAB.

3 MuPAD in Symbolic Math Toolbox

3-34

Error Message Details Recommendations
Unable to translate option
''{0}''.

Most likely, this option is
available in MuPAD, but
there are no corresponding
options in MATLAB.

Adjust the code so that it
does not use this option.

Unable to translate MuPAD
code because it uses invalid
calling syntax.

Most likely, the function call
in the MuPAD code has an
error.

Check and correct the
MuPAD code that you are
translating.

 Troubleshoot MuPAD to MATLAB Translation Errors

3-35

Troubleshoot MuPAD to MATLAB Translation Warnings
This page helps troubleshoot all warnings generated by the convertMuPADNotebook
function when converting MuPAD notebooks to MATLAB live scripts. For the conversion
steps, see “Convert MuPAD Notebooks to MATLAB Live Scripts” on page 3-20. To
troubleshoot errors, see “Troubleshoot MuPAD to MATLAB Translation Errors” on page 3-
26.

Warning Message Meaning Recommendations
Translating the alias
function as an assignment,
and the unalias function as
deletion of an assignment.

The MuPAD alias and
unalias function let you
create and delete an alias
(abbreviation) for any
MuPAD object. For example,
you can create an alias d for
the diff function: alias(d
= diff).

Creating aliases is not
available in MATLAB. When
translating a notebook file,
convertMuPADNotebook
replaces aliases with
assignments.

Verify the resulting code. If
you do not want a MuPAD
alias to be converted to an
assignment in MATLAB,
adjust the code so that it
does not use aliases.

Replacing animation by its
last frame.

MuPAD animations cannot
be correctly reproduced in
MATLAB. When translating
a notebook file,
convertMuPADNotebook
replaces an animation with
a static image showing the
last frame of the animation.

Verify the resulting code.
The last frame might not be
ideal for some animations. If
you want the static image to
show any other frame of the
animation, rewrite the
MuPAD code so that it
creates a static plot showing
that image.

3 MuPAD in Symbolic Math Toolbox

3-36

Warning Message Meaning Recommendations
Potentially incorrect MuPAD
code ''{0}''. Replacing it by
''{1}''.

When translating a
notebook file,
convertMuPADNotebook
detected that the part of the
code in the MuPAD
notebook might be
incorrect. For example, the
code appears to have a typo,
or a commonly used
argument is missing.

convertMuPADNotebook
corrected it.

Verify the corrected code.
Then delete this warning.

Invalid assignment to
remember table. Replacing
it by procedure definition.

When translating a
notebook file,
convertMuPADNotebook
considered an assignment to
a remember table in a
MuPAD notebook as
unintentional, and replaced
it by a procedure definition.
For example, an assignment
such as f(x):=x^2 gets
replaced by f:= x->x^2.

Verify the corrected code.
Then delete this warning.

 Troubleshoot MuPAD to MATLAB Translation Warnings

3-37

Warning Message Meaning Recommendations
Replacing MuPAD domain
by an anonymous function
that creates objects similar
to the elements of this
domain.

Domains represent data
types in MuPAD. They are
not available in MATLAB.

convertMuPADNotebook
translated a MuPAD domain
to a MATLAB anonymous
function that creates objects
similar to the elements of
the domain. For example,
the code line
f:=Dom::IntegerMod(7)
gets translated to a MATLAB
anonymous function f =
@(X)mod(X,sym(7)).

Verify the resulting code.
Check if an anonymous
MATLAB function is the
correct translation of the
domain in this case, and that
the code still has the desired
functionality.

Ignoring addpattern
command. Configurable
pattern matcher not
available in MATLAB.

addpattern functionality is
not available in MATLAB.

Adjust the code to avoid
using addpattern.

Ignoring assertions. Assertions are not available
in MATLAB. When
translating a notebook file,
convertMuPADNotebook
ignores assertions.

Verify the resulting code. If
assertions are not essential
part of your code, you can
ignore this warning.
However, if your code relies
on assertions, you can
implement them using
conditional statements, such
as if-then.

3 MuPAD in Symbolic Math Toolbox

3-38

Warning Message Meaning Recommendations
Ignoring assignment to a
MuPAD environment
variable.

Environment variables are
global variables, such as
HISTORY, LEVEL, ORDER,
and so on, that affect the
behavior of MuPAD
algorithms.

Verify the resulting code. If
an assignment to an
environment variable is not
essential for your code,
simply delete the warning.

In some cases, you can use
name-value pair arguments
in each function call, such
as setting the value Order
in the taylor function call.

In other cases, there is no
appropriate replacement.
Adjust the code so that it
does not require a global
setting.

Ignoring assignment to a
protected MuPAD constant
or function.

The names of the built-in
MuPAD functions, options,
and constants are protected.
If you try to assign a value
to a MuPAD function, option,
or constant, the system
throws an error. This
approach ensures that you
will not overwrite a built-in
functionality accidentally.
See “Protect Function and
Option Names”.

Verify the resulting code.
Check if the ignored
assignment is essential for
the correctness of the code
and results. If it is, adjust
the code so that it does not
use this assignment, but still
has the desired functionality.
If it is not essential, simply
delete this warning.

Ignoring option ''hold''. hold is not available in
MATLAB.

Adjust the code to avoid
using hold.

Ignoring info command.
Information not available in
MATLAB.

MATLAB functions do not
have associated information.

For information on a
function, refer to MATLAB
documentation.

 Troubleshoot MuPAD to MATLAB Translation Warnings

3-39

Warning Message Meaning Recommendations
Ignoring options ''{0}''. These options are available

in MuPAD, but are not
available in MATLAB.
Because they do not appear
to be essential for this code,
convertMuPADNotebook
ignores them.

Verify the resulting code.
Check if the ignored options
are essential for the
correctness of the code and
results. If they are, adjust
the code so that it does not
use these options, but still
has the desired functionality.
If they are not essential,
simply delete this warning.

Ignoring MuPAD path
variables.

The MuPAD environment
variables FILEPATH,
NOTEBOOKPATH,
WRITEPATH, and READPATH
let you specify the working
folders for writing new files,
searching for files, loading
files, and so on if you do not
specify the full path to the
file.

These environment
variables are not available
in MATLAB.

Verify the resulting code.
Check if the ignored path
variables are essential for
the correctness of the code
and results. If they are,
adjust the code so that it
does not use these
preferences, but still has the
desired functionality. If they
are not essential, simply
delete this warning.

3 MuPAD in Symbolic Math Toolbox

3-40

Warning Message Meaning Recommendations
Ignoring MuPAD preference
because there is no
equivalent setting in
MATLAB.

The MuPAD Pref library
provides a collection of
functions which can be used
to set and restore
preferences, such as use of
abbreviations in outputs,
representation of floating-
point numbers, memory
limit on a MuPAD session,
and so on.

MATLAB uses sympref for
a few preferences, such as
specifying parameters of
Fourier transforms,
specifying the value of the
Heaviside function at 0, or
enabling and disabling
abbreviations in outputs.
Most preferences cannot be
translated to MATLAB code.

Verify the resulting code.
Check if the ignored
preferences are essential for
the correctness of the code
and results. If they are not
essential, simply delete this
warning.

 Troubleshoot MuPAD to MATLAB Translation Warnings

3-41

Warning Message Meaning Recommendations
Ignoring call to variable
protection mechanism.

The names of the built-in
MuPAD functions, options,
and constants are protected.
If you try to assign a value
to a MuPAD function, option,
or constant, the system
throws an error. This
approach ensures that you
will not overwrite a built-in
functionality accidentally.
See “Protect Function and
Option Names”.

Protecting procedures and
functions from overwriting
is not available in MATLAB.
When translating a
notebook file,
convertMuPADNotebook
ignores the corresponding
MuPAD code.

Verify the resulting code.
Check if the ignored call to
variable protection
mechanism is essential for
the correctness of the code
and results. If it is, adjust
the code so that it does not
use this call, but still has the
desired functionality. If it is
not essential, simply delete
this warning.

3 MuPAD in Symbolic Math Toolbox

3-42

Warning Message Meaning Recommendations
Ignoring default value when
translating a table.

MuPAD tables let you set the
default value. This value is
returned when you index
into a table using the index
for which the entry does not
exist. For example, if you
create the table using T :=
table(a = 13,c =
42,10), and then index into
it using T[b], the result is
10.

Default values for tables
cannot be translated to
MATLAB. When translating
a notebook file,
convertMuPADNotebook
ignores the corresponding
value.

Verify the resulting code.
Check if the ignored value is
essential for the correctness
of the code and results. If
default values for the tables
are not essential, simply
delete this warning.
Otherwise, you can create a
MATLAB function that
checks if the
containers.Map object
corresponding to the
MuPAD table has a certain
key, and if it does not,
returns the default value.

Unable to decide which
object the indexing refers
to, instead using generic
translation.

When the class of the object
being indexed into is
ambiguous, then
convertMuPADNotebook
defaults to a generic
translation for the indexing.

Verify that the generic
translation returns the
correct result. If not, adjust
the code.

Possibly missing a
multiplication sign.

Do not skip multiplication
signs in MuPAD and
MATLAB code. Both
languages require you to
type multiplication signs
explicitly. For example, the
expression x(x + 1) must
be typed as x*(x + 1).

Verify the converted code.
Check if you missed a
multiplication sign. Correct
the code if needed.

Expression used as operator.
Possibly ''subs'' was
intended.

An arithmetical expression
is used as a function.
convertMuPADNotebook
attempted to fix the error.

Verify that the translation
returns the correct result. If
not, adjust the code.

 Troubleshoot MuPAD to MATLAB Translation Warnings

3-43

Warning Message Meaning Recommendations
MuPAD package mechanism
not available in MATLAB.

The MuPAD package
mechanism is not available
in MATLAB.

Adjust the code to avoid
using the MuPAD package
mechanism.

3 MuPAD in Symbolic Math Toolbox

3-44

Edit MuPAD Code in MATLAB Editor

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

The default interface for editing MuPAD code is the MATLAB Editor. Alternatively, you can
create and edit your code in any text editor. The MATLAB Editor automatically formats
the code and, therefore, helps you avoid errors, or at least reduce their number.

Note The MATLAB Editor cannot evaluate or debug MuPAD code.

To open an existing MuPAD file with the extension .mu in the MATLAB Editor, double-click
the file name or select Open and navigate to the file.

 Edit MuPAD Code in MATLAB Editor

3-45

After editing the code, save the file. Note that the extension .mu allows the Editor to
recognize and open MuPAD program files. Thus, if you intend to open the files in the
MATLAB Editor, save them with the extension .mu. Otherwise, you can specify other
extensions suitable for text files, for example, .txt or .tst.

Comments in MuPAD Procedures
Enter a comment in a .mu file by entering the // characters. All text following the // on
the same line is ignored. The // characters do not affect text on succeeding lines. To
create a multi-line comment, start with the /* characters and end the comment with the
*/ characters. All text between these characters is ignored. You can nest comments
using /* and */.

3 MuPAD in Symbolic Math Toolbox

3-46

 Edit MuPAD Code in MATLAB Editor

3-47

Notebook Files and Program Files

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

The two main types of files in MuPAD are:

• Notebook files, or notebooks
• Program files

A notebook file has the extension .mn and lets you store the result of the work performed
in the MuPAD Notebook. A notebook file can contain text, graphics, and any MuPAD
commands and their outputs. A notebook file can also contain procedures and functions.

By default, a notebook file opens in the MuPAD Notebook. Creating a new notebook or
opening an existing one does not automatically start the MuPAD engine. This means that
although you can see the results of computations as they were saved, MuPAD does not
remember evaluating them. (The “MuPAD Workspace” is empty.) You can evaluate any or
all commands after opening a notebook.

A program file is a text file that contains any code snippet that you want to store
separately from other computations. Saving a code snippet as a program file can be very
helpful when you want to use the code in several notebooks. Typically, a program file
contains a single procedure, but it also can contain one or more procedures or functions,
assignments, statements, tests, or any other valid MuPAD code.

Tip If you use a program file to store a procedure, MuPAD does not require the name of
that program file to match the name of a procedure.

The most common approach is to write a procedure and save it as a program file with the
extension .mu. This extension allows the MATLAB Editor to recognize and open the file
later. Nevertheless, a program file is just a text file. You can save a program file with any
extension that you use for regular text files.

3 MuPAD in Symbolic Math Toolbox

3-48

To evaluate the commands from a program file, you must execute a program file in a
notebook. For details about executing program files, see “Read MuPAD Procedures” on
page 3-66.

 Notebook Files and Program Files

3-49

Source Code of the MuPAD Library Functions

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

You can display the source code of the MuPAD built-in library functions. If you work in the
MuPAD Notebook app, enter expose(name), where name is the library function name.
The MuPAD Notebook displays the code as plain text with the original line breaks and
indentations.

You can also display the code of a MuPAD library function in the MATLAB Command
Window. To do this, use the evalin or feval function to call the MuPAD expose
function:

sprintf(char(feval(symengine, 'expose', 'numlib::tau')))

ans =
 'proc(a)
 name numlib::tau;
 begin
 if args(0) <> 1 then
 error(message("symbolic:numlib:IncorrectNumberOfArguments"))
 else
 if ~testtype(a, Type::Numeric) then
 return(procname(args()))
 else
 if domtype(a) <> DOM_INT then
 error(message("symbolic:numlib:ArgumentInteger"))
 end_if
 end_if
 end_if;
 numlib::numdivisors(a)
 end_proc'

3 MuPAD in Symbolic Math Toolbox

3-50

MuPAD also includes kernel functions written in C++. You cannot access the source code
of these functions.

 Source Code of the MuPAD Library Functions

3-51

Differences Between MATLAB and MuPAD Syntax

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

There are several differences between MATLAB and MuPAD syntax. Be aware of which
interface you are using in order to use the correct syntax:

• Use MATLAB syntax in the MATLAB workspace, except for the functions
evalin(symengine,...) and feval(symengine,...), which use MuPAD syntax.

• Use MuPAD syntax in MuPAD notebooks.

You must define MATLAB variables before using them. However, every expression entered
in a MuPAD notebook is assumed to be a combination of symbolic variables unless
otherwise defined. This means that you must be especially careful when working in
MuPAD notebooks, since fewer of your typos cause syntax errors.

This table lists common tasks, meaning commands or functions, and how they differ in
MATLAB and MuPAD syntax.

3 MuPAD in Symbolic Math Toolbox

3-52

Common Tasks in MATLAB and MuPAD Syntax

Task MuPAD Syntax MATLAB Syntax
Assignment := =
List variables anames(All, User) whos
Numerical value of
expression

float(expression) double(expression)

Suppress output : ;
Enter matrix matrix([[x11,x12,x13],

[x21,x22,x23]])
[x11,x12,x13;
x21,x22,x23]

Translate MuPAD set {a,b,c} unique([1 2 3])
Auto-completion Ctrl+space bar Tab
Equality, inequality
comparison

=, <> ==, ~=

The next table lists differences between MATLAB expressions and MuPAD expressions.

 Differences Between MATLAB and MuPAD Syntax

3-53

MATLAB vs. MuPAD Expressions

MuPAD Expression MATLAB Expression
infinity Inf
PI pi
I i
undefined NaN
trunc fix
arcsin, arccos etc. asin, acos etc.
numeric::int vpaintegral
normal simplifyFraction
besselJ, besselY, besselI, besselK besselj, bessely, besseli, besselk
lambertW lambertw
Si, Ci sinint, cosint
EULER eulergamma
conjugate conj
CATALAN catalan

The MuPAD definition of exponential integral differs from the Symbolic Math Toolbox
counterpart.

 Symbolic Math Toolbox
Definition

MuPAD Definition

Exponential
integral

expint(x) = –Ei(–x) =

∫
x

∞
exp(− t)

t dt for x > 0 =

Ei(1, x).

Ei(x) = ∫
−∞

x
et

t dt for x < 0.

Ei(n, x) = ∫
1

∞
exp(− xt)

tn dt .

The definitions of Ei extend to the
complex plane, with a branch cut
along the negative real axis.

3 MuPAD in Symbolic Math Toolbox

3-54

Copy Variables and Expressions Between MATLAB and
MuPAD

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

You can copy a variable from a MuPAD notebook to a variable in the MATLAB workspace
using a MATLAB command. Similarly, you can copy a variable or symbolic expression in
the MATLAB workspace to a variable in a MuPAD notebook using a MATLAB command. To
do either assignment, you need to know the handle to the MuPAD notebook you want to
address.

The only way to assign variables between a MuPAD notebook and the MATLAB workspace
is to open the notebook using the following syntax:

nb = mupad;

You can use any variable name for the handle nb. To open an existing notebook file, use
the following syntax:

nb = mupad('file_name');

Here file_name must be a full path unless the notebook is in the current folder. The
handle nb is used only for communication between the MATLAB workspace and the
MuPAD notebook.

• To copy a symbolic variable in the MATLAB workspace to a variable in the MuPAD
notebook engine with the same name, enter this command in the MATLAB Command
Window:

setVar(notebook_handle,'MuPADvar',MATLABvar)

For example, if nb is the handle to the notebook and z is the variable, enter:

setVar(nb,'z',z)

 Copy Variables and Expressions Between MATLAB and MuPAD

3-55

There is no indication in the MuPAD notebook that variable z exists. To check that it
exists, enter the command anames(All, User) in the notebook.

• To assign a symbolic expression to a variable in a MuPAD notebook, enter:

setVar(notebook_handle,'variable',expression)

at the MATLAB command line. For example, if nb is the handle to the notebook,
exp(x) - sin(x) is the expression, and z is the variable, enter:

syms x
setVar(nb,'z',exp(x) - sin(x))

For this type of assignment, x must be a symbolic variable in the MATLAB workspace.

Again, there is no indication in the MuPAD notebook that variable z exists. Check that
it exists by entering this command in the notebook:

anames(All, User)
• To copy a symbolic variable in a MuPAD notebook to a variable in the MATLAB

workspace, enter in the MATLAB Command Window:

MATLABvar = getVar(notebook_handle,'variable');

For example, if nb is the handle to the notebook, z is the variable in the MuPAD
notebook, and u is the variable in the MATLAB workspace, enter:

u = getVar(nb,'z')

Communication between the MATLAB workspace and the MuPAD notebook occurs in
the notebook's engine. Therefore, variable z must be synchronized into the notebook's
MuPAD engine before using getVar, and not merely displayed in the notebook. If you
try to use getVar to copy an undefined variable z in the MuPAD engine, the resulting
MATLAB variable u is empty. For details, see “Evaluate MuPAD Notebooks from
MATLAB” on page 3-14.

Tip Do all copying and assignments from the MATLAB workspace, not from a MuPAD
notebook.

3 MuPAD in Symbolic Math Toolbox

3-56

setvar(nb, ‘z’, z)

Copy and Paste Using the System Clipboard
You can also copy and paste between notebooks and the MATLAB workspace using
standard editing commands. If you copy a result in a MuPAD notebook to the system
clipboard, you might get the text associated with the expression, or a picture, depending
on your operating system and application support.

For example, consider this MuPAD expression:

Select the output with the mouse and copy it to the clipboard:

Paste this into the MATLAB workspace. The result is text:

exp(x)/(x^2 + 1)

If you paste it into Microsoft® WordPad on a Windows® system, the result is a picture.

 Copy Variables and Expressions Between MATLAB and MuPAD

3-57

3 MuPAD in Symbolic Math Toolbox

3-58

Reserved Variable and Function Names

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

Both MATLAB and MuPAD have their own reserved keywords, such as function names,
special values, and names of mathematical constants. In MATLAB, if you supply an
expression or equation as a string scalar or character vector to any symbolic function
other than str2sym, and the input text contains reserved keywords as variable or
function names in at least one interface, then an error can result. If you work in one
interface and a name is a reserved keyword in the other, then the interface you are
working in produces the error and warning messages. These messages can specify the
cause of the problem incorrectly.

Tip The best approach is to avoid using reserved keywords as variable or function names,
especially if you use both interfaces.

In MuPAD, function names are protected. Normally, the system does not let you redefine a
standard function or use its name as a variable. (To be able to modify a standard MuPAD
function, you must first remove its protection.) Even when you work in the MATLAB
Command Window, the MuPAD engine handles symbolic computations. Therefore, MuPAD
function names are reserved keywords in this case. Using a MuPAD function name while
performing symbolic computations in the MATLAB Command Window can lead to an
error. For example:

evalin(symengine,'solve(D - 10)')

Error using symengine
Invalid argument.

Error in mupadengine/evalin (line 132)
 res = mupadmex(statement,output_type{:});

 Reserved Variable and Function Names

3-59

The message does not indicate the real cause of the problem.

To fix this issue, use the syms function to declare D as a symbolic variable. Then, pass the
equation to the symbolic solver as a symbolic expression (that is, do not specify the
equation as a string scalar or character vector).

syms D
solve(D - 10)

ans =
10

In this case, the software replaces D with another variable name before passing the
expression to the MuPAD engine.

Alternatively, convert an equation, which is specified as a string scalar or character vector
and contains an undeclared, reserved variable name, to a symbolic expression using
str2sym. Then, supply the expression to solve. For example:

clear all
expsn = str2sym("D - 10");
solve(expsn)

ans =
10

3 MuPAD in Symbolic Math Toolbox

3-60

Call Built-In MuPAD Functions from MATLAB

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

To access built-in MuPAD functions at the MATLAB command line, use
evalin(symengine,...) or feval(symengine,...). These functions are designed to
work like the existing MATLAB evalin and feval functions.

evalin and feval do not open a MuPAD notebook, and therefore, you cannot use these
functions to access MuPAD graphics capabilities.

evalin
For evalin, the syntax is

y = evalin(symengine,'MuPAD_Expression');

Use evalin when you want to perform computations in the MuPAD language, while
working in the MATLAB workspace. For example, to make a three-element symbolic
vector of the sin(kx) function, k = 1 to 3, enter:

y = evalin(symengine,'[sin(k*x) $ k = 1..3]')

y =
[sin(x), sin(2*x), sin(3*x)]

feval
For evaluating a MuPAD function, you can also use the feval function. feval has a
different syntax than evalin, so it can be simpler to use. The syntax is:

y = feval(symengine,'MuPAD_Function',x1,...,xn);

 Call Built-In MuPAD Functions from MATLAB

3-61

MuPAD_Function represents the name of a MuPAD function. The arguments x1,...,xn
must be symbolic variables, numbers, or character vectors. For example, to find the tenth
element in the Fibonacci sequence, enter:

z = feval(symengine,'numlib::fibonacci',10)

z =
55

The next example compares the use of a symbolic solution of an equation to the solution
returned by the MuPAD numeric fsolve function near the point x = 3. The symbolic
solver returns these results:

syms x
f = sin(x^2);
solve(f)

ans =
0

The numeric solver fsolve returns this result:

feval(symengine, 'numeric::fsolve',f,'x=3')

ans =
x == 3.0699801238394654654386548746678

As you might expect, the answer is the numerical value of 3π. The setting of MATLAB
format does not affect the display; it is the full returned value from the MuPAD
'numeric::fsolve' function.

evalin vs. feval
The evalin(symengine,...) function causes the MuPAD engine to evaluate a
character vector. Since the MuPAD engine workspace is generally empty, expressions
returned by evalin(symengine,...) are not simplified or evaluated according to their
definitions in the MATLAB workspace. For example:

syms x
y = x^2;
evalin(symengine, 'cos(y)')

ans =
cos(y)

3 MuPAD in Symbolic Math Toolbox

3-62

Variable y is not expressed in terms of x because y is unknown to the MuPAD engine.

In contrast, feval(symengine,...) can pass symbolic variables that exist in the
MATLAB workspace, and these variables are evaluated before being processed in the
MuPAD engine. For example:

syms x
y = x^2;
feval(symengine,'cos',y)

ans =
cos(x^2)

Floating-Point Arguments of evalin and feval
By default, MuPAD performs all computations in an exact form. When you call the evalin
or feval function with floating-point numbers as arguments, the toolbox converts these
arguments to rational numbers before passing them to MuPAD. For example, when you
calculate the incomplete gamma function, the result is the following symbolic expression:

y = feval(symengine,'igamma', 0.1, 2.5)

y =
igamma(1/10, 5/2)

To approximate the result numerically with double precision, use the double function:

format long
double(y)

ans =
 0.028005841168289

Alternatively, use quotes to prevent the conversion of floating-point arguments to rational
numbers. (The toolbox treats arguments enclosed in quotes as character vectors.) When
MuPAD performs arithmetic operations on numbers involving at least one floating-point
number, it automatically switches to numeric computations and returns a floating-point
result:

feval(symengine,'igamma', '0.1', 2.5)

ans =
0.028005841168289177028337498391181

 Call Built-In MuPAD Functions from MATLAB

3-63

For further computations, set the format for displaying outputs back to short:

format short

3 MuPAD in Symbolic Math Toolbox

3-64

Use Your Own MuPAD Procedures

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

Write MuPAD Procedures
A MuPAD procedure is a text file that you can write in any text editor. The recommended
practice is to use the MATLAB Editor on page 3-45.

To define a procedure, use the proc function. Enclose the code in the begin and
end_proc functions:

myProc:= proc(n)
begin
 if n = 1 or n = 0 then
 1
 else
 n * myProc(n - 1)
 end_if;
end_proc:

By default, a MuPAD procedure returns the result of the last executed command. You can
force a procedure to return another result by using return. In both cases, a procedure
returns only one result. To get multiple results from a procedure, combine them into a list
or other data structure, or use the print function.

• If you just want to display the results, and do not need to use them in further
computations, use the print function. With print, your procedure still returns one
result, but prints intermediate results on screen. For example, this procedure prints
the value of its argument in each call:

myProcPrint:= proc(n)
begin
 print(n);

 Use Your Own MuPAD Procedures

3-65

 if n = 0 or n = 1 then
 return(1);
 end_if;
 n * myProcPrint(n - 1);
end_proc:

• If you want to use multiple results of a procedure, use ordered data structures, such
as lists or matrices as return values. In this case, the result of the last executed
command is technically one object, but it can contain more than one value. For
example, this procedure returns the list of two entries:

myProcSort:= proc(a, b)
begin
 if a < b then
 [a, b]
 else
 [b, a]
 end_if;
end_proc:

Avoid using unordered data structures, such as sequences and sets, to return multiple
results of a procedure. The order of the entries in these structures can change
unpredictably.

When you save the procedure, it is recommended to use the extension .mu. For details,
see “Notebook Files and Program Files” on page 3-48. The name of the file can differ from
the name of the procedure. Also, you can save multiple procedures in one file.

Steps to Take Before Calling a Procedure
To be able to call a procedure, you must first execute the code defining that procedure, in
a notebook. If you write a procedure in the same notebook, simply evaluate the input
region that contains the procedure. If you write a procedure in a separate file, you must
read the file into a notebook. Reading a file means finding it and executing the commands
inside it.

Read MuPAD Procedures

If you work in the MuPAD Notebook and create a separate program file that contains a
procedure, use one of the following methods to execute the procedure in a notebook. The
first approach is to select Notebook > Read Commands from the main menu.

3 MuPAD in Symbolic Math Toolbox

3-66

Alternatively, you can use the read function. The function call read(filename)
searches for the program file in this order:

1 Folders specified by the environment variable READPATH
2 filename regarded as an absolute path
3 Current folder (depends on the operating system)

If you want to call the procedure from the MATLAB Live Editor, you still need to execute
that procedure before calling it. See “Call Your Own MuPAD Procedures” on page 3-67.

Use Startup Commands and Scripts

Alternatively, you can add a MuPAD procedure to startup commands of a particular
notebook. This method lets you execute the procedure every time you start a notebook
engine. Startup commands are executed silently, without any visible outputs in the
notebook. You can copy the procedure to the dialog box that specifies startup commands
or attach the procedure as a startup script. For information, see “Hide Code Lines”.

Call Your Own MuPAD Procedures
You can extend the functionality available in the toolbox by writing your own procedures
in the MuPAD language. This section explains how to call such procedures at the MATLAB
Command Window.

Suppose you wrote the myProc procedure that computes the factorial of a nonnegative
integer.

 Use Your Own MuPAD Procedures

3-67

Save the procedure as a file with the extension .mu. For example, save the procedure as
myProcedure.mu in the folder C:/MuPAD.

Return to the MATLAB Command Window. Before calling the procedure at the MATLAB
command line, enter:

read(symengine, 'C:/MuPAD/myProcedure.mu')

The read command reads and executes the myProcedure.mu file in MuPAD. After that,
you can call the myProc procedure with any valid parameter. For example, compute the
factorial of 15:

feval(symengine, 'myProc', 15)

ans =
1307674368000

If your MuPAD procedure accepts character vector arguments, enclose these arguments
in two sets of quotes: double quotes inside single quotes. Single quotes suppress
evaluation of the argument before passing it to the MuPAD procedure, and double quotes
let MuPAD recognize that the argument is a character vector. For example, this MuPAD
procedure converts a character vector to lowercase and checks if reverting that character
vector changes it.

3 MuPAD in Symbolic Math Toolbox

3-68

In the MATLAB Command Window, use the read command to read and execute
reverted.mu.

read(symengine, 'C:/MuPAD/reverted.mu')

Now, use feval to call the procedure reverted. To pass a character vector argument to
the procedure, use double quotes inside single quotes.

feval(symengine, 'reverted', '"Abccba"')

ans =
1

 Use Your Own MuPAD Procedures

3-69

Clear Assumptions and Reset the Symbolic Engine

Note Symbolic Math Toolbox includes operations and functions for symbolic math
expressions that parallel MATLAB functionality for numeric values. Unlike MuPAD
functionality, Symbolic Math Toolbox functions enable you to work in familiar interfaces,
such as the MATLAB Command Window or Live Editor, which offer a smooth workflow
and are optimized for usability.

Therefore, use the equivalent Symbolic Math Toolbox functionality to work with symbolic
math expressions. For a list of available functions, see Symbolic Math Toolbox functions
list.

If you cannot find the Symbolic Math Toolbox equivalent for MuPAD functionality, contact
MathWorks Technical Support.

The symbolic engine workspace associated with the MATLAB workspace is usually empty.
The MATLAB workspace tracks the values of symbolic variables, and passes them to the
symbolic engine for evaluation as necessary. However, the symbolic engine workspace
contains all assumptions you make about symbolic variables, such as whether a variable
is real, positive, integer, greater or less than some value, and so on. These assumptions
can affect solutions to equations, simplifications, and transformations, as explained in
“Effects of Assumptions on Computations” on page 3-73.

Note These commands

x = sym('x');
clear x

clear any existing value of x in the MATLAB workspace, but do not clear assumptions
about x in the symbolic engine workspace. However,

syms x

does clear assumptions about x.

If you make an assumption about the nature of a variable, for example, using the
commands

3 MuPAD in Symbolic Math Toolbox

3-70

https://www.mathworks.com/support/contact_us.html

syms x
assume(x,'real')

or

syms x
assume(x > 0)

then clearing the variable x from the MATLAB workspace does not clear the assumption
from the symbolic engine workspace. To clear the assumption, enter the command

assume(x,'clear')

or, equivalently,

syms x

For details, see “Check Assumptions Set On Variables” on page 3-72 and “Effects of
Assumptions on Computations” on page 3-73.

If you reset the symbolic engine by entering the command

reset(symengine)

MATLAB no longer recognizes any symbolic variables that exist in the MATLAB
workspace. Clear the variables with the clear command, or renew them with the syms
or sym command.

This example shows how the MATLAB workspace and the symbolic engine workspace
respond to a sequence of commands.

Step Command MATLAB Workspace MuPAD Engine Workspace
1 syms x positive

or
syms x;
assume(x > 0)

x x > 0

2 clear x empty x > 0
3 syms x x empty

 Clear Assumptions and Reset the Symbolic Engine

3-71

Check Assumptions Set On Variables
To check whether a variable, say x, has any assumptions in the symbolic engine
workspace associated with the MATLAB workspace, use the assumptions function in the
MATLAB Live Editor:

assumptions(x)

If the function returns an empty symbolic object, there are no additional assumptions on
the variable. (The default assumption is that x can be any complex number.) Otherwise,
there are additional assumptions on the value of that variable.

For example, while declaring the symbolic variable x make an assumption that the value
of this variable is a real number:

syms x real
assumptions(x)

ans =
in(x, 'real')

Another way to set an assumption is to use the assume function:

syms z
assume(z ~= 0);
assumptions(z)

ans =
z ~= 0

To see assumptions set on all variables in the MATLAB workspace, use assumptions
without input arguments:

assumptions

ans =
[in(x, 'real'), z ~= 0]

Clear assumptions set on x and z:

assume([x z],'clear')

assumptions

ans =
Empty sym: 1-by-0

3 MuPAD in Symbolic Math Toolbox

3-72

Equivalently, the following command also clears assumptions from x and z:

syms x z

Effects of Assumptions on Computations
Assumptions can affect many computations, including results returned by the solve
function. They also can affect the results of simplifications. For example, solve this
equation without any additional assumptions on its variable:

syms x
solve(x^4 == 1, x)

ans =
 -1
 1
 -1i
 1i

Now solve the same equation assuming that x is real:

syms x real
solve(x^4 == 1, x)

ans =
 -1
 1

Use the assumeAlso function to add the assumption that x is also positive:

assumeAlso(x > 0)
solve(x^4 == 1, x)

ans =
 1

Clearing x does not change the underlying assumptions that x is real and positive:

clear x
x = sym('x');
assumptions(x)
solve(x^4 == 1, x)

ans =
[in(x, 'real'), 0 < x]

 Clear Assumptions and Reset the Symbolic Engine

3-73

ans =
1

Clearing x with assume(x,'clear') or syms x clears the assumption:

syms x
assumptions(x)

ans =
Empty sym: 1-by-0

3 MuPAD in Symbolic Math Toolbox

3-74

Create MATLAB Functions from MuPAD Expressions

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

Symbolic Math Toolbox lets you create a MATLAB function from a symbolic expression. A
MATLAB function created from a symbolic expression accepts numeric arguments and
evaluates the expression applied to the arguments. You can generate a function handle or
a file that contains a MATLAB function. The generated file is available for use in any
MATLAB calculation, independent of a license for Symbolic Math Toolbox functions.

If you work in the MATLAB Live Editor, see “Generate MATLAB Functions from Symbolic
Expressions” on page 2-264.

When you use the MuPAD Notebook app, all your symbolic expressions are written in the
MuPAD language. To be able to create a MATLAB function from such expressions, you
must convert it to the MATLAB language. There are two approaches for converting a
MuPAD expression to the MATLAB language:

• Assign the MuPAD expression to a variable, and copy that variable from a notebook to
the MATLAB workspace. This approach lets you create a function handle or a file that
contains a MATLAB function. It also requires using a handle to the notebook.

• Generate MATLAB code from the MuPAD expression in a notebook. This approach
limits your options to creating a file. You can skip creating a handle to the notebook.

The generated MATLAB function can depend on the approach that you chose. For
example, code can be optimized differently or not optimized at all.

Suppose you want to create a MATLAB function from a symbolic matrix that converts
spherical coordinates of any point to its Cartesian coordinates. First, open a MuPAD
notebook with the handle notebook_handle:

notebook_handle = mupad;

 Create MATLAB Functions from MuPAD Expressions

3-75

In this notebook, create the symbolic matrix S that converts spherical coordinates to
Cartesian coordinates:

x := r*sin(a)*cos(b):
y := r*sin(a)*sin(b):
z := r*cos(b):
S := matrix([x, y, z]):

Now convert matrix S to the MATLAB language. Choose the best approach for your task.

Copy MuPAD Variables to the MATLAB Workspace
If your notebook has a handle, like notebook_handle in this example, you can copy
variables from that notebook to the MATLAB workspace with the getVar function, and
then create a MATLAB function. For example, to convert the symbolic matrix S to a
MATLAB function:

1 Copy variable S to the MATLAB workspace:

S = getVar(notebook_handle,'S')

Variable S and its value (the symbolic matrix) appear in the MATLAB workspace and
in the MATLAB Live Editor:

S =
 r*cos(b)*sin(a)
 r*sin(a)*sin(b)
 r*cos(b)

2 Use matlabFunction to create a MATLAB function from the symbolic matrix. To
generate a MATLAB function handle, use matlabFunction without additional
parameters:

h = matlabFunction(S)

h =
 @(a,b,r)[r.*cos(b).*sin(a);r.*sin(a).*sin(b);r.*cos(b)]

To generate a file containing the MATLAB function, use the parameter file and
specify the path to the file and its name. For example, save the MATLAB function to
the file cartesian.m in the current folder:

S = matlabFunction(S,'file', 'cartesian.m');

You can open and edit cartesian.m in the MATLAB Editor.

3 MuPAD in Symbolic Math Toolbox

3-76

Generate MATLAB Code in a MuPAD Notebook
To generate the MATLAB code from a MuPAD expression within the MuPAD notebook, use
the generate::MATLAB function. Then, you can create a new file that contains an empty
MATLAB function, copy the code, and paste it there. Alternatively, you can create a file
with a MATLAB formatted character vector representing a MuPAD expression, and then
add appropriate syntax to create a valid MATLAB function.

1 In the MuPAD Notebook app, use the generate::MATLAB function to generate
MATLAB code from the MuPAD expression. Instead of printing the result on screen,
use the fprint function to create a file and write the generated code to that file:

fprint(Unquoted, Text, "cartesian.m", generate::MATLAB(S)):

Note If the file with this name already exists, fprint replaces the contents of this
file with the converted expression.

2 Open cartesian.m. It contains a MATLAB formatted character vector representing
matrix S:

 S = zeros(3,1);
 S(1,1) = r*cos(b)*sin(a);
 S(2,1) = r*sin(a)*sin(b);
 S(3,1) = r*cos(b);

3 To convert this file to a valid MATLAB function, add the keywords function and
end, the function name (must match the file name), input and output arguments, and
comments:

 Create MATLAB Functions from MuPAD Expressions

3-77

3 MuPAD in Symbolic Math Toolbox

3-78

Create MATLAB Function Blocks from MuPAD
Expressions

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

Symbolic Math Toolbox lets you create a MATLAB function block from a symbolic
expression. The generated block is available for use in Simulink models, whether or not
the computer that runs the simulations has a license for Symbolic Math Toolbox.

If you work in the MATLAB Live Editor, see “Generate MATLAB Function Blocks from
Symbolic Expressions” on page 2-268. Working in the MATLAB Live Editor is
recommended.

The MuPAD Notebook does not provide a function for generating a block. Therefore, to be
able to create a block from the MuPAD expression:

1 In a MuPAD notebook, assign that expression to a variable.
2 Use the getVar function to copy that variable from a notebook to the MATLAB

workspace.

For details about these steps, see “Copy MuPAD Variables to the MATLAB Workspace” on
page 3-76.

When the expression that you want to use for creating a MATLAB function block appears
in the MATLAB workspace, use the matlabFunctionBlock function to create a block
from that expression.

For example, open a MuPAD notebook with the handle notebook_handle:

notebook_handle = mupad;

In this notebook, create the following symbolic expression:

r := sqrt(x^2 + y^2)

 Create MATLAB Function Blocks from MuPAD Expressions

3-79

Use getVar to copy variable r to the MATLAB workspace:

r = getVar(notebook_handle,'r')

Variable r and its value appear in the MATLAB workspace and in the MATLAB Live
Editor:

r =
(x^2 + y^2)^(1/2)

Before generating a MATLAB Function block from the expression, create an empty model
or open an existing one. For example, create and open the new model my_system:

new_system('my_system')
open_system('my_system')

Since the variable and its value are in the MATLAB workspace, you can use
matlabFunctionBlock to generate the block my_block:

matlabFunctionBlock('my_system/my_block', r)

You can open and edit the block in the MATLAB Editor. To open the block, double-click it:

function r = my_block(x,y)
%#codegen

r = sqrt(x.^2+y.^2);

3 MuPAD in Symbolic Math Toolbox

3-80

Create Simscape Equations from MuPAD Expressions

Note MuPAD notebooks will be removed in a future release. Use MATLAB live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts” on page 3-20.

Symbolic Math Toolbox lets you integrate symbolic computations into the Simscape
modeling workflow by using the results of these computations in the Simscape equation
section.

If you work in the MATLAB Live Editor, see “Generate Simscape Equations from Symbolic
Expressions” on page 2-270. Working in the MATLAB Live Editor is recommended.

If you work in the MuPAD Notebook app, you can:

• Assign the MuPAD expression to a variable, copy that variable from a notebook to the
MATLAB workspace, and use simscapeEquation to generate the Simscape equation
in the MATLAB Command Window.

• Generate the Simscape equation from the MuPAD expression in a notebook.

In both cases, to use the generated equation, you must manually copy the equation and
paste it to the equation section of the Simscape component file.

For example, follow these steps to generate a Simscape equation from the solution of the
ordinary differential equation computed in the MuPAD Notebook app:

1 Open a MuPAD notebook with the handle notebook_handle:

notebook_handle = mupad;
2 In this notebook, define the following equation:

s:= ode(y'(t) = y(t)^2, y(t)):
3 Decide whether you want to generate the Simscape equation in the MuPAD Notebook

or in the MATLAB Command Window.

 Create Simscape Equations from MuPAD Expressions

3-81

GenerateSimscape Equations in the MuPAD Notebook App
To generate the Simscape equation in the same notebook, use generate::Simscape. To
display generated Simscape code on screen, use the print function. To remove quotes
and expand special characters like line breaks and tabs, use the printing option
Unquoted:

print(Unquoted, generate::Simscape(s))

This command returns the Simscape equation that you can copy and paste to the
Simscape equation section:

 -y^2+y.der == 0.0;

Generate Simscape Equations in the MATLAB Command
Window
To generate the Simscape equation in the MATLAB Command Window, follow these steps:

1 Use getVar to copy variable s to the MATLAB workspace:

s = getVar(notebook_handle, 's')

Variable s and its value appear in the MATLAB workspace and in the MATLAB
Command Window:

s =
ode(diff(y(t), t) - y(t)^2, y(t))

2 Use simscapeEquation to generate the Simscape equation from s:

simscapeEquation(s)

You can copy and paste the generated equation to the Simscape equation section. Do not
copy the automatically generated variable ans and the equal sign that follows it.

ans =
s == (-y^2+y.der == 0.0);

3 MuPAD in Symbolic Math Toolbox

3-82

Functions — Alphabetical List

4

abs
Symbolic absolute value (complex modulus or magnitude)

Syntax
abs(z)

Description
abs(z) returns the absolute value (or complex modulus) of z. Because symbolic variables
are assumed to be complex by default, abs returns the complex modulus (magnitude) by
default. If z is an array, abs acts element-wise on each element of z.

Examples

Compute Absolute Values of Symbolic Numbers
[abs(sym(1/2)), abs(sym(0)), abs(sym(pi) - 4)]

ans =
[1/2, 0, 4 - pi]

Compute Absolute Value of Complex Numbers

Compute abs(x)^2 and simplify the result. Because symbolic variables are assumed to
be complex by default, the result does not simplify to x^2.

syms x
simplify(abs(x)^2)

ans =
abs(x)^2

Assume x is real, and repeat the calculation. Now, the result is simplified to x^2.

4 Functions — Alphabetical List

4-2

assume(x,'real')
simplify(abs(x)^2)

ans =
x^2

Remove assumptions on x for further calculations. For details, see “Use Assumptions on
Symbolic Variables” on page 1-29.

assume(x,'clear')

Absolute Values of Elements of Array

Compute the absolute values of each element of matrix A.

A = sym([1/2+i -25;
 i pi/2]);
abs(A)

ans =
[5^(1/2)/2, 25]
[1, pi/2]

Effect of Assumptions on Absolute Value

Compute the absolute value of this expression assuming that the value of x is negative.

syms x
assume(x < 0)
abs(5*x^3)

ans =
-5*x^3

For further computations, clear the assumption on x by recreating it using syms:

 abs

4-3

syms x

Input Arguments
z — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, vector,
matrix, or array, variable, function, or expression.

Definitions

Complex Modulus

The absolute value of a complex number z = x + y*i is the value z = x2 + y2. Here, x
and y are real numbers. The absolute value of a complex number is also called a complex
modulus.

Tips
• Calling abs for a number that is not a symbolic object invokes the MATLAB abs

function.

See Also
angle | imag | real | sign | signIm

Introduced before R2006a

4 Functions — Alphabetical List

4-4

acos
Symbolic inverse cosine function

Syntax
acos(X)

Description
acos(X) returns the inverse cosine function (arccosine function) of X. All angles are in
radians.

• For real values of X in the interval [-1,1], acos(x) returns the values in the interval
[0,pi].

• For real values of X outside the interval [-1,1] and for complex values of X, acos(X)
returns complex values with the real parts in the interval [0,pi].

Examples
Inverse Cosine Function for Numeric and Symbolic Arguments
Depending on its arguments, acos returns floating-point or exact symbolic results.

Compute the inverse cosine function for these numbers. Because these numbers are not
symbolic objects, acos returns floating-point results.

A = acos([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1])

A =
 3.1416 1.9106 2.0944 1.3181 1.0472 0.5236 0

Compute the inverse cosine function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, acos returns unresolved symbolic calls.

symA = acos(sym([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1]))

 acos

4-5

symA =
[pi, pi - acos(1/3), (2*pi)/3, acos(1/4), pi/3, pi/6, 0]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[3.1415926535897932384626433832795,...
1.9106332362490185563277142050315,...
2.0943951023931954923084289221863,...
1.318116071652817965745664254646,...
1.0471975511965977461542144610932,...
0.52359877559829887307710723054658,...
0]

Plot Inverse Cosine Function
Plot the inverse cosine function on the interval from -1 to 1. Prior to R2016a, use ezplot
instead of fplot.

syms x
fplot(acos(x), [-1, 1])
grid on

4 Functions — Alphabetical List

4-6

Handle Expressions Containing Inverse Cosine Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acos.

Find the first and second derivatives of the inverse cosine function:

syms x
diff(acos(x), x)
diff(acos(x), x, x)

ans =
-1/(1 - x^2)^(1/2)

 acos

4-7

ans =
-x/(1 - x^2)^(3/2)

Find the indefinite integral of the inverse cosine function:

int(acos(x), x)

ans =
x*acos(x) - (1 - x^2)^(1/2)

Find the Taylor series expansion of acos(x):

taylor(acos(x), x)

ans =
- (3*x^5)/40 - x^3/6 - x + pi/2

Rewrite the inverse cosine function in terms of the natural logarithm:

rewrite(acos(x), 'log')

ans =
-log(x + (1 - x^2)^(1/2)*1i)*1i

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acot | acsc | asec | asin | atan | cos | cot | csc | sec | sin | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-8

acosh
Symbolic inverse hyperbolic cosine function

Syntax
acosh(X)

Description
acosh(X) returns the inverse hyperbolic cosine function of X.

Examples

Inverse Hyperbolic Cosine Function for Numeric and Symbolic
Arguments
Depending on its arguments, acosh returns floating-point or exact symbolic results.

Compute the inverse hyperbolic cosine function for these numbers. Because these
numbers are not symbolic objects, acosh returns floating-point results.

A = acosh([-1, 0, 1/6, 1/2, 1, 2])

A =
 0.0000 + 3.1416i 0.0000 + 1.5708i 0.0000 + 1.4033i...
 0.0000 + 1.0472i 0.0000 + 0.0000i 1.3170 + 0.0000i

Compute the inverse hyperbolic cosine function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, acosh returns unresolved symbolic calls.

symA = acosh(sym([-1, 0, 1/6, 1/2, 1, 2]))

symA =
[pi*1i, (pi*1i)/2, acosh(1/6), (pi*1i)/3, 0, acosh(2)]

 acosh

4-9

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =

[3.1415926535897932384626433832795i,...
 1.5707963267948966192313216916398i,...
 1.4033482475752072886780470855961i,...
 1.0471975511965977461542144610932i,...
 0,...
 1.316957896924816708625046347308]

Plot Inverse Hyperbolic Cosine Function
Plot the inverse hyperbolic cosine function on the interval from 1 to 10.

syms x
fplot(acosh(x),[1 10])
grid on

4 Functions — Alphabetical List

4-10

Handle Expressions Containing Inverse Hyperbolic Cosine
Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acosh.

Find the first and second derivatives of the inverse hyperbolic cosine function. Simplify
the second derivative by using simplify.

syms x
diff(acosh(x), x)
simplify(diff(acosh(x), x, x))

 acosh

4-11

ans =
1/((x - 1)^(1/2)*(x + 1)^(1/2))

ans =
-x/((x - 1)^(3/2)*(x + 1)^(3/2))

Find the indefinite integral of the inverse hyperbolic cosine function. Simplify the result
by using simplify.

int(acosh(x), x)

ans =
x*acosh(x) - (x - 1)^(1/2)*(x + 1)^(1/2)

Find the Taylor series expansion of acosh(x) for x > 1:

assume(x > 1)
taylor(acosh(x), x)

ans =
(x^5*3i)/40 + (x^3*1i)/6 + x*1i - (pi*1i)/2

For further computations, clear the assumption on x by recreating it using syms:

syms x

Rewrite the inverse hyperbolic cosine function in terms of the natural logarithm:

rewrite(acosh(x), 'log')

ans =
log(x + (x - 1)^(1/2)*(x + 1)^(1/2))

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

4 Functions — Alphabetical List

4-12

See Also
acoth | acsch | asech | asinh | atanh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a

 acosh

4-13

acot
Symbolic inverse cotangent function

Syntax
acot(X)

Description
acot(X) returns the inverse cotangent function (arccotangent function) of X. All angles
are in radians.

• For real values of X, acot(X) returns values in the interval [-pi/2,pi/2].
• For complex values of X, acot(X) returns complex values with the real parts in the

interval [-pi/2,pi/2].

Examples
Inverse Cotangent Function for Numeric and Symbolic
Arguments
Depending on its arguments, acot returns floating-point or exact symbolic results.

Compute the inverse cotangent function for these numbers. Because these numbers are
not symbolic objects, acot returns floating-point results.

A = acot([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)])

A =
 -0.7854 -1.2490 -1.0472 1.1071 0.7854 0.5236

Compute the inverse cotangent function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, acot returns unresolved symbolic calls.

symA = acot(sym([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)]))

4 Functions — Alphabetical List

4-14

symA =
[-pi/4, -acot(1/3), -pi/3, acot(1/2), pi/4, pi/6]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[-0.78539816339744830961566084581988,...
-1.2490457723982544258299170772811,...
-1.0471975511965977461542144610932,...
1.1071487177940905030170654601785,...
0.78539816339744830961566084581988,...
0.52359877559829887307710723054658]

Plot Inverse Cotangent Function
Plot the inverse cotangent function on the interval from -10 to 10.

syms x
fplot(acot(x),[-10 10])
grid on

 acot

4-15

Handle Expressions Containing Inverse Cotangent Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acot.

Find the first and second derivatives of the inverse cotangent function:

syms x
diff(acot(x), x)
diff(acot(x), x, x)

ans =
-1/(x^2 + 1)

4 Functions — Alphabetical List

4-16

ans =
(2*x)/(x^2 + 1)^2

Find the indefinite integral of the inverse cotangent function:

int(acot(x), x)

ans =
log(x^2 + 1)/2 + x*acot(x)

Find the Taylor series expansion of acot(x) for x > 0:

assume(x > 0)
taylor(acot(x), x)

ans =
- x^5/5 + x^3/3 - x + pi/2

For further computations, clear the assumption on x by recreating it using syms:

syms x

Rewrite the inverse cotangent function in terms of the natural logarithm:

rewrite(acot(x), 'log')

ans =
(log(1 - 1i/x)*1i)/2 - (log(1i/x + 1)*1i)/2

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acos | acsc | asec | asin | atan | cos | cot | csc | sec | sin | tan

 acot

4-17

Introduced before R2006a

4 Functions — Alphabetical List

4-18

acoth
Symbolic inverse hyperbolic cotangent function

Syntax
acoth(X)

Description
acoth(X) returns the inverse hyperbolic cotangent function of X.

Examples

Inverse Hyperbolic Cotangent Function for Numeric and
Symbolic Arguments
Depending on its arguments, acoth returns floating-point or exact symbolic results.

Compute the inverse hyperbolic cotangent function for these numbers. Because these
numbers are not symbolic objects, acoth returns floating-point results.

A = acoth([-pi/2, -1, 0, 1/2, 1, pi/2])

A =
 -0.7525 + 0.0000i -Inf + 0.0000i 0.0000 + 1.5708i...
 0.5493 + 1.5708i Inf + 0.0000i 0.7525 + 0.0000i

Compute the inverse hyperbolic cotangent function for the numbers converted to
symbolic objects. For many symbolic (exact) numbers, acoth returns unresolved symbolic
calls.

symA = acoth(sym([-pi/2, -1, 0, 1/2, 1, pi/2]))

symA =
[-acoth(pi/2), Inf, -(pi*1i)/2, acoth(1/2), Inf, acoth(pi/2)]

 acoth

4-19

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[-0.75246926714192715916204347800251,...
Inf,...
-1.5707963267948966192313216916398i,...
0.54930614433405484569762261846126...
 - 1.5707963267948966192313216916398i,...
Inf,...
0.75246926714192715916204347800251]

Plot Inverse Hyperbolic Cotangent Function
Plot the inverse hyperbolic cotangent function on the interval from -10 to 10.

syms x
fplot(acoth(x),[-10 10])
grid on

4 Functions — Alphabetical List

4-20

Handle Expressions Containing Inverse Hyperbolic Cotangent
Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acoth.

Find the first and second derivatives of the inverse hyperbolic cotangent function:

syms x
diff(acoth(x), x)
diff(acoth(x), x, x)

 acoth

4-21

ans =
-1/(x^2 - 1)

ans =
(2*x)/(x^2 - 1)^2

Find the indefinite integral of the inverse hyperbolic cotangent function:

int(acoth(x), x)

ans =
log(x^2 - 1)/2 + x*acoth(x)

Find the Taylor series expansion of acoth(x) for x > 0:

assume(x > 0)
taylor(acoth(x), x)

ans =
x^5/5 + x^3/3 + x - (pi*1i)/2

For further computations, clear the assumption on x by recreating it using syms:

syms x

Rewrite the inverse hyperbolic cotangent function in terms of the natural logarithm:

rewrite(acoth(x), 'log')

ans =
log(1/x + 1)/2 - log(1 - 1/x)/2

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

4 Functions — Alphabetical List

4-22

See Also
acosh | acsch | asech | asinh | atanh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a

 acoth

4-23

acsc
Symbolic inverse cosecant function

Syntax
acsc(X)

Description
acsc(X) returns the inverse cosecant function (arccosecant function) of X. All angles are
in radians.

• For real values of X in intervals [-Inf,-1] and [1,Inf], acsc returns real values in
the interval [-pi/2,pi/2].

• For real values of X in the interval [-1,1] and for complex values of X, acsc returns
complex values with the real parts in the interval [-pi/2,pi/2].

Examples

Inverse Cosecant Function for Numeric and Symbolic
Arguments
Depending on its arguments, acsc returns floating-point or exact symbolic results.

Compute the inverse cosecant function for these numbers. Because these numbers are
not symbolic objects, acsc returns floating-point results.

A = acsc([-2, 0, 2/sqrt(3), 1/2, 1, 5])

A =
 -0.5236 + 0.0000i 1.5708 - Infi 1.0472 + 0.0000i 1.5708...
 - 1.3170i 1.5708 + 0.0000i 0.2014 + 0.0000i

4 Functions — Alphabetical List

4-24

Compute the inverse cosecant function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, acsc returns unresolved symbolic calls.

symA = acsc(sym([-2, 0, 2/sqrt(3), 1/2, 1, 5]))

symA =
[-pi/6, Inf, pi/3, asin(2), pi/2, asin(1/5)]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[-0.52359877559829887307710723054658,...
Inf,...
1.0471975511965977461542144610932,...
1.5707963267948966192313216916398...
 - 1.3169578969248165734029498707969i,...
1.5707963267948966192313216916398,...
0.20135792079033079660099758712022]

Plot Inverse Cosecant Function
Plot the inverse cosecant function on the interval from -10 to 10.

syms x
fplot(acsc(x),[-10 10])
grid on

 acsc

4-25

Handle Expressions Containing Inverse Cosecant Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acsc.

Find the first and second derivatives of the inverse cosecant function:

syms x
diff(acsc(x), x)
diff(acsc(x), x, x)

ans =
-1/(x^2*(1 - 1/x^2)^(1/2))

4 Functions — Alphabetical List

4-26

ans =
2/(x^3*(1 - 1/x^2)^(1/2)) + 1/(x^5*(1 - 1/x^2)^(3/2))

Find the indefinite integral of the inverse cosecant function:

int(acsc(x), x)

ans =
x*asin(1/x) + log(x + (x^2 - 1)^(1/2))*sign(x)

Find the Taylor series expansion of acsc(x) around x = Inf:

taylor(acsc(x), x, Inf)

ans =
1/x + 1/(6*x^3) + 3/(40*x^5)

Rewrite the inverse cosecant function in terms of the natural logarithm:

rewrite(acsc(x), 'log')

ans =
-log(1i/x + (1 - 1/x^2)^(1/2))*1i

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acos | acot | asec | asin | atan | cos | cot | csc | sec | sin | tan

Introduced before R2006a

 acsc

4-27

acsch
Symbolic inverse hyperbolic cosecant function

Syntax
acsch(X)

Description
acsch(X) returns the inverse hyperbolic cosecant function of X.

Examples

Inverse Hyperbolic Cosecant Function for Numeric and
Symbolic Arguments
Depending on its arguments, acsch returns floating-point or exact symbolic results.

Compute the inverse hyperbolic cosecant function for these numbers. Because these
numbers are not symbolic objects, acsch returns floating-point results.

A = acsch([-2*i, 0, 2*i/sqrt(3), 1/2, i, 3])

A =
 0.0000 + 0.5236i Inf + 0.0000i 0.0000 - 1.0472i...
 1.4436 + 0.0000i 0.0000 - 1.5708i 0.3275 + 0.0000i

Compute the inverse hyperbolic cosecant function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, acsch returns unresolved symbolic calls.

symA = acsch(sym([-2*i, 0, 2*i/sqrt(3), 1/2, i, 3]))

symA =
[(pi*1i)/6, Inf, -(pi*1i)/3, asinh(2), -(pi*1i)/2, asinh(1/3)]

4 Functions — Alphabetical List

4-28

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[0.52359877559829887307710723054658i,...
Inf,...
-1.0471975511965977461542144610932i,...
1.4436354751788103424932767402731,...
-1.5707963267948966192313216916398i,...
0.32745015023725844332253525998826]

Plot Inverse Hyperbolic Cosecant Function
Plot the inverse hyperbolic cosecant function on the interval from -10 to 10.

syms x
fplot(acsch(x),[-10 10])
grid on

 acsch

4-29

Handle Expressions Containing Inverse Hyperbolic Cosecant
Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing acsch.

Find the first and second derivatives of the inverse hyperbolic cosecant function:

syms x
diff(acsch(x), x)
diff(acsch(x), x, x)

4 Functions — Alphabetical List

4-30

ans =
-1/(x^2*(1/x^2 + 1)^(1/2))

ans =
2/(x^3*(1/x^2 + 1)^(1/2)) - 1/(x^5*(1/x^2 + 1)^(3/2))

Find the indefinite integral of the inverse hyperbolic cosecant function:

int(acsch(x), x)

ans =
x*asinh(1/x) + asinh(x)*sign(x)

Find the Taylor series expansion of acsch(x) around x = Inf:

taylor(acsch(x), x, Inf)

ans =
1/x - 1/(6*x^3) + 3/(40*x^5)

Rewrite the inverse hyperbolic cosecant function in terms of the natural logarithm:

rewrite(acsch(x), 'log')

ans =
log((1/x^2 + 1)^(1/2) + 1/x)

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | asech | asinh | atanh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a

 acsch

4-31

adjoint
Classical adjoint (adjugate) of square matrix

Syntax
X = adjoint(A)

Description
X = adjoint(A) returns the “Classical Adjoint (Adjugate) Matrix” on page 4-34 X of A,
such that A*X = det(A)*eye(n) = X*A, where n is the number of rows in A.

Examples

Classical Adjoint (Adjugate) of Matrix

Find the classical adjoint of a numeric matrix.

A = magic(3);
X = adjoint(A)

X =
 -53.0000 52.0000 -23.0000
 22.0000 -8.0000 -38.0000
 7.0000 -68.0000 37.0000

Find the classical adjoint of a symbolic matrix.

syms x y z
A = sym([x y z; 2 1 0; 1 0 2]);
X = adjoint(A)

X =
[2, -2*y, -z]
[-4, 2*x - z, 2*z]
[-1, y, x - 2*y]

4 Functions — Alphabetical List

4-32

Verify that det(A)*eye(3) = X*A by using isAlways.

cond = det(A)*eye(3) == X*A;
isAlways(cond)

ans =
 3×3 logical array
 1 1 1
 1 1 1
 1 1 1

Compute Inverse Using Classical Adjoint and Determinant

Compute the inverse of this matrix by computing its classical adjoint and determinant.

syms a b c d
A = [a b; c d];
invA = adjoint(A)/det(A)

invA =
[d/(a*d - b*c), -b/(a*d - b*c)]
[-c/(a*d - b*c), a/(a*d - b*c)]

Verify that invA is the inverse of A.

isAlways(invA == inv(A))

ans =
 2×2 logical array
 1 1
 1 1

Input Arguments
A — Square matrix
numeric matrix | symbolic matrix

Square matrix, specified as a numeric or symbolic matrix.

 adjoint

4-33

Definitions

Classical Adjoint (Adjugate) Matrix
The classical adjoint, or adjugate, of a square matrix A is the square matrix X, such that
the (i,j)-th entry of X is the (j,i)-th cofactor of A.

The (j,i)-th cofactor of A is defined as follows.

a ji′ = −1 i + jdet Ai j

Aij is the submatrix of A obtained from A by removing the i-th row and j-th column.

The classical adjoint matrix should not be confused with the adjoint matrix. The adjoint is
the conjugate transpose of a matrix while the classical adjoint is another name for the
adjugate matrix or cofactor transpose of a matrix.

See Also
ctranspose | det | inv | rank

Introduced in R2013a

4 Functions — Alphabetical List

4-34

airy
Airy function

Syntax
airy(x)
airy(0,x)
airy(1,x)
airy(2,x)
airy(3,x)

airy(n,x)

airy(___ ,1)

Description
airy(x) returns the Airy function on page 4-42 of the first kind, Ai(x), for each element
of x.

airy(0,x) is the same as airy(x).

airy(1,x) returns the derivative of Ai(x).

airy(2,x) returns the Airy function on page 4-42 of the second kind, Bi(x).

airy(3,x) returns the derivative of Bi(x).

airy(n,x) uses the values in vector n to return the corresponding Airy functions of
elements of vector x. Both n and x must have the same size.

airy(___ ,1) returns the “Scaled Airy Functions” on page 4-43 following the syntax
for the MATLAB airy function.

 airy

4-35

Examples

Find the Airy Function of the First Kind
Find the Airy function of the first kind, Ai(x), for numeric or symbolic inputs using airy.
Approximate exact symbolic outputs using vpa.

Find the Airy function of the first kind, Ai(x), at 1.5. Because the input is double and not
symbolic, you get a double result.

airy(1.5)

ans =
 0.0717

Find the Airy function of the values of vector v symbolically, by converting v to symbolic
form using sym. Because the input is symbolic, airy returns exact symbolic results. The
exact symbolic results for most symbolic inputs are unresolved function calls.

v = sym([-1 0 25.1 1+1i]);
vAiry = airy(v)

vAiry =
[airy(0, -1), 3^(1/3)/(3*gamma(2/3)), airy(0, 251/10), airy(0, 1 + 1i)]

Numerically approximate the exact symbolic result using vpa.

vpa(vAiry)

ans =
[0.53556088329235211879951656563887, 0.35502805388781723926006318600418,...
 4.9152763177499054787371976959487e-38,...
 0.060458308371838149196532978116646 - 0.15188956587718140235494791259223i]

Find the Airy function, Ai(x), of the symbolic input x^2. For symbolic expressions, airy
returns an unresolved call.

syms x
airy(x^2)

ans =
airy(0, x^2)

4 Functions — Alphabetical List

4-36

Find the Airy Function of the Second Kind
Find the Airy function of the second kind, Bi(x), of the symbolic input [-3 4 1+1i x^2]
by specifying the first argument as 2. Because the input is symbolic, airy returns exact
symbolic results. The exact symbolic results for most symbolic inputs are unresolved
function calls.

v = sym([-3 4 1+1i x^2]);
vAiry = airy(2, v)

vAiry =
[airy(2, -3), airy(2, 4), airy(2, 1 + 1i), airy(2, x^2)]

Use the syntax airy(2,x) like airy(x), as described in the example “Find the Airy
Function of the First Kind” on page 4-36.

Plot Airy Functions
Plot the Airy Functions, Ai(x) and Bi(x), over the interval [-10 2] using fplot.

syms x
fplot(airy(x), [-10 2])
hold on
fplot(airy(2,x), [-10 2])
legend('Ai(x)','Bi(x)','Location','Best')
title('Airy functions Ai(x) and Bi(x)')
grid on

 airy

4-37

Plot the absolute value of Ai(z) over the complex plane.

syms y
z = x + 1i*y;
figure(2)
fsurf(abs(airy(z)))
title('|Ai(z)|')
a = gca;
a.ZLim = [0 10];
caxis([0 10])

4 Functions — Alphabetical List

4-38

Find Derivatives of Airy Functions
Find the derivative of the Airy function of the first kind, Ai′(x), at 0 by specifying the first
argument of airy as 1. Then, numerically approximate the derivative using vpa.

dAi = airy(1, sym(0))
dAi_vpa = vpa(dAi)

dAi =
-(3^(1/6)*gamma(2/3))/(2*pi)
dAi_vpa =
-0.2588194037928067984051835601892

 airy

4-39

Find the derivative of the Airy function of the second kind, Bi′(x), at x by specifying the
first argument as 3. Then, find the derivative at x = 5 by substituting for x using subs
and calling vpa.

syms x
dBi = airy(3, x)
dBi_vpa = vpa(subs(dBi, x, 5))

dBi =
airy(3, x)
dBi_vpa =
1435.8190802179825186717212380046

Solve Airy Differential Equation for Airy Functions
Show that the Airy functions Ai(x) and Bi(x) are the solutions of the differential equation

∂2y
∂x2 − xy = 0.

syms y(x)
dsolve(diff(y, 2) - x*y == 0)

ans =
C1*airy(0, x) + C2*airy(2, x)

Differentiate Airy Functions
Differentiate expressions containing airy.

syms x y
diff(airy(x^2))
diff(diff(airy(3, x^2 + x*y -y^2), x), y)

ans =
2*x*airy(1, x^2)

ans =
airy(2, x^2 + x*y - y^2)*(x^2 + x*y - y^2) +...
airy(2, x^2 + x*y - y^2)*(x - 2*y)*(2*x + y) +...
airy(3, x^2 + x*y - y^2)*(x - 2*y)*(2*x + y)*(x^2 + x*y - y^2)

4 Functions — Alphabetical List

4-40

Expand Airy Function using Taylor Series
Find the Taylor series expansion of the Airy functions, Ai(x) and Bi(x), using taylor.

aiTaylor = taylor(airy(x))
biTaylor = taylor(airy(2, x))

aiTaylor =
- (3^(1/6)*gamma(2/3)*x^4)/(24*pi) + (3^(1/3)*x^3)/(18*gamma(2/3))...
 - (3^(1/6)*gamma(2/3)*x)/(2*pi) + 3^(1/3)/(3*gamma(2/3))
biTaylor =
(3^(2/3)*gamma(2/3)*x^4)/(24*pi) + (3^(5/6)*x^3)/(18*gamma(2/3))...
 + (3^(2/3)*gamma(2/3)*x)/(2*pi) + 3^(5/6)/(3*gamma(2/3))

Fourier Transform of Airy Function
Find the Fourier transform of the Airy function Ai(x) using fourier.

syms x
aiFourier = fourier(airy(x))

aiFourier =
exp((w^3*1i)/3)

Numeric Roots of Airy Function
Find a root of the Airy function Ai(x) numerically using vpasolve.

syms x
vpasolve(airy(x) == 0, x)

ans =
 -226.99630507523600716771890962744

Find a root in the interval [-5 -3].

vpasolve(airy(x) == 0, x, [-5 -3])

ans =
-4.0879494441309706166369887014574

 airy

4-41

Input Arguments
x — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

n — Type of Airy function
0 (default) | number | vector | matrix | multidimensional array | symbolic number |
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array

Type of Airy function, specified as a number, vector, matrix, or multidimensional array, or
a symbolic number, variable, vector, matrix, or multidimensional array. The values of the
input must be 0, 1, 2, or 3, which specify the Airy function as follows.

n Returns
0 (default) Airy function, Ai(x), which is the same as airy(x).
1 Derivative of Airy function, Ai’(x).
2 Airy function of the second kind, Bi(x).
3 Derivative of Airy function of the second kind, Bi’(x).

Definitions

Airy Functions
The Airy functions Ai(x) and Bi(x) are the two linearly independent solutions of the
differential equation

∂2y
∂x2 − xy = 0.

Ai(x) is called the Airy function of the first kind. Bi(x) is called the Airy function of the
second kind.

4 Functions — Alphabetical List

4-42

Scaled Airy Functions
The Airy function of the first kind, Ai(x), is scaled as

e
2
3x 3/2 Ai x .

The derivative, Ai’(x), is scaled by the same factor.

The Airy function of the second kind, Bi(x), is scaled as

e−
2
3Re x 3/2 Bi x .

The derivative, Bi’(x), is scaled by the same factor.

Tips
• When you call airy for inputs that are not symbolic objects, you call the MATLAB

airy function.
• When you call airy(n, x), at least one argument must be a scalar or both

arguments must be vectors or matrices of the same size. If one argument is a scalar
and the other is a vector or matrix, airy(n,x) expands the scalar into a vector or
matrix of the same size as the other argument with all elements equal to the scalar.

• airy returns special exact values at 0.

See Also
besseli | besselj | besselk | bessely

Introduced in R2012a

 airy

4-43

all
Test whether all equations and inequalities represented as elements of symbolic array are
valid

Syntax
all(A)
all(A,dim)

Description
all(A) tests whether all elements of A return logical 1 (true). If A is a matrix, all tests
all elements of each column. If A is a multidimensional array, all tests all elements along
one dimension.

all(A,dim) tests along the dimension of A specified by dim.

Examples

Test All Elements of Symbolic Vector
Create vector V that contains the symbolic equation and inequalities as its elements:

syms x
V = [x ~= x + 1, abs(x) >= 0, x == x];

Use all to test whether all of them are valid for all values of x:

all(V)

ans =
 logical
 1

4 Functions — Alphabetical List

4-44

Test All Elements of Symbolic Matrix
Create this matrix of symbolic equations and inequalities:

syms x
M = [x == x, x == abs(x); abs(x) >= 0, x ~= 2*x]

M =
[x == x, x == abs(x)]
[0 <= abs(x), x ~= 2*x]

Use all to test equations and inequalities of this matrix. By default, all tests whether all
elements of each column are valid for all possible values of variables. If all equations and
inequalities in the column are valid (return logical 1), then all returns logical 1 for that
column. Otherwise, it returns logical 0 for the column. Thus, it returns 1 for the first
column and 0 for the second column:

all(M)

ans =
 1×2 logical array
 1 0

Specify Dimension to Test Along
Create this matrix of symbolic equations and inequalities:

syms x
M = [x == x, x == abs(x); abs(x) >= 0, x ~= 2*x]

M =
[x == x, x == abs(x)]
[0 <= abs(x), x ~= 2*x]

For matrices and multidimensional arrays, all can test all elements along the specified
dimension. To specify the dimension, use the second argument of all. For example, to
test all elements of each column of a matrix, use the value 1 as the second argument:

all(M, 1)

ans =
 1×2 logical array
 1 0

 all

4-45

To test all elements of each row, use the value 2 as the second argument:

all(M, 2)

ans =
 2×1 logical array
 0
 1

Test Arrays with Numeric Values
Test whether all elements of this vector return logical 1s. Note that all also converts all
numeric values outside equations and inequalities to logical 1s and 0s. The numeric value
0 becomes logical 0:

syms x
all([0, x == x])

ans =
 logical
 0

All nonzero numeric values, including negative and complex values, become logical 1s:

all([1, 2, -3, 4 + i, x == x])

ans =
 logical
 1

Input Arguments
A — Input
symbolic array

Input, specified as a symbolic array. For example, it can be an array of symbolic
equations, inequalities, or logical expressions with symbolic subexpressions.

dim — Dimension
first non-singleton dimension (default) | integer

4 Functions — Alphabetical List

4-46

Dimension, specified as an integer. For example, if A is a matrix, any(A,1) tests elements
of each column and returns a row vector of logical 1s and 0s. any(A,2) tests elements of
each row and returns a column vector of logical 1s and 0s.

Tips
• If A is an empty symbolic array, all(A) returns logical 1.
• If some elements of A are just numeric values (not equations or inequalities), all

converts these values as follows. All numeric values except 0 become logical 1. The
value 0 becomes logical 0.

• If A is a vector and all its elements return logical 1, all(A) returns logical 1. If one or
more elements are zero, all(A) returns logical 0.

• If A is a multidimensional array, all(A) treats the values along the first dimension
that is not equal to 1 (nonsingleton dimension) as vectors, returning logical 1 or 0 for
each vector.

See Also
and | any | isAlways | not | or | xor

Introduced in R2012a

 all

4-47

allMuPADNotebooks
All open notebooks

Note

MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts”.

Syntax
L = allMuPADNotebooks

Description
L = allMuPADNotebooks returns a vector with handles (pointers) to all currently open
MuPAD notebooks.

If there are no open notebooks, allMuPADNotebooks returns an empty object [empty
mupad].

Examples

Identify All Open Notebooks

Get a vector of handles to all currently open MuPAD notebooks.

4 Functions — Alphabetical List

4-48

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and
myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively.
Also create a new notebook with the handle nb3:

nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad

nb1 =
myFile1

nb2 =
myFile2

nb3 =
Notebook1

Suppose that there are no other open notebooks. Use allMuPADNotebooks to get a
vector of handles to these notebooks:

allNBs = allMuPADNotebooks

allNBs =
myFile1
myFile2
Notebook1

Create Handle to Existing Notebook

If you already created a MuPAD notebook without a handle or if you lost the handle to a
notebook, use allMuPADNotebooks to create a new handle. Alternatively, you can save
the notebook, close it, and then open it again using a handle.

Create a new notebook:

mupad

Suppose that you already performed some computations in that notebook, and now want
to transfer a few variables to the MATLAB workspace. To be able to do it, you need to
create a handle to this notebook:

nb = allMuPADNotebooks

 allMuPADNotebooks

4-49

nb =
Notebook1

Now, you can use nb when transferring data and results between the notebook
Notebook1 and the MATLAB workspace. This approach does not require you to save
Notebook1.

getVar(nb,'x')

ans =
x

Output Arguments
L — All open MuPAD notebooks
vector of handles to notebooks

All open MuPAD notebooks, returned as a vector of handles to these notebooks.

See Also
close | evaluateMuPADNotebook | getVar | mupad | mupadNotebookTitle | openmn
| setVar

Topics
“Create MuPAD Notebooks” on page 3-4
“Open MuPAD Notebooks” on page 3-7
“Save MuPAD Notebooks” on page 3-13
“Evaluate MuPAD Notebooks from MATLAB” on page 3-14
“Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-55
“Close MuPAD Notebooks from MATLAB” on page 3-18

Introduced in R2013b

4 Functions — Alphabetical List

4-50

and
Logical AND for symbolic expressions

Syntax
A & B
and(A,B)

Description
A & B represents the logical AND. A & B is true only when both A and B are true.

and(A,B) is equivalent to A & B.

Examples

Construct and Set Assumptions Using AND

Combine symbolic inequalities into one condition by using &.

syms x y
cond = x>=0 & y>=0;

Set the assumptions represented by the condition using assume.

assume(cond)

Verify that the assumptions are set.

assumptions

ans =
[0 <= x, 0 <= y]

 and

4-51

Evaluate Inequalities or Conditions

Define a range for a variable by combining two inequalities into a logical condition using
&.

syms x
range = 0 < x & x < 1;

Return the condition at 1/2 and 10 by substituting for x using subs. The subs function
does not evaluate the conditions automatically.

x1 = subs(range,x,1/2)
x2 = subs(range,x,10)

x1 =
0 < 1/2 & 1/2 < 1
x2 =
0 < 10 & 10 < 1

Evaluate the inequalities to logical 1 or 0 by using isAlways.

isAlways(x1)
isAlways(x2)

ans =
 logical
 1
ans =
 logical
 0

Input Arguments
A — Input
symbolic equation | symbolic inequality | symbolic expression

Input, specified as a symbolic equation, inequality, or expression.

B — Input
symbolic equation | symbolic inequality | symbolic expression

Input, specified as a symbolic equation, inequality, or expression.

4 Functions — Alphabetical List

4-52

Tips
• If you call simplify for a logical expression containing symbolic subexpressions, you

can get the symbolic values TRUE and FALSE. These values are not the same as logical
1 (true) and logical 0 (false). To convert symbolic TRUE and FALSE to logical values,
use isAlways.

See Also
all | any | isAlways | not | or | piecewise | xor

Introduced in R2012a

 and

4-53

angle
Symbolic polar angle

Syntax
angle(Z)

Description
angle(Z) computes the polar angle of the complex value Z.

Examples

Compute Polar Angle of Numeric Inputs
Compute the polar angles of these complex numbers. Because these numbers are not
symbolic objects, you get floating-point results.

[angle(1 + i), angle(4 + pi*i), angle(Inf + Inf*i)]

ans =
 0.7854 0.6658 0.7854

Compute Polar Angle of Symbolic Inputs
Compute the polar angles of these complex numbers which are converted to symbolic
objects:

[angle(sym(1) + i), angle(sym(4) + sym(pi)*i), angle(Inf + sym(Inf)*i)]

ans =
[pi/4, atan(pi/4), pi/4]

4 Functions — Alphabetical List

4-54

Compute Polar Angle of Symbolic Expressions
Compute the limits of these symbolic expressions:

syms x
limit(angle(x + x^2*i/(1 + x)), x, -Inf)
limit(angle(x + x^2*i/(1 + x)), x, Inf)

ans =
-(3*pi)/4

ans =
pi/4

Compute Polar Angle of Array
Compute the polar angles of the elements of matrix Z:

Z = sym([sqrt(3) + 3*i, 3 + sqrt(3)*i; 1 + i, i]);
angle(Z)

ans =
[pi/3, pi/6]
[pi/4, pi/2]

Input Arguments
Z — Input
number | vector | matrix | array | symbolic number | symbolic array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable,
expression, function.

Tips
• Calling angle for numbers (or vectors or matrices of numbers) that are not symbolic

objects invokes the MATLAB angle function.
• If Z = 0, then angle(Z) returns 0.

 angle

4-55

Alternatives
For real X and Y such that Z = X + Y*i, the call angle(Z) is equivalent to
atan2(Y,X).

See Also
atan2 | conj | imag | real | sign | signIm

Introduced in R2013a

4 Functions — Alphabetical List

4-56

animationToFrame
Return structure of frames from animation objects

Syntax
frames = animationToFrame
frames = animationToFrame(fig)
frames = animationToFrame(___ ,Name,Value)

Description
frames = animationToFrame returns a structure array of frames from animation
objects. The animation objects must be created using the fanimator function.

frames = animationToFrame(fig) returns a structure array of frames from
animation objects in the figure fig.

frames = animationToFrame(___ ,Name,Value) uses the specified Name,Value
pair arguments. Use this option with any of the input argument combinations in the
previous syntaxes.

Examples

Return Animation Frames

Create an animation of a moving circle, and return specific frames of the animation.

First, create two symbolic variables, t and x. The variable t defines the time parameter
of the animation. Use t to set the center of the circle at (t,1) and x to parameterize the
perimeter of the circle within the range [-pi pi]. Create the circle animation object
using fanimator. Set the x-axis and y-axis to be equal length.

 animationToFrame

4-57

syms t x
fanimator(@fplot,cos(x)+t,sin(x)+1,[-pi pi])
axis equal

By default, fanimator generates an animation object with 10 frames per unit time within
the range of t from 0 to 10. The default animation object contains a total of 101 frames.
Use the command playAnimation to play the animation.

Next, return a structure array of frames from the animation object by using
animationToFrame.

frames = animationToFrame

4 Functions — Alphabetical List

4-58

frames = 1x101 struct array with fields:
 cdata
 colormap

The structure frames contains two fields. The cdata field stores the image data as an
array of uint8 values.

Reconstruct the animation frames by using the imshow function. For example, display the
50th frame and the last frame of the animation.

imshow(frames(50).cdata)

imshow(frames(101).cdata)

 animationToFrame

4-59

Return Animation Frames in Reverse Order

Create a moving circle animation object and a timer animation object. Return the
generated animation frames in reverse order.

First, create two symbolic variables, t and x. The variable t defines the time parameter
of the animation. Create a figure window for the animation.

syms t x
fig1 = figure;

4 Functions — Alphabetical List

4-60

Create a circle animation object using fanimator. Use t to set the center of the circle at
(t,1) and x to parameterize the perimeter of the circle within the range [-pi pi]. Set
the x-axis and y-axis to be equal length.

fanimator(@fplot,cos(x)+t,sin(x)+1,[-pi pi])
axis equal

Next, use the text function to add a piece of text to count the elapsed time. Use
num2str to convert the time parameter to a string.

hold on
fanimator(@(t) text(8,3,"Timer: "+num2str(t,2)))
hold off

By default, fanimator creates stop-motion frames with 10 frames per unit time within
the range of t from 0 to 10. The default animation object contains a total of 101 frames.
Use the command playAnimation to play the animation.

Next, return a structure array of frames from the animation in figure fig by using
animationToFrame. Return the animation frames in reverse order by setting the
'Backwards' option to true. Set the frame rate per unit time to 2 to return a total of 21
frames.

frames = animationToFrame(fig1,'Backwards',true,'FrameRate',2)

 animationToFrame

4-61

frames = 1x21 struct array with fields:
 cdata
 colormap

The structure frames contains two fields. The cdata field stores the image data as an
array of uint8 values.

Reconstruct the animation frames by using the imshow function. For example, display the
first frame and the 11th frame of the animation in a new figure window.

fig2 = figure;
imshow(frames(1).cdata)

4 Functions — Alphabetical List

4-62

imshow(frames(11).cdata)

 animationToFrame

4-63

Input Arguments
fig — Target figure
Figure object

Target figure, specified as a Figure object. For more information about Figure objects,
see figure.

4 Functions — Alphabetical List

4-64

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Backwards',true,'AnimationRange',[-2 5]

AnimationRange — Range of animation time parameter
[0 10] (default) | two-element row vector

Range of the animation time parameter, specified as a two-element row vector. The two
elements must be real values that are increasing.
Example: [-2 4.5]

FrameRate — Frame rate
10 (default) | positive value

Frame rate, specified as a positive value. The frame rate defines the number of frames
per unit time when you returning animation frames as a structure array.
Example: 20

Backwards — Backward option
logical 0 (false) (default) | logical value

Backward option, specified as a logical value (boolean). If you specify true, then the
function returns the animation frames backwards or in reverse order.
Example: true

Output Arguments
frames — Animation frames
structure array

Animation frames, returned as a structure array with two fields:

• cdata — The image data stored as an array of uint8 values. The size of the image
data array depends on your screen resolution.

 animationToFrame

4-65

• colormap — The colormap. On true color systems, this field is empty.

The animationToFrame function returns a structure of animation frames in the same
format as the output returned by the getframe function.

See Also
fanimator | getframe | playAnimation | rewindAnimation | writeAnimation

Introduced in R2019a

4 Functions — Alphabetical List

4-66

Animator Properties
Animator appearance and behavior

Description
Animator properties control the appearance and behavior of an Animator object. By
changing property values, you can modify certain aspects of the Animator object. You
can use dot notation to refer to a particular object and property:

fp = fanimator(@(x) plot(x,sin(x)))
ls = fp.Visible
fp.Visible = 'off'

Properties
Frames

AnimationRange — Range of animation time parameter
[0 10] (default) | two-element row vector

This property is read-only.

Range of the animation time parameter, specified as a two-element row vector. The two
elements must be real values that are increasing.

FrameRate — Frame rate
10 (default) | positive value

This property is read-only.

Frame rate, specified as a positive value. The frame rate defines the number of frames
per unit time interval of an animation object.

Interactivity

Visible — State of visibility
'on' (default) | 'off'

 Animator Properties

4-67

State of visibility, specified as one of these values:

• 'on' — Display the object.
• 'off' — Hide the object without deleting it. You still can access the properties of an

invisible object.

UIContextMenu — Context menu
empty GraphicsPlaceholder array (default) | ContextMenu object

Context menu, specified as a ContextMenu object. Use this property to display a context
menu when you right-click the object. Create the context menu using the
uicontextmenu function.

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then the context menu does not appear.

Callbacks

ButtonDownFcn — Mouse-click callback
'' (default) | function handle | cell array | character vector

Mouse-click callback, specified as one of these values:

• Function handle.
• Cell array containing a function handle and additional arguments.
• Character vector that is a valid MATLAB command or function, which is evaluated in

the base workspace (not recommended).

Use this property to execute code when you click the object. If you specify this property
using a function handle, then MATLAB passes two arguments to the callback function
when executing the callback:

• Clicked object — Access properties of the clicked object from within the callback
function.

• Event data — Empty argument. Replace it with the tilde character (~) in the function
definition to indicate that this argument is not used.

For more information on how to use function handles to define callback functions, see
“Callback Definition” (MATLAB).

4 Functions — Alphabetical List

4-68

Note If the PickableParts property is set to 'none' or if the HitTest property is set
to 'off', then this callback does not execute.

CreateFcn — Creation function
'' (default) | function handle | cell array | character vector

Object creation function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition” (MATLAB).

This property specifies a callback function to execute when MATLAB creates the object.
MATLAB initializes all property values before executing the CreateFcn callback. If you
do not specify the CreateFcn property, then MATLAB executes a default creation
function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object
that is being created using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

DeleteFcn — Deletion function
'' (default) | function handle | cell array | character vector

Object deletion function, specified as one of these values:

• Function handle.
• Cell array in which the first element is a function handle. Subsequent elements in the

cell array are the arguments to pass to the callback function.
• Character vector containing a valid MATLAB expression (not recommended). MATLAB

evaluates this expression in the base workspace.

 Animator Properties

4-69

For more information about specifying a callback as a function handle, cell array, or
character vector, see “Callback Definition” (MATLAB).

This property specifies a callback function to execute when MATLAB deletes the object.
MATLAB executes the DeleteFcn callback before destroying the properties of the object.
If you do not specify the DeleteFcn property, then MATLAB executes a default deletion
function.

If you specify this property as a function handle or cell array, you can access the object
that is being deleted using the first argument of the callback function. Otherwise, use the
gcbo function to access the object.

Callback Execution Control

Interruptible — Callback interruption
'on' (default) | 'off'

Callback interruption, specified as 'on' or 'off'. The Interruptible property
determines if a running callback can be interrupted.

There are two callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt the running
callback (if one exists). The Interruptible property of the object owning the running
callback determines if interruption is allowed. The Interruptible property has two
possible values:

• 'on' — Allows other callbacks to interrupt the object's callbacks. The interruption
occurs at the next point where MATLAB processes the queue, such as when there is a
drawnow, figure, uifigure, getframe, waitfor, or pause command.

• If the running callback contains one of those commands, then MATLAB stops the
execution of the callback at that point and executes the interrupting callback.
MATLAB resumes executing the running callback when the interrupting callback
completes.

• If the running callback does not contain one of those commands, then MATLAB
finishes executing the callback without interruption.

4 Functions — Alphabetical List

4-70

• 'off' — Blocks all interruption attempts. The BusyAction property of the object
owning the interrupting callback determines if the interrupting callback is discarded
or put into a queue.

Note Callback interruption and execution behave differently in these situations:

• If the interrupting callback is a DeleteFcn, CloseRequestFcn or SizeChangedFcn
callback, then the interruption occurs regardless of the Interruptible property
value.

• If the running callback is currently executing the waitfor function, then the
interruption occurs regardless of the Interruptible property value.

• Timer objects execute according to schedule regardless of the Interruptible
property value.

When an interruption occurs, MATLAB does not save the state of properties or the display.
For example, the object returned by the gca or gcf command might change when
another callback executes.

BusyAction — Callback queuing
'queue' (default) | 'cancel'

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property
determines how MATLAB handles the execution of interrupting callbacks. There are two
callback states to consider:

• The running callback is the currently executing callback.
• The interrupting callback is a callback that tries to interrupt the running callback.

Whenever MATLAB invokes a callback, that callback attempts to interrupt a running
callback. The Interruptible property of the object owning the running callback
determines if interruption is permitted. If interruption is not permitted, then the
BusyAction property of the object owning the interrupting callback determines if it is
discarded or put in the queue. These are possible values of the BusyAction property:

• 'queue' — Puts the interrupting callback in a queue to be processed after the
running callback finishes execution.

• 'cancel' — Does not execute the interrupting callback.

 Animator Properties

4-71

BeingDeleted — Deletion status
'off' | 'on'

This property is read-only.

Deletion status, returned as 'off' or 'on'. MATLAB sets the BeingDeleted property
to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property
remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be
deleted before querying or modifying it.

Parent/Child

Parent — Parent
Axes object

Parent, specified as an Axes object.

Children — Children
graphics object

This property is read-only.

Children, returned as a graphics object. You cannot set any graphics object as a child of
an animator object.

HandleVisibility — Visibility of object handle
'on' (default) | 'off' | 'callback'

Visibility of the object handle in the Children property of the parent, specified as one of
these values:

• 'on' — Object handle is always visible.
• 'off' — Object handle is invisible at all times. This option is useful for preventing

unintended changes to the UI by another function. Set the HandleVisibility to
'off' to temporarily hide the handle during the execution of that function.

• 'callback' — Object handle is visible from within callbacks or functions invoked by
callbacks, but not from within functions invoked from the command line. This option
blocks access to the object at the command line, but permits callback functions to
access it.

4 Functions — Alphabetical List

4-72

If the object is not listed in the Children property of the parent, then functions that
obtain object handles by searching the object hierarchy or querying handle properties
cannot return it. Examples of such functions include the get, findobj, gca, gcf, gco,
newplot, cla, clf, and close functions.

Hidden object handles are still valid. Set the root ShowHiddenHandles property to 'on'
to list all object handles regardless of their HandleVisibility property setting.

Identifier

Type — Type of graphics object
'animator'

This property is read-only.

Type of graphics object, returned as 'animator'. Use this property to find all objects of
a given type within a plotting hierarchy. For example, you can use the findobj function
to find graphics objects of type 'animator'.

Tag — Object identifier
'' (default) | character vector | string scalar

Object identifier, specified as a character vector or string scalar. You can specify a unique
Tag value to serve as an identifier for an object. When you need access to the object
elsewhere in your code, you can use the findobj function to search for the object based
on the Tag value.

UserData — User data
[] (default) | array

User data, specified as any MATLAB array. For example, you can specify a scalar, vector,
matrix, cell array, character array, table, or structure. Use this property to store arbitrary
data on an object.

If you are working in App Designer, create public or private properties in the app to share
data instead of using the UserData property. For more information, see “Share Data
Within App Designer Apps” (MATLAB).

 Animator Properties

4-73

See Also
Introduced in R2019a

4 Functions — Alphabetical List

4-74

any
Test whether at least one of equations and inequalities represented as elements of
symbolic array is valid

Syntax
any(A)
any(A,dim)

Description
any(A) tests whether at least one element of A returns logical 1 (true). If A is a matrix,
any tests elements of each column. If A is a multidimensional array, any tests elements
along one dimension.

any(A,dim) tests along the dimension of A specified by dim.

Examples

Test Vector of Symbolic Conditions

Create vector V that contains the symbolic equation and inequalities as its elements:

syms x real
V = [x ~= x + 1, abs(x) >= 0, x == x];

Use any to test whether at least one of them is valid for all values of x:

any(V)

ans =
 logical
 1

 any

4-75

Test Matrix of Symbolic Conditions
Create this matrix of symbolic equations and inequalities:

syms x real
M = [x == 2*x, x == abs(x); abs(x) >= 0, x == 2*x]

M =
[x == 2*x, x == abs(x)]
[0 <= abs(x), x == 2*x]

Use any to test equations and inequalities of this matrix. By default, any tests whether
any element of each column is valid for all possible values of variables. If at least one
equation or inequality in the column is valid (returns logical 1), then any returns logical 1
for that column. Otherwise, it returns logical 0 for the column. Thus, it returns 1 for the
first column and 0 for the second column:

any(M)

ans =
 1×2 logical array
 1 0

Specify Dimension to Test Along
Create this matrix of symbolic equations and inequalities:

syms x real
M = [x == 2*x, x == abs(x); abs(x) >= 0, x == 2*x]

M =
[x == 2*x, x == abs(x)]
[0 <= abs(x), x == 2*x]

For matrices and multidimensional arrays, any can test elements along the specified
dimension. To specify the dimension, use the second argument of any. For example, to
test elements of each column of a matrix, use the value 1 as the second argument:

any(M, 1)

ans =
 1×2 logical array
 1 0

4 Functions — Alphabetical List

4-76

To test elements of each row, use the value 2 as the second argument:

any(M, 2)

ans =
 2×1 logical array
 0
 1

Test Arrays with Numeric Values
Test whether any element of this vector returns logical 1. Note that any also converts all
numeric values outside equations and inequalities to logical 1s and 0s. The numeric value
0 becomes logical 0:

syms x
any([0, x == x + 1])

ans =
 logical
 0

All nonzero numeric values, including negative and complex values, become logical 1s:

any([-4 + i, x == x + 1])

ans =
 logical
 1

Input Arguments
A — Input
symbolic array

Input, specified as a symbolic array. For example, it can be an array of symbolic
equations, inequalities, or logical expressions with symbolic subexpressions.

dim — Dimension
first non-singleton dimension (default) | integer

 any

4-77

Dimension, specified as an integer. For example, if A is a matrix, any(A,1) tests elements
of each column and returns a row vector of logical 1s and 0s. any(A,2) tests elements of
each row and returns a column vector of logical 1s and 0s.

Tips
• If A is an empty symbolic array, any(A) returns logical 0.
• If some elements of A are just numeric values (not equations or inequalities), any

converts these values as follows. All nonzero numeric values become logical 1. The
value 0 becomes logical 0.

• If A is a vector and any of its elements returns logical 1, any(A) returns logical 1. If
all elements are zero, any(A) returns logical 0.

• If A is a multidimensional array, any(A) treats the values along the first dimension
that is not equal to 1 (non-singleton dimension) as vectors, returning logical 1 or 0 for
each vector.

See Also
all | and | isAlways | not | or | xor

Introduced in R2012a

4 Functions — Alphabetical List

4-78

argnames
Input variables of symbolic function

Syntax
argnames(f)

Description
argnames(f) returns input variables of f.

Examples

Find Input Variables of Symbolic Function
Create this symbolic function:

syms f(x, y)
f(x, y) = x + y;

Use argnames to find input variables of f:

argnames(f)

ans =
[x, y]

Create this symbolic function:

syms f(a, b, x, y)
f(x, b, y, a) = a*x + b*y;

Use argnames to find input variables of f. When returning variables, argnames uses the
same order as you used when you defined the function:

argnames(f)

 argnames

4-79

ans =
[x, b, y, a]

Input Arguments
f — Input
symbolic function

Input, specified as a symbolic function.

See Also
formula | sym | syms | symvar

Introduced in R2012a

4 Functions — Alphabetical List

4-80

asec
Symbolic inverse secant function

Syntax
asec(X)

Description
asec(X) returns the inverse secant function (arcsecant function) of X. All angles are in
radians.

• For real elements of X in the interval [-Inf,-1] and [1,Inf], asec returns values
in the interval [0,pi].

• For real values of X in the interval [-1,1] and for complex values of X, asec returns
complex values with the real parts in the interval [0,pi].

Examples

Inverse Secant Function for Numeric and Symbolic Arguments
Depending on its arguments, asec returns floating-point or exact symbolic results.

Compute the inverse secant function for these numbers. Because these numbers are not
symbolic objects, asec returns floating-point results.

A = asec([-2, 0, 2/sqrt(3), 1/2, 1, 5])

A =
 2.0944 + 0.0000i 0.0000 + Infi 0.5236 + 0.0000i...
 0.0000 + 1.3170i 0.0000 + 0.0000i 1.3694 + 0.0000i

Compute the inverse secant function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, asec returns unresolved symbolic calls.

 asec

4-81

symA = asec(sym([-2, 0, 2/sqrt(3), 1/2, 1, 5]))

symA =
[(2*pi)/3, Inf, pi/6, acos(2), 0, acos(1/5)]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[2.0943951023931954923084289221863,...
Inf,...
0.52359877559829887307710723054658,...
1.3169578969248165734029498707969i,...
0,...
1.3694384060045659001758622252964]

Plot Inverse Secant Function
Plot the inverse secant function on the interval from -10 to 10.

syms x
fplot(asec(x),[-10 10])
grid on

4 Functions — Alphabetical List

4-82

Handle Expressions Containing Inverse Secant Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing asec.

Find the first and second derivatives of the inverse secant function:

syms x
diff(asec(x), x)
diff(asec(x), x, x)

ans =
1/(x^2*(1 - 1/x^2)^(1/2))

 asec

4-83

ans =
- 2/(x^3*(1 - 1/x^2)^(1/2)) - 1/(x^5*(1 - 1/x^2)^(3/2))

Find the indefinite integral of the inverse secant function:

int(asec(x), x)

ans =
x*acos(1/x) - log(x + (x^2 - 1)^(1/2))*sign(x)

Find the Taylor series expansion of asec(x) around x = Inf:

taylor(asec(x), x, Inf)

ans =
pi/2 - 1/x - 1/(6*x^3) - 3/(40*x^5)

Rewrite the inverse secant function in terms of the natural logarithm:

rewrite(asec(x), 'log')

ans =
-log(1/x + (1 - 1/x^2)^(1/2)*1i)*1i

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acos | acot | acsc | asin | atan | cos | cot | csc | sec | sin | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-84

asech
Symbolic inverse hyperbolic secant function

Syntax
asech(X)

Description
asech(X) returns the inverse hyperbolic secant function of X.

Examples

Inverse Hyperbolic Secant Function for Numeric and Symbolic
Arguments
Depending on its arguments, asech returns floating-point or exact symbolic results.

Compute the inverse hyperbolic secant function for these numbers. Because these
numbers are not symbolic objects, asech returns floating-point results.

A = asech([-2, 0, 2/sqrt(3), 1/2, 1, 3])

A =
 0.0000 + 2.0944i Inf + 0.0000i 0.0000 + 0.5236i...
 1.3170 + 0.0000i 0.0000 + 0.0000i 0.0000 + 1.2310i

Compute the inverse hyperbolic secant function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, asech returns unresolved symbolic calls.

symA = asech(sym([-2, 0, 2/sqrt(3), 1/2, 1, 3]))

symA =
[(pi*2i)/3, Inf, (pi*1i)/6, acosh(2), 0, acosh(1/3)]

 asech

4-85

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[2.0943951023931954923084289221863i,...
 Inf,...
 0.52359877559829887307710723054658i,...
 1.316957896924816708625046347308,...
 0,...
 1.230959417340774682134929178248i]

Plot Inverse Hyperbolic Secant Function
Plot the inverse hyperbolic secant function on the interval from 0 to 1.

syms x
fplot(asech(x),[0 1])
grid on

4 Functions — Alphabetical List

4-86

Handle Expressions Containing Inverse Hyperbolic Secant
Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing asech.

Find the first and second derivatives of the inverse hyperbolic secant function. Simplify
the second derivative by using simplify.

syms x
diff(asech(x), x)
simplify(diff(asech(x), x, x))

 asech

4-87

ans =
-1/(x^2*(1/x - 1)^(1/2)*(1/x + 1)^(1/2))

ans =
-(2*x^2 - 1)/(x^5*(1/x - 1)^(3/2)*(1/x + 1)^(3/2))

Find the indefinite integral of the inverse hyperbolic secant function:

int(asech(x), x)

ans =
atan(1/((1/x - 1)^(1/2)*(1/x + 1)^(1/2))) + x*acosh(1/x)

Find the Taylor series expansion of asech(x) around x = Inf:

taylor(asech(x), x, Inf)

ans =
(pi*1i)/2 - 1i/x - 1i/(6*x^3) - 3i/(40*x^5)

Rewrite the inverse hyperbolic secant function in terms of the natural logarithm:

rewrite(asech(x), 'log')

ans =
log((1/x - 1)^(1/2)*(1/x + 1)^(1/2) + 1/x)

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asinh | atanh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a

4 Functions — Alphabetical List

4-88

asin
Symbolic inverse sine function

Syntax
asin(X)

Description
asin(X) returns the inverse sine function (arcsine function) of X. All angles are in
radians.

• For real values of X in the interval [-1,1], asin(X) returns the values in the interval
[-pi/2,pi/2].

• For real values of X outside the interval [-1,1] and for complex values of X, asin(X)
returns complex values with the real parts in the interval [-pi/2,pi/2].

Examples
Inverse Sine Function for Numeric and Symbolic Arguments
Depending on its arguments, asin returns floating-point or exact symbolic results.

Compute the inverse sine function for these numbers. Because these numbers are not
symbolic objects, asin returns floating-point results.

A = asin([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1])

A =
 -1.5708 -0.3398 -0.5236 0.2527 0.5236 1.0472 1.5708

Compute the inverse sine function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, asin returns unresolved symbolic calls.

symA = asin(sym([-1, -1/3, -1/2, 1/4, 1/2, sqrt(3)/2, 1]))

 asin

4-89

symA =
[-pi/2, -asin(1/3), -pi/6, asin(1/4), pi/6, pi/3, pi/2]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[-1.5707963267948966192313216916398,...
-0.33983690945412193709639251339176,...
-0.52359877559829887307710723054658,...
0.25268025514207865348565743699371,...
0.52359877559829887307710723054658,...
1.0471975511965977461542144610932,...
1.5707963267948966192313216916398]

Plot Inverse Sine Function
Plot the inverse sine function on the interval from -1 to 1.

syms x
fplot(asin(x),[-1 1])
grid on

4 Functions — Alphabetical List

4-90

Handle Expressions Containing Inverse Sine Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing asin.

Find the first and second derivatives of the inverse sine function:

syms x
diff(asin(x), x)
diff(asin(x), x, x)

ans =
1/(1 - x^2)^(1/2)

 asin

4-91

ans =
x/(1 - x^2)^(3/2)

Find the indefinite integral of the inverse sine function:

int(asin(x), x)

ans =
x*asin(x) + (1 - x^2)^(1/2)

Find the Taylor series expansion of asin(x):

taylor(asin(x), x)

ans =
(3*x^5)/40 + x^3/6 + x

Rewrite the inverse sine function in terms of the natural logarithm:

rewrite(asin(x), 'log')

ans =
-log((1 - x^2)^(1/2) + x*1i)*1i

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acos | acot | acsc | asec | atan | cos | cot | csc | sec | sin | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-92

asinh
Symbolic inverse hyperbolic sine function

Syntax
asinh(X)

Description
asinh(X) returns the inverse hyperbolic sine function of X.

Examples

Inverse Hyperbolic Sine Function for Numeric and Symbolic
Arguments
Depending on its arguments, asinh returns floating-point or exact symbolic results.

Compute the inverse hyperbolic sine function for these numbers. Because these numbers
are not symbolic objects, asinh returns floating-point results.

A = asinh([-i, 0, 1/6, i/2, i, 2])

A =
 0.0000 - 1.5708i 0.0000 + 0.0000i 0.1659 + 0.0000i...
 0.0000 + 0.5236i 0.0000 + 1.5708i 1.4436 + 0.0000i

Compute the inverse hyperbolic sine function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, asinh returns unresolved symbolic calls.

symA = asinh(sym([-i, 0, 1/6, i/2, i, 2]))

symA =
[-(pi*1i)/2, 0, asinh(1/6), (pi*1i)/6, (pi*1i)/2, asinh(2)]

 asinh

4-93

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[-1.5707963267948966192313216916398i,...
0,...
0.16590455026930117643502171631553,...
0.52359877559829887307710723054658i,...
1.5707963267948966192313216916398i,...
1.4436354751788103012444253181457]

Plot Inverse Hyperbolic Sine Function
Plot the inverse hyperbolic sine function on the interval from -10 to 10.

syms x
fplot(asinh(x),[-10 10])
grid on

4 Functions — Alphabetical List

4-94

Handle Expressions Containing Inverse Hyperbolic Sine
Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing asinh.

Find the first and second derivatives of the inverse hyperbolic sine function:

syms x
diff(asinh(x), x)
diff(asinh(x), x, x)

 asinh

4-95

ans =
1/(x^2 + 1)^(1/2)

ans =
-x/(x^2 + 1)^(3/2)

Find the indefinite integral of the inverse hyperbolic sine function:

int(asinh(x), x)

ans =
x*asinh(x) - (x^2 + 1)^(1/2)

Find the Taylor series expansion of asinh(x):

taylor(asinh(x), x)

ans =
(3*x^5)/40 - x^3/6 + x

Rewrite the inverse hyperbolic sine function in terms of the natural logarithm:

rewrite(asinh(x), 'log')

ans =
log(x + (x^2 + 1)^(1/2))

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | atanh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a

4 Functions — Alphabetical List

4-96

assume
Set assumption on symbolic object

Syntax
assume(condition)
assume(expr,set)
assume(expr,'clear')

Description
assume(condition) states that condition is valid. assume is not additive. Instead, it
automatically deletes all previous assumptions on the variables in condition.

assume(expr,set) states that expr belongs to set. assume deletes previous
assumptions on variables in expr.

assume(expr,'clear') clears all assumptions on all variables in expr.

Examples

Common Assumptions
Set an assumption using the associated syntax.

Assume ‘x’ is Syntax
real assume(x,'real')
rational assume(x,'rational')
positive assume(x,'positive')
positive integer assume(x,{'positive','integer'})
less than -1 or greater than 1 assume(x<-1 | x>1)

 assume

4-97

Assume ‘x’ is Syntax
an integer from 2 through 10 assume(in(x,'integer') & x>2 &

x<10)
not an integer assume(~in(z,'integer'))
not equal to 0 assume(x ~= 0)
even assume(x/2,'integer')
odd assume((x-1)/2,'integer')
from 0 through 2π assume(x>0 & x<2*pi)
a multiple of π assume(x/pi,'integer')

Assume Variable Is Even or Odd
Assume x is even by assuming that x/2 is an integer. Assume x is odd by assuming that
(x-1)/2 is an integer.

Assume x is even.

syms x
assume(x/2,'integer')

Find all even numbers between 0 and 10 using solve.

solve(x>0,x<10,x)

ans =
 2
 4
 6
 8

Assume x is odd. assume is not additive, but instead automatically deletes the previous
assumption in(x/2, 'integer').

assume((x-1)/2,'integer')
solve(x>0,x<10,x)

ans =
 1
 3
 5

4 Functions — Alphabetical List

4-98

 7
 9

Clear the assumptions on x for further computations.

assume(x,'clear')

Multiple Assumptions
Successive assume commands do not set multiple assumptions. Instead, each assume
command deletes previous assumptions and sets new assumptions. Set multiple
assumptions by using assumeAlso or the & operator.

Assume x > 5 and then x < 10 by using assume. Use assumptions to check that only
the second assumption exists because assume deleted the first assumption when setting
the second.

syms x
assume(x > 5)
assume(x < 10)
assumptions

ans =
x < 10

Assume the first assumption in addition to the second by using assumeAlso. Check that
both assumptions exist.

assumeAlso(x > 5)
assumptions

ans =
[5 < x, x < 10]

Clear the assumptions on x.

assume(x,'clear')

Assume both conditions using the & operator. Check that both assumptions exist.

assume(x>5 & x<10)
assumptions

ans =
[5 < x, x < 10]

 assume

4-99

Clear the assumptions on x for future calculations.

assume(x,'clear')

Assumptions on Integrand
Compute an indefinite integral with and without the assumption on the symbolic
parameter a.

Use assume to set an assumption that a does not equal -1.

syms x a
assume(a ~= -1)

Compute this integral.

int(x^a,x)

ans =
x^(a + 1)/(a + 1)

Now, clear the assumption and compute the same integral. Without assumptions, int
returns this piecewise result.

assume(a,'clear')
int(x^a, x)

ans =
piecewise(a == -1, log(x), a ~= -1, x^(a + 1)/(a + 1))

Assumptions on Parameters and Variables of Equation
Use assumptions to restrict the returned solutions of an equation to a particular interval.

Solve this equation.
syms x
eqn = x^5 - (565*x^4)/6 - (1159*x^3)/2 - (2311*x^2)/6 + (365*x)/2 + 250/3;
solve(eqn, x)

ans =
 -5
 -1
 -1/3

4 Functions — Alphabetical List

4-100

 1/2
 100

Use assume to restrict the solutions to the interval –1 <= x <= 1.

assume(-1 <= x <= 1)
solve(eqn, x)

ans =
 -1
 -1/3
 1/2

Set several assumptions simultaneously by using the logical operators and, or, xor, not,
or their shortcuts. For example, all negative solutions less than -1 and all positive
solutions greater than 1.

assume(x < -1 | x > 1)
solve(eqn, x)

ans =
 -5
 100

For further computations, clear the assumptions.

assume(x,'clear')

Use Assumptions for Simplification
Setting appropriate assumptions can result in simpler expressions.

Try to simplify the expression sin(2*pi*n) using simplify. The simplify function
cannot simplify the input and returns the input as it is.

syms n
simplify(sin(2*n*pi))

ans =
sin(2*pi*n)

Assume n is an integer. simplify now simplifies the expression.

assume(n,'integer')
simplify(sin(2*n*pi))

 assume

4-101

ans =
0

For further computations, clear the assumption.

assume(n,'clear')

Assumptions on Expressions
Set assumption on the symbolic expression.

You can set assumptions not only on variables, but also on expressions. For example,
compute this integral.

syms x
f = 1/abs(x^2 - 1);
int(f,x)

ans =
-atanh(x)/sign(x^2 - 1)

Set the assumption x2 – 1 > 0 to produce a simpler result.

assume(x^2 - 1 > 0)
int(f,x)

ans =
-atanh(x)

For further computations, clear the assumption.

assume(x,'clear')

Assumptions to Prove Relations
Prove relations that hold under certain conditions by first assuming the conditions and
then using isAlways.

Prove that sin(pi*x) is never equal to 0 when x is not an integer. The isAlways
function returns logical 1 (true), which means the condition holds for all values of x
under the set assumptions.

4 Functions — Alphabetical List

4-102

syms x
assume(~in(x,'integer'))
isAlways(sin(pi*x) ~= 0)

ans =
 logical
 1

Assumptions on Matrix Elements
Set assumptions on all elements of a matrix using sym.

Create the 2-by-2 symbolic matrix A with auto-generated elements. Specify the set as
rational.

A = sym('A',[2 2],'rational')

A =
[A1_1, A1_2]
[A2_1, A2_2]

Return the assumptions on the elements of A using assumptions.

assumptions(A)

ans =
[in(A1_1, 'rational'), in(A1_2, 'rational'),...
 in(A2_1, 'rational'), in(A2_2, 'rational')]

You can also use assume to set assumptions on all elements of a matrix. Now, assume all
elements of A have positive rational values. Set the assumptions as a cell of character
vectors {'positive','rational'}.

assume(A,{'positive','rational'})

Return the assumptions on the elements of A using assumptions.

assumptions(A)

ans =
[0 < A1_1, 0 < A1_2, 0 < A2_1, 0 < A2_2,...
 in(A1_1, 'rational'), in(A1_2, 'rational'),...
 in(A2_1, 'rational'), in(A2_2, 'rational')]

For further computations, clear the assumptions.

 assume

4-103

assume(A,'clear')

Input Arguments
condition — Assumption statement
symbolic expression | symbolic equation | symbolic relation | vector or matrix of symbolic
expressions, equations, or relations

Assumption statement, specified as a symbolic expression, equation, relation, or vector or
matrix of symbolic expressions, equations, or relations. You also can combine several
assumptions by using the logical operators and, or, xor, not, or their shortcuts.

expr — Expression to set assumption on
symbolic variable | symbolic expression | vector or matrix of symbolic variables or
expressions

Expression to set assumption on, specified as a symbolic variable, expression, vector, or
matrix. If expr is a vector or matrix, then assume(expr,set) sets an assumption that
each element of expr belongs to set.

set — Set of assumptions
character vector | string array | cell array

Set of assumptions, specified as a character vector, string array, or cell array. The
available assumptions are 'integer', 'rational', 'real', or 'positive'.

You can combine multiple assumptions by specifying a string array or cell array of
character vectors. For example, assume a positive rational value by specifying set as
["positive" "rational"] or {'positive','rational'}.

Tips
• assume removes any assumptions previously set on the symbolic variables. To retain

previous assumptions while adding an assumption, use assumeAlso.
• When you delete a symbolic variable from the MATLAB workspace using clear, all

assumptions that you set on that variable remain in the symbolic engine. If you later
declare a new symbolic variable with the same name, it inherits these assumptions.

• To clear all assumptions set on a symbolic variable var, use this command.

4 Functions — Alphabetical List

4-104

assume(var,'clear')

• To delete all objects in the MATLAB workspace and close the Symbolic Math Toolbox
engine associated with the MATLAB workspace clearing all assumptions, use this
command:

clear all

• MATLAB projects complex numbers in inequalities to the real axis. If condition is an
inequality, then both sides of the inequality must represent real values. Inequalities
with complex numbers are invalid because the field of complex numbers is not an
ordered field. (It is impossible to tell whether 5 + i is greater or less than 2 + 3*i.)
For example, x > i becomes x > 0, and x <= 3 + 2*i becomes x <= 3.

• The toolbox does not support assumptions on symbolic functions. Make assumptions
on symbolic variables and expressions instead.

• When you create a new symbolic variable using sym and syms, you also can set an
assumption that the variable is real, positive, integer, or rational.

a = sym('a','real');
b = sym('b','rational');
c = sym('c','positive');
d = sym('d','positive');
e = sym('e',{'positive','integer'});

or more efficiently

syms a real
syms b rational
syms c d positive
syms e positive integer

See Also
and | assumeAlso | assumptions | in | isAlways | not | or | piecewise | sym | syms

Topics
“Set Assumptions” on page 1-29
“Check Existing Assumptions” on page 1-30
“Delete Symbolic Objects and Their Assumptions” on page 1-30
“Default Assumption” on page 1-29

 assume

4-105

Introduced in R2012a

4 Functions — Alphabetical List

4-106

assumeAlso
Add assumption on symbolic object

Syntax
assumeAlso(condition)
assumeAlso(expr,set)

Description
assumeAlso(condition) states that condition is valid for all symbolic variables in
condition. It retains all assumptions previously set on these symbolic variables.

assumeAlso(expr,set) states that expr belongs to set, in addition to all previously
made assumptions.

Examples

Assumptions Specified as Relations
Set assumptions using assume. Then add more assumptions using assumeAlso.

Solve this equation assuming that both x and y are nonnegative.

syms x y
assume(x >= 0 & y >= 0)
s = solve(x^2 + y^2 == 1, y)

Warning: Solutions are valid under the following
conditions: x <= 1;
x == 1.
 To include parameters and conditions in the
 solution, specify the 'ReturnConditions' value as
'true'.
> In solve>warnIfParams (line 482)

 assumeAlso

4-107

 In solve (line 357)
s =
 (1 - x)^(1/2)*(x + 1)^(1/2)
 -(1 - x)^(1/2)*(x + 1)^(1/2)

The solver warns that both solutions hold only under certain conditions.

Add the assumption that x < 1. To add a new assumption without removing the previous
one, use assumeAlso.

assumeAlso(x < 1)

Solve the same equation under the expanded set of assumptions.

s = solve(x^2 + y^2 == 1, y)

s =
(1 - x)^(1/2)*(x + 1)^(1/2)

For further computations, clear the assumptions.

assume([x y],'clear')

Assumptions Specified as Sets
Set assumptions using syms. Then add more assumptions using assumeAlso.

When declaring the symbolic variable n, set an assumption that n is positive.

syms n positive

Using assumeAlso, add more assumptions on the same variable n. For example, assume
also that n is an integer.

assumeAlso(n,'integer')

Return all assumptions affecting variable n using assumptions. In this case, n is a
positive integer.

assumptions(n)

ans =
[0 < n, in(n, 'integer')]

For further computations, clear the assumptions.

4 Functions — Alphabetical List

4-108

assume(n,'clear')

Assumptions on Matrix Elements
Use the assumption on a matrix as a shortcut for setting the same assumption on each
matrix element.

Create the 3-by-3 symbolic matrix A with auto-generated elements. To assume every
element of A is rational, specify set as 'rational'.

A = sym('A',[3 3],'rational')

A =
[A1_1, A1_2, A1_3]
[A2_1, A2_2, A2_3]
[A3_1, A3_2, A3_3]

Now, add the assumption that each element of A is greater than 1.

assumeAlso(A > 1)

Return assumptions affecting elements of A using assumptions:

assumptions(A)

ans =
[1 < A1_1, 1 < A1_2, 1 < A1_3, 1 < A2_1, 1 < A2_2, 1 < A2_3,...
 1 < A3_1, 1 < A3_2, 1 < A3_3,...
 in(A1_1, 'rational'), in(A1_2, 'rational'), in(A1_3, 'rational'),...
 in(A2_1, 'rational'), in(A2_2, 'rational'), in(A2_3, 'rational'),...
 in(A3_1, 'rational'), in(A3_2, 'rational'), in(A3_3, 'rational')]

For further computations, clear the assumptions.

assume(A,'clear')

Contradicting Assumptions
When you add assumptions, ensure that the new assumptions do not contradict the
previous assumptions. Contradicting assumptions can lead to inconsistent and
unpredictable results. In some cases, assumeAlso detects conflicting assumptions and
issues an error.

Try to set contradicting assumptions. assumeAlso returns an error.

 assumeAlso

4-109

syms y
assume(y,'real')
assumeAlso(y == i)

Error using mupadengine/feval (line 195)
Inconsistent assumptions.
Error in sym/assumeAlso (line 622)
 feval(symengine, 'assumeAlso', cond);

assumeAlso does not guarantee to detect contradicting assumptions. For example,
assume that y is nonzero, and both y and y*i are real values.

syms y
assume(y ~= 0)
assumeAlso(y,'real')
assumeAlso(y*i,'real')

Return all assumptions affecting variable y using assumptions:

assumptions(y)

ans =
[in(y, 'real'), in(y*1i, 'real'), y ~= 0]

For further computations, clear the assumptions.

assume(y,'clear')

Input Arguments
condition — Assumption statement
symbolic expression | symbolic equation | relation | vector or matrix of symbolic
expressions, equations, or relations

Assumption statement, specified as a symbolic expression, equation, relation, or vector or
matrix of symbolic expressions, equations, or relations. You also can combine several
assumptions by using the logical operators and, or, xor, not, or their shortcuts.

expr — Expression to set assumption on
symbolic variable | symbolic expression | vector or matrix of symbolic variables or
expressions

4 Functions — Alphabetical List

4-110

Expression to set assumption on, specified as a symbolic variable, expression, or a vector
or matrix of symbolic variables or expressions. If expr is a vector or matrix, then
assumeAlso(expr,set) sets an assumption that each element of expr belongs to set.

set — Set of assumptions
character vector | string array | cell array

Set of assumptions, specified as a character vector, string array, or cell array. The
available assumptions are 'integer', 'rational', 'real', or 'positive'.

You can combine multiple assumptions by specifying a string array or cell array of
character vectors. For example, assume a positive rational value by specifying set as
["positive" "rational"] or {'positive','rational'}.

Tips
• assumeAlso keeps all assumptions previously set on the symbolic variables. To

replace previous assumptions with the new one, use assume.
• When adding assumptions, always check that a new assumption does not contradict

the existing assumptions. To see existing assumptions, use assumptions. Symbolic
Math Toolbox does not guarantee to detect conflicting assumptions. Conflicting
assumptions can lead to unpredictable and inconsistent results.

• When you delete a symbolic variable from the MATLAB workspace using clear, all
assumptions that you set on that variable remain in the symbolic engine. If later you
declare a new symbolic variable with the same name, it inherits these assumptions.

• To clear all assumptions set on a symbolic variable var use this command.

assume(var,'clear')

• To clear all objects in the MATLAB workspace and close the Symbolic Math Toolbox
engine associated with the MATLAB workspace resetting all its assumptions, use this
command.

clear all

• MATLAB projects complex numbers in inequalities to the real axis. If condition is an
inequality, then both sides of the inequality must represent real values. Inequalities
with complex numbers are invalid because the field of complex numbers is not an
ordered field. (It is impossible to tell whether 5 + i is greater or less than 2 + 3*i.)
For example, x > i becomes x > 0, and x <= 3 + 2*i becomes x <= 3.

 assumeAlso

4-111

• The toolbox does not support assumptions on symbolic functions. Make assumptions
on symbolic variables and expressions instead.

• Instead of adding assumptions one by one, you can set several assumptions in one
function call. To set several assumptions, use assume and combine these assumptions
by using the logical operators and, or, xor, not, all, any, or their shortcuts.

See Also
and | assume | assumptions | in | isAlways | not | or | piecewise | sym | syms

Topics
“Set Assumptions” on page 1-29
“Check Existing Assumptions” on page 1-30
“Delete Symbolic Objects and Their Assumptions” on page 1-30
“Default Assumption” on page 1-29

Introduced in R2012a

4 Functions — Alphabetical List

4-112

assumptions
Show assumptions affecting symbolic variable, expression, or function

Syntax
assumptions(var)
assumptions

Description
assumptions(var) returns all assumptions that affect variable var. If var is an
expression or function, assumptions returns all assumptions that affect all variables in
var.

assumptions returns all assumptions that affect all variables in MATLAB Workspace.

Examples
Assumptions on Variables
Assume that the variable n is an integer using assume. Return the assumption using
assumptions.

syms n
assume(n,'integer')
assumptions

ans =
in(n, 'integer')

The syntax in(n, 'integer') indicates n is an integer.

Assume that n is less than x and that x < 42 using assume. The assume function
replaces old assumptions on input with the new assumptions. Return all assumptions that
affect n.

 assumptions

4-113

syms x
assume(n<x & x<42)
assumptions(n)

ans =
[n < x, x < 42]

assumptions returns the assumption x < 42 because it affects n through the
assumption n < x. Thus, assumptions returns the transitive closure of assumptions,
which is all assumptions that mathematically affect the input.

Set the assumption on variable m that 1 < m < 3. Return all assumptions on m and x
using assumptions.

syms m
assume(1<m<3)
assumptions([m x])

ans =
[n < x, 1 < m, m < 3, x < 42]

To see the assumptions that affect all variables, use assumptions without any
arguments.

assumptions

ans =
[n < x, 1 < m, m < 3, x < 42]

For further computations, clear the assumptions.

assume([m n x],'clear')

Multiple Assumptions on One Variable
You cannot set an additional assumption on a variable using assume because assume
clears all previous assumptions on that variable. To set an additional assumption on a
variable, using assumeAlso.

Set an assumption on x using assume. Set an additional assumption on x use
assumeAlso. Use assumptions to return the multiple assumptions on x.

syms x
assume(x,'real')

4 Functions — Alphabetical List

4-114

assumeAlso(x<0)
assumptions(x)

ans =
[in(x, 'real'), x < 0]

The syntax in(x, 'real') indicates x is real.

For further computations, clear the assumptions.

assume(x,'clear')

Assumptions Affecting Expressions and Functions
assumptions accepts symbolic expressions and functions as input and returns all
assumptions that affect all variables in the symbolic expressions or functions.

Set assumptions on variables in a symbolic expression. Find all assumptions that affect all
variables in the symbolic expression using assumptions.

syms a b c
expr = a*exp(b)*sin(c);
assume(a+b > 3 & in(a,'integer') & in(c,'real'))
assumptions(expr)

ans =
[3 < a + b, in(a, 'integer'), in(c, 'real')

Find all assumptions that affect all variables that are inputs to a symbolic function.

syms f(a,b,c)
assumptions(f)

ans =
[3 < a + b, in(a, 'integer'), in(c, 'real')]

Clear the assumptions for further computations.

assume([a b c],'clear')

Restore Old Assumptions
To restore old assumptions, first store the assumptions returned by assumptions. Then
you can restore these assumptions at any point by calling assume or assumeAlso.

 assumptions

4-115

Solve the equation for a spring using dsolve under the assumptions that the mass and
spring constant are positive.

syms m k positive
syms x(t)
dsolve(m*diff(x,t,t) == -k*x, x(0)==0)

ans =
C8*sin((k^(1/2)*t)/m^(1/2))

Suppose you want to explore solutions unconstrained by assumptions, but want to restore
the assumptions afterwards. First store the assumptions using assumptions, then clear
the assumptions and solve the equation. dsolve returns unconstrained solutions.

tmp = assumptions;
assume([m k],'clear')
dsolve(m*diff(x,t,t) == -k*x, x(0)==0)

ans =
C10*exp((t*(-k*m)^(1/2))/m) + C10*exp(-(t*(-k*m)^(1/2))/m)

Restore the original assumptions using assume.

assume(tmp)

After computations are complete, clear assumptions using assume.

assume([m k],'clear')

Input Arguments
var — Symbolic input to check for assumptions
symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic
matrix | symbolic multidimensional array

Symbolic input for which to show assumptions, specified as a symbolic variable,
expression, or function, or a vector, matrix, or multidimensional array of symbolic
variables, expressions, or functions.

4 Functions — Alphabetical List

4-116

Tips
• When you delete a symbolic object from the MATLAB workspace by using clear, all

assumptions that you set on that object remain in the symbolic engine. If you declare a
new symbolic variable with the same name, it inherits these assumptions.

• To clear all assumptions set on a symbolic variable var use this command.

assume(var,'clear')
• To clear all objects in the MATLAB workspace and close the Symbolic Math Toolbox

engine associated with the MATLAB workspace resetting all its assumptions, use this
command.

clear all

See Also
and | assume | assumeAlso | clear | in | isAlways | not | or | piecewise | sym |
syms

Topics
“Set Assumptions” on page 1-29
“Check Existing Assumptions” on page 1-30
“Delete Symbolic Objects and Their Assumptions” on page 1-30
“Default Assumption” on page 1-29

Introduced in R2012a

 assumptions

4-117

atan
Symbolic inverse tangent function

Syntax
atan(X)

Description
atan(X) returns the inverse tangent function (arctangent function) of X. All angles are in
radians.

• For real values of X, atan(X) returns values in the interval [-pi/2,pi/2].
• For complex values of X, atan(X) returns complex values with the real parts in the

interval [-pi/2,pi/2].

Examples
Inverse Tangent Function for Numeric and Symbolic
Arguments
Depending on its arguments, atan returns floating-point or exact symbolic results.

Compute the inverse tangent function for these numbers. Because these numbers are not
symbolic objects, atan returns floating-point results.

A = atan([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)])

A =
 -0.7854 -0.3218 -0.5236 0.4636 0.7854 1.0472

Compute the inverse tangent function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, atan returns unresolved symbolic calls.

symA = atan(sym([-1, -1/3, -1/sqrt(3), 1/2, 1, sqrt(3)]))

4 Functions — Alphabetical List

4-118

symA =
[-pi/4, -atan(1/3), -pi/6, atan(1/2), pi/4, pi/3]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[-0.78539816339744830961566084581988,...
-0.32175055439664219340140461435866,...
-0.52359877559829887307710723054658,...
0.46364760900080611621425623146121,...
0.78539816339744830961566084581988,...
1.0471975511965977461542144610932]

Plot Inverse Tangent Function
Plot the inverse tangent function on the interval from -10 to 10.

syms x
fplot(atan(x),[-10 10])
grid on

 atan

4-119

Handle Expressions Containing Inverse Tangent Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing atan.

Find the first and second derivatives of the inverse tangent function:

syms x
diff(atan(x), x)
diff(atan(x), x, x)

ans =
1/(x^2 + 1)

4 Functions — Alphabetical List

4-120

ans =
-(2*x)/(x^2 + 1)^2

Find the indefinite integral of the inverse tangent function:

int(atan(x), x)

ans =
x*atan(x) - log(x^2 + 1)/2

Find the Taylor series expansion of atan(x):

taylor(atan(x), x)

ans =
x^5/5 - x^3/3 + x

Rewrite the inverse tangent function in terms of the natural logarithm:

rewrite(atan(x), 'log')

ans =
(log(1 - x*1i)*1i)/2 - (log(1 + x*1i)*1i)/2

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acos | acot | acsc | asec | asin | atan2 | cos | cot | csc | sec | sin | tan

Introduced before R2006a

 atan

4-121

atan2
Symbolic four-quadrant inverse tangent

Syntax
atan2(Y,X)

Description
atan2(Y,X) computes the four-quadrant inverse tangent (arctangent) of Y and X. If Y
and X are vectors or matrices, atan2 computes arctangents element by element.

Examples
Four-Quadrant Inverse Tangent for Numeric and Symbolic
Arguments
Compute the arctangents of these parameters. Because these numbers are not symbolic
objects, you get floating-point results.

[atan2(1, 1), atan2(pi, 4), atan2(Inf, Inf)]

ans =
 0.7854 0.6658 0.7854

Compute the arctangents of these parameters which are converted to symbolic objects:

[atan2(sym(1), 1), atan2(sym(pi), sym(4)), atan2(Inf, sym(Inf))]

ans =
[pi/4, atan(pi/4), pi/4]

Limit of Four-Quadrant Inverse Tangent
Compute the limits of this symbolic expression:

4 Functions — Alphabetical List

4-122

syms x
limit(atan2(x^2/(1 + x), x), x, -Inf)
limit(atan2(x^2/(1 + x), x), x, Inf)

ans =
-(3*pi)/4

ans =
pi/4

Four-Quadrant Inverse Tangent of Array Input
Compute the arctangents of the elements of matrices Y and X:

Y = sym([3 sqrt(3); 1 1]);
X = sym([sqrt(3) 3; 1 0]);
atan2(Y, X)

ans =
[pi/3, pi/6]
[pi/4, pi/2]

Input Arguments
Y — Input
number | vector | matrix | array | symbolic number | symbolic array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, array, function,
or expression. If Y is a number, it must be real. If Y is a vector or matrix, it must either be
a scalar or have the same dimensions as X. All numerical elements of Y must be real.

X — Input
number | vector | matrix | array | symbolic number | symbolic array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, array, function,
or expression. The function also accepts a vector or matrix of symbolic numbers,
variables, expressions, functions. If X is a number, it must be real. If X is a vector or
matrix, it must either be a scalar or have the same dimensions as Y. All numerical
elements of X must be real.

 atan2

4-123

Definitions

Four-Quadrant Inverse Tangent
If X ≠ 0 and Y ≠ 0, then

atan2 Y, X = atan(Y
X) + π

2sign Y 1− sign X

Results returned by atan2 belong to the closed interval [-pi,pi]. Results returned by
atan belong to the closed interval [-pi/2,pi/2].

Tips
• Calling atan2 for numbers (or vectors or matrices of numbers) that are not symbolic

objects invokes the MATLAB atan2 function.
• If one of the arguments X and Y is a vector or a matrix, and another one is a scalar,

then atan2 expands the scalar into a vector or a matrix of the same length with all
elements equal to that scalar.

• Symbolic arguments X and Y are assumed to be real.
• If X = 0 and Y > 0, then atan2(Y,X) returns pi/2.

If X = 0 and Y < 0, then atan2(Y,X) returns -pi/2.

If X = Y = 0, then atan2(Y,X) returns 0.

Alternatives
For complex Z = X + Y*i, the call atan2(Y,X) is equivalent to angle(Z).

See Also
angle | atan | conj | imag | real

Introduced in R2013a

4 Functions — Alphabetical List

4-124

atanh
Symbolic inverse hyperbolic tangent function

Syntax
atanh(X)

Description
atanh(X) returns the inverse hyperbolic tangent function of X.

Examples

Inverse Hyperbolic Tangent Function for Numeric and
Symbolic Arguments
Depending on its arguments, atanh returns floating-point or exact symbolic results.

Compute the inverse hyperbolic tangent function for these numbers. Because these
numbers are not symbolic objects, atanh returns floating-point results.

A = atanh([-i, 0, 1/6, i/2, i, 2])

A =
 0.0000 - 0.7854i 0.0000 + 0.0000i 0.1682 + 0.0000i...
 0.0000 + 0.4636i 0.0000 + 0.7854i 0.5493 + 1.5708i

Compute the inverse hyperbolic tangent function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, atanh returns unresolved symbolic calls.

symA = atanh(sym([-i, 0, 1/6, i/2, i, 2]))

symA =
[-(pi*1i)/4, 0, atanh(1/6), atanh(1i/2), (pi*1i)/4, atanh(2)]

 atanh

4-125

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[-0.78539816339744830961566084581988i,...
0,...
0.1682361183106064652522967051085,...
0.46364760900080611621425623146121i,...
0.78539816339744830961566084581988i,...
0.54930614433405484569762261846126 - 1.5707963267948966192313216916398i]

Plot Inverse Hyperbolic Tangent Function
Plot the inverse hyperbolic tangent function on the interval from -1 to 1.

syms x
fplot(atanh(x),[-1 1])
grid on

4 Functions — Alphabetical List

4-126

Handle Expressions Containing Inverse Hyperbolic Tangent
Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing atanh.

Find the first and second derivatives of the inverse hyperbolic tangent function:

syms x
diff(atanh(x), x)
diff(atanh(x), x, x)

 atanh

4-127

ans =
-1/(x^2 - 1)

ans =
(2*x)/(x^2 - 1)^2

Find the indefinite integral of the inverse hyperbolic tangent function:

int(atanh(x), x)

ans =
log(x^2 - 1)/2 + x*atanh(x)

Find the Taylor series expansion of atanh(x):

taylor(atanh(x), x)

ans =
x^5/5 + x^3/3 + x

Rewrite the inverse hyperbolic tangent function in terms of the natural logarithm:

rewrite(atanh(x), 'log')

ans =
log(x + 1)/2 - log(1 - x)/2

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | cosh | coth | csch | sech | sinh | tanh

Introduced before R2006a

4 Functions — Alphabetical List

4-128

baseUnits
Base units of unit system

Syntax
baseUnits(unitSystem)

Description
baseUnits(unitSystem) returns the base units of the unit system unitSystem as a
vector of symbolic units. You can use the returned units to create new unit systems by
using newUnitSystem.

Examples

Base Units of Unit System

Get the base units of a unit system by using baseUnits. Then, modify the base units and
create a new unit system using the modified base units. Available unit systems include SI,
CGS, and US. For all unit systems, see “Unit Systems List” on page 2-36.

Get the base units of the SI unit system.

SIUnits = baseUnits('SI')

SIUnits =
[[kg], [s], [m], [A], [cd], [mol], [K]]

Note Do not define a variable called baseUnits because the variable will prevent access
to the baseUnits function.

Define base units that use kilometer for length and hour for time by modifying SIUnits
using subs.

 baseUnits

4-129

u = symunit;
newUnits = subs(SIUnits,[u.m u.s],[u.km u.hr])

newUnits =
[[kg], [h], [km], [A], [cd], [mol], [K]]

Define the new unit system by using newUnitSystem.

newUnitSystem('SI_km_hr',newUnits)

ans =
 "SI_km_hr"

To convert units between unit systems, see “Unit Conversions and Unit Systems” on page
2-39.

Input Arguments
unitSystem — Name of unit system
string | character vector

Name of the unit system, specified as a string or character vector.

See Also
derivedUnits | newUnitSystem | removeUnitSystem | rewrite | symunit

Topics
“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

External Websites
The International System of Units (SI)

Introduced in R2017b

4 Functions — Alphabetical List

4-130

https://www.bipm.org/en/publications/si-brochure/

bernoulli
Bernoulli numbers and polynomials

Syntax
bernoulli(n)
bernoulli(n,x)

Description
bernoulli(n) returns the nth Bernoulli number on page 4-135.

bernoulli(n,x) returns the nth Bernoulli polynomial on page 4-135.

Examples
Bernoulli Numbers with Odd and Even Indices
The 0th Bernoulli number is 1. The next Bernoulli number can be -1/2 or 1/2, depending
on the definition. The bernoulli function uses -1/2. The Bernoulli numbers with even
indices n > 1 alternate the signs. Any Bernoulli number with an odd index n > 2 is 0.

Compute the even-indexed Bernoulli numbers with the indices from 0 to 10. Because
these indices are not symbolic objects, bernoulli returns floating-point results.

bernoulli(0:2:10)

ans =
 1.0000 0.1667 -0.0333 0.0238 -0.0333 0.0758

Compute the same Bernoulli numbers for the indices converted to symbolic objects:

bernoulli(sym(0:2:10))

ans =
[1, 1/6, -1/30, 1/42, -1/30, 5/66]

 bernoulli

4-131

Compute the odd-indexed Bernoulli numbers with the indices from 1 to 11:

bernoulli(sym(1:2:11))

ans =
[-1/2, 0, 0, 0, 0, 0]

Bernoulli Polynomials
For the Bernoulli polynomials, use bernoulli with two input arguments.

Compute the first, second, and third Bernoulli polynomials in variables x, y, and z,
respectively:

syms x y z
bernoulli(1, x)
bernoulli(2, y)
bernoulli(3, z)

ans =
x - 1/2

ans =
y^2 - y + 1/6

ans =
z^3 - (3*z^2)/2 + z/2

If the second argument is a number, bernoulli evaluates the polynomial at that number.
Here, the result is a floating-point number because the input arguments are not symbolic
numbers:

bernoulli(2, 1/3)

ans =
 -0.0556

To get the exact symbolic result, convert at least one of the numbers to a symbolic object:

bernoulli(2, sym(1/3))

ans =
-1/18

4 Functions — Alphabetical List

4-132

Plot Bernoulli Polynomials
Plot the first six Bernoulli polynomials.

syms x
fplot(bernoulli(0:5, x), [-0.8 1.8])
title('Bernoulli Polynomials')
grid on

Handle Expressions Containing Bernoulli Polynomials
Many functions, such as diff and expand, handles expressions containing bernoulli.

 bernoulli

4-133

Find the first and second derivatives of the Bernoulli polynomial:

syms n x
diff(bernoulli(n,x^2), x)

ans =
2*n*x*bernoulli(n - 1, x^2)

diff(bernoulli(n,x^2), x, x)

ans =
2*n*bernoulli(n - 1, x^2) +...
4*n*x^2*bernoulli(n - 2, x^2)*(n - 1)

Expand these expressions containing the Bernoulli polynomials:

expand(bernoulli(n, x + 3))

ans =
bernoulli(n, x) + (n*(x + 1)^n)/(x + 1) +...
(n*(x + 2)^n)/(x + 2) + (n*x^n)/x

expand(bernoulli(n, 3*x))

ans =
(3^n*bernoulli(n, x))/3 + (3^n*bernoulli(n, x + 1/3))/3 +...
(3^n*bernoulli(n, x + 2/3))/3

Input Arguments
n — Index of the Bernoulli number or polynomial
nonnegative integer | symbolic nonnegative integer | symbolic variable | symbolic
expression | symbolic function | symbolic vector | symbolic matrix

Index of the Bernoulli number or polynomial, specified as a nonnegative integer, symbolic
nonnegative integer, variable, expression, function, vector, or matrix. If n is a vector or
matrix, bernoulli returns Bernoulli numbers or polynomials for each element of n. If
one input argument is a scalar and the other one is a vector or a matrix,
bernoulli(n,x) expands the scalar into a vector or matrix of the same size as the other
argument with all elements equal to that scalar.

x — Polynomial variable
symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic
matrix

4 Functions — Alphabetical List

4-134

Polynomial variable, specified as a symbolic variable, expression, function, vector, or
matrix. If x is a vector or matrix, bernoulli returns Bernoulli numbers or polynomials
for each element of x. When you use the bernoulli function to find Bernoulli
polynomials, at least one argument must be a scalar or both arguments must be vectors
or matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, bernoulli(n,x) expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

Definitions

Bernoulli Polynomials
The Bernoulli polynomials are defined as follows:

text

et − 1
= ∑

n = 0

∞
bernoulli n, x tn

n!

Bernoulli Numbers
The Bernoulli numbers are defined as follows:

bernoulli n = bernoulli n, 0

See Also
euler

Introduced in R2014a

 bernoulli

4-135

bernstein
Bernstein polynomials

Syntax
bernstein(f,n,t)
bernstein(g,n,t)
bernstein(g,var,n,t)

Description
bernstein(f,n,t) with a function handle f returns the nth-order Bernstein polynomial
on page 4-142 symsum(nchoosek(n,k)*t^k*(1-t)^(n-k)*f(k/n),k,0,n),
evaluated at the point t. This polynomial approximates the function f over the interval
[0,1].

bernstein(g,n,t) with a symbolic expression or function g returns the nth-order
Bernstein polynomial, evaluated at the point t. This syntax regards g as a univariate
function of the variable determined by symvar(g,1).

If any argument is symbolic, bernstein converts all arguments except a function handle
to symbolic, and converts a function handle’s results to symbolic.

bernstein(g,var,n,t) with a symbolic expression or function g returns the
approximating nth-order Bernstein polynomial, regarding g as a univariate function of the
variable var.

Examples

Approximation of Sine Function Specified as Function Handle
Approximate the sine function by the 10th- and 100th-degree Bernstein polynomials:

4 Functions — Alphabetical List

4-136

syms t
b10 = bernstein(@(t) sin(2*pi*t), 10, t);
b100 = bernstein(@(t) sin(2*pi*t), 100, t);

Plot sin(2*pi*t) and its approximations:

fplot(sin(2*pi*t),[0,1])
hold on
fplot(b10,[0,1])
fplot(b100,[0,1])

legend('sine function','10th-degree polynomial',...
 '100th-degree polynomial')
title('Bernstein polynomials')
hold off

 bernstein

4-137

Approximation of Exponential Function Specified as Symbolic
Expression
Approximate the exponential function by the second-order Bernstein polynomial in the
variable t:

syms x t
bernstein(exp(x), 2, t)

ans =
(t - 1)^2 + t^2*exp(1) - 2*t*exp(1/2)*(t - 1)

4 Functions — Alphabetical List

4-138

Approximate the multivariate exponential function. When you approximate a multivariate
function, bernstein regards it as a univariate function of the default variable
determined by symvar. The default variable for the expression y*exp(x*y) is x:

syms x y t
symvar(y*exp(x*y), 1)

ans =
x

bernstein treats this expression as a univariate function of x:

bernstein(y*exp(x*y), 2, t)

ans =
y*(t - 1)^2 + t^2*y*exp(y) - 2*t*y*exp(y/2)*(t - 1)

To treat y*exp(x*y) as a function of the variable y, specify the variable explicitly:

bernstein(y*exp(x*y), y, 2, t)

ans =
t^2*exp(x) - t*exp(x/2)*(t - 1)

Approximation of Linear Ramp Specified as Symbolic Function
Approximate function f representing a linear ramp by the fifth-order Bernstein
polynomials in the variable t:

syms f(t)
f(t) = triangularPulse(1/4, 3/4, Inf, t);
p = bernstein(f, 5, t)

p =
7*t^3*(t - 1)^2 - 3*t^2*(t - 1)^3 - 5*t^4*(t - 1) + t^5

Simplify the result:

simplify(p)

ans =
-t^2*(2*t - 3)

 bernstein

4-139

Numerical Stability of Simplified Bernstein Polynomials
When you simplify a high-order symbolic Bernstein polynomial, the result often cannot be
evaluated in a numerically stable way.

Approximate this rectangular pulse function by the 100th-degree Bernstein polynomial,
and then simplify the result:

f = @(x)rectangularPulse(1/4,3/4,x);
b1 = bernstein(f, 100, sym('t'));
b2 = simplify(b1);

Convert the polynomial b1 and the simplified polynomial b2 to MATLAB functions:

f1 = matlabFunction(b1);
f2 = matlabFunction(b2);

Compare the plot of the original rectangular pulse function, its numerically stable
Bernstein representation f1, and its simplified version f2. The simplified version is not
numerically stable.

t = 0:0.001:1;
plot(t, f(t), t, f1(t), t, f2(t))
hold on
legend('original function','Bernstein polynomial',...
 'simplified Bernstein polynomial')
hold off

4 Functions — Alphabetical List

4-140

Input Arguments
f — Function to be approximated by a polynomial
function handle

Function to be approximated by a polynomial, specified as a function handle. f must
accept one scalar input argument and return a scalar value.

g — Function to be approximated by a polynomial
symbolic expression | symbolic function

 bernstein

4-141

Function to be approximated by a polynomial, specified as a symbolic expression or
function.

n — Bernstein polynomial order
nonnegative integer

Bernstein polynomial order, specified as a nonnegative number.

t — Evaluation point
number | symbolic number | symbolic variable | symbolic expression | symbolic function

Evaluation point, specified as a number, symbolic number, variable, expression, or
function. If t is a symbolic function, the evaluation point is the mathematical expression
that defines t. To extract the mathematical expression defining t, bernstein uses
formula(t).

var — Free variable
symbolic variable

Free variable, specified as a symbolic variable.

Definitions

Bernstein Polynomials
A Bernstein polynomial is a linear combination of Bernstein basis polynomials.

A Bernstein polynomial of degree n is defined as follows:

B t = ∑
k = 0

n
βkbk, n t .

Here,

bk, n t =
n
k

tk 1− t n− k, k = 0, …, n

are the Bernstein basis polynomials, and
n
k

 is a binomial coefficient.

4 Functions — Alphabetical List

4-142

The coefficients βk are called Bernstein coefficients or Bezier coefficients.

If f is a continuous function on the interval [0, 1] and

Bn f t = ∑
k = 0

n
f k

n bk, n t

is the approximating Bernstein polynomial, then

lim
n ∞

Bn f t = f t

uniformly in t on the interval [0, 1].

Tips
• Symbolic polynomials returned for symbolic t are numerically stable when

substituting numerical values between 0 and 1 for t.
• If you simplify a symbolic Bernstein polynomial, the result can be unstable when

substituting numerical values for the curve parameter t.

See Also
bernsteinMatrix | formula | nchoosek | symsum | symvar

Introduced in R2013b

 bernstein

4-143

bernsteinMatrix
Bernstein matrix

Syntax
B = bernsteinMatrix(n,t)

Description
B = bernsteinMatrix(n,t), where t is a vector, returns the length(t)-by-(n+1)
Bernstein matrix B, such that B(i,k+1)= nchoosek(n,k)*t(i)^k*(1-t(i))^(n-k).
Here, the index i runs from 1 to length(t), and the index k runs from 0 to n.

The Bernstein matrix is also called the Bezier matrix.

Use Bernstein matrices to construct Bezier curves:

bezierCurve = bernsteinMatrix(n, t)*P

Here, the n+1 rows of the matrix P specify the control points of the Bezier curve. For
example, to construct the second-order 3-D Bezier curve, specify the control points as:

P = [p0x, p0y, p0z; p1x, p1y, p1z; p2x, p2y, p2z]

Examples

2-D Bezier Curve
Plot the fourth-order Bezier curve specified by the control points p0 = [0 1], p1 = [4
3], p2 = [6 2], p3 = [3 0], p4 = [2 4]. Create a matrix with each row
representing a control point:

P = [0 1; 4 3; 6 2; 3 0; 2 4];

Compute the fourth-order Bernstein matrix B:

4 Functions — Alphabetical List

4-144

syms t
B = bernsteinMatrix(4, t)

B =
[(t - 1)^4, -4*t*(t - 1)^3, 6*t^2*(t - 1)^2, -4*t^3*(t - 1), t^4]

Construct the Bezier curve:

bezierCurve = simplify(B*P)

bezierCurve =
[-2*t*(- 5*t^3 + 6*t^2 + 6*t - 8), 5*t^4 + 8*t^3 - 18*t^2 + 8*t + 1]

Plot the curve adding the control points to the plot:

fplot(bezierCurve(1), bezierCurve(2), [0, 1])
hold on
scatter(P(:,1), P(:,2),'filled')
title('Fourth-order Bezier curve')
hold off

 bernsteinMatrix

4-145

3-D Bezier Curve
Construct the third-order Bezier curve specified by the 4-by-3 matrix P of control points.
Each control point corresponds to a row of the matrix P.

P = [0 0 0; 2 2 2; 2 -1 1; 6 1 3];

Compute the third-order Bernstein matrix:

syms t
B = bernsteinMatrix(3,t)

B =
[-(t - 1)^3, 3*t*(t - 1)^2, -3*t^2*(t - 1), t^3]

4 Functions — Alphabetical List

4-146

Construct the Bezier curve:

bezierCurve = simplify(B*P)

bezierCurve =
[6*t*(t^2 - t + 1), t*(10*t^2 - 15*t + 6), 3*t*(2*t^2 - 3*t + 2)]

Plot the curve adding the control points to the plot:

fplot3(bezierCurve(1), bezierCurve(2), bezierCurve(3), [0, 1])
hold on
scatter3(P(:,1), P(:,2), P(:,3),'filled')
hold off

 bernsteinMatrix

4-147

3-D Bezier Curve with Evaluation Point Specified as Vector
Construct the third-order Bezier curve with the evaluation point specified by the following
1-by-101 vector t:

t = 0:1/100:1;

Compute the third-order 101-by-4 Bernstein matrix and specify the control points:

B = bernsteinMatrix(3,t);
P = [0 0 0; 2 2 2; 2 -1 1; 6 1 3];

Construct and plot the Bezier curve. Add grid lines and control points to the plot.

bezierCurve = B*P;
plot3(bezierCurve(:,1), bezierCurve(:,2), bezierCurve(:,3))
hold on
grid
scatter3(P(:,1), P(:,2), P(:,3),'filled')
hold off

4 Functions — Alphabetical List

4-148

Input Arguments
n — Approximation order
nonnegative integer

Approximation order, specified as a nonnegative integer.

t — Evaluation point
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic
vector

Evaluation point, specified as a number, symbolic number, variable, expression, or vector.

 bernsteinMatrix

4-149

Output Arguments
B — Bernstein matrix
matrix

Bernstein matrix, returned as a length(t)-by-n+1 matrix.

See Also
bernstein | nchoosek | symsum | symvar

Introduced in R2013b

4 Functions — Alphabetical List

4-150

besselh
Bessel function of third kind (Hankel function) for symbolic expressions

Syntax
H = besselh(nu,K,z)
H = besselh(nu,z)
H = besselh(nu,K,z,1)

Description
H = besselh(nu,K,z) computes the Hankel function Hν

(K)(z), where K = 1 or 2, for
each element of the complex array z. The output H has the symbolic data type if any input
argument is symbolic. See “Bessel’s Equation” on page 4-153.

H = besselh(nu,z) uses K = 1.

H = besselh(nu,K,z,1) scales Hν
(K)(z) by exp(-i*z) if K = 1, and by exp(+i*z) if K

= 2.

Examples

Compute Hankel Function

Specify the Hankel function for a symbolic variable.

syms z
H = besselh(3/2,1,z)

H =

−
2 ez i 1 + i

z
z π

 besselh

4-151

Evaluate the function symbolically and numerically at the point z = 1 + 2i.

Hval = subs(H,z,1+2i)

Hval =
2 e−2 + i − 7

5 −
1
5 i

1 + 2 i π

vpa(Hval)

ans = −0.084953341280586443678471523210602− 0.056674847869835575940327724800155 i

Specify the function without the second argument, K = 1.

H2 = besselh(3/2,z)

H2 =

−
2 ez i 1 + i

z
z π

Notice that the functions H and H2 are identical.

Scale the function by e−iz by using the four-argument syntax.

Hnew = besselh(3/2,1,z,1)

Hnew =

−
2 1 + i

z
z π

Find the derivative of H.

diffH = diff(H)

diffH =

2 ez i i
z5/2 π

−
2 ez i 1 + i

z i
z π +

2 ez i 1 + i
z

2 z3/2 π

4 Functions — Alphabetical List

4-152

Input Arguments
nu — Hankel function order
symbolic array | double array

Hankel function order, specified as a symbolic array or double array. If nu and z are
arrays of the same size, the result is also that size. If either input is a scalar, besselh
expands it to the other input size.
Example: nu = 3*sym('pi')/2

K — Kind of Hankel function
symbolic 1 or 2 | double 1 or 2

Kind of Hankel function, specified as a symbolic or double 1 or 2. K identifies the sign of
the added Bessel function Y:

Hν
(1)(z) = Jν(z) + iYν(z)

Hν
(2)(z) = Jν(z)− iYν(z) .

Example: K = sym(2)

z — Hankel function argument
symbolic array | double array

Hankel function argument, specified as a symbolic array or double array. If nu and z are
arrays of the same size, the result is also that size. If either input is a scalar, besselh
expands it to the other input size.
Example: z = sym(1+1i)

Definitions

Bessel’s Equation
The differential equation

z2d2w
dz2 + zdw

dz + z2− ν2 w = 0,

 besselh

4-153

where ν is a real constant, is called Bessel's equation, and its solutions are known as
Bessel functions.

Jν(z) and J–ν(z) form a fundamental set of solutions of Bessel's equation for noninteger ν.
Yν(z) is a second solution of Bessel's equation—linearly independent of Jν(z)—defined by

Yν(z) =
Jν(z)cos(νπ)− J−ν(z)

sin(νπ) .

The relationship between the Hankel and Bessel functions is

Hν
(1)(z) = Jν(z) + iYν(z)

Hν
(2)(z) = Jν(z)− iYν(z) .

Here, Jν(z) is besselj, and Yν(z) is bessely.

References
[1] Abramowitz, M., and I. A. Stegun. Handbook of Mathematical Functions. National

Bureau of Standards, Applied Math. Series #55, Dover Publications, 1965.

See Also
besseli | besselj | besselk | bessely

Introduced in R2018b

4 Functions — Alphabetical List

4-154

besseli
Modified Bessel function of the first kind for symbolic expressions

Syntax
besseli(nu,z)

Description
besseli(nu,z) returns the modified Bessel function of the first kind on page 4-159,
Iν(z).

Examples

Find Modified Bessel Function of First Kind
Compute the modified Bessel functions of the first kind for these numbers. Because these
numbers are not symbolic objects, you get floating-point results.
[besseli(0, 5), besseli(-1, 2), besseli(1/3, 7/4), besseli(1, 3/2 + 2*i)]

ans =
 27.2399 + 0.0000i 1.5906 + 0.0000i 1.7951 + 0.0000i -0.1523 + 1.0992i

Compute the modified Bessel functions of the first kind for the numbers converted to
symbolic objects. For most symbolic (exact) numbers, besseli returns unresolved
symbolic calls.

[besseli(sym(0), 5), besseli(sym(-1), 2),...
 besseli(1/3, sym(7/4)), besseli(sym(1), 3/2 + 2*i)]

ans =
[besseli(0, 5), besseli(1, 2), besseli(1/3, 7/4), besseli(1, 3/2 + 2i)]

For symbolic variables and expressions, besseli also returns unresolved symbolic calls:

 besseli

4-155

syms x y
[besseli(x, y), besseli(1, x^2), besseli(2, x - y), besseli(x^2, x*y)]

ans =
[besseli(x, y), besseli(1, x^2), besseli(2, x - y), besseli(x^2, x*y)]

Solve Bessel Differential Equation for Modified Bessel
Functions
Solve this second-order differential equation. The solutions are the modified Bessel
functions of the first and the second kind.

syms nu w(z)
dsolve(z^2*diff(w, 2) + z*diff(w) -(z^2 + nu^2)*w == 0)

ans =
C2*besseli(nu, z) + C3*besselk(nu, z)

Verify that the modified Bessel function of the first kind is a valid solution of the modified
Bessel differential equation.

syms nu z
isAlways(z^2*diff(besseli(nu, z), z, 2) + z*diff(besseli(nu, z), z)...
 - (z^2 + nu^2)*besseli(nu, z) == 0)

ans =
 logical
 1

Special Values of Modified Bessel Function of First Kind
If the first parameter is an odd integer multiplied by 1/2, besseli rewrites the Bessel
functions in terms of elementary functions:

syms x
besseli(1/2, x)

ans =
(2^(1/2)*sinh(x))/(x^(1/2)*pi^(1/2))

besseli(-1/2, x)

ans =
(2^(1/2)*cosh(x))/(x^(1/2)*pi^(1/2))

4 Functions — Alphabetical List

4-156

besseli(-3/2, x)

ans =
(2^(1/2)*(sinh(x) - cosh(x)/x))/(x^(1/2)*pi^(1/2))

besseli(5/2, x)

ans =
-(2^(1/2)*((3*cosh(x))/x - sinh(x)*(3/x^2 + 1)))/(x^(1/2)*pi^(1/2))

Differentiate Modified Bessel Function of First Kind
Differentiate the expressions involving the modified Bessel functions of the first kind:

syms x y
diff(besseli(1, x))
diff(diff(besseli(0, x^2 + x*y -y^2), x), y)

ans =
besseli(0, x) - besseli(1, x)/x

ans =
besseli(1, x^2 + x*y - y^2) +...
(2*x + y)*(besseli(0, x^2 + x*y - y^2)*(x - 2*y) -...
(besseli(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))

Bessel Function for Matrix Input
Call besseli for the matrix A and the value 1/2. The result is a matrix of the modified
Bessel functions besseli(1/2, A(i,j)).

syms x
A = [-1, pi; x, 0];
besseli(1/2, A)

ans =
[(2^(1/2)*sinh(1)*1i)/pi^(1/2), (2^(1/2)*sinh(pi))/pi]
[(2^(1/2)*sinh(x))/(x^(1/2)*pi^(1/2)), 0]

Plot the Modified Bessel Functions of the First Kind
Plot the modified Bessel functions of the first kind for v = 0, 1, 2, 3.

 besseli

4-157

syms x y
fplot(besseli(0:3, x))
axis([0 4 -0.1 4])
grid on

ylabel('I_v(x)')
legend('I_0','I_1','I_2','I_3', 'Location','Best')
title('Modified Bessel functions of the first kind')

4 Functions — Alphabetical List

4-158

Input Arguments
nu — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable,
expression, function, or array. If nu is a vector or matrix, besseli returns the modified
Bessel function of the first kind for each element of nu.

z — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable,
expression, function, or array. If nu is a vector or matrix, besseli returns the modified
Bessel function of the first kind for each element of nu.

Definitions

Modified Bessel Functions of the First Kind
The modified Bessel differential equation

z2d2w
dz2 + zdw

dz − z2 + ν2 w = 0

has two linearly independent solutions. These solutions are represented by the modified
Bessel functions of the first kind, Iν(z), and the modified Bessel functions of the second
kind, Kν(z):

w z = C1Iν z + C2Kν z

This formula is the integral representation of the modified Bessel functions of the first
kind:

Iν z = z/2 ν

πΓ ν + 1/2 ∫0
π
ezcos t sin t 2νdt

 besseli

4-159

Tips
• Calling besseli for a number that is not a symbolic object invokes the MATLAB

besseli function.
• At least one input argument must be a scalar or both arguments must be vectors or

matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, besseli(nu,z) expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References
[1] Olver, F. W. J. “Bessel Functions of Integer Order.” Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

See Also
airy | besselh | besselj | besselk | bessely

Introduced in R2014a

4 Functions — Alphabetical List

4-160

besselj
Bessel function of the first kind for symbolic expressions

Syntax
besselj(nu,z)

Description
besselj(nu,z) returns the Bessel function of the first kind on page 4-165, Jν(z).

Examples

Find Bessel Function of First Kind
Compute the Bessel functions of the first kind for these numbers. Because these numbers
are floating point, you get floating-point results.

[besselj(0,5) besselj(-1,2) besselj(1/3,7/4) besselj(1,3/2+2*i)]

ans =
 -0.1776 + 0.0000i -0.5767 + 0.0000i 0.5496 + 0.0000i 1.6113 + 0.3982i

Compute the Bessel functions of the first kind for the numbers converted to symbolic
form. For most symbolic (exact) numbers, besselj returns unresolved symbolic calls.

[besselj(sym(0),5) besselj(sym(-1),2)...
 besselj(1/3,sym(7/4)) besselj(sym(1),3/2+2*i)]

ans =
[besselj(0, 5), -besselj(1, 2), besselj(1/3, 7/4), besselj(1, 3/2 + 2i)]

For symbolic variables and expressions, besselj also returns unresolved symbolic calls.

syms x y
[besselj(x,y) besselj(1,x^2) besselj(2,x-y) besselj(x^2,x*y)]

 besselj

4-161

ans =
[besselj(x, y), besselj(1, x^2), besselj(2, x - y), besselj(x^2, x*y)]

Solve Bessel Differential Equation for Bessel Functions
Solve this second-order differential equation. The solutions are the Bessel functions of the
first and the second kind.

syms nu w(z)
ode = z^2*diff(w,2) + z*diff(w) +(z^2-nu^2)*w == 0;
dsolve(ode)

ans =
C2*besselj(nu, z) + C3*bessely(nu, z)

Verify that the Bessel function of the first kind is a valid solution of the Bessel differential
equation.

cond = subs(ode,w,besselj(nu,z));
isAlways(cond)

ans =
 logical
 1

Special Values of Bessel Function of First Kind
Show that if the first parameter is an odd integer multiplied by 1/2, besselj rewrites the
Bessel functions in terms of elementary functions.

syms x
besselj(1/2,x)

ans =
(2^(1/2)*sin(x))/(x^(1/2)*pi^(1/2))

besselj(-1/2,x)

ans =
(2^(1/2)*cos(x))/(x^(1/2)*pi^(1/2))

besselj(-3/2,x)

ans =
-(2^(1/2)*(sin(x) + cos(x)/x))/(x^(1/2)*pi^(1/2))

4 Functions — Alphabetical List

4-162

besselj(5/2,x)

ans =
-(2^(1/2)*((3*cos(x))/x - sin(x)*(3/x^2 - 1)))/(x^(1/2)*pi^(1/2))

Differentiate Bessel Function of First Kind
Differentiate expressions involving the Bessel functions of the first kind.

syms x y
diff(besselj(1,x))

ans =
besselj(0, x) - besselj(1, x)/x

diff(diff(besselj(0,x^2+x*y-y^2), x), y)

ans =
- besselj(1, x^2 + x*y - y^2) -...
(2*x + y)*(besselj(0, x^2 + x*y - y^2)*(x - 2*y) -...
(besselj(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))

Find Bessel Function for Matrix Input
Call besselj for the matrix A and the value 1/2. besselj acts element-wise to return
matrix of Bessel functions.

syms x
A = [-1, pi; x, 0];
besselj(1/2, A)

ans =
[(2^(1/2)*sin(1)*1i)/pi^(1/2), 0]
[(2^(1/2)*sin(x))/(x^(1/2)*pi^(1/2)), 0]

Plot Bessel Functions of First Kind
Plot the Bessel functions of the first kind for 0, 1, 2, 3.

syms x y
fplot(besselj(0:3, x))
axis([0 10 -0.5 1.1])

 besselj

4-163

grid on

ylabel('J_v(x)')
legend('J_0','J_1','J_2','J_3', 'Location','Best')
title('Bessel functions of the first kind')

Input Arguments
nu — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

4 Functions — Alphabetical List

4-164

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

If nu is a vector or matrix, besselj returns the modified Bessel function of the first kind
for each element of nu.

z — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

If nu is a vector or matrix, besselj returns the modified Bessel function of the first kind
for each element of nu.

Definitions

Bessel Functions of the First Kind
The Bessel functions are solutions of the Bessel differential equation.

z2d2w
dz2 + zdw

dz + z2− ν2 w = 0

These solutions are the Bessel functions of the first kind, Jν(z), and the Bessel functions of
the second kind, Yν(z).

w z = C1 Jν z + C2Yν z

This formula is the integral representation of the Bessel functions of the first kind.

Jν z = z/2 ν

πΓ ν + 1/2 ∫0
π
cos zcos t sin t 2νdt

 besselj

4-165

Tips
• Calling besselj for a number that is not a symbolic object invokes the MATLAB

besselj function.
• At least one input argument must be a scalar or both arguments must be vectors or

matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, besselj(nu,z) expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References
[1] Olver, F. W. J. “Bessel Functions of Integer Order.” Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

See Also
airy | besselh | besseli | besselk | bessely

Introduced in R2014a

4 Functions — Alphabetical List

4-166

besselk
Modified Bessel function of the second kind for symbolic expressions

Syntax
besselk(nu,z)

Description
besselk(nu,z) returns the modified Bessel function of the second kind on page 4-171,
Kν(z).

Examples

Find Modified Bessel Function of Second Kind
Compute the modified Bessel functions of the second kind for these numbers. Because
these numbers are not symbolic objects, you get floating-point results.

[besselk(0, 5), besselk(-1, 2), besselk(1/3, 7/4),...
 besselk(1, 3/2 + 2*i)]

ans =
 0.0037 + 0.0000i 0.1399 + 0.0000i 0.1594 + 0.0000i -0.1620 - 0.1066i

Compute the modified Bessel functions of the second kind for the numbers converted to
symbolic objects. For most symbolic (exact) numbers, besselk returns unresolved
symbolic calls.

[besselk(sym(0), 5), besselk(sym(-1), 2),...
 besselk(1/3, sym(7/4)), besselk(sym(1), 3/2 + 2*i)]

ans =
[besselk(0, 5), besselk(1, 2), besselk(1/3, 7/4), besselk(1, 3/2 + 2i)]

For symbolic variables and expressions, besselk also returns unresolved symbolic calls:

 besselk

4-167

syms x y
[besselk(x, y), besselk(1, x^2), besselk(2, x - y), besselk(x^2, x*y)]

ans =
[besselk(x, y), besselk(1, x^2), besselk(2, x - y), besselk(x^2, x*y)]

Special Values of Modified Bessel Function of Second Kind
If the first parameter is an odd integer multiplied by 1/2, besselk rewrites the Bessel
functions in terms of elementary functions:

syms x
besselk(1/2, x)

ans =
(2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2))

besselk(-1/2, x)

ans =
(2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2))

besselk(-3/2, x)

ans =
(2^(1/2)*pi^(1/2)*exp(-x)*(1/x + 1))/(2*x^(1/2))

besselk(5/2, x)

ans =
(2^(1/2)*pi^(1/2)*exp(-x)*(3/x + 3/x^2 + 1))/(2*x^(1/2))

Solve Bessel Differential Equation for Bessel Functions
Solve this second-order differential equation. The solutions are the modified Bessel
functions of the first and the second kind.

syms nu w(z)
dsolve(z^2*diff(w, 2) + z*diff(w) -(z^2 + nu^2)*w == 0)

ans =
C2*besseli(nu, z) + C3*besselk(nu, z)

Verify that the modified Bessel function of the second kind is a valid solution of the
modified Bessel differential equation:

4 Functions — Alphabetical List

4-168

syms nu z
isAlways(z^2*diff(besselk(nu, z), z, 2) + z*diff(besselk(nu, z), z)...
 - (z^2 + nu^2)*besselk(nu, z) == 0)

ans =
 logical
 1

Differentiate Modified Bessel Function of Second Kind
Differentiate the expressions involving the modified Bessel functions of the second kind:

syms x y
diff(besselk(1, x))
diff(diff(besselk(0, x^2 + x*y -y^2), x), y)

ans =
- besselk(1, x)/x - besselk(0, x)

ans =
(2*x + y)*(besselk(0, x^2 + x*y - y^2)*(x - 2*y) +...
(besselk(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2)) -...
besselk(1, x^2 + x*y - y^2)

Find Bessel Function for Matrix Input
Call besselk for the matrix A and the value 1/2. The result is a matrix of the modified
Bessel functions besselk(1/2, A(i,j)).

syms x
A = [-1, pi; x, 0];
besselk(1/2, A)

ans =
[-(2^(1/2)*pi^(1/2)*exp(1)*1i)/2, (2^(1/2)*exp(-pi))/2]
[(2^(1/2)*pi^(1/2)*exp(-x))/(2*x^(1/2)), Inf]

Plot Modified Bessel Functions of Second Kind
Plot the modified Bessel functions of the second kind for v = 0, 1, 2, 3.

syms x y
fplot(besselk(0:3, x))

 besselk

4-169

axis([0 4 0 4])
grid on

ylabel('K_v(x)')
legend('K_0','K_1','K_2','K_3', 'Location','Best')
title('Modified Bessel functions of the second kind')

4 Functions — Alphabetical List

4-170

Input Arguments
nu — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable,
expression, function, or array. If nu is a vector or matrix, besseli returns the modified
Bessel function of the first kind for each element of nu.

z — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, array, or a symbolic number, variable,
expression, function, or array. If nu is a vector or matrix, besseli returns the modified
Bessel function of the first kind for each element of nu.

Definitions

Modified Bessel Functions of the Second Kind
The modified Bessel differential equation

z2d2w
dz2 + zdw

dz − z2 + ν2 w = 0

has two linearly independent solutions. These solutions are represented by the modified
Bessel functions of the first kind, Iν(z), and the modified Bessel functions of the second
kind, Kν(z):

w z = C1Iν z + C2Kν z

The modified Bessel functions of the second kind are defined via the modified Bessel
functions of the first kind:

Kν z = π/2
sin νπ I−ν z − Iν z

 besselk

4-171

Here Iν(z) are the modified Bessel functions of the first kind:

Iν z = z/2 ν

πΓ ν + 1/2 ∫0
π
ezcos t sin t 2νdt

Tips
• Calling besselk for a number that is not a symbolic object invokes the MATLAB

besselk function.
• At least one input argument must be a scalar or both arguments must be vectors or

matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, besselk(nu,z) expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References
[1] Olver, F. W. J. “Bessel Functions of Integer Order.” Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

See Also
airy | besselh | besseli | besselj | bessely

Introduced in R2014a

4 Functions — Alphabetical List

4-172

bessely
Bessel function of the second kind for symbolic expressions

Syntax
bessely(nu,z)

Description
bessely(nu,z) returns the Bessel function of the second kind on page 4-177, Yν(z).

Examples

Find Bessel Function of Second Kind
Compute the Bessel functions of the second kind for these numbers. Because these
numbers are not symbolic objects, you get floating-point results.
[bessely(0, 5), bessely(-1, 2), bessely(1/3, 7/4), bessely(1, 3/2 + 2*i)]

ans =
 -0.3085 + 0.0000i 0.1070 + 0.0000i 0.2358 + 0.0000i -0.4706 + 1.5873i

Compute the Bessel functions of the second kind for the numbers converted to symbolic
objects. For most symbolic (exact) numbers, bessely returns unresolved symbolic calls.

[bessely(sym(0), 5), bessely(sym(-1), 2),...
 bessely(1/3, sym(7/4)), bessely(sym(1), 3/2 + 2*i)]

ans =
[bessely(0, 5), -bessely(1, 2), bessely(1/3, 7/4), bessely(1, 3/2 + 2i)]

For symbolic variables and expressions, bessely also returns unresolved symbolic calls:

syms x y
[bessely(x, y), bessely(1, x^2), bessely(2, x - y), bessely(x^2, x*y)]

 bessely

4-173

ans =
[bessely(x, y), bessely(1, x^2), bessely(2, x - y), bessely(x^2, x*y)]

Solve Bessel Differential Equation for Bessel Functions
Solve this second-order differential equation. The solutions are the Bessel functions of the
first and the second kind.

syms nu w(z)
dsolve(z^2*diff(w, 2) + z*diff(w) +(z^2 - nu^2)*w == 0)

ans =
C2*besselj(nu, z) + C3*bessely(nu, z)

Verify that the Bessel function of the second kind is a valid solution of the Bessel
differential equation:

syms nu z
isAlways(z^2*diff(bessely(nu, z), z, 2) + z*diff(bessely(nu, z), z)...
 + (z^2 - nu^2)*bessely(nu, z) == 0)

ans =
 logical
 1

Special Values of Bessel Function of Second Kind
If the first parameter is an odd integer multiplied by 1/2, bessely rewrites the Bessel
functions in terms of elementary functions:

syms x
bessely(1/2, x)

ans =
-(2^(1/2)*cos(x))/(x^(1/2)*pi^(1/2))

bessely(-1/2, x)

ans =
(2^(1/2)*sin(x))/(x^(1/2)*pi^(1/2))

bessely(-3/2, x)

ans =
(2^(1/2)*(cos(x) - sin(x)/x))/(x^(1/2)*pi^(1/2))

4 Functions — Alphabetical List

4-174

bessely(5/2, x)

ans =
-(2^(1/2)*((3*sin(x))/x + cos(x)*(3/x^2 - 1)))/(x^(1/2)*pi^(1/2))

Differentiate Bessel Functions of Second Kind
Differentiate the expressions involving the Bessel functions of the second kind:

syms x y
diff(bessely(1, x))
diff(diff(bessely(0, x^2 + x*y -y^2), x), y)

ans =
bessely(0, x) - bessely(1, x)/x

ans =
- bessely(1, x^2 + x*y - y^2) -...
(2*x + y)*(bessely(0, x^2 + x*y - y^2)*(x - 2*y) -...
(bessely(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))

Find Bessel Function for Matrix Input
Call bessely for the matrix A and the value 1/2. The result is a matrix of the Bessel
functions bessely(1/2, A(i,j)).

syms x
A = [-1, pi; x, 0];
bessely(1/2, A)

ans =
[(2^(1/2)*cos(1)*1i)/pi^(1/2), 2^(1/2)/pi]
[-(2^(1/2)*cos(x))/(x^(1/2)*pi^(1/2)), Inf]

Plot Bessel Functions of Second Kind
Plot the Bessel functions of the second kind for v = 0, 1, 2, 3.

syms x y
fplot(bessely(0:3,x))
axis([0 10 -1 0.6])
grid on

 bessely

4-175

ylabel('Y_v(x)')
legend('Y_0','Y_1','Y_2','Y_3', 'Location','Best')
title('Bessel functions of the second kind')

Input Arguments
nu — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

4 Functions — Alphabetical List

4-176

If nu is a vector or matrix, bessely returns the Bessel function of the second kind for
each element of nu.

z — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

If z is a vector or matrix, bessely returns the Bessel function of the second kind for each
element of z.

Definitions

Bessel Function of the Second Kind
The Bessel differential equation

z2d2w
dz2 + zdw

dz + z2− ν2 w = 0

has two linearly independent solutions. These solutions are represented by the Bessel
functions of the first kind, Jν(z), and the Bessel functions of the second kind, Yν(z):

w z = C1 Jν z + C2Yν z

The Bessel functions of the second kind are defined via the Bessel functions of the first
kind:

Yν z =
Jν z cos νπ − J−ν z

sin νπ

Here Jν(z) are the Bessel function of the first kind:

Jν z = z/2 ν

πΓ ν + 1/2 ∫0
π
cos zcos t sin t 2νdt

 bessely

4-177

Tips
• Calling bessely for a number that is not a symbolic object invokes the MATLAB

bessely function.

At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, bessely(nu,z) expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References
[1] Olver, F. W. J. “Bessel Functions of Integer Order.” Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

See Also
airy | besselh | besseli | besselj | besselk

Introduced in R2014a

4 Functions — Alphabetical List

4-178

beta
Beta function

Syntax
beta(x,y)

Description
beta(x,y) returns the beta function on page 4-181 of x and y.

Examples

Compute Beta Function for Numeric Inputs
Compute the beta function for these numbers. Because these numbers are not symbolic
objects, you get floating-point results:

[beta(1, 5), beta(3, sqrt(2)), beta(pi, exp(1)), beta(0, 1)]

ans =
 0.2000 0.1716 0.0379 Inf

Compute Beta Function for Symbolic Inputs
Compute the beta function for the numbers converted to symbolic objects:

[beta(sym(1), 5), beta(3, sym(2)), beta(sym(4), sym(4))]

ans =
[1/5, 1/12, 1/140]

If one or both parameters are complex numbers, convert these numbers to symbolic
objects:

 beta

4-179

[beta(sym(i), 3/2), beta(sym(i), i), beta(sym(i + 2), 1 - i)]

ans =
[(pi^(1/2)*gamma(1i))/(2*gamma(3/2 + 1i)), gamma(1i)^2/gamma(2i),...
 (pi*(1/2 + 1i/2))/sinh(pi)]

Compute Beta Function for Negative Parameters
Compute the beta function for negative parameters. If one or both arguments are
negative numbers, convert these numbers to symbolic objects:
[beta(sym(-3), 2), beta(sym(-1/3), 2), beta(sym(-3), 4), beta(sym(-3), -2)]

ans =
[1/6, -9/2, Inf, Inf]

Compute Beta Function for Matrix Inputs
Call beta for the matrix A and the value 1. The result is a matrix of the beta functions
beta(A(i,j),1):

A = sym([1 2; 3 4]);
beta(A,1)

ans =
[1, 1/2]
[1/3, 1/4]

Differentiate Beta Function
Differentiate the beta function, then substitute the variable t with the value 2/3 and
approximate the result using vpa:

syms t
u = diff(beta(t^2 + 1, t))
vpa(subs(u, t, 2/3), 10)

u =
beta(t, t^2 + 1)*(psi(t) + 2*t*psi(t^2 + 1) -...
psi(t^2 + t + 1)*(2*t + 1))

ans =
-2.836889094

4 Functions — Alphabetical List

4-180

Expand Beta Function
Expand these beta functions:

syms x y
expand(beta(x, y))
expand(beta(x + 1, y - 1))

ans =
(gamma(x)*gamma(y))/gamma(x + y)

ans =
-(x*gamma(x)*gamma(y))/(gamma(x + y) - y*gamma(x + y))

Input Arguments
x — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

If x is a vector or matrix, beta returns the beta function for each element of x.

y — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

If y is a vector or matrix, beta returns the beta function for each element of y.

Definitions

Beta Function
This integral defines the beta function:

 beta

4-181

Β x, y = ∫
0

1
tx− 1 1− t y − 1dt = Γ x Γ y

Γ x + y

Tips
• The beta function is uniquely defined for positive numbers and complex numbers with

positive real parts. It is approximated for other numbers.
• Calling beta for numbers that are not symbolic objects invokes the MATLAB beta

function. This function accepts real arguments only. If you want to compute the beta
function for complex numbers, use sym to convert the numbers to symbolic objects,
and then call beta for those symbolic objects.

• If one or both parameters are negative numbers, convert these numbers to symbolic
objects using sym, and then call beta for those symbolic objects.

• If the beta function has a singularity, beta returns the positive infinity Inf.
• beta(sym(0),0), beta(0,sym(0)), and beta(sym(0),sym(0)) return NaN.
• beta(x,y) = beta(y,x) and beta(x,A) = beta(A,x).
• At least one input argument must be a scalar or both arguments must be vectors or

matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, beta(x,y) expands the scalar into a vector or matrix of the same
size as the other argument with all elements equal to that scalar.

References
[1] Zelen, M. and N. C. Severo. “Probability Functions.” Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

See Also
factorial | gamma | nchoosek | psi

Introduced in R2014a

4 Functions — Alphabetical List

4-182

cat
Concatenate symbolic arrays along specified dimension

Syntax
cat(dim,A1,...,AN)

Description
cat(dim,A1,...,AN) concatenates the arrays A1,...,AN along dimension dim. The
remaining dimensions must be the same size.

Examples

Concatenate Two Vectors into Matrix
Create vectors A and B.

A = sym('a%d',[1 4])
B = sym('b%d',[1 4])

A =
[a1, a2, a3, a4]
B =
[b1, b2, b3, b4]

To concatenate A and B into a matrix, specify dimension dim as 1.

cat(1,A,B)

ans =
[a1, a2, a3, a4]
[b1, b2, b3, b4]

Alternatively, use the syntax [A;B].

 cat

4-183

[A;B]

ans =
[a1, a2, a3, a4]
[b1, b2, b3, b4]

Concatenate Two Vectors into One Vector
To concatenate two vectors into one vector, specify dimension dim as 2.

A = sym('a%d',[1 4]);
B = sym('b%d',[1 4]);
cat(2,A,B)

ans =
[a1, a2, a3, a4, b1, b2, b3, b4]

Alternatively, use the syntax [A B].

[A B]

ans =
[a1, a2, a3, a4, b1, b2, b3, b4]

Concatenate Multidimensional Arrays Along Their Third
Dimension
Create arrays A and B.

A = sym('a%d%d',[2 2]);
A(:,:,2) = -A
B = sym('b%d%d', [2 2]);
B(:,:,2) = -B

A(:,:,1) =
[a11, a12]
[a21, a22]
A(:,:,2) =
[-a11, -a12]
[-a21, -a22]

B(:,:,1) =
[b11, b12]
[b21, b22]

4 Functions — Alphabetical List

4-184

B(:,:,2) =
[-b11, -b12]
[-b21, -b22]

Concatenate A and B by specifying dimension dim as 3.

cat(3,A,B)

ans(:,:,1) =
[a11, a12]
[a21, a22]
ans(:,:,2) =
[-a11, -a12]
[-a21, -a22]
ans(:,:,3) =
[b11, b12]
[b21, b22]
ans(:,:,4) =
[-b11, -b12]
[-b21, -b22]

Input Arguments
dim — Dimension to concatenate arrays along
positive integer

Dimension to concatenate arrays along, specified as a positive integer.

A1,...,AN — Input arrays
symbolic variables | symbolic vectors | symbolic matrices | symbolic multidimensional
arrays

Input arrays, specified as symbolic variables, vectors, matrices, or multidimensional
arrays.

See Also
horzcat | reshape | vertcat

 cat

4-185

Introduced in R2010b

4 Functions — Alphabetical List

4-186

catalan
Catalan constant

Syntax
catalan

Description
catalan represents the Catalan constant on page 4-188. To get a floating-point
approximation with the current precision set by digits, use vpa(catalan).

Examples

Approximate Catalan Constant
Find a floating-point approximation of the Catalan constant with the default number of
digits and with the 10-digit precision.

Use vpa to approximate the Catalan constant with the default 32-digit precision:

vpa(catalan)

ans =
0.91596559417721901505460351493238

Set the number of digits to 10 and approximate the Catalan constant:

old = digits(10);
vpa(catalan)

ans =
0.9159655942

Restore the default number of digits:

 catalan

4-187

digits(old)

Definitions

Catalan Constant
The Catalan constant is defined as follows:

catalan = ∑
i = 0

∞ −1 i

2 i + 1 2 = 1
12 −

1
32 + 1

52 −
1
72 + …

See Also
dilog | eulergamma

Introduced in R2014a

4 Functions — Alphabetical List

4-188

ccode
C code representation of symbolic expression

Syntax
ccode(f)
ccode(f,Name,Value)

Description
ccode(f) returns C code for the symbolic expression f.

ccode(f,Name,Value) uses additional options specified by one or more Name,Value
pair arguments.

Examples

Generate C Code from Symbolic Expression

Generate C code from the symbolic expression log(1+x).

syms x
f = log(1+x);
ccode(f)

ans =
 ' t0 = log(x+1.0);'

Generate C code for the 3-by-3 Hilbert matrix.

H = sym(hilb(3));
ccode(H)

ans =
 ' H[0][0] = 1.0;

 ccode

4-189

 H[0][1] = 1.0/2.0;
 H[0][2] = 1.0/3.0;
 H[1][0] = 1.0/2.0;
 H[1][1] = 1.0/3.0;
 H[1][2] = 1.0/4.0;
 H[2][0] = 1.0/3.0;
 H[2][1] = 1.0/4.0;
 H[2][2] = 1.0/5.0;'

Initialize Arrays Efficiently

Because generated C code initializes only non-zero elements, you can efficiently initialize
arrays by setting all elements to 0 directly in your C code. Then, use the generated C
code to initialize only nonzero elements. This approach enables efficient initialization of
matrices, especially sparse matrices.

Initialize the 3-by-3 identity matrix. First initialize the matrix with all elements set to 0 in
your C code. Then use the generated C code to initialize the nonzero values.

I3 = sym(eye(3));
I3code = ccode(I3)

I3code =
 ' I3[0][0] = 1.0;
 I3[1][1] = 1.0;
 I3[2][2] = 1.0;'

Write Optimized C Code to File with Comments

Write C code to the file ccodetest.c by specifying the File option. When writing to a
file, ccode optimizes the code by using intermediate variables named t0, t1, and so on.

syms x
f = diff(tan(x));
ccode(f,'File','ccodetest.c')

 t0 = pow(tan(x),2.0)+1.0;

Include the comment Version: 1.1 in the file by using the Comments option. ccode
uses block comments.

ccode(f,'File','ccodetest.c','Comments','Version: 1.1')

4 Functions — Alphabetical List

4-190

 /*
 Version: 1.1
 */
 t0 = pow(tan(x),2.0)+1.0;

Input Arguments
f — Symbolic input
symbolic expression

Symbolic input, specified as a symbolic expression.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: ccode(x^2,'File','ccode.c','Comments','V1.2')

File — File to write to
character vector | string

File to write to, specified as a character vector or string. When writing to a file, ccode
optimizes the code by using intermediate variables named t0, t1, and so on.

Comments — Comments to include in file header
character vector | cell array of character vectors | string vector

Comments to include in the file header, specified as a character vector, cell array of
character vectors, or string vector. Because ccode uses block comments, the comments
must not contain /* or */.

See Also
fortran | latex | matlabFunction

Introduced before R2006a

 ccode

4-191

cell2sym
Convert cell array to symbolic array

Syntax
S = cell2sym(C)
S = cell2sym(C,flag)

Description
S = cell2sym(C) converts a cell array C to a symbolic array S. The elements of C must
be convertible to symbolic objects.

If each element of the input cell array C is a scalar, then size(S) = size(C), and S(k)
= sym(C(k)) for all indices k. If the cell array C contains nonscalar elements, then the
contents of C must support concatenation into an N-dimensional rectangle. Otherwise, the
results are undefined. For example, the contents of cells in the same column must have
the same number of columns. However, they do not need to have the same number of
rows. See figure.

S = cell2sym(C,flag) uses the technique specified by flag for converting floating-
point numbers to symbolic numbers.

4 Functions — Alphabetical List

4-192

Examples
Convert Cell Array of Scalars
Convert a cell array of only scalar elements to a symbolic array.

Create a cell array of scalar elements.

C = {'x','y','z'; 1 2 3}

C =
 2×3 cell array
 {'x'} {'y'} {'z'}
 {[1]} {[2]} {[3]}

Convert this cell array to a symbolic array.

S = cell2sym(C)

S =
[x, y, z]
[1, 2, 3]

cell2sym does not create symbolic variables x, y, and z in the MATLAB workspace. To
access an element of S, use parentheses.

S(1,1)

ans =
x

Convert Cell Array Containing Nonscalar Elements
Convert a cell array whose elements are scalars, vectors, and matrices into a symbolic
array. Such conversion is possible only if the contents of the cell array can be
concatenated into an N-dimensional rectangle.

Create a cell array, the elements of which are a scalar, a row vector, a column vector, and
a matrix.

C = {'x' [2 3 4]; ['y'; sym(9)] [6 7 8; 10 11 12]}

C =
 2×2 cell array

 cell2sym

4-193

 {'x' } {1×3 double}
 {2×1 sym} {2×3 double}

Convert this cell array to a symbolic array.

S = cell2sym(C)

S =
[x, 2, 3, 4]
[y, 6, 7, 8]
[9, 10, 11, 12]

Choose Conversion Technique for Floating-Point Values
When converting a cell array containing floating-point numbers, you can explicitly specify
the conversion technique.

Create a cell array pi with two elements: the double-precision value of the constant pi
and the exact value pi.

C = {pi, sym(pi)}

C =
 1×2 cell array
 {[3.1416]} {1×1 sym}

Convert this cell array to a symbolic array. By default, cell2sym uses the rational
conversion mode. Thus, results returned by cell2sym without a flag are the same as
results returned by cell2sym with the flag 'r'.

S = cell2sym(C)

S =
[pi, pi]

S = cell2sym(C,'r')

S =
[pi, pi]

Convert the same cell array to a symbolic array using the flags 'd', 'e', and 'f'. See
the “Input Arguments” on page 4-195 section for the details about conversion techniques.

S = cell2sym(C,'d')

4 Functions — Alphabetical List

4-194

S =
[3.1415926535897931159979634685442, pi]

S = cell2sym(C,'e')

S =
[pi - (198*eps)/359, pi]

S = cell2sym(C,'f')

S =
[884279719003555/281474976710656, pi]

Input Arguments
C — Input cell array
cell array

Input cell array, specified as a cell array. The elements of C must be convertible to
symbolic objects.

flag — Conversion technique
'r' (default) | 'd' | 'e' | 'f'

Conversion technique, specified as one of the characters listed in this table.

'r' In the rational mode, cell2sym converts floating-point numbers obtained by
evaluating expressions of the form p/q, p*pi/q, sqrt(p), 2^q, and 10^q for
modest sized integers p and q to the corresponding symbolic form. This
approach effectively compensates for the round-off error involved in the
original evaluation, but might not represent the floating-point value precisely.
If cell2sym cannot find simple rational approximation, then it uses the same
technique as it would use with the flag 'f'.

'd' In the decimal mode, cell2sym takes the number of digits from the current
setting of digits. Conversions with fewer than 16 digits lose some accuracy,
while more than 16 digits might not be warranted. For example,
cell2sym({4/3},'d') with the 10-digit accuracy returns 1.333333333,
while with the 20-digit accuracy it returns 1.3333333333333332593. The
latter does not end in 3s, but it is an accurate decimal representation of the
floating-point number nearest to 4/3.

 cell2sym

4-195

'e' In the estimate error mode, cell2sym supplements a result obtained in the
rational mode by a term involving the variable eps. This term estimates the
difference between the theoretical rational expression and its actual floating-
point value. For example, cell2sym({3*pi/4},'e') returns (3*pi)/4 -
(103*eps)/249.

'f' In the floating-point mode, cell2sym represents all values in the form N*2^e
or -N*2^e, where N >= 0 and e are integers. For example,
cell2sym({1/10},'f') returns
3602879701896397/36028797018963968. The returned rational value is
the exact value of the floating-point number that you convert to a symbolic
number.

Output Arguments
S — Resulting symbolic array
symbolic array

Resulting symbolic array, returned as a symbolic array.

See Also
cell2mat | mat2cell | num2cell | sym2cell

Introduced in R2016a

4 Functions — Alphabetical List

4-196

charpoly
Characteristic polynomial of matrix

Syntax
charpoly(A)
charpoly(A,var)

Description
charpoly(A) returns a vector of coefficients of the characteristic polynomial on page 4-
199 of A. If A is a symbolic matrix, charpoly returns a symbolic vector. Otherwise, it
returns a vector of double-precision values.

charpoly(A,var) returns the characteristic polynomial of A in terms of var.

Examples

Compute Coefficients of Characteristic Polynomial of Matrix

Compute the coefficients of the characteristic polynomial of A by using charpoly.

A = [1 1 0; 0 1 0; 0 0 1];
charpoly(A)

ans =
 1 -3 3 -1

For symbolic input, charpoly returns a symbolic vector instead of double. Repeat the
calculation for symbolic input.

A = sym(A);
charpoly(A)

 charpoly

4-197

ans =
[1, -3, 3, -1]

Compute Characteristic Polynomial of Matrix

Compute the characteristic polynomial of the matrix A in terms of x.

syms x
A = sym([1 1 0; 0 1 0; 0 0 1]);
polyA = charpoly(A,x)

polyA =
x^3 - 3*x^2 + 3*x - 1

Solve the characteristic polynomial for the eigenvalues of A.

eigenA = solve(polyA)

eigenA =
 1
 1
 1

Input Arguments
A — Input
numeric matrix | symbolic matrix

Input, specified as a numeric or symbolic matrix.

var — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

4 Functions — Alphabetical List

4-198

Definitions

Characteristic Polynomial of Matrix
The characteristic polynomial of an n-by-n matrix A is the polynomial pA(x), defined as
follows.

pA x = det xIn− A

Here, In is the n-by-n identity matrix.

References
[1] Cohen, H. “A Course in Computational Algebraic Number Theory.” Graduate Texts in

Mathematics (Axler, Sheldon and Ribet, Kenneth A., eds.). Vol. 138, Springer,
1993.

[2] Abdeljaoued, J. “The Berkowitz Algorithm, Maple and Computing the Characteristic
Polynomial in an Arbitrary Commutative Ring.” MapleTech, Vol. 4, Number 3, pp
21–32, Birkhauser, 1997.

See Also
det | eig | jordan | minpoly | poly2sym | sym2poly

Introduced in R2012b

 charpoly

4-199

chebyshevT
Chebyshev polynomials of the first kind

Syntax
chebyshevT(n,x)

Description
chebyshevT(n,x) represents the nth degree Chebyshev polynomial of the first kind on
page 4-204 at the point x.

Examples

First Five Chebyshev Polynomials of the First Kind
Find the first five Chebyshev polynomials of the first kind for the variable x.

syms x
chebyshevT([0, 1, 2, 3, 4], x)

ans =
[1, x, 2*x^2 - 1, 4*x^3 - 3*x, 8*x^4 - 8*x^2 + 1]

Chebyshev Polynomials for Numeric and Symbolic Arguments
Depending on its arguments, chebyshevT returns floating-point or exact symbolic
results.

Find the value of the fifth-degree Chebyshev polynomial of the first kind at these points.
Because these numbers are not symbolic objects, chebyshevT returns floating-point
results.

chebyshevT(5, [1/6, 1/4, 1/3, 1/2, 2/3, 3/4])

4 Functions — Alphabetical List

4-200

ans =
 0.7428 0.9531 0.9918 0.5000 -0.4856 -0.8906

Find the value of the fifth-degree Chebyshev polynomial of the first kind for the same
numbers converted to symbolic objects. For symbolic numbers, chebyshevT returns
exact symbolic results.

chebyshevT(5, sym([1/6, 1/4, 1/3, 1/2, 2/3, 3/4]))

ans =
[361/486, 61/64, 241/243, 1/2, -118/243, -57/64]

Evaluate Chebyshev Polynomials with Floating-Point Numbers
Floating-point evaluation of Chebyshev polynomials by direct calls of chebyshevT is
numerically stable. However, first computing the polynomial using a symbolic variable,
and then substituting variable-precision values into this expression can be numerically
unstable.

Find the value of the 500th-degree Chebyshev polynomial of the first kind at 1/3 and
vpa(1/3). Floating-point evaluation is numerically stable.

chebyshevT(500, 1/3)
chebyshevT(500, vpa(1/3))

ans =
 0.9631

ans =
0.963114126817085233778571286718

Now, find the symbolic polynomial T500 = chebyshevT(500, x), and substitute x =
vpa(1/3) into the result. This approach is numerically unstable.

syms x
T500 = chebyshevT(500, x);
subs(T500, x, vpa(1/3))

ans =
-3293905791337500897482813472768.0

Approximate the polynomial coefficients by using vpa, and then substitute x =
sym(1/3) into the result. This approach is also numerically unstable.

 chebyshevT

4-201

subs(vpa(T500), x, sym(1/3))

ans =
1202292431349342132757038366720.0

Plot Chebyshev Polynomials of the First Kind
Plot the first five Chebyshev polynomials of the first kind.

syms x y
fplot(chebyshevT(0:4,x))
axis([-1.5 1.5 -2 2])
grid on

ylabel('T_n(x)')
legend('T_0(x)','T_1(x)','T_2(x)','T_3(x)','T_4(x)','Location','Best')
title('Chebyshev polynomials of the first kind')

4 Functions — Alphabetical List

4-202

Input Arguments
n — Degree of polynomial
nonnegative integer | symbolic variable | symbolic expression | symbolic function | vector
| matrix

Degree of the polynomial, specified as a nonnegative integer, symbolic variable,
expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

 chebyshevT

4-203

x — Evaluation point
number | symbolic number | symbolic variable | symbolic expression | symbolic function |
vector | matrix

Evaluation point, specified as a number, symbolic number, variable, expression, or
function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions,
or functions.

Definitions

Chebyshev Polynomials of the First Kind
Chebyshev polynomials of the first kind are defined as Tn(x) = cos(n*arccos(x)).

These polynomials satisfy the recursion formula

T 0, x = 1, T 1, x = x, T n, x = 2xT n− 1, x − T n− 2, x

Chebyshev polynomials of the first kind are orthogonal on the interval -1 ≤ x ≤ 1 with
respect to the weight function

w x = 1
1− x2

Chebyshev polynomials of the first kind are a special case of the Jacobi polynomials

T n, x = 22n n! 2

2n ! P n, − 1
2, − 1

2, x

and Gegenbauer polynomials

T n, x = n
2G n, 0, x

Tips
• chebyshevT returns floating-point results for numeric arguments that are not

symbolic objects.

4 Functions — Alphabetical List

4-204

• chebyshevT acts element-wise on nonscalar inputs.
• At least one input argument must be a scalar or both arguments must be vectors or

matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, then chebyshevT expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References
[1] Hochstrasser, U. W. “Orthogonal Polynomials.” Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A.
Stegun, eds.). New York: Dover, 1972.

See Also
chebyshevU | gegenbauerC | hermiteH | jacobiP | laguerreL | legendreP

Introduced in R2014b

 chebyshevT

4-205

chebyshevU
Chebyshev polynomials of the second kind

Syntax
chebyshevU(n,x)

Description
chebyshevU(n,x) represents the nth degree Chebyshev polynomial of the second kind
on page 4-210 at the point x.

Examples

First Five Chebyshev Polynomials of the Second Kind
Find the first five Chebyshev polynomials of the second kind for the variable x.

syms x
chebyshevU([0, 1, 2, 3, 4], x)

ans =
[1, 2*x, 4*x^2 - 1, 8*x^3 - 4*x, 16*x^4 - 12*x^2 + 1]

Chebyshev Polynomials for Numeric and Symbolic Arguments
Depending on its arguments, chebyshevU returns floating-point or exact symbolic
results.

Find the value of the fifth-degree Chebyshev polynomial of the second kind at these
points. Because these numbers are not symbolic objects, chebyshevU returns floating-
point results.

chebyshevU(5, [1/6, 1/3, 1/2, 2/3, 4/5])

4 Functions — Alphabetical List

4-206

ans =
 0.8560 0.9465 0.0000 -1.2675 -1.0982

Find the value of the fifth-degree Chebyshev polynomial of the second kind for the same
numbers converted to symbolic objects. For symbolic numbers, chebyshevU returns
exact symbolic results.

chebyshevU(5, sym([1/6, 1/4, 1/3, 1/2, 2/3, 4/5]))

ans =
[208/243, 33/32, 230/243, 0, -308/243, -3432/3125]

Evaluate Chebyshev Polynomials with Floating-Point Numbers
Floating-point evaluation of Chebyshev polynomials by direct calls of chebyshevU is
numerically stable. However, first computing the polynomial using a symbolic variable,
and then substituting variable-precision values into this expression can be numerically
unstable.

Find the value of the 500th-degree Chebyshev polynomial of the second kind at 1/3 and
vpa(1/3). Floating-point evaluation is numerically stable.

chebyshevU(500, 1/3)
chebyshevU(500, vpa(1/3))

ans =
 0.8680

ans =
0.86797529488884242798157148968078

Now, find the symbolic polynomial U500 = chebyshevU(500, x), and substitute x =
vpa(1/3) into the result. This approach is numerically unstable.

syms x
U500 = chebyshevU(500, x);
subs(U500, x, vpa(1/3))

ans =
63080680195950160912110845952.0

Approximate the polynomial coefficients by using vpa, and then substitute x =
sym(1/3) into the result. This approach is also numerically unstable.

 chebyshevU

4-207

subs(vpa(U500), x, sym(1/3))

ans =
-1878009301399851172833781612544.0

Plot Chebyshev Polynomials of the Second Kind
Plot the first five Chebyshev polynomials of the second kind.

syms x y
fplot(chebyshevU(0:4, x))
axis([-1.5 1.5 -2 2])
grid on

ylabel('U_n(x)')
legend('U_0(x)', 'U_1(x)', 'U_2(x)', 'U_3(x)', 'U_4(x)', 'Location', 'Best')
title('Chebyshev polynomials of the second kind')

4 Functions — Alphabetical List

4-208

Input Arguments
n — Degree of polynomial
nonnegative integer | symbolic variable | symbolic expression | symbolic function | vector
| matrix

Degree of the polynomial, specified as a nonnegative integer, symbolic variable,
expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

 chebyshevU

4-209

x — Evaluation point
number | symbolic number | symbolic variable | symbolic expression | symbolic function |
vector | matrix

Evaluation point, specified as a number, symbolic number, variable, expression, or
function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions,
or functions.

Definitions
Chebyshev Polynomials of the Second Kind
Chebyshev polynomials of the second kind are defined as follows:

U n, x = sin n + 1 acos x
sin acos x

These polynomials satisfy the recursion formula

U 0, x = 1, U 1, x = 2x, U n, x = 2xU n− 1, x −U n− 2, x

Chebyshev polynomials of the second kind are orthogonal on the interval -1 ≤ x ≤ 1 with
respect to the weight function

w x = 1− x2

Chebyshev polynomials of the second kind are a special case of the Jacobi polynomials

U n, x = 22nn! n + 1 !
2n + 1 ! P n, 1

2, 1
2, x

and Gegenbauer polynomials

U n, x = G n, 1, x

Tips
• chebyshevU returns floating-point results for numeric arguments that are not

symbolic objects.

4 Functions — Alphabetical List

4-210

• chebyshevU acts element-wise on nonscalar inputs.
• At least one input argument must be a scalar or both arguments must be vectors or

matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, then chebyshevU expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References
[1] Hochstrasser, U. W. “Orthogonal Polynomials.” Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A.
Stegun, eds.). New York: Dover, 1972.

See Also
chebyshevT | gegenbauerC | hermiteH | jacobiP | laguerreL | legendreP

Introduced in R2014b

 chebyshevU

4-211

checkUnits
Check for compatible dimensions and consistent units

Syntax
C = checkUnits(expr)
C = checkUnits(expr,'Compatible')
C = checkUnits(expr,'Consistent')

Description
C = checkUnits(expr) checks expr for compatible dimensions and consistent units
and returns a structure containing the fields Consistent and Compatible. The fields
contain logical 0 (false) or logical 1 (true) depending on the check results.

expr has compatible dimensions if all terms have the same dimensions, such as length or
time. expr has consistent units if all units of the same dimension can be converted to
each other with a conversion factor of 1.

C = checkUnits(expr,'Compatible') only checks expr for compatible dimensions.

C = checkUnits(expr,'Consistent') only checks expr for consistent units.

Examples

Check Dimensions of Units
Check the dimensions of an equation or expression. The dimensions are checked to
confirm that the equation or expression is valid.

Verify the dimensions of the equation

A ms = B kg
s

4 Functions — Alphabetical List

4-212

by using checkUnits with the option 'Compatible'. MATLAB assumes that symbolic
variables are dimensionless. The checkUnits function returns logical 0 (false) because
the dimensions of the equation are not compatible.

u = symunit;
syms A B
eqn = A*u.m/u.s == B*u.kg/u.s;
checkUnits(eqn,'Compatible')

ans =
 logical
 0

Replace u.kg with u.m by using subs and repeat the check. Because the dimensions are
now compatible, checkUnits returns logical 1 (true).

eqn = subs(eqn,u.kg,u.m);
checkUnits(eqn,'Compatible')

ans =
 logical
 1

Check Consistency of Units
Checking units for consistency is a stronger check than compatibility. Units are consistent
when all units of the same dimension can be converted to each other with a conversion
factor of 1. For example, 1 Newton is consistent with 1 kg m/s2 but not with 1 kg cm/s2.

Show that 1 Newton is consistent with 1 kg m/s2 by checking expr1 but not with 1 kg
cm/s2 by checking expr2.

u = symunit;
expr1 = 1*u.N + 1*u.kg*u.m/u.s^2;
expr2 = 1*u.N + 1*u.kg*u.cm/u.s^2;
checkUnits(expr1,'Consistent')

ans =
 logical
 1

checkUnits(expr2,'Consistent')

 checkUnits

4-213

ans =
 logical
 0

Show the difference between compatibility and consistency by showing that expr2 has
compatible dimensions but not consistent units.

checkUnits(expr2,'Compatible')

ans =
 logical
 1

Check Multiple Equations or Expressions
Check multiple equations or expressions by placing them in an array. checkUnits
returns an array whose elements correspond to the elements of the input.

Check multiple equations for compatible dimensions. checkUnits returns [1 0],
meaning that the first equation has compatible dimensions while the second equation
does not.

u = symunit;
syms x y z
eqn1 = x*u.m == y*u.m^2/(z*u.m);
eqn2 = x*u.m + y*u.s == z*u.m;
eqns = [eqn1 eqn2];
compatible = checkUnits(eqns,'Compatible')

compatible =
 1×2 logical array
 1 0

Check Dimensions and Consistency of Units
Check for both compatible dimensions and consistent units of the equation or expression
by using checkUnits.

Define the equations for x- and y-displacement of a moving projectile. Check their units
for compatibility and consistency.

u = symunit;
g = 9.81*u.cm/u.s^2;

4 Functions — Alphabetical List

4-214

v = 10*u.m/u.s^2;
syms theta x(t) y(t)
x(t) = v*cos(theta)*t;
y(t) = v*sin(theta)*t + (-g*t^2)/2;
S = checkUnits([x y])

S =
 struct with fields:

 Consistent: [1 0]
 Compatible: [1 1]

The second equation has compatible dimensions but inconsistent units. This inconsistency
is because g incorrectly uses cm instead of m. Redefine g and check the equations again.
The second equation now has consistent units.

g = 9.81*u.m/u.s^2;
y(t) = v*sin(theta)*t + (-g*t^2)/2;
S = checkUnits([x y])

S =
 struct with fields:

 Consistent: [1 1]
 Compatible: [1 1]

Input Arguments
expr — Input expression
symbolic expression | symbolic equation | symbolic function | symbolic vector | symbolic
matrix | symbolic multidimensional array

Input expression, specified as a symbolic expression, equation, function, vector, matrix, or
multidimensional array.

See Also
findUnits | isUnit | newUnit | separateUnits | str2symunit | symunit |
symunit2str | unitConversionFactor

 checkUnits

4-215

Topics
“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

Introduced in R2017a

4 Functions — Alphabetical List

4-216

children
Subexpressions or terms of symbolic expression

Syntax
children(expr)
children(A)

Description
children(expr) returns a vector containing the child subexpressions of the symbolic
expression expr. For example, the child subexpressions of a sum are its terms.

children(A) returns a cell array containing the child subexpressions of each expression
in A.

Examples
Find Child Subexpressions of Symbolic Expression
Find the child subexpressions of this expression. Child subexpressions of a sum are its
terms.

syms x y
children(x^2 + x*y + y^2)

ans =
[x*y, x^2, y^2]

Find the child subexpressions of this expression. This expression is also a sum, only some
terms of that sum are negative.

children(x^2 - x*y - y^2)

ans =
[-x*y, x^2, -y^2]

 children

4-217

The child subexpression of a variable is the variable itself:

children(x)

ans =
x

Find Child Subexpressions of Equation

Find the child subexpressions of this equation. The child subexpressions of an equation
are the left and right sides of that equation.

syms x y
children(x^2 + x*y == y^2 + 1)

ans =
[x^2 + y*x, y^2 + 1]

Find the child subexpressions of this inequality. The child subexpressions of an inequality
are the left and right sides of that inequality.

children(sin(x) < cos(x))

ans =
[sin(x), cos(x)]

Find Child Subexpressions of Elements of Matrix
Call the children function for this matrix. The result is the cell array containing the
child subexpressions of each element of the matrix.

syms x y
s = children([x + y, sin(x)*cos(y); x^3 - y^3, exp(x*y^2)])

s =
 2×2 cell array
 {1×2 sym} {1×2 sym}
 {1×2 sym} {1×1 sym}

To access the contents of cells in the cell array, use braces:

s{1:4}

4 Functions — Alphabetical List

4-218

ans =
[x, y]

ans =
[x^3, -y^3]

ans =
[cos(y), sin(x)]

ans =
x*y^2

Input Arguments
expr — Input
symbolic number | symbolic variable | symbolic function | symbolic expression

Input, specified as a symbolic number, variable, function, or expression.

A — Input
symbolic array

Input, specified as a symbolic array.

See Also
coeffs | lhs | numden | rhs | subs

Topics
“Create Symbolic Numbers, Variables, and Expressions” on page 1-3

Introduced in R2012a

 children

4-219

chol
Cholesky factorization

Syntax
T = chol(A)
[T,p] = chol(A)
[T,p,S] = chol(A)
[T,p,s] = chol(A,'vector')
___ = chol(A,'lower')
___ = chol(A,'nocheck')
___ = chol(A,'real')
___ = chol(A,'lower','nocheck','real')
[T,p,s] = chol(A,'lower','vector','nocheck','real')

Description
T = chol(A) returns an upper triangular matrix T, such that T'*T = A. A must be a
Hermitian positive definite matrix on page 4-227. Otherwise, this syntax throws an error.

[T,p] = chol(A) computes the Cholesky factorization on page 4-227 of A. This syntax
does not error if A is not a Hermitian positive definite matrix. If A is a Hermitian positive
definite matrix, then p is 0. Otherwise, T is sym([]), and p is a positive integer (typically,
p = 1).

[T,p,S] = chol(A) returns a permutation matrix S, such that T'*T = S'*A*S, and
the value p = 0 if matrix A is Hermitian positive definite. Otherwise, it returns a positive
integer p and an empty object S = sym([]).

[T,p,s] = chol(A,'vector') returns the permutation information as a vector s,
such that A(s,s) = T'*T. If A is not recognized as a Hermitian positive definite matrix,
then p is a positive integer and s = sym([]).

___ = chol(A,'lower') returns a lower triangular matrix T, such that T*T' = A.

4 Functions — Alphabetical List

4-220

___ = chol(A,'nocheck') skips checking whether matrix A is Hermitian positive
definite. 'nocheck' lets you compute Cholesky factorization of a matrix that contains
symbolic parameters without setting additional assumptions on those parameters.

___ = chol(A,'real') computes the Cholesky factorization of A using real
arithmetic. In this case, chol computes a symmetric factorization A = T.'*T instead of
a Hermitian factorization A = T'*T. This approach is based on the fact that if A is real
and symmetric, then T'*T = T.'*T. Use 'real' to avoid complex conjugates in the
result.

___ = chol(A,'lower','nocheck','real') computes the Cholesky factorization of
A with one or more of these optional arguments: 'lower', 'nocheck', and 'real'.
These optional arguments can appear in any order.

[T,p,s] = chol(A,'lower','vector','nocheck','real') computes the
Cholesky factorization of A and returns the permutation information as a vector s. You
can use one or more of these optional arguments: 'lower', 'nocheck', and 'real'.
These optional arguments can appear in any order.

Examples

Compute Cholesky Factorization of Numeric and Symbolic
Matrices
Compute the Cholesky factorization of the 3-by-3 Hilbert matrix. Because these numbers
are not symbolic objects, you get floating-point results.

chol(hilb(3))

ans =
 1.0000 0.5000 0.3333
 0 0.2887 0.2887
 0 0 0.0745

Now convert this matrix to a symbolic object, and compute the Cholesky factorization:

chol(sym(hilb(3)))

ans =
[1, 1/2, 1/3]

 chol

4-221

[0, 3^(1/2)/6, 3^(1/2)/6]
[0, 0, 5^(1/2)/30]

Return Lower Triangular Matrix
Compute the Cholesky factorization of the 3-by-3 Pascal matrix returning a lower
triangular matrix as a result:

chol(sym(pascal(3)), 'lower')

ans =
[1, 0, 0]
[1, 1, 0]
[1, 2, 1]

If Input is not Hermitian Positive Definite
Try to compute the Cholesky factorization of this matrix. Because this matrix is not
Hermitian positive definite, chol used without output arguments or with one output
argument throws an error:

A = sym([1 1 1; 1 2 3; 1 3 5]);

T = chol(A)

Error using sym/chol (line 132)
Cannot prove that input matrix is Hermitian positive definite.
Define a Hermitian positive definite matrix by setting
appropriate assumptions on matrix components, or use 'nocheck'
to skip checking whether the matrix is Hermitian positive definite.

To suppress the error, use two output arguments, T and p. If the matrix is not recognized
as Hermitian positive definite, then this syntax assigns an empty symbolic object to T and
the value 1 to p:

[T,p] = chol(A)

T =
[empty sym]
p =
 1

For a Hermitian positive definite matrix, p is 0:

4 Functions — Alphabetical List

4-222

[T,p] = chol(sym(pascal(3)))

T =
[1, 1, 1]
[0, 1, 2]
[0, 0, 1]
p =
 0

Alternatively, 'nocheck' lets you skip checking whether A is a Hermitian positive
definite matrix. Thus, this flag lets you compute the Cholesky factorization of a symbolic
matrix without setting additional assumptions on its components to make it Hermitian
positive definite:

syms a
A = [a 0; 0 a];
chol(A,'nocheck')

ans =
[a^(1/2), 0]
[0, a^(1/2)]

If you use 'nocheck' for computing the Cholesky factorization of a matrix that is not
Hermitian positive definite, chol can return a matrix T for which the identity T'*T = A
does not hold. To make isAlways return logical 0 (false) for undecidable conditions,
set Unknown to false.

T = chol(sym([1 1; 2 1]), 'nocheck')

T =
[1, 2]
[0, 3^(1/2)*1i]

isAlways(A == T'*T,'Unknown','false')

ans =
 2×2 logical array
 0 0
 0 0

Return Permutation Matrix
Compute the Cholesky factorization of the 3-by-3 inverse Hilbert matrix returning the
permutation matrix:

 chol

4-223

A = sym(invhilb(3));
[T, p, S] = chol(A)

T =
[3, -12, 10]
[0, 4*3^(1/2), -5*3^(1/2)]
[0, 0, 5^(1/2)]

p =
 0

S =
 1 0 0
 0 1 0
 0 0 1

Return Permutation Information as Vector
Compute the Cholesky factorization of the 3-by-3 inverse Hilbert matrix returning the
permutation information as a vector:

A = sym(invhilb(3));
[T, p, S] = chol(A, 'vector')

T =
[3, -12, 10]
[0, 4*3^(1/2), -5*3^(1/2)]
[0, 0, 5^(1/2)]
p =
 0
S =
 1 2 3

Use Assumptions to Make Matrix Hermitian Positive Definite
Compute the Cholesky factorization of matrix A containing symbolic parameters. Without
additional assumptions on the parameter a, this matrix is not Hermitian. To make
isAlways return logical 0 (false) for undecidable conditions, set Unknown to false.

syms a
A = [a 0; 0 a];
isAlways(A == A','Unknown','false')

4 Functions — Alphabetical List

4-224

ans =
 2×2 logical array
 0 1
 1 0

By setting assumptions on a and b, you can define A to be Hermitian positive definite.
Therefore, you can compute the Cholesky factorization of A:

assume(a > 0)
chol(A)

ans =
[a^(1/2), 0]
[0, a^(1/2)]

For further computations, remove the assumptions on a by recreating it using syms:

syms a

Return Real Result Without Complex Conjugates
Compute the Cholesky factorization of this matrix. To skip checking whether it is
Hermitian positive definite, use 'nocheck'. By default, chol computes a Hermitian
factorization A = T'*T. Thus, the result contains complex conjugates.

syms a b
A = [a b; b a];
T = chol(A, 'nocheck')

T =
[a^(1/2), conj(b)/conj(a^(1/2))]
[0, (a*abs(a) - abs(b)^2)^(1/2)/abs(a)^(1/2)]

To avoid complex conjugates in the result, use 'real':

T = chol(A, 'nocheck', 'real')

T =
[a^(1/2), b/a^(1/2)]
[0, ((a^2 - b^2)/a)^(1/2)]

When you use this flag, chol computes a symmetric factorization A = T.'*T instead of a
Hermitian factorization A = T'*T. To make isAlways return logical 0 (false) for
undecidable conditions, set Unknown to false.

 chol

4-225

isAlways(A == T.'*T)

ans =
 2×2 logical array
 1 1
 1 1

isAlways(A == T'*T,'Unknown','false')

ans =
 2×2 logical array
 0 0
 0 0

Input Arguments
A — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Output Arguments
T — Upper triangular matrix
symbolic matrix

Upper triangular matrix, returned as a symbolic matrix such that T'*T = A. If T is a
lower triangular matrix, then T*T' = A.

p — Output
symbolic number

Flag, returned as a symbolic number. Value 0 if A is Hermitian positive definite or if you
use 'nocheck'.

If chol does not identify A as a Hermitian positive definite matrix, then p is a positive
integer. R is an upper triangular matrix of order q = p - 1, such that R'*R =
A(1:q,1:q).

4 Functions — Alphabetical List

4-226

S — Permutation matrix
symbolic matrix

Permutation matrix returned as a symbolic matrix.

s — Permutation vector
symbolic vector

Permutation vector returned as a symbolic vector.

Limitations
Matrix computations involving many symbolic variables can be slow. To increase the
computational speed, reduce the number of symbolic variables by substituting the given
values for some variables.

Definitions

Hermitian Positive Definite Matrix
A square complex matrix A is Hermitian positive definite if v'*A*v is real and positive for
all nonzero complex vectors v, where v' is the conjugate transpose (Hermitian transpose)
of v.

Cholesky Factorization of a Matrix
The Cholesky factorization of a Hermitian positive definite n-by-n matrix A is defined by
an upper or lower triangular matrix with positive entries on the main diagonal. The
Cholesky factorization of matrix A can be defined as T'*T = A, where T is an upper
triangular matrix. Here T' is the conjugate transpose of T. The Cholesky factorization
also can be defined as T*T' = A, where T is a lower triangular matrix. T is called the
Cholesky factor of A.

 chol

4-227

Tips
• Calling chol for numeric arguments that are not symbolic objects invokes the

MATLAB chol function.
• If you use 'nocheck', then the identities T'*T = A (for an upper triangular matrix

T) and T*T' = A (for a lower triangular matrix T) are not guaranteed to hold.
• If you use 'real', then the identities T'*T = A (for an upper triangular matrix T)

and T*T' = A (for a lower triangular matrix T) are only guaranteed to hold for a real
symmetric positive definite A.

• To use 'vector', you must specify three output arguments. Other flags do not
require a particular number of output arguments.

• If you use 'matrix' instead of 'vector', then chol returns permutation matrices,
as it does by default.

• If you use 'upper' instead of 'lower', then chol returns an upper triangular
matrix, as it does by default.

• If A is not a Hermitian positive definite matrix, then the syntaxes containing the
argument p typically return p = 1 and an empty symbolic object T.

• To check whether a matrix is Hermitian, use the operator ' (or its functional form
ctranspose). Matrix A is Hermitian if and only if A'= A, where A' is the conjugate
transpose of A.

See Also
chol | ctranspose | eig | isAlways | lu | qr | svd | transpose | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-228

close
Close MuPAD notebook

Note

MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts”.

Syntax
close(nb)
close(nb,'force')

Description
close(nb) closes the MuPAD notebook with the handle nb. If you modified the notebook,
close(nb) brings up a dialog box asking if you want to save the changes.

close(nb,'force') closes notebook nb without prompting you to save the changes. If
you modified the notebook, close(nb,'force') discards the changes.

This syntax can be helpful when you evaluate MuPAD notebooks by using
evaluateMuPADNotebook. When you evaluate a notebook, MuPAD inserts results in the
output regions or at least inserts the new input region at the bottom of the notebook, thus
modifying the notebook. If you want to close the notebook quickly without saving such
changes, use close(nb,'force').

Examples

 close

4-229

Close One Notebook

Open and close an existing notebook.

Suppose that your current folder contains a MuPAD notebook named myFile1.mn. Open
this notebook keeping its handle in the variable nb1:

nb1 = mupad('myFile1.mn');

Suppose that you finished using this notebook and now want to close it. Enter this
command in the MATLAB Command Window. If you have unsaved changes in that
notebook, then this command will bring up a dialog box asking if you want to save the
changes.

close(nb1)

Close Several Notebooks

Use a vector of notebook handles to close several notebooks.

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and
myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively.
Also create a new notebook with the handle nb3:

nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad

nb1 =
myFile1

nb2 =
myFile2

nb3 =
Notebook1

Close myFile1.mn and myFile2.mn. If you have unsaved changes in any of these two
notebooks, then this command will bring up a dialog box asking if you want to save the
changes.

4 Functions — Alphabetical List

4-230

close([nb1, nb2])

Close All Open Notebooks

Identify and close all currently open MuPAD notebooks.

Get a list of all currently open notebooks:

allNBs = allMuPADNotebooks;

Close all notebooks. If you have unsaved changes in any notebook, then this command
will bring up a dialog box asking if you want to save the changes.

close(allNBs)

Close All Open Notebooks and Discard Modifications

Identify and close all currently open MuPAD notebooks without saving changes.

Get a list of all currently open notebooks:

allNBs = allMuPADNotebooks;

Close all notebooks using the force flag to suppress the dialog box that offers you to
save changes:

close(allNBs,'force')

Input Arguments
nb — Pointer to MuPAD notebook
handle to notebook | vector of handles to notebooks

Pointer to notebook, specified as a MuPAD notebook handle or a vector of handles. You
create the notebook handle when opening a notebook with the mupad or openmn function.

You can get the list of all open notebooks using the allMuPADNotebooks function.
close accepts a vector of handles returned by allMuPADNotebooks.

 close

4-231

See Also
allMuPADNotebooks | evaluateMuPADNotebook | getVar | mupad |
mupadNotebookTitle | openmn | setVar

Topics
“Create MuPAD Notebooks” on page 3-4
“Open MuPAD Notebooks” on page 3-7
“Save MuPAD Notebooks” on page 3-13
“Evaluate MuPAD Notebooks from MATLAB” on page 3-14
“Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-55
“Close MuPAD Notebooks from MATLAB” on page 3-18

Introduced in R2013b

4 Functions — Alphabetical List

4-232

coeffs
Coefficients of polynomial

Syntax
C = coeffs(p)
C = coeffs(p,var)
C = coeffs(p,vars)
[C,T] = coeffs(___)
___ = coeffs(___ ,'All')

Description
C = coeffs(p) returns coefficients of the polynomial p with respect to all variables
determined in p by symvar.

C = coeffs(p,var) returns coefficients of the polynomial p with respect to the variable
var.

C = coeffs(p,vars) returns coefficients of the multivariate polynomial p with respect
to the variables vars.

[C,T] = coeffs(___) returns the coefficient C and the corresponding terms T of the
polynomial p.

___ = coeffs(___ ,'All') returns all coefficients, including coefficients that are 0.
For example, coeffs(2*x^2,'All') returns [2, 0, 0] instead of 2.

Examples

Coefficients of Univariate Polynomial
Find the coefficients of this univariate polynomial. The coefficients are ordered from the
lowest degree to the highest degree.

 coeffs

4-233

syms x
c = coeffs(16*x^2 + 19*x + 11)

c =
[11, 19, 16]

Reverse the ordering of coefficients by using fliplr.

c = fliplr(c)

c =
[16, 19, 11]

Coefficients of Multivariate Polynomial with Respect to
Particular Variable
Find the coefficients of this polynomial with respect to variable x and variable y.

syms x y
cx = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, x)
cy = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, y)

cx =
[4*y^3, 3*y^2, 2*y, 1]

cy =
[x^3, 2*x^2, 3*x, 4]

Coefficients of Multivariate Polynomial with Respect to Two
Variables
Find the coefficients of this polynomial with respect to both variables x and y.

syms x y
cxy = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, [x y])
cyx = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, [y x])

cxy =
[4, 3, 2, 1]

cyx =
[1, 2, 3, 4]

4 Functions — Alphabetical List

4-234

Coefficients and Corresponding Terms of Univariate
Polynomial
Find the coefficients and the corresponding terms of this univariate polynomial. When two
outputs are provided, the coefficients are ordered from the highest degree to the lowest
degree.

syms x
[c,t] = coeffs(16*x^2 + 19*x + 11)

c =
[16, 19, 11]

t =
[x^2, x, 1]

Coefficients and Corresponding Terms of Multivariate
Polynomial
Find the coefficients and the corresponding terms of this polynomial with respect to
variable x and variable y.

syms x y
[cx,tx] = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, x)
[cy,ty] = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, y)

cx =
[1, 2*y, 3*y^2, 4*y^3]

tx =
[x^3, x^2, x, 1]

cy =
[4, 3*x, 2*x^2, x^3]

ty =
[y^3, y^2, y, 1]

Find the coefficients of this polynomial with respect to both variables x and y.

syms x y
[cxy, txy] = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, [x,y])
[cyx, tyx] = coeffs(x^3 + 2*x^2*y + 3*x*y^2 + 4*y^3, [y,x])

 coeffs

4-235

cxy =
[1, 2, 3, 4]

txy =
[x^3, x^2*y, x*y^2, y^3]

cyx =
[4, 3, 2, 1]

tyx =
[y^3, x*y^2, x^2*y, x^3]

All Coefficients of Polynomial
Find all coefficients of a polynomial, including coefficients that are 0, by specifying the
option 'All'.

Find all coefficients of 3x2.

syms x
c = coeffs(3*x^2, 'All')

c =
[3, 0, 0]

If you find coefficients with respect to multiple variables and specify 'All', then coeffs
returns coefficients for all combinations of the variables.

Find all coefficients and corresponding terms of ax2 + by.

syms a b y
[cxy, txy] = coeffs(a*x^2 + b*y, [y x], 'All')

cxy =
[0, 0, b]
[a, 0, 0]
txy =
[x^2*y, x*y, y]
[x^2, x, 1]

4 Functions — Alphabetical List

4-236

Input Arguments
p — Polynomial
symbolic expression | symbolic function

Polynomial, specified as a symbolic expression or function.

var — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

vars — Polynomial variables
vector of symbolic variables

Polynomial variables, specified as a vector of symbolic variables.

Output Arguments
C — Coefficients of polynomial
symbolic number | symbolic variable | symbolic expression | symbolic vector | symbolic
matrix | symbolic multidimensional array

Coefficients of polynomial, returned as a symbolic number, variable, expression, vector,
matrix, or multidimensional array. If there is only one coefficient and one corresponding
term, then C is returned as a scalar.

T — Terms of polynomial
symbolic number | symbolic variable | symbolic expression | symbolic vector | symbolic
matrix | symbolic multidimensional array

Terms of polynomial, returned as a symbolic number, variable, expression, vector, matrix,
or multidimensional array. If there is only one coefficient and one corresponding term,
then T is returned as a scalar.

See Also
poly2sym | sym2poly

 coeffs

4-237

Introduced before R2006a

4 Functions — Alphabetical List

4-238

collect
Collect coefficients

Syntax
collect(P)
collect(P,expr)

Description
collect(P) collects coefficients in P of the powers of the default variable of P. The
default variable is found by symvar.

collect(P,expr) collects coefficients in P of the powers of the symbolic expression
expr. If P is a vector or matrix, then collect acts element-wise on P. If expr is a vector,
then collect finds coefficients in terms of all expressions in expr.

Examples
Collect Coefficients of Powers of Default Variable
Collect the coefficients of a symbolic expression.

syms x
coeffs = collect((exp(x) + x)*(x + 2))

coeffs =
x^2 + (exp(x) + 2)*x + 2*exp(x)

Because you did not specify the variable, collect uses the default variable defined by
symvar. For this expression, the default variable is x.

symvar((exp(x) + x)*(x + 2), 1)

ans =
x

 collect

4-239

Collect Coefficients of Powers of a Particular Variable
Collect coefficients of a particular variable by specifying the variable as the second
argument to collect.

Collect coefficients of an expression in powers of x, and then in powers of y.

syms x y
coeffs_x = collect(x^2*y + y*x - x^2 - 2*x, x)
coeffs_y = collect(x^2*y + y*x - x^2 - 2*x, y)

coeffs_x =
(y - 1)*x^2 + (y - 2)*x
coeffs_y =
(x^2 + x)*y - x^2 - 2*x

Collect coefficients in powers of both x and y by specifying the second argument as a
vector of variables.

syms a b
coeffs_xy = collect(a^2*x*y + a*b*x^2 + a*x*y + x^2, [x y])

coeffs_xy =
(a*b + 1)*x^2 + (a^2 + a)*x*y

Collect Coefficients in Terms of i and pi
Collect coefficients of an expression in terms of i, and then in terms of pi.

syms x y
coeffs_i = collect(2*x*i - 3*i*y, i)
coeffs_pi = collect(x*pi*(pi - y) + x*(pi + i) + 3*pi*y, pi)

coeffs_i =
(2*x - 3*y)*1i
coeffs_pi =
x*pi^2 + (x + 3*y - x*y)*pi + x*1i

Collect Coefficients of Symbolic Expressions and Functions
Collect coefficients of expressions and functions by specifying the second argument as an
expression or function. Collect coefficients of multiple expressions or functions by using
vector input.

4 Functions — Alphabetical List

4-240

Expand sin(x + 3*y) and collect coefficients of cos(y), and then of both sin(x) and
sin(y).

syms x y
f = expand(sin(x + 3*y));
coeffs_cosy = collect(f, cos(y))

coeffs_cosy =
4*sin(x)*cos(y)^3 + 4*cos(x)*sin(y)*cos(y)^2 + (-3*sin(x))*cos(y) - cos(x)*sin(y)

coeffs_sinxsiny = collect(f, [sin(x) sin(y)])

coeffs_sinxsiny =
(4*cos(y)^3 - 3*cos(y))*sin(x) + (4*cos(x)*cos(y)^2 - cos(x))*sin(y)

Collect coefficients of the symbolic function y(x) in a symbolic expression.

syms y(x)
f = y^2*x + y*x^2 + y*sin(x) + x*y;
coeffs_y = collect(f, y)

coeffs_y(x) =
x*y(x)^2 + (x + sin(x) + x^2)*y(x)

Collect Coefficients for Each Element of Matrix
Call collect on a matrix. collect acts element-wise on the matrix.

syms x y
collect([(x + 1)*(y + 1), x^2 + x*(x -y); 2*x*y - x, x*y + x/y], x)

ans =
[(y + 1)*x + y + 1, 2*x^2 - y*x]
[(2*y - 1)*x, (y + 1/y)*x]

Collect Coefficients of Function Calls
Collect coefficients of calls to a particular function by specifying the function name as the
second argument. Collect coefficients of function calls with respect to multiple functions
by specifying the multiple functions as a cell array of character vectors.

Collect coefficients of calls to the sin function in F, where F contains multiple calls to
different functions.

 collect

4-241

syms a b c d e f x
F = a*sin(2*x) + b*sin(2*x) + c*cos(x) + d*cos(x) + e*sin(3*x) +f*sin(3*x);
collect(F, 'sin')

ans =
(a + b)*sin(2*x) + (e + f)*sin(3*x) + c*cos(x) + d*cos(x)

Collect coefficients of calls to both the sin and cos functions in F.

collect(F, {'sin' 'cos'})

ans =
(c + d)*cos(x) + (a + b)*sin(2*x) + (e + f)*sin(3*x)

Input Arguments
P — Input expression
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input expression, specified as a symbolic expression, function, vector, or matrix.

expr — Expression in terms of which you collect coefficients
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | character vector | cell array of character vectors

Expression in terms of which you collect the coefficients, specified as a symbolic number,
variable, expression, function, or vector; a character vector; a cell array of character
vectors.
Example: i, pi, x, sin(x), y(x), [sin(x) cos(y)], {'sin' 'cos'}.

See Also
combine | expand | factor | horner | numden | rewrite | simplify |
simplifyFraction | symvar

Introduced before R2006a

4 Functions — Alphabetical List

4-242

colon, :
Create symbolic vectors, array subscripting, and for-loop iterators

Syntax
m:n
m:d:n
x:x+r
x:d:x+r

Description
m:n returns a symbolic vector of values [m,m+1,...,n], where m and n are symbolic
constants. If n is not an increment of m, then the last value of the vector stops before n.
This behavior holds for all syntaxes.

m:d:n returns a symbolic vector of values [m,m+d,...,n], where d is a rational
number.

x:x+r returns a symbolic vector of values [x,x+1,...,x+r], where x is a symbolic
variable and r is a rational number.

x:d:x+r returns a symbolic vector of values [x,x+d,...,x+r], where d and r are
rational numbers.

Examples

Create Numeric and Symbolic Arrays
Use the colon operator to create numeric and symbolic arrays. Because these inputs are
not symbolic objects, you receive floating-point results.

1/2:7/2

 colon, :

4-243

ans =
 0.5000 1.5000 2.5000 3.5000

To obtain symbolic results, convert the inputs to symbolic objects.

sym(1/2):sym(7/2)

ans =
[1/2, 3/2, 5/2, 7/2]

Specify the increment used.

sym(1/2):2/3:sym(7/2)

ans =
[1/2, 7/6, 11/6, 5/2, 19/6]

Obtain Increments of Symbolic Variable
syms x
x:x+2

ans =
[x, x + 1, x + 2]

Specify the increment used.

syms x
x:3/7:x+2

ans =
[x, x + 3/7, x + 6/7, x + 9/7, x + 12/7]

Obtain increments between x and 2*x in intervals of x/3.

syms x
x:x/3:2*x

ans =
[x, (4*x)/3, (5*x)/3, 2*x]

Find Product of Harmonic Series
Find the product of the first four terms of the harmonic series.

4 Functions — Alphabetical List

4-244

syms x
p = sym(1);
for i = x:x+3
 p = p*1/i;
end
p

p =
1/(x*(x + 1)*(x + 2)*(x + 3))

Use expand to obtain the full polynomial.

expand(p)

ans =
1/(x^4 + 6*x^3 + 11*x^2 + 6*x)

Use subs to replace x with 1 and find the product in fractions.

p = subs(p,x,1)

p =
1/24

Use vpa to return the result as a floating-point value.

vpa(p)

ans =
0.041666666666666666666666666666667

You can also perform the described operations in a single line of code.

vpa(subs(expand(prod(1./(x:x+3))) ,x,1))

ans =
0.041666666666666666666666666666667

Input Arguments
m — Input
symbolic constant

Input, specified as a symbolic constant.

 colon, :

4-245

n — Input
symbolic constant

Input, specified as a symbolic constant.

x — Input
symbolic variable

Input, specified as a symbolic variable.

r — Upper bound on vector values
symbolic rational

Upper bound on vector values, specified as a symbolic rational. For example, x:x+2
returns [x, x + 1, x + 2].

d — Increment in vector values
symbolic rational

Increment in vector values, specified as a symbolic rational. For example, x:1/2:x+2
returns [x, x + 1/2, x + 1, x + 3/2, x + 2].

See Also
reshape

Introduced before R2006a

4 Functions — Alphabetical List

4-246

colspace
Basis for column space of matrix

Syntax
colspace(A)

Description
colspace(A) returns a symbolic matrix whose columns form a basis for the column
space of the symbolic matrix A.

Examples

Compute Basis for Column Space of Symbolic Matrix

Compute the basis for the column space of a symbolic matrix.

A = sym([2 0;3 4;0 5]);
B = colspace(A)

B =
[1, 0]
[0, 1]
[-15/8, 5/4]

Input Arguments
A — Input
symbolic matrix

Input, specified as a symbolic matrix.

 colspace

4-247

See Also
null

Introduced before R2006a

4 Functions — Alphabetical List

4-248

combine
Combine terms of identical algebraic structure

Syntax
Y = combine(S)
Y = combine(S,T)
Y = combine(___ ,'IgnoreAnalyticConstraints',true)

Description
Y = combine(S) rewrites products of powers in the expression S as a single power.

Y = combine(S,T) combines multiple calls to the target function T in the expression S.
Use combine to implement the inverse functionality of expand with respect to the
majority of the applied rules.

Y = combine(___ ,'IgnoreAnalyticConstraints',true) simplifies the output by
applying common mathematical identities, such as log(a) + log(b) = log(a*b).
These identities might not be valid for all values of the variables, but applying them can
return simpler results.

Examples

Powers of the Same Base
Combine powers of the same base.

syms x y z
combine(x^y*x^z)

ans =
x^(y + z)

 combine

4-249

Combine powers of numeric arguments. To prevent MATLAB from evaluating the
expression, use sym to convert at least one numeric argument into a symbolic value.

syms x y
combine(x^(3)*x^y*x^exp(sym(1)))

ans =
x^(y + exp(1) + 3)

Here, sym converts 1 into a symbolic value, preventing MATLAB from evaluating the
expression e1.

Powers of the Same Exponent
Combine powers with the same exponents in certain cases.

combine(sqrt(sym(2))*sqrt(3))

ans =
6^(1/2)

combine does not usually combine the powers because the internal simplifier applies the
same rules in the opposite direction to expand the result.

syms x y
combine(y^5*x^5)

ans =
x^5*y^5

Terms with Logarithms
Combine terms with logarithms by specifying the target argument as log. For real
positive numbers, the logarithm of a product equals the sum of the logarithms of its
factors.

S = log(sym(2)) + log(sym(3));
combine(S,'log')

ans =
log(6)

Try combining log(a) + log(b). Because a and b are assumed to be complex numbers
by default, the rule does not hold and combine does not combine the terms.

4 Functions — Alphabetical List

4-250

syms a b
S = log(a) + log(b);
combine(S,'log')

ans =
log(a) + log(b)

Apply the rule by setting assumptions such that a and b satisfy the conditions for the rule.

assume(a > 0)
assume(b > 0)
S = log(a) + log(b);
combine(S,'log')

ans =
log(a*b)

For future computations, clear the assumptions set on variables a and b by recreating
them using syms.

syms a b

Alternatively, apply the rule by ignoring analytic constraints using
'IgnoreAnalyticConstraints'.

syms a b
S = log(a) + log(b);
combine(S,'log','IgnoreAnalyticConstraints',true)

ans =
 log(a*b)

Terms with Sine and Cosine Function Calls
Rewrite products of sine and cosine functions as a sum of the functions by setting the
target argument to sincos.

syms a b
combine(sin(a)*cos(b) + sin(b)^2,'sincos')

ans =
sin(a + b)/2 - cos(2*b)/2 + sin(a - b)/2 + 1/2

Rewrite sums of sine and cosine functions by setting the target argument to sincos.

 combine

4-251

combine(cos(a) + sin(a),'sincos')

ans =
2^(1/2)*cos(a - pi/4)

combine does not rewrite powers of sine or cosine functions with negative integer
exponents.

syms a b
combine(sin(b)^(-2)*cos(b)^(-2),'sincos')

ans =
1/(cos(b)^2*sin(b)^2)

Exponential Terms
Combine terms with exponents by specifying the target argument as exp.

combine(exp(sym(3))*exp(sym(2)),'exp')

ans =
exp(5)

syms a
combine(exp(a)^3, 'exp')

ans =
exp(3*a)

Terms with Integrals
Combine terms with integrals by specifying the target argument as int.

syms a f(x) g(x)
combine(int(f(x),x)+int(g(x),x),'int')
combine(a*int(f(x),x),'int')

ans =
int(f(x) + g(x), x)
ans =
int(a*f(x), x)

Combine integrals with the same limits.

4 Functions — Alphabetical List

4-252

syms a b h(z)
combine(int(f(x),x,a,b)+int(h(z),z,a,b),'int')

ans =
int(f(x) + h(x), x, a, b)

Terms with Inverse Tangent Function Calls
Combine two calls to the inverse tangent function by specifying the target argument as
atan.

syms a b
assume(-1 < a < 1)
assume(-1 < b < 1)
combine(atan(a) + atan(b),'atan')

ans =
-atan((a + b)/(a*b - 1))

Combine two calls to the inverse tangent function. combine simplifies the expression to a
symbolic value if possible.

assume(a > 0)
combine(atan(a) + atan(1/a),'atan')

ans =
pi/2

For further computations, clear the assumptions:

syms a b

Terms with Calls to Gamma Function
Combine multiple gamma functions by specifying the target as gamma.

syms x
combine(gamma(x)*gamma(1-x),'gamma')

ans =
 -pi/sin(pi*(x - 1))

combine simplifies quotients of gamma functions to rational expressions.

 combine

4-253

Multiple Input Expressions in One Call
Evaluate multiple expressions in one function call by using a symbolic matrix as the input
parameter.

S = [sqrt(sym(2))*sqrt(5), sqrt(2)*sqrt(sym(11))];
combine(S)

ans =
[10^(1/2), 22^(1/2)]

Input Arguments
S — Input expression
symbolic expression | symbolic vector | symbolic matrix | symbolic function

Input expression, specified as a symbolic expression, function, or as a vector or matrix of
symbolic expressions or functions.

combine works recursively on subexpressions of S.

If S is a symbolic matrix, combine is applied to all elements of the matrix.

T — Target function
'atan' | 'exp' | 'gamma' | 'int' | 'log' | 'sincos' | 'sinhcosh'

Target function, specified as 'atan', 'exp', 'gamma', 'int', 'log', 'sincos', or
'sinhcosh'. The rewriting rules apply only to calls to the target function.

Output Arguments
Y — Expression with combined functions
symbolic variable | symbolic number | symbolic expression | symbolic vector | symbolic
matrix

Expression with the combined functions, returned as a symbolic variable, number,
expression, or as a vector or matrix of symbolic variables, numbers, or expressions.

4 Functions — Alphabetical List

4-254

Algorithms
combine applies the following rewriting rules to the input expression S, depending on the
value of the target argument T.

• When T = 'exp', combine applies these rewriting rules where valid,

eaeb = ea + b

(ea)b = eab .
• When T = 'log',

log(a) + log(b) = log(ab) .

If b < 1000,

blog(a) = log ab .

When b >= 1000, combine does not apply this second rule.

The rules applied to rewrite logarithms do not hold for arbitrary complex values of a
and b. Specify appropriate properties for a or b to enable these rewriting rules.

• When T = 'int',

a∫ f x dx =∫af x dx

∫ f x dx +∫g x dx =∫ f x + g x dx

∫a b
f x dx +∫a b

g x dx =∫a b
f x + g x dx

∫a b
f x dx +∫a b

g y dy =∫a b
f y + g y dy

∫a b
yf x dx +∫a b

xg y dy =∫a b
yf c + xf c dc .

• When T = 'sincos',

sin x sin y = cos x− y
2 − cos x + y

2 .

 combine

4-255

combine applies similar rules for sin(x)cos(y) and cos(x)cos(y).

Acos x + Bsin x = A 1 + B2

A2cos x + tan−1 −B
A .

• When T = 'atan' and -1 < x < 1, -1 < y < 1,

atan x + atan y = atan x + y
1− xy .

• When T = 'sinhcosh',

sinh x sinh y = cosh x + y
2 − cosh(x− y)

2 .

combine applies similar rules for sinh(x)cosh(y) and cosh(x)cosh(y).

combine applies the previous rules recursively to powers of sinh and cosh with
positive integral exponents.

• When T = 'gamma',

aΓ a = Γ a + 1 .

and,

Γ a + 1
Γ a = a .

For positive integers n,

Γ −a Γ a = − π
sin πa .

See Also
collect | expand | factor | horner | numden | rewrite | simplify |
simplifyFraction

Introduced in R2014a

4 Functions — Alphabetical List

4-256

compose
Functional composition

Syntax
compose(f,g)
compose(f,g,z)
compose(f,g,x,z)
compose(f,g,x,y,z)

Description
compose(f,g) returns f(g(y)) where f = f(x) and g = g(y). Here x is the
symbolic variable of f as defined by symvar and y is the symbolic variable of g as defined
by symvar.

compose(f,g,z) returns f(g(z)) where f = f(x), g = g(y), and x and y are the
symbolic variables of f and g as defined by symvar.

compose(f,g,x,z) returns f(g(z)) and makes x the independent variable for f. That
is, if f = cos(x/t), then compose(f,g,x,z) returns cos(g(z)/t) whereas
compose(f,g,t,z) returns cos(x/g(z)).

compose(f,g,x,y,z) returns f(g(z)) and makes x the independent variable for f and
y the independent variable for g. For f = cos(x/t) and g = sin(y/u),
compose(f,g,x,y,z) returns cos(sin(z/u)/t) whereas compose(f,g,x,u,z)
returns cos(sin(y/z)/t).

Examples

Compose Functions From Expressions

Show functional composition by creating functions from existing functions.

 compose

4-257

Declare functions.

syms x y z t u
f = 1/(1 + x^2);
g = sin(y);
h = x^t;
p = exp(-y/u);

Compose functions with different functions and variables as inputs.

a = compose(f,g)

a =
1/(sin(y)^2 + 1)

b = compose(f,g,t)

b =
1/(sin(t)^2 + 1)

c = compose(h,g,x,z)

c =
sin(z)^t

d = compose(h,g,t,z)

d =
x^sin(z)

e = compose(h,p,x,y,z)

e =
exp(-z/u)^t

Input Arguments
f — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

g — Input
symbolic function | symbolic expression

4 Functions — Alphabetical List

4-258

Input, specified as a symbolic function or expression.

x — Symbolic variable
symbolic variable

Symbolic variable, specified as a symbolic variable.

y — Symbolic variable
symbolic variable

Symbolic variable, specified as a symbolic variable.

z — Symbolic variable
symbolic variable

Symbolic variable, specified as a symbolic variable.

See Also
finverse | subs | syms

Introduced before R2006a

 compose

4-259

cond
Condition number of matrix

Syntax
cond(A)
cond(A,P)

Description
cond(A) returns the 2-norm condition number of matrix A.

cond(A,P) returns the P-norm condition number of matrix A.

Examples

Compute 2-Norm Condition Number of Matrix

Compute the 2-norm condition number of the inverse of the 3-by-3 magic square A.

A = inv(sym(magic(3)));
condN2 = cond(A)

condN2 =
(5*3^(1/2))/2

Use vpa to approximate the result.

vpa(condN2, 20)

ans =
4.3301270189221932338186158537647

4 Functions — Alphabetical List

4-260

Compute Different Condition Numbers of Matrix

Compute the 1-norm condition number, the Frobenius condition number, and the infinity
condition number of the inverse of the 3-by-3 magic square A.

A = inv(sym(magic(3)));
condN1 = cond(A, 1)
condNf = cond(A, 'fro')
condNi = cond(A, inf)

condN1 =
16/3

condNf =
(285^(1/2)*391^(1/2))/60

condNi =
16/3

Approximate these results by using vpa.

vpa(condN1)
vpa(condNf)
vpa(condNi)

ans =
5.3333333333333333333333333333333
ans =
5.5636468855119361058627454652148
ans =
5.3333333333333333333333333333333

Compute Condition Number of Hilbert Matrix

Hilbert matrices are examples of ill-conditioned matrices. Numerically compute the
condition numbers of the 3-by-3 Hilbert matrix by using cond and vpa.

H = hilb(sym(3));
condN2 = vpa(cond(H))
condN1 = vpa(cond(H,1))
condNf = vpa(cond(H,'fro'))
condNi = vpa(cond(H,inf))

 cond

4-261

condN2 =
524.05677758606270799646154046059

condN1 =
748.0

condNf =
526.15882107972220183000899851322

condNi =
748.0

Input Arguments
A — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

P — Input
2 (default) | number | character vector

One of these values 1, 2, inf, or 'fro'.

• cond(A,1) returns the 1-norm condition number.
• cond(A,2) or cond(A) returns the 2-norm condition number.
• cond(A,inf) returns the infinity norm condition number.
• cond(A,'fro') returns the Frobenius norm condition number.

Definitions

Condition Number of a Matrix
Condition number of a matrix is the ratio of the largest singular value of that matrix to the
smallest singular value. The P-norm condition number of the matrix A is defined as
norm(A,P)*norm(inv(A),P).

4 Functions — Alphabetical List

4-262

Tips
• Calling cond for a numeric matrix that is not a symbolic object invokes the MATLAB

cond function.

See Also
equationsToMatrix | inv | linsolve | norm | rank

Introduced in R2012b

 cond

4-263

conj
Complex conjugate of symbolic input

Syntax
conj(x)

Description
conj(x) returns the complex conjugate of x. Because symbolic variables are complex by
default, unresolved calls, such as conj(x), can appear in the output of norm, mtimes,
and other functions. For details, see “Use Assumptions on Symbolic Variables” on page 1-
29.

For complex x, conj(x) = real(x) - i*imag(x).

Examples

Conjugate of Numeric and Symbolic Input

Compute the conjugate of numeric input.

conj(1+3i)

ans =
 1.0000 - 3.0000i

Compute the conjugate of symbolic input.

syms x
f = x^2;
fConj = conj(f)

fConj =
conj(x)^2

4 Functions — Alphabetical List

4-264

Convert symbolic output to double by substituting for x with a number by using subs,
and then using double.

fConj = subs(fConj,x,1+2i); % x is 1+2i
fConj = double(fConj)

fConj =
 -3.0000 - 4.0000i

Conjugate of Real Inputs Using Assumptions

If the input is real, conj returns the input instead of an unresolved call. Assume x is real
and find its conjugate. conj returns x instead of conj(x), as expected.

syms x
assume(x,'real')
conj(x)

ans =
x

Clear the assumption for further computations.

assume(x,'clear')

Input Arguments
x — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

See Also
imag | real

Introduced before R2006a

 conj

4-265

convertMuPADNotebook
Convert MuPAD notebook to MATLAB live script

Syntax
convertMuPADNotebook(MuPADfile,MATLABLiveScript)
convertMuPADNotebook(MuPADfile)

Description
convertMuPADNotebook(MuPADfile,MATLABLiveScript) converts a MuPAD
notebook file MuPADfile (.mn) to a MATLAB live script file MATLABLiveScript (.mlx).
Both MuPADfile and MATLABLiveScript must be full paths unless the files are in the
current folder. For information on live scripts, see “Create Live Scripts in the Live Editor”
(MATLAB).

convertMuPADNotebook(MuPADfile) uses the same name and path, MuPADfile, for
the MATLAB live script file that contains converted code. The extension .mn changes
to .mlx in the resulting MATLAB live script file.

Examples

Convert MuPAD Notebook to MATLAB Script
Using convertMuPADNotebook, convert a MuPAD notebook to a MATLAB live script.
Alternatively, right-click the notebook in the Current Folder browser and select Open as
Live Script from the context menu.

Suppose that your current folder contains a MuPAD notebook named myNotebook.mn.
Convert this notebook to the MATLAB live script file named myScript.mlx.

convertMuPADNotebook('myNotebook.mn','myScript.mlx')

Open the resulting file.

4 Functions — Alphabetical List

4-266

edit('myScript.mlx')

Visually check the code for correctness and completeness. Then verify it by running it.

Use Same Name for Converted File
Convert a MuPAD notebook to a MATLAB live script file with the same name.

Suppose that your current folder contains a MuPAD notebook named myFile.mn.
Convert this notebook to the MATLAB live script file named myFile.mlx.

convertMuPADNotebook('myFile.mn')

Open the resulting file.

edit('myFile.mlx')

Visually check the code for correctness and completeness. Then verify it by executing it.

Fix Translation Errors or Warnings
If convertMuPADNotebook reports that the converted code has translation errors or
warnings, correct the resulting MATLAB code before using it.

Convert the MuPAD notebook, myNotebook.mn, to the MATLAB live script file,
myScript.mlx. Because myNotebook.mn contains commands that cannot be directly
translated to MATLAB code, convertMuPADNotebook flags these commands as
translation errors and warnings.

convertMuPADNotebook('myNotebook.mn','myScript.mlx')

Created 'myScript.mlx': 4 translation errors, 1 warnings. For verifying...
 the document, see help.
ans =
c:\MATLABscripts\myScript.mlx

A translation error indicates that convertMuPADNotebook was unable to convert part of
the MuPAD notebook, and that without this part the translated code will not run properly.
A translation warning indicates that convertMuPADNotebook was unable to convert a
part of the MuPAD notebook (for example, an empty input region) and ignored it.
Converted code containing warnings is likely to run without any issues.

Open the resulting file.

 convertMuPADNotebook

4-267

edit('myScript.mlx');

Eliminate translation errors. First, search for “translation error”. Next to “translation
error”, the converted code displays short comments explaining which MuPAD command
did not translate properly. There is also a link to documentation that provides more
details and suggestions for fixing the issue. After fixing the issue, remove the
corresponding error message and any comments related to it.

Find translation warnings by searching for “translation warning”. The converted code
displays a short comment and a link to documentation next to “translation warning”.
Some warnings might require you to adapt the code so it runs properly. In most cases,
you can ignore translation warnings. Whether you fixed the code or decided to ignore the
warning, remove the warning message and any comments related to it.

Visually check the code for correctness and completeness.

Verify that the resulting MATLAB code runs properly by executing it.

Convert All Notebooks in a Folder
Convert all MuPAD notebooks in a folder by making it your current folder, and then using
a loop to call the convertMuPADNotebook function on every notebook in the folder.

files = dir('*.mn');
for i = 1:numel(files)
 convertMuPADNotebook(files(i).name)
end

Convert MuPAD Procedure to MATLAB Function
convertMuPADNotebook converts MuPAD procedures to MATLAB functions. Not all
MuPAD procedures can be converted.

Simple procedures are converted into anonymous functions. Convert a MuPAD notebook
with the following code.

f := x -> x^2
f(2)

The output of convertMuPADNotebook is a live script with the anonymous function f.

4 Functions — Alphabetical List

4-268

For details on anonymous functions, see “Anonymous Functions” (MATLAB).

When procedures are too complex to convert to anonymous functions, they are converted
to local functions in the live script. Local functions are placed at the end of the live script.

Convert a MuPAD notebook with the following code.

x -> if x=1 then 2 else 3 end
f(0)

The procedure is too complex to convert to an anonymous function. The output of
convertMuPADNotebook is a live script with the local function aux2.

 convertMuPADNotebook

4-269

For information on local functions in scripts, see “Add Functions to Scripts” (MATLAB).

When converting a notebook that reads a MuPAD program file (.mu),
convertMuPADNotebook replaces the read command with the contents of the .mu file.
The notebook and program files must be in the same directory.

Input Arguments
MuPADfile — Name of MuPAD notebook
character vector

Name of a MuPAD notebook, specified as a character vector. This character vector must
specify the full path to the file, unless the file is in the current folder.

4 Functions — Alphabetical List

4-270

Example: 'C:\MuPAD_Notebooks\myFile.mn'

MATLABLiveScript — Name of MATLAB live script file
character vector

Name of a MATLAB live script file, specified as a character vector. This character vector
must specify the full path to the file, unless you intend to create a file in the current
folder.
Example: 'C:\MATLAB_Scripts\myFile.mlx'

See Also
generate::MATLAB

Topics
“Convert MuPAD Notebooks to MATLAB Live Scripts” on page 3-20
“Troubleshoot MuPAD to MATLAB Translation Errors” on page 3-26
“Troubleshoot MuPAD to MATLAB Translation Warnings” on page 3-36

Introduced in R2016a

 convertMuPADNotebook

4-271

cos
Symbolic cosine function

Syntax
cos(X)

Description
cos(X) returns the cosine function on page 4-275 of X.

Examples
Cosine Function for Numeric and Symbolic Arguments
Depending on its arguments, cos returns floating-point or exact symbolic results.

Compute the cosine function for these numbers. Because these numbers are not symbolic
objects, cos returns floating-point results.

A = cos([-2, -pi, pi/6, 5*pi/7, 11])

A =
 -0.4161 -1.0000 0.8660 -0.6235 0.0044

Compute the cosine function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, cos returns unresolved symbolic calls.

symA = cos(sym([-2, -pi, pi/6, 5*pi/7, 11]))

symA =
[cos(2), -1, 3^(1/2)/2, -cos((2*pi)/7), cos(11)]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

4 Functions — Alphabetical List

4-272

ans =
[-0.41614683654714238699756822950076,...
-1.0,...
0.86602540378443864676372317075294,...
-0.62348980185873353052500488400424,...
0.0044256979880507857483550247239416]

Plot Cosine Function
Plot the cosine function on the interval from −4π to 4π.

syms x
fplot(cos(x),[-4*pi 4*pi])
grid on

 cos

4-273

Handle Expressions Containing Cosine Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing cos.

Find the first and second derivatives of the cosine function:

syms x
diff(cos(x), x)
diff(cos(x), x, x)

ans =
-sin(x)

ans =
-cos(x)

Find the indefinite integral of the cosine function:

int(cos(x), x)

ans =
sin(x)

Find the Taylor series expansion of cos(x):

taylor(cos(x), x)

ans =
x^4/24 - x^2/2 + 1

Rewrite the cosine function in terms of the exponential function:

rewrite(cos(x), 'exp')

ans =
exp(-x*1i)/2 + exp(x*1i)/2

Evaluate Units with cos Function
cos numerically evaluates these units automatically: radian, degree, arcmin, arcsec,
and revolution.

4 Functions — Alphabetical List

4-274

Show this behavior by finding the cosine of x degrees and 2 radians.

u = symunit;
syms x
f = [x*u.degree 2*u.radian];
cosinf = cos(f)

cosinf =
[cos((pi*x)/180), cos(2)]

You can calculate cosinf by substituting for x using subs and then using double or
vpa.

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Cosine Function
The cosine of an angle, α, defined with reference to a right angled triangle is

cos(α) = adjacent side
hypotenuse = b

h .

 cos

4-275

The cosine of a complex argument, α, is

cos(α) = eiα + e−iα

2 .

See Also
acos | acot | acsc | asec | asin | atan | cot | csc | sec | sin | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-276

cosh
Symbolic hyperbolic cosine function

Syntax
cosh(X)

Description
cosh(X) returns the hyperbolic cosine function of X.

Examples

Hyperbolic Cosine Function for Numeric and Symbolic
Arguments
Depending on its arguments, cosh returns floating-point or exact symbolic results.

Compute the hyperbolic cosine function for these numbers. Because these numbers are
not symbolic objects, cosh returns floating-point results.

A = cosh([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2])

A =
 3.7622 -1.0000 0.8660 -0.6235 -0.0000

Compute the hyperbolic cosine function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, cosh returns unresolved symbolic calls.

symA = cosh(sym([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2]))

symA =
[cosh(2), -1, 3^(1/2)/2, -cosh((pi*2i)/7), 0]

Use vpa to approximate symbolic results with floating-point numbers:

 cosh

4-277

vpa(symA)

ans =
[3.7621956910836314595622134777737,...
-1.0,...
0.86602540378443864676372317075294,...
-0.62348980185873353052500488400424,...
0]

Plot Hyperbolic Cosine Function
Plot the hyperbolic cosine function on the interval from −π to π. Prior to R2016a, use
ezplot instead of fplot.

syms x
fplot(cosh(x), [-pi, pi])
grid on

4 Functions — Alphabetical List

4-278

Handle Expressions Containing Hyperbolic Cosine Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing cosh.

Find the first and second derivatives of the hyperbolic cosine function:

syms x
diff(cosh(x), x)
diff(cosh(x), x, x)

ans =
sinh(x)

 cosh

4-279

ans =
cosh(x)

Find the indefinite integral of the hyperbolic cosine function:

int(cosh(x), x)

ans =
sinh(x)

Find the Taylor series expansion of cosh(x):

taylor(cosh(x), x)

ans =
x^4/24 + x^2/2 + 1

Rewrite the hyperbolic cosine function in terms of the exponential function:

rewrite(cosh(x), 'exp')

ans =
exp(-x)/2 + exp(x)/2

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | atanh | coth | csch | sech | sinh | tanh

Introduced before R2006a

4 Functions — Alphabetical List

4-280

coshint
Hyperbolic cosine integral function

Syntax
coshint(X)

Description
coshint(X) returns the hyperbolic cosine integral function on page 4-284 of X.

Examples

Hyperbolic Cosine Integral Function for Numeric and Symbolic
Arguments
Depending on its arguments, coshint returns floating-point or exact symbolic results.

Compute the hyperbolic cosine integral function for these numbers. Because these
numbers are not symbolic objects, coshint returns floating-point results.

A = coshint([-1, 0, 1/2, 1, pi/2, pi])

A =
 0.8379 + 3.1416i -Inf + 0.0000i -0.0528 + 0.0000i 0.8379...
 + 0.0000i 1.7127 + 0.0000i 5.4587 + 0.0000i

Compute the hyperbolic cosine integral function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, coshint returns unresolved symbolic calls.

symA = coshint(sym([-1, 0, 1/2, 1, pi/2, pi]))

symA =
[coshint(1) + pi*1i, -Inf, coshint(1/2), coshint(1), coshint(pi/2), coshint(pi)]

 coshint

4-281

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[0.83786694098020824089467857943576...
 + 3.1415926535897932384626433832795i,...
-Inf,...
-0.052776844956493615913136063326141,...
0.83786694098020824089467857943576,...
1.7126607364844281079951569897796,...
5.4587340442160681980014878977798]

Plot Hyperbolic Cosine Integral Function
Plot the hyperbolic cosine integral function on the interval from 0 to 2*pi.

syms x
fplot(coshint(x),[0 2*pi])
grid on

4 Functions — Alphabetical List

4-282

Handle Expressions Containing Hyperbolic Cosine Integral
Function
Many functions, such as diff and int, can handle expressions containing coshint.

Find the first and second derivatives of the hyperbolic cosine integral function:

syms x
diff(coshint(x), x)
diff(coshint(x), x, x)

ans =
cosh(x)/x

 coshint

4-283

ans =
sinh(x)/x - cosh(x)/x^2

Find the indefinite integral of the hyperbolic cosine integral function:

int(coshint(x), x)

ans =
x*coshint(x) - sinh(x)

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Hyperbolic Cosine Integral Function
The hyperbolic cosine integral function is defined as follows:

Chi x = γ + log x + ∫
0

x
cosh t − 1

t dt

Here, γ is the Euler-Mascheroni constant:

γ = lim
n ∞

∑
k = 1

n 1
k − ln n

4 Functions — Alphabetical List

4-284

References
[1] Cautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.” Handbook

of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M.
Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
cos | cosint | eulergamma | int | sinhint | sinint | ssinint

Introduced in R2014a

 coshint

4-285

cosint
Cosine integral function

Syntax
cosint(X)

Description
cosint(X) returns the cosine integral function on page 4-289 of X.

Examples

Cosine Integral Function for Numeric and Symbolic Arguments
Depending on its arguments, cosint returns floating-point or exact symbolic results.

Compute the cosine integral function for these numbers. Because these numbers are not
symbolic objects, cosint returns floating-point results.

A = cosint([- 1, 0, pi/2, pi, 1])

A =
 0.3374 + 3.1416i -Inf + 0.0000i 0.4720 + 0.0000i...
 0.0737 + 0.0000i 0.3374 + 0.0000i

Compute the cosine integral function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, cosint returns unresolved symbolic calls.

symA = cosint(sym([- 1, 0, pi/2, pi, 1]))

symA =
[cosint(1) + pi*1i, -Inf, cosint(pi/2), cosint(pi), cosint(1)]

Use vpa to approximate symbolic results with floating-point numbers:

4 Functions — Alphabetical List

4-286

vpa(symA)

ans =
[0.33740392290096813466264620388915...
 + 3.1415926535897932384626433832795i,...
-Inf,...
0.47200065143956865077760610761413,...
0.07366791204642548599010096523015,...
0.33740392290096813466264620388915]

Plot Cosine Integral Function
Plot the cosine integral function on the interval from 0 to 4*pi.

syms x
fplot(cosint(x),[0 4*pi])
grid on

 cosint

4-287

Handle Expressions Containing Cosine Integral Function
Many functions, such as diff and int, can handle expressions containing cosint.

Find the first and second derivatives of the cosine integral function:

syms x
diff(cosint(x), x)
diff(cosint(x), x, x)

ans =
cos(x)/x

4 Functions — Alphabetical List

4-288

ans =
- cos(x)/x^2 - sin(x)/x

Find the indefinite integral of the cosine integral function:

int(cosint(x), x)

ans =
x*cosint(x) - sin(x)

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Cosine Integral Function
The cosine integral function is defined as follows:

Ci x = γ + log(x) + ∫
0

x
cos t − 1

t dt

Here, γ is the Euler-Mascheroni constant:

γ = lim
n ∞

∑
k = 1

n 1
k − ln n

 cosint

4-289

References
[1] Gautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.” Handbook

of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M.
Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
cos | coshint | eulergamma | int | sinhint | sinint | ssinint

Introduced before R2006a

4 Functions — Alphabetical List

4-290

cot
Symbolic cotangent function

Syntax
cot(X)

Description
cot(X) returns the cotangent function on page 4-294 of X.

Examples
Cotangent Function for Numeric and Symbolic Arguments
Depending on its arguments, cot returns floating-point or exact symbolic results.

Compute the cotangent function for these numbers. Because these numbers are not
symbolic objects, cot returns floating-point results.

A = cot([-2, -pi/2, pi/6, 5*pi/7, 11])

A =
 0.4577 -0.0000 1.7321 -0.7975 -0.0044

Compute the cotangent function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, cot returns unresolved symbolic calls.

symA = cot(sym([-2, -pi/2, pi/6, 5*pi/7, 11]))

symA =
[-cot(2), 0, 3^(1/2), -cot((2*pi)/7), cot(11)]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

 cot

4-291

ans =
[0.45765755436028576375027741043205,...
0,...
1.7320508075688772935274463415059,...
-0.79747338888240396141568825421443,...
-0.0044257413313241136855482762848043]

Plot Cotangent Function
Plot the cotangent function on the interval from −π to π.

syms x
fplot(cot(x),[-pi pi])
grid on

4 Functions — Alphabetical List

4-292

Handle Expressions Containing Cotangent Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing cot.

Find the first and second derivatives of the cotangent function:

syms x
diff(cot(x), x)
diff(cot(x), x, x)

ans =
- cot(x)^2 - 1

ans =
2*cot(x)*(cot(x)^2 + 1)

Find the indefinite integral of the cotangent function:

int(cot(x), x)

ans =
log(sin(x))

Find the Taylor series expansion of cot(x) around x = pi/2:

taylor(cot(x), x, pi/2)

ans =
pi/2 - x - (x - pi/2)^3/3 - (2*(x - pi/2)^5)/15

Rewrite the cotangent function in terms of the sine and cosine functions:

rewrite(cot(x), 'sincos')

ans =
 cos(x)/sin(x)

Rewrite the cotangent function in terms of the exponential function:

rewrite(cot(x), 'exp')

ans =
(exp(x*2i)*1i + 1i)/(exp(x*2i) - 1)

 cot

4-293

Evaluate Units with cot Function
cot numerically evaluates these units automatically: radian, degree, arcmin, arcsec,
and revolution.

Show this behavior by finding the cotangent of x degrees and 2 radians.

u = symunit;
syms x
f = [x*u.degree 2*u.radian];
cotf = cot(f)

cotf =
[cot((pi*x)/180), cot(2)]

You can calculate cotf by substituting for x using subs and then using double or vpa.

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Cotangent Function
The cotangent of an angle, α, defined with reference to a right angled triangle is

cot α = 1
tan α = adjacent side

opposite side = b
a .

.

4 Functions — Alphabetical List

4-294

The cotangent of a complex argument α is

cot α =
i eiα + e−iα

eiα− e−iα .

.

See Also
acos | acot | acsc | asec | asin | atan | cos | csc | sec | sin | tan

Introduced before R2006a

 cot

4-295

coth
Symbolic hyperbolic cotangent function

Syntax
coth(X)

Description
coth(X) returns the hyperbolic cotangent function of X

Examples

Hyperbolic Cotangent Function for Numeric and Symbolic
Arguments
Depending on its arguments, coth returns floating-point or exact symbolic results.

Compute the hyperbolic cotangent function for these numbers. Because these numbers
are not symbolic objects, coth returns floating-point results.

A = coth([-2, -pi*i/3, pi*i/6, 5*pi*i/7, 3*pi*i/2])

A =
 -1.0373 + 0.0000i 0.0000 + 0.5774i 0.0000 - 1.7321i...
 0.0000 + 0.7975i 0.0000 - 0.0000i

Compute the hyperbolic cotangent function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, coth returns unresolved symbolic calls.

symA = coth(sym([-2, -pi*i/3, pi*i/6, 5*pi*i/7, 3*pi*i/2]))

symA =
[-coth(2), (3^(1/2)*1i)/3, -3^(1/2)*1i, -coth((pi*2i)/7), 0]

4 Functions — Alphabetical List

4-296

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[-1.0373147207275480958778097647678,...
0.57735026918962576450914878050196i,...
-1.7320508075688772935274463415059i,...
0.79747338888240396141568825421443i,...
0]

Plot Hyperbolic Cotangent Function
Plot the hyperbolic cotangent function on the interval from -10 to 10.

syms x
fplot(coth(x),[-10 10])
grid on

 coth

4-297

Handle Expressions Containing Hyperbolic Cotangent Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing coth.

Find the first and second derivatives of the hyperbolic cotangent function:

syms x
diff(coth(x), x)
diff(coth(x), x, x)

ans =
1 - coth(x)^2

4 Functions — Alphabetical List

4-298

ans =
2*coth(x)*(coth(x)^2 - 1)

Find the indefinite integral of the hyperbolic cotangent function:

int(coth(x), x)

ans =
log(sinh(x))

Find the Taylor series expansion of coth(x) around x = pi*i/2:

taylor(coth(x), x, pi*i/2)

ans =
x - (pi*1i)/2 - (x - (pi*1i)/2)^3/3 + (2*(x - (pi*1i)/2)^5)/15

Rewrite the hyperbolic cotangent function in terms of the exponential function:

rewrite(coth(x), 'exp')

ans =
(exp(2*x) + 1)/(exp(2*x) - 1)

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | atanh | cosh | csch | sech | sinh | tanh

Introduced before R2006a

 coth

4-299

csc
Symbolic cosecant function

Syntax
csc(X)

Description
csc(X) returns the cosecant function on page 4-303 of X.

Examples
Cosecant Function for Numeric and Symbolic Arguments
Depending on its arguments, csc returns floating-point or exact symbolic results.

Compute the cosecant function for these numbers. Because these numbers are not
symbolic objects, csc returns floating-point results.

A = csc([-2, -pi/2, pi/6, 5*pi/7, 11])

A =
 -1.0998 -1.0000 2.0000 1.2790 -1.0000

Compute the cosecant function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, csc returns unresolved symbolic calls.

symA = csc(sym([-2, -pi/2, pi/6, 5*pi/7, 11]))

symA =
[-1/sin(2), -1, 2, 1/sin((2*pi)/7), 1/sin(11)]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

4 Functions — Alphabetical List

4-300

ans =
[-1.0997501702946164667566973970263,...
-1.0,...
2.0,...
1.2790480076899326057478506072714,...
-1.0000097935452091313874644503551]

Plot Cosecant Function
Plot the cosecant function on the interval from −4π to 4π.

syms x
fplot(csc(x),[-4*pi 4*pi])
grid on

 csc

4-301

Handle Expressions Containing Cosecant Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing csc.

Find the first and second derivatives of the cosecant function:

syms x
diff(csc(x), x)
diff(csc(x), x, x)

ans =
-cos(x)/sin(x)^2

ans =
1/sin(x) + (2*cos(x)^2)/sin(x)^3

Find the indefinite integral of the cosecant function:

int(csc(x), x)

ans =
log(tan(x/2))

Find the Taylor series expansion of csc(x) around x = pi/2:

taylor(csc(x), x, pi/2)

ans =
(x - pi/2)^2/2 + (5*(x - pi/2)^4)/24 + 1

Rewrite the cosecant function in terms of the exponential function:

rewrite(csc(x), 'exp')

ans =
1/((exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2)

Evaluate Units with csc Function
csc numerically evaluates these units automatically: radian, degree, arcmin, arcsec,
and revolution.

4 Functions — Alphabetical List

4-302

Show this behavior by finding the cosecant of x degrees and 2 radians.

u = symunit;
syms x
f = [x*u.degree 2*u.radian];
cosecf = csc(f)

cosecf =
[1/sin((pi*x)/180), 1/sin(2)]

You can calculate cosecf by substituting for x using subs and then using double or
vpa.

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Cosecant Function
The cosecant of an angle, α, defined with reference to a right angled triangle is

csc(α) = 1
sin α = hypotenuse

opposite side = h
a .

 csc

4-303

The cosecant of a complex argument, α, is

csc α = 2i
eiα− e−iα .

See Also
acos | acot | acsc | asec | asin | atan | cos | cot | csc | sin | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-304

csch
Symbolic hyperbolic cosecant function

Syntax
csch(X)

Description
csch(X) returns the hyperbolic cosecant function of X.

Examples

Hyperbolic Cosecant Function for Numeric and Symbolic
Arguments
Depending on its arguments, csch returns floating-point or exact symbolic results.

Compute the hyperbolic cosecant function for these numbers. Because these numbers are
not symbolic objects, csch returns floating-point results.

A = csch([-2, -pi*i/2, 0, pi*i/3, 5*pi*i/7, pi*i/2])

A =
 -0.2757 + 0.0000i 0.0000 + 1.0000i Inf + 0.0000i...
 0.0000 - 1.1547i 0.0000 - 1.2790i 0.0000 - 1.0000i

Compute the hyperbolic cosecant function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, csch returns unresolved symbolic calls.

symA = csch(sym([-2, -pi*i/2, 0, pi*i/3, 5*pi*i/7, pi*i/2]))

symA =
[-1/sinh(2), 1i, Inf, -(3^(1/2)*2i)/3, 1/sinh((pi*2i)/7), -1i]

 csch

4-305

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[-0.27572056477178320775835148216303,...
1.0i,...
Inf,...
-1.1547005383792515290182975610039i,...
-1.2790480076899326057478506072714i,...
-1.0i]

Plot Hyperbolic Cosecant Function
Plot the hyperbolic cosecant function on the interval from -10 to 10.

syms x
fplot(csch(x),[-10 10])
grid on

4 Functions — Alphabetical List

4-306

Handle Expressions Containing Hyperbolic Cosecant Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing csch.

Find the first and second derivatives of the hyperbolic cosecant function:

syms x
diff(csch(x), x)
diff(csch(x), x, x)

ans =
-cosh(x)/sinh(x)^2

 csch

4-307

ans =
(2*cosh(x)^2)/sinh(x)^3 - 1/sinh(x)

Find the indefinite integral of the hyperbolic cosecant function:

int(csch(x), x)

ans =
log(tanh(x/2))

Find the Taylor series expansion of csch(x) around x = pi*i/2:

taylor(csch(x), x, pi*i/2)

ans =
((x - (pi*1i)/2)^2*1i)/2 - ((x - (pi*1i)/2)^4*5i)/24 - 1i

Rewrite the hyperbolic cosecant function in terms of the exponential function:

rewrite(csch(x), 'exp')

ans =
-1/(exp(-x)/2 - exp(x)/2)

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | atanh | cosh | coth | sech | sinh | tanh

Introduced before R2006a

4 Functions — Alphabetical List

4-308

ctranspose, '
Symbolic matrix complex conjugate transpose

Syntax
A'
ctranspose(A)

Description
A' computes the complex conjugate transpose on page 4-311 of A.

ctranspose(A) is equivalent to A'.

Examples

Conjugate Transpose of Real Matrix
Create a 2-by-3 matrix, the elements of which represent real numbers.

syms x y real
A = [x x x; y y y]

A =
[x, x, x]
[y, y, y]

Find the complex conjugate transpose of this matrix.

A'

ans =
[x, y]
[x, y]
[x, y]

 ctranspose, '

4-309

If all elements of a matrix represent real numbers, then its complex conjugate transform
equals to its nonconjugate transform.

isAlways(A' == A.')

ans =
 3×2 logical array
 1 1
 1 1
 1 1

Conjugate Transpose of Complex Matrix
Create a 2-by-2 matrix, the elements of which represent complex numbers.

syms x y real
A = [x + y*i x - y*i; y + x*i y - x*i]

A =
[x + y*1i, x - y*1i]
[y + x*1i, y - x*1i]

Find the conjugate transpose of this matrix. The complex conjugate transpose operator,
A', performs a transpose and negates the sign of the imaginary portion of the complex
elements in A.

A'

ans =
[x - y*1i, y - x*1i]
[x + y*1i, y + x*1i]

For a matrix of complex numbers with nonzero imaginary parts, the complex conjugate
transform is not equal to the nonconjugate transform.

isAlways(A' == A.','Unknown','false')

ans =
 2×2 logical array
 0 0
 0 0

4 Functions — Alphabetical List

4-310

Input Arguments
A — Input
number | symbolic number | symbolic variable | symbolic expression | symbolic vector |
symbolic matrix | symbolic multidimensional array

Input, specified as a number or a symbolic number, variable, expression, vector, matrix,
multidimensional array.

Definitions

Complex Conjugate Transpose
The complex conjugate transpose of a matrix interchanges the row and column index for
each element, reflecting the elements across the main diagonal. The operation also
negates the imaginary part of any complex numbers.

For example, if B = A' and A(1,2) is 1+1i, then the element B(2,1) is 1-1i.

See Also
ldivide | minus | mldivide | mpower | mrdivide | mtimes | plus | power | rdivide |
times | transpose

Introduced before R2006a

 ctranspose, '

4-311

cumprod
Symbolic cumulative product

Syntax
B = cumprod(A)
B = cumprod(A,dim)
B = cumprod(___ ,direction)

Description
B = cumprod(A) returns an array the same size as A containing the cumulative product.

• If A is a vector, then cumprod(A) returns a vector containing the cumulative product
of the elements of A.

• If A is a matrix, then cumprod(A) returns a matrix containing the cumulative products
of each column of A.

B = cumprod(A,dim) returns the cumulative product along dimension dim. For
example, if A is a matrix, then cumprod(A,2) returns the cumulative product of each
row.

B = cumprod(___ ,direction) specifies the direction using any of the previous
syntaxes. For instance, cumprod(A,2,'reverse') returns the cumulative product
within the rows of A by working from end to beginning of the second dimension.

Examples

Cumulative Product of Vector
Create a vector and find the cumulative product of its elements.

V = 1./factorial(sym([1:5]))
prod_V = cumprod(V)

4 Functions — Alphabetical List

4-312

V =
[1, 1/2, 1/6, 1/24, 1/120]

prod_V =
[1, 1/2, 1/12, 1/288, 1/34560]

Cumulative Product of Each Column in Symbolic Matrix
Create matrix a 4-by-4 symbolic matrix X all elements of which equal x.

syms x
X = x*ones(4,4)

X =
[x, x, x, x]
[x, x, x, x]
[x, x, x, x]
[x, x, x, x]

Compute the cumulative product of the elements of X. By default, cumprod returns the
cumulative product of each column.

productX = cumprod(X)

productX =
[x, x, x, x]
[x^2, x^2, x^2, x^2]
[x^3, x^3, x^3, x^3]
[x^4, x^4, x^4, x^4]

Cumulative Product of Each Row in Symbolic Matrix
Create matrix a 4-by-4 symbolic matrix, all elements of which equal x.

syms x
X = x*ones(4,4)

X =
[x, x, x, x]
[x, x, x, x]
[x, x, x, x]
[x, x, x, x]

Compute the cumulative product of each row of the matrix X.

 cumprod

4-313

productX = cumprod(X,2)

productX =
[x, x^2, x^3, x^4]
[x, x^2, x^3, x^4]
[x, x^2, x^3, x^4]
[x, x^2, x^3, x^4]

Reverse Cumulative Product
Create matrix a 4-by-4 symbolic matrix X all elements of which equal x.

syms x
X = x*ones(4,4)

X =
[x, x, x, x]
[x, x, x, x]
[x, x, x, x]
[x, x, x, x]

Calculate the cumulative product along the columns in both directions. Specify the
'reverse' option to work from right to left in each row.

columnsDirect = cumprod(X)
columnsReverse = cumprod(X,'reverse')

columnsDirect =
[x, x, x, x]
[x^2, x^2, x^2, x^2]
[x^3, x^3, x^3, x^3]
[x^4, x^4, x^4, x^4]

columnsReverse =
[x^4, x^4, x^4, x^4]
[x^3, x^3, x^3, x^3]
[x^2, x^2, x^2, x^2]
[x, x, x, x]

Calculate the cumulative product along the rows in both directions. Specify the
'reverse' option to work from right to left in each row.

rowsDirect = cumprod(X,2)
rowsReverse = cumprod(X,2,'reverse')

4 Functions — Alphabetical List

4-314

rowsDirect =
[x, x^2, x^3, x^4]
[x, x^2, x^3, x^4]
[x, x^2, x^3, x^4]
[x, x^2, x^3, x^4]

rowsReverse =
[x^4, x^3, x^2, x]
[x^4, x^3, x^2, x]
[x^4, x^3, x^2, x]
[x^4, x^3, x^2, x]

Input Arguments
A — Input array
symbolic vector | symbolic matrix

Input array, specified as a vector or matrix.

dim — Dimension to operate along
positive integer

Dimension to operate along, specified as a positive integer. The default value is 1.

Consider a two-dimensional input array, A.

• cumprod(A,1)) works on successive elements in the columns of A and returns the
cumulative product of each column.

• cumprod(A,2) works on successive elements in the rows of A and returns the
cumulative product of each row.

cumprod returns A if dim is greater than ndims(A).

 cumprod

4-315

direction — Direction of cumulation
'forward' (default) | 'reverse'

Direction of cumulation, specified as the 'forward' (default) or 'reverse'.

• 'forward' works from 1 to end of the active dimension.
• 'reverse' works from end to 1 of the active dimension.

Output Arguments
B — Cumulative product array
vector | matrix

Cumulative product array, returned as a vector or matrix of the same size as the input A.

See Also
cumsum | fold | int | symprod | symsum

Introduced in R2013b

4 Functions — Alphabetical List

4-316

cumsum
Symbolic cumulative sum

Syntax
B = cumsum(A)
B = cumsum(A,dim)
B = cumsum(___ ,direction)

Description
B = cumsum(A) returns an array the same size as A containing the cumulative sum.

• If A is a vector, then cumsum(A) returns a vector containing the cumulative sum of the
elements of A.

• If A is a matrix, then cumsum(A) returns a matrix containing the cumulative sums of
each column of A.

B = cumsum(A,dim) returns the cumulative sum along dimension dim. For example, if A
is a matrix, then cumsum(A,2) returns the cumulative sum of each row.

B = cumsum(___ ,direction) specifies the direction using any of the previous
syntaxes. For instance, cumsum(A,2,'reverse') returns the cumulative sum within the
rows of A by working from end to beginning of the second dimension.

Examples

Cumulative Sum of Vector
Create a vector and find the cumulative sum of its elements.

V = 1./factorial(sym([1:5]))
sum_V = cumsum(V)

 cumsum

4-317

V =
[1, 1/2, 1/6, 1/24, 1/120]

sum_V =
[1, 3/2, 5/3, 41/24, 103/60]

Cumulative Sum of Each Column in Symbolic Matrix
Create matrix a 4-by-4 symbolic matrix A all elements of which equal 1.

A = sym(ones(4,4))

A =
[1, 1, 1, 1]
[1, 1, 1, 1]
[1, 1, 1, 1]
[1, 1, 1, 1]

Compute the cumulative sum of elements of A. By default, cumsum returns the cumulative
sum of each column.

sumA = cumsum(A)

sumA =
[1, 1, 1, 1]
[2, 2, 2, 2]
[3, 3, 3, 3]
[4, 4, 4, 4]

Cumulative Sum of Each Row in Symbolic Matrix
Create matrix a 4-by-4 symbolic matrix A all elements of which equal 1.

A = sym(ones(4,4))

A =
[1, 1, 1, 1]
[1, 1, 1, 1]
[1, 1, 1, 1]
[1, 1, 1, 1]

Compute the cumulative sum of each row of the matrix A.

sumA = cumsum(A,2)

4 Functions — Alphabetical List

4-318

sumA =
[1, 2, 3, 4]
[1, 2, 3, 4]
[1, 2, 3, 4]
[1, 2, 3, 4]

Reverse Cumulative Sum
Create matrix a 4-by-4 symbolic matrix, all elements of which equal 1.

A = sym(ones(4,4))

A =
[1, 1, 1, 1]
[1, 1, 1, 1]
[1, 1, 1, 1]
[1, 1, 1, 1]

Calculate the cumulative sum along the columns in both directions. Specify the
'reverse' option to work from right to left in each row.

columnsDirect = cumsum(A)
columnsReverse = cumsum(A,'reverse')

columnsDirect =
[1, 1, 1, 1]
[2, 2, 2, 2]
[3, 3, 3, 3]
[4, 4, 4, 4]

columnsReverse =
[4, 4, 4, 4]
[3, 3, 3, 3]
[2, 2, 2, 2]
[1, 1, 1, 1]

Calculate the cumulative sum along the rows in both directions. Specify the 'reverse'
option to work from right to left in each row.

rowsDirect = cumsum(A,2)
rowsReverse = cumsum(A,2,'reverse')

rowsDirect =
[1, 2, 3, 4]

 cumsum

4-319

[1, 2, 3, 4]
[1, 2, 3, 4]
[1, 2, 3, 4]

rowsReverse =
[4, 3, 2, 1]
[4, 3, 2, 1]
[4, 3, 2, 1]
[4, 3, 2, 1]

Input Arguments
A — Input array
symbolic vector | symbolic matrix

Input array, specified as a vector or matrix.

dim — Dimension to operate along
positive integer

Dimension to operate along, specified as a positive integer. The default value is 1.

Consider a two-dimensional input array, A:

• cumsum(A,1) works on successive elements in the columns of A and returns the
cumulative sum of each column.

• cumsum(A,2) works on successive elements in the rows of A and returns the
cumulative sum of each row.

cumsum returns A if dim is greater than ndims(A).

4 Functions — Alphabetical List

4-320

direction — Direction of cumulation
'forward' (default) | 'reverse'

Direction of cumulation, specified as the 'forward' (default) or 'reverse'.

• 'forward' works from 1 to end of the active dimension.
• 'reverse' works from end to 1 of the active dimension.

Output Arguments
B — Cumulative sum array
vector | matrix

Cumulative sum array, returned as a vector or matrix of the same size as the input A.

See Also
cumprod | fold | int | symprod | symsum

Introduced in R2013b

 cumsum

4-321

curl
Curl of vector field

Syntax
curl(V,X)
curl(V)

Description
curl(V,X) returns the curl of the vector field on page 4-324 V with respect to the vector
X. The vector field V and the vector X are both three-dimensional.

curl(V) returns the curl of the vector field V with respect to the vector of variables
returned by symvar(V,3).

Examples

Compute Curl of Vector Field

Compute the curl of this vector field with respect to vector X = (x, y, z) in Cartesian
coordinates.

syms x y z
V = [x^3*y^2*z, y^3*z^2*x, z^3*x^2*y];
X = [x y z];
curl(V,X)

ans =
 x^2*z^3 - 2*x*y^3*z
 x^3*y^2 - 2*x*y*z^3
 - 2*x^3*y*z + y^3*z^2

4 Functions — Alphabetical List

4-322

Show Curl of Gradient of Scalar Function is Zero

Compute the curl of the gradient of this scalar function. The curl of the gradient of any
scalar function is the vector of 0s.

syms x y z
f = x^2 + y^2 + z^2;
vars = [x y z];
curl(gradient(f,vars),vars)

ans =
 0
 0
 0

Compute Vector Laplacian of Vector Field

The vector Laplacian of a vector field V is defined as follows.

∇2V = ∇ ∇ ⋅ V − ∇ × ∇ × V

Compute the vector Laplacian of this vector field using the curl, divergence, and
gradient functions.

syms x y z
V = [x^2*y, y^2*z, z^2*x];
vars = [x y z];
gradient(divergence(V,vars)) - curl(curl(V,vars),vars)

ans =
 2*y
 2*z
 2*x

Input Arguments
V — Input
three-dimensional symbolic vector

Input, specified as a three-dimensional vector of symbolic expressions or symbolic
functions.

 curl

4-323

X — Variables
vector of three variables

Variables, specified as a vector of three variables

Definitions

Curl of a Vector Field
The curl of the vector field V = (V1, V2, V3) with respect to the vector X = (X1, X2, X3) in
Cartesian coordinates is this vector.

curl(V) = ∇ × V =

∂V3
∂X2

−
∂V2
∂X3

∂V1
∂X3

−
∂V3
∂X1

∂V2
∂X1

−
∂V1
∂X2

See Also
diff | divergence | gradient | hessian | jacobian | laplacian | potential |
vectorPotential

Introduced in R2012a

4 Functions — Alphabetical List

4-324

daeFunction
Convert system of differential algebraic equations to MATLAB function handle suitable for
ode15i

Syntax
f = daeFunction(eqs,vars)
f = daeFunction(eqs,vars,p1,...,pN)
f = daeFunction(___ ,Name,Value)

Description
f = daeFunction(eqs,vars) converts a system of symbolic first-order differential
algebraic equations (DAEs) to a MATLAB function handle acceptable as an input
argument to the numerical MATLAB DAE solver ode15i.

f = daeFunction(eqs,vars,p1,...,pN) lets you specify the symbolic parameters of
the system as p1,...,pN.

f = daeFunction(___ ,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Examples

Convert DAE System to Function Handle

Create the system of differential algebraic equations. Here, the symbolic functions x1(t)
and x2(t) represent the state variables of the system. The system also contains constant
symbolic parameters a, b, and the parameter function r(t). These parameters do not
represent state variables. Specify the equations and state variables as two symbolic
vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic
function calls.

 daeFunction

4-325

syms x1(t) x2(t) a b r(t)
eqs = [diff(x1(t),t) == a*x1(t) + b*x2(t)^2,...
 x1(t)^2 + x2(t)^2 == r(t)^2];
vars = [x1(t), x2(t)];

Use daeFunction to generate a MATLAB function handle f depending on the variables
x1(t), x2(t) and on the parameters a, b, r(t).

f = daeFunction(eqs, vars, a, b, r(t))

f =
 function_handle with value:
 @(t,in2,in3,param1,param2,param3)[in3(1,:)-param1.*in2(1,:)...
-param2.*in2(2,:).^2;-param3.^2+in2(1,:).^2+in2(2,:).^2]

Specify the parameter values, and create the reduced function handle F as follows.

a = -0.6;
b = -0.1;
r = @(t) cos(t)/(1 + t^2);
F = @(t, Y, YP) f(t,Y,YP,a,b,r(t));

Specify consistent initial conditions for the DAE system.

t0 = 0;
y0 = [-r(t0)*sin(0.1); r(t0)*cos(0.1)];
yp0= [a*y0(1) + b*y0(2)^2; 1.234];

Now, use ode15i to solve the system of equations.

ode15i(F, [t0, 1], y0, yp0)

4 Functions — Alphabetical List

4-326

Write Function to File with Comments

Write the generated function handle to a file by specifying the File option. When writing
to a file, daeFunction optimizes the code using intermediate variables named t0, t1, .…
Include comments in the file using the Comments option.

Write the generated function handle to the file myfile.

syms x1(t) x2(t) a b r(t)
eqs = [diff(x1(t),t) == a*x1(t) + b*x2(t)^2,...
 x1(t)^2 + x2(t)^2 == r(t)^2];
vars = [x1(t), x2(t)];
daeFunction(eqs, vars, a, b, r(t), 'File', 'myfile')

 daeFunction

4-327

function eqs = myfile(t,in2,in3,param1,param2,param3)
%MYFILE
% EQS = MYFILE(T,IN2,IN3,PARAM1,PARAM2,PARAM3)

% This function was generated by the Symbolic Math Toolbox version 7.3.
% 01-Jan-2017 00:00:00

YP1 = in3(1,:);
x1 = in2(1,:);
x2 = in2(2,:);
t2 = x2.^2;
eqs = [YP1-param2.*t2-param1.*x1;t2-param3.^2+x1.^2];

Include the comment Version: 1.1.

daeFunction(eqs, vars, a, b, r(t), 'File', 'myfile',...
 'Comments','Version: 1.1');

function eqs = myfile(t,in2,in3,param4,param5,param6)
...
%Version: 1.1
YP3 = in3(1,:);
...

Input Arguments
eqs — System of first-order DAEs
vector of symbolic equations | vector of symbolic expressions

System of first-order DAEs, specified as a vector of symbolic equations or expressions.
Here, expressions represent equations with zero right side.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as x(t).
Example: [x(t),y(t)] or [x(t);y(t)]

p1,...,pN — Parameters of system
symbolic variables | symbolic functions | symbolic function calls | symbolic vector |
symbolic matrix

4 Functions — Alphabetical List

4-328

Parameters of the system, specified as symbolic variables, functions, or function calls,
such as f(t). You can also specify parameters of the system as a vector or matrix of
symbolic variables, functions, or function calls. If eqs contains symbolic parameters other
than the variables specified in vars, you must specify these additional parameters as
p1,...,pN.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: daeFunction(eqns,vars,'File','myfile')

Comments — Comments to include in file header
character vector | cell array of character vectors | string vector

Comments to include in the file header, specified as a character vector, cell array of
character vectors, or string vector.

File — Path to file containing generated code
character vector

Path to the file containing generated code, specified as a character vector. The generated
file accepts arguments of type double, and can be used without Symbolic Math Toolbox.
If the value is an empty character vector, odeFunction generates an anonymous
function. If the character vector does not end in .m, the function appends .m.

By default, daeFunction with the File argument generates a file containing optimized
code. Optimized means intermediate variables are automatically generated to simplify or
speed up the code. MATLAB generates intermediate variables as a lowercase letter t
followed by an automatically generated number, for example t32. To disable code
optimization, use the Optimize argument.

Optimize — Flag preventing optimization of code written to function file
true (default) | false

Flag preventing optimization of code written to a function file, specified as false or
true.

By default, daeFunction with the File argument generates a file containing optimized
code. Optimized means intermediate variables are automatically generated to simplify or

 daeFunction

4-329

speed up the code. MATLAB generates intermediate variables as a lowercase letter t
followed by an automatically generated number, for example t32.

daeFunction without the File argument (or with a file path specified by an empty
character vector) creates a function handle. In this case, the code is not optimized. If you
try to enforce code optimization by setting Optimize to true, then daeFunction throws
an error.

Sparse — Flag that switches between sparse and dense matrix generation
false (default) | true

Flag that switches between sparse and dense matrix generation, specified as true or
false. When you specify 'Sparse',true, the generated function represents symbolic
matrices by sparse numeric matrices. Use 'Sparse',true when you convert symbolic
matrices containing many zero elements. Often, operations on sparse matrices are more
efficient than the same operations on dense matrices.

Output Arguments
f — Function handle that can serve as input argument to ode15i
MATLAB function handle

Function handle that can serve as input argument to ode15i, returned as a MATLAB
function handle.

See Also
decic | findDecoupledBlocks | incidenceMatrix | isLowIndexDAE |
massMatrixForm | matlabFunction | ode15i | odeFunction | reduceDAEIndex |
reduceDAEToODE | reduceDifferentialOrder | reduceRedundancies

Topics
“Solve Differential Algebraic Equations (DAEs)” on page 2-203

Introduced in R2014b

4 Functions — Alphabetical List

4-330

dawson
Dawson integral

Syntax
dawson(X)

Description
dawson(X) represents the Dawson integral on page 4-334.

Examples
Dawson Integral for Numeric and Symbolic Arguments
Depending on its arguments, dawson returns floating-point or exact symbolic results.

Compute the Dawson integrals for these numbers. Because these numbers are not
symbolic objects, dawson returns floating-point results.

A = dawson([-Inf, -3/2, -1, 0, 2, Inf])

A =
 0 -0.4282 -0.5381 0 0.3013 0

Compute the Dawson integrals for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, dawson returns unresolved symbolic calls.

symA = dawson(sym([-Inf, -3/2, -1, 0, 2, Inf]))

symA =
[0, -dawson(3/2), -dawson(1), 0, dawson(2), 0]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

 dawson

4-331

ans =
[0,...
-0.42824907108539862547719010515175,...
-0.53807950691276841913638742040756,...
0,...
0.30134038892379196603466443928642,...
0]

Plot the Dawson Integral
Plot the Dawson integral on the interval from -10 to 10.

syms x
fplot(dawson(x),[-10 10])
grid on

4 Functions — Alphabetical List

4-332

Handle Expressions Containing Dawson Integral
Many functions, such as diff and limit, can handle expressions containing dawson.

Find the first and second derivatives of the Dawson integral:

syms x
diff(dawson(x), x)
diff(dawson(x), x, x)

ans =
1 - 2*x*dawson(x)

 dawson

4-333

ans =
2*x*(2*x*dawson(x) - 1) - 2*dawson(x)

Find the limit of this expression involving dawson:

limit(x*dawson(x), Inf)

ans =
1/2

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Dawson Integral
The Dawson integral, also called the Dawson function, is defined as follows:

dawson x = D x = e−x2∫
0

x
et2dt

Symbolic Math Toolbox uses this definition to implement dawson.

The alternative definition of the Dawson integral is

D x = ex2∫
0

x
e−t2dt

4 Functions — Alphabetical List

4-334

Tips
• dawson(0) returns 0.
• dawson(Inf) returns 0.
• dawson(-Inf) returns 0.

See Also
erf | erfc

Introduced in R2014a

 dawson

4-335

decic
Find consistent initial conditions for first-order implicit ODE system with algebraic
constraints

Syntax
[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0_est,fixedVars,yp0_est,
options)

Description
[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0_est,fixedVars,yp0_est,
options) finds consistent initial conditions for the system of first-order implicit ordinary
differential equations with algebraic constraints returned by the reduceDAEToODE
function.

The call [eqs,constraintEqs] = reduceDAEToODE(DA_eqs,vars) reduces the
system of differential algebraic equations DA_eqs to the system of implicit ODEs eqs. It
also returns constraint equations encountered during system reduction. For the variables
of this ODE system and their derivatives, decic finds consistent initial conditions y0, yp0
at the time t0.

Substituting the numerical values y0, yp0 into the differential equations subs(eqs, [t;
vars(t); diff(vars(t))], [t0; y0; yp0]) and the constraint equations
subs(constr, [t; vars(t); diff(vars(t))], [t0; y0; yp0]) produces zero
vectors. Here, vars must be a column vector.

y0_est specifies numerical estimates for the values of the variables vars at the time t0,
and fixedVars indicates the values in y0_est that must not change during the
numerical search. The optional argument yp0_est lets you specify numerical estimates
for the values of the derivatives of the variables vars at the time t0.

4 Functions — Alphabetical List

4-336

Examples

Find Consistent Initial Conditions for ODE System
Reduce the DAE system to a system of implicit ODEs. Then, find consistent initial
conditions for the variables of the resulting ODE system and their first derivatives.

Create the following differential algebraic system.

syms x(t) y(t)
DA_eqs = [diff(x(t),t) == cos(t) + y(t),...
 x(t)^2 + y(t)^2 == 1];
vars = [x(t); y(t)];

Use reduceDAEToODE to convert this system to a system of implicit ODEs.

[eqs, constraintEqs] = reduceDAEToODE(DA_eqs, vars)

eqs =
 diff(x(t), t) - y(t) - cos(t)
 - 2*x(t)*diff(x(t), t) - 2*y(t)*diff(y(t), t)

constraintEqs =
1 - y(t)^2 - x(t)^2

Create an option set that specifies numerical tolerances for the numerical search.

options = odeset('RelTol', 10.0^(-7), 'AbsTol', 10.0^(-7));

Fix values t0 = 0 for the time and numerical estimates for consistent values of the
variables and their derivatives.

t0 = 0;
y0_est = [0.1, 0.9];
yp0_est = [0.0, 0.0];

You can treat the constraint as an algebraic equation for the variable x with the fixed
parameter y. For this, set fixedVars = [0 1]. Alternatively, you can treat it as an
algebraic equation for the variable y with the fixed parameter x. For this, set fixedVars
= [1 0].

First, set the initial value x(t0) = y0_est(1) = 0.1.

 decic

4-337

fixedVars = [1 0];
[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0_est,fixedVars,yp0_est,options)

y0 =
 0.1000
 0.9950

yp0 =
 1.9950
 -0.2005

Now, change fixedVars to [0 1]. This fixes y(t0) = y0_est(2) = 0.9.

fixedVars = [0 1];
[y0,yp0] = decic(eqs,vars,constraintEqs,t0,y0_est,fixedVars,yp0_est,options)

y0 =
 -0.4359
 0.9000

yp0 =
 1.9000
 0.9202

Verify that these initial values are consistent initial values satisfying the equations and the
constraints.

subs(eqs, [t; vars; diff(vars,t)], [t0; y0; yp0])

ans =
 0
 0

subs(constraintEqs, [t; vars; diff(vars,t)], [t0; y0; yp0])

ans =
0

Input Arguments
eqs — System of implicit ordinary differential equations
vector of symbolic equations | vector of symbolic expressions

4 Functions — Alphabetical List

4-338

System of implicit ordinary differential equations, specified as a vector of symbolic
equations or expressions. Here, expressions represent equations with zero right side.

Typically, you use expressions returned by reduceDAEToODE.

vars — State variables of original DAE system
vector of symbolic functions | vector of symbolic function calls

State variables of original DAE system, specified as a vector of symbolic functions or
function calls, such as x(t).
Example: [x(t),y(t)] or [x(t);y(t)]

constraintEqs — Constraint equations found by reduceDAEToODE during system
reduction
vector of symbolic equations | vector of symbolic expressions

Constraint equations encountered during system reduction, specified as a vector of
symbolic equations or expressions. These expressions or equations depend on the
variables vars, but not on their derivatives.

Typically, you use constraint equations returned by reduceDAEToODE.

t0 — Initial time
number

Initial time, specified as a number.

y0_est — Estimates for values of variables vars at initial time t0
numeric vector

Estimates for the values of the variables vars at the initial time t0, specified as a
numeric vector.

fixedVars — Input vector indicating which elements of y0_est are fixed values
vector with elements 0 or 1

Input vector indicating which elements of y0_est are fixed values, specified as a vector
with 0s or 1s. Fixed values of y0_est correspond to values 1 in fixedVars. These values
are not modified during the numerical search. The zero entries in fixedVars correspond
to those variables in y0_est for which decic solves the constraint equations. The
number of 0s must coincide with the number of constraint equations. The Jacobian matrix

 decic

4-339

of the constraints with respect to the variables vars(fixedVars == 0) must be
invertible.

yp0_est — Estimates for values of first derivatives of variables vars at initial
time t0
numeric vector

Estimates for the values of the first derivatives of the variables vars at the initial time
t0, specified as a numeric vector.

options — Options for numerical search
options structure, returned by odeset

Options for numerical search, specified as an options structure, returned by odeset. For
example, you can specify tolerances for the numerical search here.

Output Arguments
y0 — Consistent initial values for variables
numeric column vector

Consistent initial values for variables, returned as a numeric column vector.

yp0 — Consistent initial values for first derivatives of variables
numeric column vector

Consistent initial values for first derivatives of variables, returned as a numeric column
vector.

See Also
daeFunction | findDecoupledBlocks | incidenceMatrix | isLowIndexDAE |
massMatrixForm | odeFunction | reduceDAEIndex | reduceDAEToODE |
reduceDifferentialOrder | reduceRedundancies

Topics
“Solve Differential Algebraic Equations (DAEs)” on page 2-203

4 Functions — Alphabetical List

4-340

Introduced in R2014b

 decic

4-341

derivedUnits
Derived units of unit system

Syntax
derivedUnits(unitSystem)

Description
derivedUnits(unitSystem) returns the derived units of the unit system unitSystem
as a vector of symbolic units. You can use the returned units to create new unit systems
by using newUnitSystem.

Examples

Derived Units of Unit System

Get the derived units of a unit system by using derivedUnits. Then, modify the derived
units and create a new unit system using the modified derived units. Available unit
systems include SI, CGS, and US. For all unit systems, see “Unit Systems List” on page 2-
36.

Get the derived units of the SI unit system.

dunits = derivedUnits('SI')

dunits =
[[F], [C], [S], [H], [V], [J], [N], [lx], [lm], [Wb], [W], [Pa],...
 [Ohm], [T], [Gy], [Bq], [Sv], [Hz], [kat], [rad], [sr], [Celsius]]

Note Do not define a variable called derivedUnits because the variable will prevent
access to the derivedUnits function.

4 Functions — Alphabetical List

4-342

Define derived units that use kilonewton for force and millibar for pressure by modifying
dunits using subs.

u = symunit;
newUnits = subs(dunits,[u.N u.Pa],[u.kN u.mbar])

newUnits =
[[F], [C], [S], [H], [V], [J], [kN], [lx], [lm], [Wb], [W], [mbar],...
 [Ohm], [T], [Gy], [Bq], [Sv], [Hz], [kat], [rad], [sr], [Celsius]]

Define the new unit system by using newUnitSystem. Keep the SI base units.

bunits = baseUnits('SI');
newUnitSystem('SI_kN_mbar',bunits,newUnits)

ans =
 "SI_kN_mbar"

To convert between unit systems, see “Unit Conversions and Unit Systems” on page 2-39.

Input Arguments
unitSystem — Name of unit system
string | character vector

Name of the unit system, specified as a string or character vector.

See Also
baseUnits | newUnitSystem | removeUnitSystem | rewrite | symunit |
unitSystems

Topics
“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

External Websites
The International System of Units (SI)

 derivedUnits

4-343

https://www.bipm.org/en/publications/si-brochure/

Introduced in R2017b

4 Functions — Alphabetical List

4-344

det
Determinant of symbolic matrix

Syntax
B = det(A)
B = det(A,'Algorithm','minor-expansion')

Description
B = det(A) returns the determinant of the square matrix A.

B = det(A,'Algorithm','minor-expansion') uses the minor expansion algorithm
to evaluate the determinant of A.

Examples

Compute Determinant of Symbolic Matrix

Compute the determinant of a symbolic matrix.

syms a b c d
M = [a b; c d];
B = det(M)

B = a d− b c

Compute Determinant of Matrix with Symbolic Numbers

Compute the determinant of a matrix that contain symbolic numbers.

A = sym([2/3 1/3; 1 1]);
B = det(A)

B =

 det

4-345

1
3

Compute Determinant Using Minor Expansion

Create a symbolic matrix that contains polynomial entries.

syms a x
A = [1, a*x^2+x, x;
 0, a*x, 2;
 3*x+2, a*x^2-1, 0]

A =
1 a x2 + x x
0 a x 2

3 x + 2 a x2− 1 0

Compute the determinant of the matrix using minor expansion.

B = det(A,'Algorithm','minor-expansion')

B = 3 a x3 + 6 x2 + 4 x + 2

Input Arguments
A — Input matrix
square numeric matrix | square symbolic matrix

Input, specified as a square numeric or symbolic matrix.

Tips
• Matrix computations involving many symbolic variables can be slow. To increase the

computational speed, reduce the number of symbolic variables by substituting the
given values for some variables.

4 Functions — Alphabetical List

4-346

• The minor expansion method is generally useful to evaluate the determinant of a
matrix that contains many symbolic variables. This method is often suited to matrices
that contain polynomial entries with multivariate coefficients.

References
[1] Khovanova, T. and Z. Scully. "Efficient Calculation of Determinants of Symbolic

Matrices with Many Variables." arXiv preprint arXiv:1304.4691 (2013).

See Also
eig | rank

Introduced before R2006a

 det

4-347

https://arxiv.org/abs/1304.4691

diag
Create diagonal matrix or get diagonals from symbolic matrices

Syntax
D = diag(v)
D = diag(v,k)

x = diag(A)
x = diag(A,k)

Description
D = diag(v) returns a square diagonal matrix with vector v as the main diagonal.

D = diag(v,k) places vector v on the kth diagonal. k = 0 represents the main
diagonal, k > 0 is above the main diagonal, and k < 0 is below the main diagonal.

x = diag(A) returns the main diagonal of A.

x = diag(A,k) returns the kth diagonal of A.

Examples

Create Matrix with Diagonal as Vector

Create a symbolic matrix with the main diagonal specified by the vector v.

syms a b c
v = [a b c];
diag(v)

ans =
[a, 0, 0]

4 Functions — Alphabetical List

4-348

[0, b, 0]
[0, 0, c]

Create Matrix with Subdiagonal as Vector

Create a symbolic matrix with the second diagonal below the main diagonal specified by
the vector v.

syms a b c
v = [a b c];
diag(v,-2)

ans =
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[a, 0, 0, 0, 0]
[0, b, 0, 0, 0]
[0, 0, c, 0, 0]

Extract Diagonal from Matrix

Extract the main diagonal from a square matrix.

syms x y z
A = magic(3).*[x, y, z];
diag(A)

ans =
 8*x
 5*y
 2*z

Extract Superdiagonal from Matrix

Extract the first diagonal above the main diagonal.

syms x y z
A = magic(3).*[x, y, z];
diag(A,1)

 diag

4-349

ans =
 y
 7*z

Input Arguments
v — Diagonal elements
symbolic vector

Diagonal elements, specified as a symbolic vector. If v is a vector with N elements, then
diag(v,k) is a square matrix of order N + abs(k).

A — Input matrix
symbolic matrix

Input matrix, specified as a symbolic matrix.

k — Diagonal number
integer

Diagonal number, specified as an integer. k = 0 represents the main diagonal, k > 0 is
above the main diagonal, and k < 0 is below the main diagonal.

Tips
• The trace of a matrix is equal to sum(diag(A)).

See Also
tril | triu

Introduced before R2006a

4 Functions — Alphabetical List

4-350

diff
Differentiate symbolic expression or function

Syntax
diff(F)
diff(F,var)
diff(F,n)
diff(F,var,n)
diff(F,var1,...,varN)

Description
diff(F) differentiates F with respect to the variable determined by symvar(F,1).

diff(F,var) differentiates F with respect to the variable var.

diff(F,n) computes the nth derivative of F with respect to the variable determined by
symvar.

diff(F,var,n) computes the nth derivative of F with respect to the variable var.

diff(F,var1,...,varN) differentiates F with respect to the variables
var1,...,varN.

Examples

Differentiate Function
Find the derivative of the function sin(x^2).

syms f(x)
f(x) = sin(x^2);
df = diff(f,x)

 diff

4-351

df(x) =
2*x*cos(x^2)

Find the value of the derivative at x = 2. Convert the value to double.

df2 = df(2)

df2 =
4*cos(4)

double(df2)

ans =
 -2.6146

Differentiation with Respect to Particular Variable
Find the first derivative of this expression:

syms x t
diff(sin(x*t^2))

ans =
t^2*cos(t^2*x)

Because you did not specify the differentiation variable, diff uses the default variable
defined by symvar. For this expression, the default variable is x:

symvar(sin(x*t^2),1)

ans =
x

Now, find the derivative of this expression with respect to the variable t:

diff(sin(x*t^2),t)

ans =
2*t*x*cos(t^2*x)

Higher-Order Derivatives of Univariate Expression
Find the 4th, 5th, and 6th derivatives of this expression:

4 Functions — Alphabetical List

4-352

syms t
d4 = diff(t^6,4)
d5 = diff(t^6,5)
d6 = diff(t^6,6)

d4 =
360*t^2

d5 =
720*t

d6 =
720

Higher-Order Derivatives of Multivariate Expression with
Respect to Particular Variable
Find the second derivative of this expression with respect to the variable y:

syms x y
diff(x*cos(x*y), y, 2)

ans =
-x^3*cos(x*y)

Higher-Order Derivatives of Multivariate Expression with
Respect to Default Variable
Compute the second derivative of the expression x*y. If you do not specify the
differentiation variable, diff uses the variable determined by symvar. For this
expression, symvar(x*y,1) returns x. Therefore, diff computes the second derivative
of x*y with respect to x.

syms x y
diff(x*y, 2)

ans =
0

If you use nested diff calls and do not specify the differentiation variable, diff
determines the differentiation variable for each call. For example, differentiate the
expression x*y by calling the diff function twice:

 diff

4-353

diff(diff(x*y))

ans =
1

In the first call, diff differentiate x*y with respect to x, and returns y. In the second
call, diff differentiates y with respect to y, and returns 1.

Thus, diff(x*y, 2) is equivalent to diff(x*y, x, x), and diff(diff(x*y)) is
equivalent to diff(x*y, x, y).

Mixed Derivatives
Differentiate this expression with respect to the variables x and y:

syms x y
diff(x*sin(x*y), x, y)

ans =
2*x*cos(x*y) - x^2*y*sin(x*y)

You also can compute mixed higher-order derivatives by providing all differentiation
variables:

syms x y
diff(x*sin(x*y), x, x, x, y)

ans =
x^2*y^3*sin(x*y) - 6*x*y^2*cos(x*y) - 6*y*sin(x*y)

Input Arguments
F — Expression or function to differentiate
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Expression or function to differentiate, specified as a symbolic expression or function or
as a vector or matrix of symbolic expressions or functions. If F is a vector or a matrix,
diff differentiates each element of F and returns a vector or a matrix of the same size as
F.

var — Differentiation variable
symbolic variable

4 Functions — Alphabetical List

4-354

Differentiation variable, specified as a symbolic variable.

var1,...,varN — Differentiation variables
symbolic variables

Differentiation variables, specified as symbolic variables.

n — Differentiation order
nonnegative integer

Differentiation order, specified as a nonnegative integer.

Tips
• When computing mixed higher-order derivatives, do not use n to specify the
differentiation order. Instead, specify all differentiation variables explicitly.

• To improve performance, diff assumes that all mixed derivatives commute. For
example,

∂
∂x

∂
∂y f x, y = ∂

∂y
∂
∂x f x, y

This assumption suffices for most engineering and scientific problems.
• If you differentiate a multivariate expression or function F without specifying the
differentiation variable, then a nested call to diff and diff(F,n) can return
different results. This is because in a nested call, each differentiation step determines
and uses its own differentiation variable. In calls like diff(F,n), the differentiation
variable is determined once by symvar(F,1) and used for all differentiation steps.

• If you differentiate an expression or function containing abs or sign, ensure that the
arguments are real values. For complex arguments of abs and sign, the diff
function formally computes the derivative, but this result is not generally valid
because abs and sign are not differentiable over complex numbers.

See Also
curl | divergence | functionalDerivative | gradient | hessian | int | jacobian
| laplacian | symvar

 diff

4-355

Topics
“Differentiation” on page 2-48
“Find Asymptotes, Critical and Inflection Points” on page 2-86

Introduced before R2006a

4 Functions — Alphabetical List

4-356

digits
Change variable precision used

Syntax
digits(d)
d1 = digits
d1 = digits(d)

Description
digits(d) sets the precision used by vpa to d significant decimal digits. The default is
32 digits.

d1 = digits returns the current precision used by vpa.

d1 = digits(d) sets the new precision d and returns the old precision in d1.

Examples

Increase Precision of Results
By default, MATLAB uses 16 digits of precision. For higher precision, use vpa. The default
precision for vpa is 32 digits. Increase precision beyond 32 digits by using digits.

Find pi using vpa, which uses the default 32 digits of precision. Confirm that the current
precision is 32 by using digits.

pi32 = vpa(pi)

pi32 =
3.1415926535897932384626433832795

currentPrecision = digits

 digits

4-357

currentPrecision =
 32

Save the current value of digits in digitsOld and set the new precision to 100 digits.
Find pi using vpa. The result has 100 digits.

digitsOld = digits(100);
pi100 = vpa(pi)

pi100 =
3.1415926535897932384626433832795028841971693993751058209...
74944592307816406286208998628034825342117068

Note vpa output is symbolic. To use symbolic output with a MATLAB function that does
not accept symbolic values, convert symbolic values to double precision by using double.

Lastly, restore the old value of digits for further calculations.

digits(digitsOld)

For more information, see “Increase Precision of Numeric Calculations” on page 2-123.

Increase Speed by Decreasing Precision
Increase the speed of MATLAB calculations by using vpa with a lower precision. Set the
lower precision by using digits.

First, find the time taken to perform an operation on a large input.

input = 1:0.01:500;
tic
zeta(input);
toc

Elapsed time is 48.968983 seconds.

Now, repeat the operation with a lower precision by using vpa. Lower the precision to 10
digits by using digits. Then, use vpa to reduce the precision of input and perform the
same operation. The time taken decreases significantly.

digitsOld = digits(10);
vpaInput = vpa(input);

4 Functions — Alphabetical List

4-358

tic
zeta(vpaInput);
toc

Elapsed time is 31.450342 seconds.

Note vpa output is symbolic. To use symbolic output with a MATLAB function that does
not accept symbolic values, convert symbolic values to double precision by using double.

Lastly, restore the old value of digits for further calculations.

digits(digitsOld)

For more information, see “Increase Speed by Reducing Precision” on page 2-130.

Guard Digits
The number of digits that you specify using the vpa function or the digits function is
the guaranteed number of digits. Internally, the toolbox can use a few more digits than
you specify. These additional digits are called guard digits. For example, set the number
of digits to 4, and then display the floating-point approximation of 1/3 using four digits:

old = digits(4);
a = vpa(1/3)

a =
0.3333

Now, display a using 20 digits. The result shows that the toolbox internally used more
than four digits when computing a. The last digits in the following result are incorrect
because of the round-off error:

digits(20)
vpa(a)
digits(old)

ans =
0.33333333333303016843

 digits

4-359

Hidden Round-Off Errors
Hidden round-off errors can cause unexpected results. For example, compute the number
1/10 with the default 32-digit accuracy and with 10-digit accuracy:

a = vpa(1/10)
old = digits(10);
b = vpa(1/10)
digits(old)

a =
0.1

b =
0.1

Now, compute the difference a - b. The result is not 0:

a - b

ans =
0.000000000000000000086736173798840354720600815844403

The difference a - b is not equal to zero because the toolbox internally boosts the 10-
digit number b = 0.1 to 32-digit accuracy. This process implies round-off errors. The
toolbox actually computes the difference a - b as follows:

b = vpa(b)
a - b

b =
0.09999999999999999991326382620116

ans =
0.000000000000000000086736173798840354720600815844403

Techniques Used to Convert Floating-Point Numbers to
Symbolic Objects
Suppose you convert a double number to a symbolic object, and then perform VPA
operations on that object. The results can depend on the conversion technique that you
used to convert a floating-point number to a symbolic object. The sym function lets you
choose the conversion technique by specifying the optional second argument, which can

4 Functions — Alphabetical List

4-360

be 'r', 'f', 'd', or 'e'. The default is 'r'. For example, convert the constant
π = 3.141592653589793... to a symbolic object:

r = sym(pi)
f = sym(pi,'f')
d = sym(pi,'d')
e = sym(pi,'e')

r =
pi

f =
884279719003555/281474976710656

d =
3.1415926535897931159979634685442

e =
pi - (198*eps)/359

Although the toolbox displays these numbers differently on the screen, they are rational
approximations of pi. Use vpa to convert these rational approximations of pi back to
floating-point values.

Set the number of digits to 4. Three of the four approximations give the same result.

digits(4)
vpa(r)
vpa(f)
vpa(d)
vpa(e)

ans =
3.142

ans =
3.142

ans =
3.142

ans =
3.142 - 0.5515*eps

 digits

4-361

Now, set the number of digits to 40. The differences between the symbolic approximations
of pi become more visible.

digits(40)
vpa(r)
vpa(f)
vpa(d)
vpa(e)

ans =
3.141592653589793238462643383279502884197

ans =
3.141592653589793115997963468544185161591

ans =
3.1415926535897931159979634685442

ans =
3.141592653589793238462643383279502884197 -...
0.5515320334261838440111420612813370473538*eps

Input Arguments
d — New accuracy setting
number | symbolic number

New accuracy setting, specified as a number or symbolic number. The setting specifies
the number of significant decimal digits to be used for variable-precision calculations. If
the value d is not an integer, digits rounds it to the nearest integer.

Output Arguments
d1 — Current accuracy setting
double-precision number

Current accuracy setting, returned as a double-precision number. The setting specifies
the number of significant decimal digits currently used for variable-precision calculations.

4 Functions — Alphabetical List

4-362

See Also
double | vpa

Topics
“Increase Precision of Numeric Calculations” on page 2-123
“Recognize and Avoid Round-Off Errors” on page 2-125
“Increase Speed by Reducing Precision” on page 2-130

Introduced before R2006a

 digits

4-363

dilog
Dilogarithm function

Syntax
dilog(X)

Description
dilog(X) returns the dilogarithm function.

Examples

Dilogarithm Function for Numeric and Symbolic Arguments
Depending on its arguments, dilog returns floating-point or exact symbolic results.

Compute the dilogarithm function for these numbers. Because these numbers are not
symbolic objects, dilog returns floating-point results.

A = dilog([-1, 0, 1/4, 1/2, 1, 2])

A =
 2.4674 - 2.1776i 1.6449 + 0.0000i 0.9785 + 0.0000i...
 0.5822 + 0.0000i 0.0000 + 0.0000i -0.8225 + 0.0000i

Compute the dilogarithm function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, dilog returns unresolved symbolic calls.

symA = dilog(sym([-1, 0, 1/4, 1/2, 1, 2]))

symA =
[pi^2/4 - pi*log(2)*1i, pi^2/6, dilog(1/4), pi^2/12 - log(2)^2/2, 0, -pi^2/12]

Use vpa to approximate symbolic results with floating-point numbers:

4 Functions — Alphabetical List

4-364

vpa(symA)

ans =
[2.467401100272339654708622749969 - 2.1775860903036021305006888982376i,...
1.644934066848226436472415166646,...
0.97846939293030610374306666652456,...
0.58224052646501250590265632015968,...
0,...
-0.82246703342411321823620758332301]

Plot Dilogarithm Function
Plot the dilogarithm function on the interval from 0 to 10.

syms x
fplot(dilog(x),[0 10])
grid on

 dilog

4-365

Handle Expressions Containing Dilogarithm Function
Many functions, such as diff, int, and limit, can handle expressions containing
dilog.

Find the first and second derivatives of the dilogarithm function:

syms x
diff(dilog(x), x)
diff(dilog(x), x, x)

ans =
-log(x)/(x - 1)

4 Functions — Alphabetical List

4-366

ans =
log(x)/(x - 1)^2 - 1/(x*(x - 1))

Find the indefinite integral of the dilogarithm function:

int(dilog(x), x)

ans =
x*(dilog(x) + log(x) - 1) - dilog(x)

Find the limit of this expression involving dilog:

limit(dilog(x)/x, Inf)

ans =
0

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Dilogarithm Function
There are two common definitions of the dilogarithm function.

The implementation of the dilog function uses the following definition:

dilog x = ∫
1

x
ln t
1− t dt

Another common definition of the dilogarithm function is

 dilog

4-367

Li2 x = ∫
x

0
ln 1− t

t dt

Thus, dilog(x) = Li2(1 – x).

Tips
• dilog(sym(-1)) returns pi^2/4 - pi*log(2)*i.
• dilog(sym(0)) returns pi^2/6.
• dilog(sym(1/2)) returns pi^2/12 - log(2)^2/2.
• dilog(sym(1)) returns 0.
• dilog(sym(2)) returns -pi^2/12.
• dilog(sym(i)) returns pi^2/16 - (pi*log(2)*i)/4 - catalan*i.
• dilog(sym(-i)) returns catalan*i + (pi*log(2)*i)/4 + pi^2/16.
• dilog(sym(1 + i)) returns - catalan*i - pi^2/48.
• dilog(sym(1 - i)) returns catalan*i - pi^2/48.
• dilog(sym(Inf)) returns -Inf.

References
[1] Stegun, I. A. “Miscellaneous Functions.” Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

See Also
log | zeta

Introduced in R2014a

4 Functions — Alphabetical List

4-368

dirac
Dirac delta function

Syntax
dirac(x)
dirac(n,x)

Description
dirac(x) represents the Dirac delta function on page 4-373 of x.

dirac(n,x) represents the nth derivative of the Dirac delta function at x.

Examples

Handle Expressions Involving Dirac and Heaviside Functions
Compute derivatives and integrals of expressions involving the Dirac delta and Heaviside
functions.

Find the first and second derivatives of the Heaviside function. The result is the Dirac
delta function and its first derivative.

syms x
diff(heaviside(x), x)
diff(heaviside(x), x, x)

ans =
dirac(x)

ans =
dirac(1, x)

 dirac

4-369

Find the indefinite integral of the Dirac delta function. The results returned by int do not
include integration constants.

int(dirac(x), x)

ans =
sign(x)/2

Find the integral of this expression involving the Dirac delta function.

syms a
int(dirac(x - a)*sin(x), x, -Inf, Inf)

ans =
sin(a)

Use Assumptions on Variables
dirac takes into account assumptions on variables.

syms x real
assumeAlso(x ~= 0)
dirac(x)

ans =
0

For further computations, clear the assumptions on x by recreating it using syms.

syms x

Evaluate Dirac delta Function for Symbolic Matrix
Compute the Dirac delta function of x and its first three derivatives.

Use a vector n = [0, 1, 2, 3] to specify the order of derivatives. The dirac function
expands the scalar into a vector of the same size as n and computes the result.

n = [0, 1, 2, 3];
d = dirac(n, x)

d =
[dirac(x), dirac(1, x), dirac(2, x), dirac(3, x)]

4 Functions — Alphabetical List

4-370

Substitute x with 0.

subs(d, x, 0)

ans =
[Inf, -Inf, Inf, -Inf]

Plot Dirac Delta Function
To handle the infinity at 0, use numeric values instead of symbolic values. Continue
plotting all other symbolic inputs symbolically by using fplot.

Set the Inf value to 1 and plot by using stem.

x = -1:0.1:1;
y = dirac(x);
idx = y == Inf; % find Inf
y(idx) = 1; % set Inf to finite value
stem(x,y)

 dirac

4-371

Input Arguments
x — Input
number | symbolic number | symbolic variable | symbolic expression | symbolic function |
vector | matrix | multidimensional array

Input, specified as a number, symbolic number, variable, expression, or function,
representing a real number. This input can also be a vector, matrix, or multidimensional
array of numbers, symbolic numbers, variables, expressions, or functions.

4 Functions — Alphabetical List

4-372

n — Order of derivative
nonnegative number | symbolic variable | symbolic expression | symbolic function | vector
| matrix | multidimensional array

Order of derivative, specified as a nonnegative number, or symbolic variable, expression,
or function representing a nonnegative number. This input can also be a vector, matrix, or
multidimensional array of nonnegative numbers, symbolic numbers, variables,
expressions, or functions.

Definitions

Dirac delta Function
The Dirac delta function, δ(x), has the value 0 for all x ≠ 0, and ∞ for x = 0.

For any smooth function f and a real number a,

∫
−∞

∞
dirac(x− a) f (x) = f (a)

Tips
• For complex values x with nonzero imaginary parts, dirac returns NaN.
• dirac returns floating-point results for numeric arguments that are not symbolic

objects.
• dirac acts element-wise on nonscalar inputs.
• At least one input argument must be a scalar or both arguments must be vectors or

matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, then dirac expands the scalar into a vector or matrix of the same
size as the other argument with all elements equal to that scalar.

See Also
heaviside | kroneckerDelta

 dirac

4-373

Introduced before R2006a

4 Functions — Alphabetical List

4-374

divergence
Divergence of vector field

Syntax
divergence(V,X)

Description
divergence(V,X) returns the divergence of vector field on page 4-375 V with respect to
the vector X in Cartesian coordinates. Vectors V and X must have the same length.

Examples

Find Divergence of Vector Field

Find the divergence of the vector field V(x,y,z) = (x, 2y2, 3z3) with respect to vector
X = (x,y,z).

syms x y z
field = [x 2*y^2 3*z^3];
vars = [x y z];
divergence(field,vars)

ans =
9*z^2 + 4*y + 1

Show that the divergence of the curl of the vector field is 0.

divergence(curl(field,vars),vars)

ans =
0

Find the divergence of the gradient of this scalar function. The result is the Laplacian of
the scalar function.

 divergence

4-375

syms x y z
f = x^2 + y^2 + z^2;
divergence(gradient(f,vars),vars)

ans =
6

Find Electric Charge Density from Electric Field

Gauss’ Law in differential form states that the divergence of electric field is proportional
to the electric charge density.

∇ . E r =
ρ r
ε0

.

Find the electric charge density for the electric field E = x2 i + y2 j .

syms x y ep0
E = [x^2 y^2];
rho = ep0*divergence(E,[x y])

rho =
ep0*(2*x + 2*y)

Visualize the electric field and electric charge density for -2<x<2 and -2<y<2 with
ep0=1. Create a grid of values of x and y using meshgrid. Find the values of electric
field and charge density by substituting grid values using subs. Simultaneously substitute
the grid values xPlot and yPlot into the charge density rho by using cells arrays as
inputs to subs.

rho = subs(rho,ep0,1);
v = -2:0.1:2;
[xPlot,yPlot] = meshgrid(v);
Ex = subs(E(1),x,xPlot);
Ey = subs(E(2),y,yPlot);
rhoPlot = double(subs(rho,{x,y},{xPlot,yPlot}));

Plot the electric field using quiver. Overlay the charge density using contour. The
contour lines indicate the values of the charge density.

quiver(xPlot,yPlot,Ex,Ey)
hold on

4 Functions — Alphabetical List

4-376

contour(xPlot,yPlot,rhoPlot,'ShowText','on')
title('Contour Plot of Charge Density Over Electric Field')
xlabel('x')
ylabel('y')

Input Arguments
V — Vector field
symbolic expression | symbolic function | vector of symbolic expressions | vector of
symbolic functions

 divergence

4-377

Vector field to find divergence of, specified as a symbolic expression or function, or as a
vector of symbolic expressions or functions. V must be the same length as X.

X — Variables with respect to which you find the divergence
symbolic variable | vector of symbolic variables

Variables with respect to which you find the divergence, specified as a symbolic variable
or a vector of symbolic variables. X must be the same length as V.

Definitions

Divergence of Vector Field
The divergence of the vector field V = (V1,...,Vn) with respect to the vector X = (X1,...,Xn)
in Cartesian coordinates is the sum of partial derivatives of V with respect to X1,...,Xn.

div(V) = ∇ ⋅ V = ∑
i = 1

n ∂Vi
∂xi

.

See Also
curl | diff | gradient | hessian | jacobian | laplacian | potential |
vectorPotential

Introduced in R2012a

4 Functions — Alphabetical List

4-378

divisors
Divisors of integer or expression

Syntax
divisors(n)
divisors(expr,vars)

Description
divisors(n) finds all nonnegative divisors of an integer n.

divisors(expr,vars) finds the divisors of a polynomial expression expr. Here, vars
are polynomial variables.

Examples

Divisors of Integers
Find all nonnegative divisors of these integers.

Find the divisors of integers. You can use double precision numbers or numbers
converted to symbolic objects. If you call divisors for a double-precision number, then it
returns a vector of double-precision numbers.

divisors(42)

ans =
 1 2 3 6 7 14 21 42

Find the divisors of negative integers. divisors returns nonnegative divisors for
negative integers.

divisors(-42)

 divisors

4-379

ans =
 1 2 3 6 7 14 21 42

If you call divisors for a symbolic number, it returns a symbolic vector.

divisors(sym(42))

ans =
[1, 2, 3, 6, 7, 14, 21, 42]

The only divisor of 0 is 0.

divisors(0)

ans =
 0

Divisors of Univariate Polynomials
Find the divisors of univariate polynomial expressions.

Find the divisors of this univariate polynomial. You can specify the polynomial as a
symbolic expression.

syms x
divisors(x^4 - 1, x)

ans =
[1, x - 1, x + 1, (x - 1)*(x + 1), x^2 + 1, (x^2 + 1)*(x - 1),...
(x^2 + 1)*(x + 1), (x^2 + 1)*(x - 1)*(x + 1)]

You also can use a symbolic function to specify the polynomial.

syms f(t)
f(t) = t^5;
divisors(f,t)

ans(t) =
[1, t, t^2, t^3, t^4, t^5]

When finding the divisors of a polynomial, divisors does not return the divisors of the
constant factor.

f(t) = 9*t^5;
divisors(f,t)

4 Functions — Alphabetical List

4-380

ans(t) =
[1, t, t^2, t^3, t^4, t^5]

Divisors of Multivariate Polynomials
Find the divisors of multivariate polynomial expressions.

Find the divisors of the multivariate polynomial expression. Suppose that u and v are
variables, and a is a symbolic parameter. Specify the variables as a symbolic vector.

syms a u v
divisors(a*u^2*v^3, [u,v])

ans =
[1, u, u^2, v, u*v, u^2*v, v^2, u*v^2, u^2*v^2, v^3, u*v^3, u^2*v^3]

Now, suppose that this expression contains only one variable (for example, v), while a and
u are symbolic parameters. Here, divisors treats the expression a*u^2 as a constant
and ignores it, returning only the divisors of v^3.

divisors(a*u^2*v^3, v)

ans =
[1, v, v^2, v^3]

Input Arguments
n — Number for which to find divisors
number | symbolic number

Number for which to find the divisors, specified as a number or symbolic number.

expr — Polynomial expression for which to find divisors
symbolic expression | symbolic function

Polynomial expression for which to find divisors, specified as a symbolic expression or
symbolic function.

vars — Polynomial variables
symbolic variable | vector of symbolic variables

Polynomial variables, specified as a symbolic variable or a vector of symbolic variables.

 divisors

4-381

Tips
• divisors(0) returns 0.
• divisors(expr,vars) does not return the divisors of the constant factor when
finding the divisors of a polynomial.

• If you do not specify polynomial variables, divisors returns as many divisors as it
can find, including the divisors of constant symbolic expressions. For example,
divisors(sym(pi)^2*x^2) returns [1, pi, pi^2, x, pi*x, pi^2*x, x^2,
pi*x^2, pi^2*x^2] while divisors(sym(pi)^2*x^2, x) returns [1, x,
x^2].

• For rational numbers, divisors returns all divisors of the numerator divided by all
divisors of the denominator. For example, divisors(sym(9/8)) returns [1, 3,
9, 1/2, 3/2, 9/2, 1/4, 3/4, 9/4, 1/8, 3/8, 9/8].

See Also
coeffs | factor | numden

Introduced in R2014b

4 Functions — Alphabetical List

4-382

double
Convert symbolic values to MATLAB double precision

Syntax
double(s)

Description
double(s) converts the symbolic value s to double precision. Converting symbolic
values to double precision is useful when a MATLAB function does not accept symbolic
values. For differences between symbolic and double-precision numbers, see “Choose
Symbolic or Numeric Arithmetic” on page 2-121.

Examples

Convert Symbolic Number to Double Precision
Convert symbolic numbers to double precision by using double. Symbolic numbers are
exact while double-precision numbers have round-off errors.

Convert pi and 1/3 from symbolic form to double precision.

symN = sym([pi 1/3])

symN =
[pi, 1/3]

doubleN = double(symN)

doubleN =
 3.1416 0.3333

For information on round-off errors, see “Recognize and Avoid Round-Off Errors” on page
2-125.

 double

4-383

Convert Variable Precision to Double Precision
Variable-precision numbers created by vpa are symbolic values. When a MATLAB
function does not accept symbolic values, convert variable precision to double precision
by using double.

Convert pi and 1/3 from variable-precision form to double precision.

vpaN = vpa([pi 1/3])

vpaN =
[3.1415926535897932384626433832795, 0.33333333333333333333333333333333]

doubleN = double(vpaN)

doubleN =
 3.1416 0.3333

Convert Symbolic Matrix to Double-Precision Matrix
Convert the symbolic numbers in matrix symM to double-precision numbers by using
double.

a = sym(sqrt(2));
b = sym(2/3);
symM = [a b; a*b b/a]

symM =
[2^(1/2), 2/3]
[(2*2^(1/2))/3, 2^(1/2)/3]

doubleM = double(symM)

doubleM =
 1.4142 0.6667
 0.9428 0.4714

High-Precision Conversion
When converting symbolic expressions that suffer from internal cancelation or round-off
errors, increase the working precision by using digits before converting the number.

4 Functions — Alphabetical List

4-384

Convert a numerically unstable expression Y with double. Then, increase precision to
100 digits by using digits and convert Y again. This high-precision conversion is
accurate while the low-precision conversion is not.

Y = ((exp(sym(200)) + 1)/(exp(sym(200)) - 1)) - 1;
lowPrecisionY = double(Y)

lowPrecisionY =
 0

digitsOld = digits(100);
highPrecisionY = double(Y)

highPrecisionY =
 2.7678e-87

Restore the old precision used by digits for further calculations.

digits(digitsOld)

Input Arguments
s — Symbolic input
symbolic number | vector of symbolic numbers | matrix of symbolic numbers |
multidimensional array of symbolic numbers

Symbolic input, specified as a symbolic number, or a vector, matrix, or multidimensional
array of symbolic numbers.

See Also
sym | vpa

Topics
“Choose Symbolic or Numeric Arithmetic” on page 2-121
“Increase Precision of Numeric Calculations” on page 2-123
“Recognize and Avoid Round-Off Errors” on page 2-125
“Increase Speed by Reducing Precision” on page 2-130

 double

4-385

Introduced before R2006a

4 Functions — Alphabetical List

4-386

dsolve
Differential equations and systems solver

Note Character vector inputs will be removed in a future release. Instead, use syms to
declare variables and replace inputs such as dsolve('Dy = y') with syms y(t);
dsolve(diff(y,t) == y).

Syntax
S = dsolve(eqn)
S = dsolve(eqn,cond)
S = dsolve(eqn,cond,Name,Value)

[y1,...,yN] = dsolve(___)

Description
S = dsolve(eqn) solves the differential equation eqn, where eqn is a symbolic
equation. Use diff and == to represent differential equations. For example, diff(y,x)
== y represents the equation dy/dx=y. Solve a system of differential equations by
specifying eqn as a vector of those equations.

S = dsolve(eqn,cond) solves eqn with the initial or boundary condition cond.

S = dsolve(eqn,cond,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

[y1,...,yN] = dsolve(___) assigns the solutions to the variables y1,...,yN.

 dsolve

4-387

Examples

Solve Differential Equation
Specify a differential equation by using == and represent differentiation by using the
diff function. Then, solve the equation by using dsolve.

Solve the equation dy
dt = ay.

syms a y(t)
eqn = diff(y,t) == a*y;
dsolve(eqn)

ans =
C2*exp(a*t)

C2 is a constant. To eliminate constants, see “Solve Differential Equation with Condition”
on page 4-388. For a full workflow, see “Solving Partial Differential Equations”. For more
examples, see “Solve Differential Equation” on page 4-388.

Solve Higher-Order Differential Equation
Specify the second-order derivative of a function y by using diff(y,t,2) or
diff(y,t,t). Similarly, specify the n-th order derivative by using diff(y,t,n).

Solve the equation d
2y

dt2 = ay.

syms y(t) a
eqn = diff(y,t,2) == a*y;
ySol(t) = dsolve(eqn)

ySol(t) =
C2*exp(-a^(1/2)*t) + C3*exp(a^(1/2)*t)

Solve Differential Equation with Condition
Specify conditions as the second input to dsolve by using the == operator. Specifying
conditions eliminates arbitrary constants, such as C1, C2,... from the solution.

4 Functions — Alphabetical List

4-388

Solve the equation dy
dt = ay with the condition y 0 = 5.

syms y(t) a
eqn = diff(y,t) == a*y;
cond = y(0) == 5;
ySol(t) = dsolve(eqn,cond)

ySol(t) =
5*exp(a*t)

Solve the second-order differential equation d
2y

dt2 = a2y with two conditions, y 0 = b and

y′ 0 = 1. Create the second condition by assigning diff(y,t) to Dy and then using
Dy(0) == 1.

syms y(t) a b
eqn = diff(y,t,2) == a^2*y;
Dy = diff(y,t);
cond = [y(0)==b, Dy(0)==1];
ySol(t) = dsolve(eqn,cond)

ySol(t) =
(exp(a*t)*(a*b + 1))/(2*a) + (exp(-a*t)*(a*b - 1))/(2*a)

Since two conditions are specified here, constants are eliminated from the solution of the
second-order equation. In general, to eliminate constants from the solution, the number
of conditions must equal the order of the equation.

Solve System of Differential Equations
Solve a system of differential equations by specifying the equations as a vector. dsolve
returns a structure containing the solutions.

Solve the system of equations

dy
dt = z

dz
dt = − y .

 dsolve

4-389

syms y(t) z(t)
eqns = [diff(y,t) == z, diff(z,t) == -y];
sol = dsolve(eqns)

sol =
 struct with fields:

 z: [1×1 sym]
 y: [1×1 sym]

Access the solutions by addressing the elements of the structure.

soly(t) = sol.y

soly(t) =
C2*cos(t) + C1*sin(t)

solz(t) = sol.z

solz(t) =
C1*cos(t) - C2*sin(t)

Assign Outputs to Functions or Variables
When solving for multiple functions, dsolve returns a structure by default. Alternatively,
you can directly assign solutions to functions or variables by specifying the outputs
explicitly as a vector. dsolve sorts outputs in alphabetical order using symvar.

Solve a system of differential equations and assign the outputs to functions.

syms y(t) z(t)
eqns = [diff(y,t)==z, diff(z,t)==-y];
[ySol(t) zSol(t)] = dsolve(eqns)

ySol(t) =
C2*cos(t) + C1*sin(t)
zSol(t) =
C1*cos(t) - C2*sin(t)

When No Solutions Are Found
If dsolve cannot solve your equation, then try solving the equation numerically. See
“Solve a Second-Order Differential Equation Numerically” on page 2-158.

4 Functions — Alphabetical List

4-390

syms y(x)
eqn = diff(y, 2) == (1 - y^2)*diff(y) - y;
dsolve(eqn)

 Warning: Unable to find explicit solution.
> In dsolve (line 201)
ans =
[empty sym]

Include Special Cases by Turning Off Internal Simplifications
By default, dsolve applies simplifications that are not generally correct, but produce
simpler solutions. For details, see “Algorithms” on page 4-394. Instead, include these
special cases by turning off these simplifications.

Solve dy
dt = a

y + y where y a = 1 with and without simplifications. Turn off

simplifications by setting ‘IgnoreAnalyticConstraints’ to false.

syms a y(t)
eqn = diff(y) == a/sqrt(y) + y;
cond = y(a) == 1;
withSimplifications = dsolve(eqn, cond)

withSimplifications =
(exp((3*t)/2 - (3*a)/2 + log(a + 1)) - a)^(2/3)

withoutSimplifications = dsolve(eqn, cond, 'IgnoreAnalyticConstraints', false)

withoutSimplifications =
piecewise(pi/2 < angle(-a), {piecewise(in(C11, 'integer'),...
 (- a + exp((3*t)/2 - (3*a)/2 + log(a + 1) + pi*C11*2i))^(2/3))},...
 angle(-a) <= -pi/2, {piecewise(in(C12, 'integer'),...
 (- a + exp((3*t)/2 - (3*a)/2 + log(a + 1) + pi*C12*2i))^(2/3))},...
 angle(-a) in Dom::Interval(-pi/2, [pi/2]), {piecewise(in(C13, 'integer'),...
 (- a + exp((3*t)/2 - (3*a)/2 + log(a + 1) + pi*C13*2i))^(2/3))})

withSimplifications is easy to use but incomplete, while
withoutSimplifications includes special cases but is not easy to use.

Further, for certain equations, dsolve cannot find an explicit solution if you set
‘IgnoreAnalyticConstraints’ to false.

 dsolve

4-391

Input Arguments
eqn — Differential equation or system of equations
symbolic equation | vector of symbolic equations

Differential equation or system of equations, specified as a symbolic equation or a vector
of symbolic equations.

Specify a differential equation by using the == operator. In the equation, represent
differentiation by using diff. For example, diff(y,x) differentiates the symbolic
function y(x) with respect to x. Create the symbolic function y(x) by using syms as
syms y(x). Thus, to solve d2y(x)/dx2 = x*y(x), enter:

syms y(x)
dsolve(diff(y,x,2) == x*y)

Specify a system of differential equations by using a vector of equations, such as
dsolve([diff(y,t) == z, diff(z,t) == -y]).

cond — Initial or boundary condition
symbolic equation | vector of symbolic equations

Initial or boundary condition, specified as a symbolic equation or vector of symbolic
equations.

When a condition contains a derivative, represent the derivative with diff and assign the
diff call to a variable. Then create conditions by using that variable. For an example, see
“Solve Differential Equation with Condition” on page 4-388.

Specify multiple conditions by using a vector of equations. If the number of conditions is
less than the number of dependent variables, the solutions contain arbitrary constants C1,
C2,....

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'IgnoreAnalyticConstraints',false does not apply internal
simplifications.

4 Functions — Alphabetical List

4-392

IgnoreAnalyticConstraints — Use internal simplifications
true (default) | false

Use internal simplifications, specified as true or false.

By default, the solver applies simplifications while solving the differential equation. These
simplifications might not be generally valid. Therefore, by default, the solver does not
guarantee the completeness of results. For details, see “Algorithms” on page 4-394. To
solve ordinary differential equations without these simplifications, set
‘IgnoreAnalyticConstraints’ to false. Results obtained with
‘IgnoreAnalyticConstraints’ set to false are correct for all values of the
arguments.

If you do not set ‘IgnoreAnalyticConstraints’ to false, always verify results
returned by the dsolve command.

MaxDegree — Maximum degree of polynomial equation for which solver uses
explicit formulas
2 (default) | positive integer smaller than 5

Maximum degree of polynomial equations for which solver uses explicit formulas,
specified as a positive integer smaller than 5. dsolve does not use explicit formulas when
solving polynomial equations of degrees larger than MaxDegree.

Output Arguments
S — Solutions of differential equation
symbolic expression | vector of symbolic expressions

Solutions of differential equation, returned as a symbolic expression or a vector of
symbolic expressions. The size of S is the number of solutions.

y1,...,yN — Variables storing solutions of differential equation
vector of symbolic variables

Variables storing solutions of differential equation, returned as a vector of symbolic
variables. The number of output variables must equal the number of dependent variables
in a system. dsolve sorts the dependent variables alphabetically, and then assigns the
solutions for the variables to output variables or symbolic arrays.

 dsolve

4-393

Tips
• If dsolve cannot find an explicit or implicit solution, then it issues a warning and

returns the empty sym. In this case, try to find a numeric solution using the MATLAB
ode23 or ode45 function. Sometimes, the output is an equivalent lower-order
differential equation or an integral.

• If dsolve cannot find a closed-form (explicit) solution, it attempts to find an implicit
solution. When dsolve returns an implicit solution, it issues this warning:

Warning: Explicit solution could not be found;
implicit solution returned.

• dsolve does not return complete solutions even if 'IgnoreAnalyticConstraints’
is false.

Algorithms
If you do not set ‘IgnoreAnalyticConstraints’ to false, then dsolve applies these
rules while solving the equation:

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the following equality
is applied for all values of a, b, and c:

 (a·b)c = ac·bc.
• log(ab) = b·log(a) for all values of a and b. In particular, the following equality is

applied for all values of a, b, and c:

 (ab)c = ab·c.
• If f and g are standard mathematical functions and f(g(x)) = x for all small positive

numbers, f(g(x)) = x is assumed to be valid for all complex x. In particular:

• log(ex) = x
• asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x
• asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x
• Wk(x·ex) = x for all values of k

• The solver can multiply both sides of an equation by any expression except 0.
• The solutions of polynomial equations must be complete.

4 Functions — Alphabetical List

4-394

See Also
functionalDerivative | linsolve | ode23 | ode45 | odeToVectorField | solve |
syms | vpasolve

Topics
“Solve Differential Equation” on page 2-193
“Solve a System of Differential Equations” on page 2-197

Introduced before R2006a

 dsolve

4-395

ei
One-argument exponential integral function

Syntax
ei(x)

Description
ei(x) returns the one-argument exponential integral defined as

ei x = ∫
−∞

x
et

t dt .

Examples
Exponential Integral for Floating-Point and Symbolic Numbers
Compute exponential integrals for numeric inputs. Because these numbers are not
symbolic objects, you get floating-point results.

s = [ei(-2), ei(-1/2), ei(1), ei(sqrt(2))]

s =
 -0.0489 -0.5598 1.8951 3.0485

Compute exponential integrals for the same numbers converted to symbolic objects. For
most symbolic (exact) numbers, ei returns unresolved symbolic calls.

s = [ei(sym(-2)), ei(sym(-1/2)), ei(sym(1)), ei(sqrt(sym(2)))]

s =
[ei(-2), ei(-1/2), ei(1), ei(2^(1/2))]

Use vpa to approximate this result with 10-digit accuracy.

4 Functions — Alphabetical List

4-396

vpa(s, 10)

ans =
[-0.04890051071, -0.5597735948, 1.895117816, 3.048462479]

Branch Cut at Negative Real Axis
The negative real axis is a branch cut. The exponential integral has a jump of height 2 π i
when crossing this cut. Compute the exponential integrals at -1, above -1, and below -1
to demonstrate this.

[ei(-1), ei(-1 + 10^(-10)*i), ei(-1 - 10^(-10)*i)]

ans =
 -0.2194 + 0.0000i -0.2194 + 3.1416i -0.2194 - 3.1416i

Derivatives of Exponential Integral
Compute the first, second, and third derivatives of a one-argument exponential integral.

syms x
diff(ei(x), x)
diff(ei(x), x, 2)
diff(ei(x), x, 3)

ans =
exp(x)/x

ans =
exp(x)/x - exp(x)/x^2

ans =
exp(x)/x - (2*exp(x))/x^2 + (2*exp(x))/x^3

Limits of Exponential Integral
Compute the limits of a one-argument exponential integral.

syms x
limit(ei(2*x^2/(1+x)), x, -Inf)
limit(ei(2*x^2/(1+x)), x, 0)
limit(ei(2*x^2/(1+x)), x, Inf)

 ei

4-397

ans =
0

ans =
-Inf

ans =
Inf

Input Arguments
x — Input
floating-point number | symbolic number | symbolic variable | symbolic expression |
symbolic function | symbolic vector | symbolic matrix

Input specified as a floating-point number or symbolic number, variable, expression,
function, vector, or matrix.

Tips
• The one-argument exponential integral is singular at x = 0. The toolbox uses this

special value: ei(0) = -Inf.

Algorithms
The relation between ei and expint is

ei(x) = -expint(1,-x) + (ln(x)-ln(1/x))/2 - ln(-x)

Both functions ei(x) and expint(1,x) have a logarithmic singularity at the origin and
a branch cut along the negative real axis. The ei function is not continuous when
approached from above or below this branch cut.

References
[1] Gautschi, W., and W. F. Gahill “Exponential Integral and Related Functions.” Handbook

of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M.
Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

4 Functions — Alphabetical List

4-398

See Also
expint | int | vpa

Introduced in R2013a

 ei

4-399

eig
Eigenvalues and eigenvectors of symbolic matrix

Syntax
lambda = eig(A)
[V,D] = eig(A)
[V,D,P] = eig(A)
lambda = eig(vpa(A))
[V,D] = eig(vpa(A))

Description
lambda = eig(A) returns a symbolic vector containing the eigenvalues of the square
symbolic matrix A.

[V,D] = eig(A) returns matrices V and D. The columns of V present eigenvectors of A.
The diagonal matrix D contains eigenvalues. If the resulting V has the same size as A, the
matrix A has a full set of linearly independent eigenvectors that satisfy A*V = V*D.

[V,D,P] = eig(A) returns a vector of indices P. The length of P equals to the total
number of linearly independent eigenvectors, so that A*V = V*D(P,P).

lambda = eig(vpa(A)) returns numeric eigenvalues using variable-precision
arithmetic.

[V,D] = eig(vpa(A)) also returns numeric eigenvectors.

Examples

Compute Eigenvalues

Compute eigenvalues for the magic square of order 5.

4 Functions — Alphabetical List

4-400

M = sym(magic(5));
eig(M)

ans =
 65
 (625/2 - (5*3145^(1/2))/2)^(1/2)
 ((5*3145^(1/2))/2 + 625/2)^(1/2)
 -(625/2 - (5*3145^(1/2))/2)^(1/2)
 -((5*3145^(1/2))/2 + 625/2)^(1/2)

Compute Numeric Eigenvalues to High-Precision

Compute numeric eigenvalues for the magic square of order 5 using variable-precision
arithmetic.

M = magic(sym(5));
eig(vpa(M))

ans =
 65.0
 21.27676547147379553062642669797423
 13.12628093070921880252564308594914
 -13.126280930709218802525643085949
 -21.276765471473795530626426697974

Compute Eigenvalues and Eigenvectors

Compute the eigenvalues and eigenvectors for one of the MATLAB test matrices.

A = sym(gallery(5))

A =
[-9, 11, -21, 63, -252]
[70, -69, 141, -421, 1684]
[-575, 575, -1149, 3451, -13801]
[3891, -3891, 7782, -23345, 93365]
[1024, -1024, 2048, -6144, 24572]

[v, lambda] = eig(A)

v =
 0

 eig

4-401

 21/256
 -71/128
 973/256
 1

lambda =
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]
[0, 0, 0, 0, 0]

Input Arguments
A — Matrix
symbolic matrix

Matrix, specified as a symbolic matrix.

Limitations
Matrix computations involving many symbolic variables can be slow. To increase the
computational speed, reduce the number of symbolic variables by substituting the given
values for some variables.

See Also
charpoly | jordan | svd | vpa

Topics
“Eigenvalues” on page 2-143

Introduced before R2006a

4 Functions — Alphabetical List

4-402

eliminate
Eliminate variables from rational equations

Syntax
expr = eliminate(eqns,vars)

Description
expr = eliminate(eqns,vars) eliminates the variables vars from the rational
equations eqns. The result is a vector of symbolic expressions that is equal to zero.

Examples

Eliminate Variables from Rational Equations

Create two rational equations that contain the variables x and y.

syms x y
eqns = [x*y/(x-2) + y == 5/(y - x), y-x == 1/(x-1)]

eqns =

y + x y
x− 2 = − 5

x− y y − x = 1
x− 1

Eliminate the variable x. The result is a symbolic expression that is equal to zero.

expr = eliminate(eqns,x)

expr = 6 y2− 5 y − 75

 eliminate

4-403

Eliminate Variables from Polynomial Equations

Create two polynomial equations that contain the variables x and y.

syms x y
eqns = [2*x+y == 5; y-x == 1]

eqns =
2 x + y = 5
y − x = 1

Eliminate the variable x from the equations. The result is a symbolic expression that is
equal to zero.

expr = eliminate(eqns,x)

expr = 3 y − 7

Now, create three polynomial equations that contain the variables x, y, and z. Eliminate
the variable x. The result is a vector of symbolic expressions that is equal to zero.

syms z
eqns = [x^2 + y-z^2 == 2;
 x - z == y;
 x^2 + y^2-z == 4];
expr = eliminate(eqns,x)

expr = 5 z3− 5 z2− 8 z + 4 y − 8, 5 z4− 11 z2− 18 z − 8

To eliminate both x and y, use the eliminate function and specify the two variables as
the vector [x y].

expr = eliminate(eqns,[x y])

expr = 5 z4− 11 z2− 18 z − 8

Input Arguments
eqns — Rational equations
vector of symbolic equations | vector of symbolic expressions

4 Functions — Alphabetical List

4-404

Rational equations, specified as a vector of symbolic equations or symbolic expressions. A
rational equation is an equation that contains at least one fraction in which the numerator
and the denominator are polynomials.

The relation operator == defines symbolic equations. If a symbolic expression eqn in
eqns has no right side, then a symbolic equation with a right side equal to 0 is assumed.

vars — Variables to eliminate
vector of symbolic variables

Variables to eliminate, specified as a vector of symbolic variables.

See Also
gbasis | solve

Introduced in R2018a

 eliminate

4-405

ellipke
Complete elliptic integrals of the first and second kinds

Syntax
[K,E] = ellipke(m)

Description
[K,E] = ellipke(m) returns the complete elliptic integrals of the first on page 4-409
and second kinds on page 4-409.

Examples

Compute Complete Elliptic Integrals of First and Second Kind
Compute the complete elliptic integrals of the first and second kinds for these numbers.
Because these numbers are not symbolic objects, you get floating-point results.

[K0, E0] = ellipke(0)
[K05, E05] = ellipke(1/2)

K0 =
 1.5708

E0 =
 1.5708

K05 =
 1.8541

E05 =
 1.3506

4 Functions — Alphabetical List

4-406

Compute the complete elliptic integrals for the same numbers converted to symbolic
objects. For most symbolic (exact) numbers, ellipke returns results using the
ellipticK and ellipticE functions.

[K0, E0] = ellipke(sym(0))
[K05, E05] = ellipke(sym(1/2))

K0 =
pi/2

E0 =
pi/2

K05 =
ellipticK(1/2)

E05 =
ellipticE(1/2)

Use vpa to approximate K05 and E05 with floating-point numbers:

vpa([K05, E05], 10)

ans =
[1.854074677, 1.350643881]

Compute Integrals When Input is Not Between 0 and 1
If the argument does not belong to the range from 0 to 1, then convert that argument to a
symbolic object before using ellipke:

[K, E] = ellipke(sym(pi/2))

K =
ellipticK(pi/2)

E =
ellipticE(pi/2)

Alternatively, use ellipticK and ellipticE to compute the integrals of the first and
the second kinds separately:

K = ellipticK(sym(pi/2))
E = ellipticE(sym(pi/2))

 ellipke

4-407

K =
ellipticK(pi/2)

E =
ellipticE(pi/2)

Compute Integrals for Matrix Input
Call ellipke for this symbolic matrix. When the input argument is a matrix, ellipke
computes the complete elliptic integrals of the first and second kinds for each element.

[K, E] = ellipke(sym([-1 0; 1/2 1]))

K =
[ellipticK(-1), pi/2]
[ellipticK(1/2), Inf]

E =
[ellipticE(-1), pi/2]
[ellipticE(1/2), 1]

Input Arguments
m — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Output Arguments
K — Complete elliptic integral of the first kind
symbolic expression

Complete elliptic integral of the first kind, returned as a symbolic expression.

E — Complete elliptic integral of the second kind
symbolic expression

4 Functions — Alphabetical List

4-408

Complete elliptic integral of the second kind, returned as a symbolic expression.

Definitions

Complete Elliptic Integral of the First Kind
The complete elliptic integral of the first kind is defined as follows:

K m = F π
2 m = ∫

0

π/2
1

1−msin2θ
dθ

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Complete Elliptic Integral of the Second Kind
The complete elliptic integral of the second kind is defined as follows:

E m = E π
2 m = ∫

0

π/2
1−msin2θdθ

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Tips
• Calling ellipke for numbers that are not symbolic objects invokes the MATLAB

ellipke function. This function accepts only 0 <= x <= 1. To compute the complete
elliptic integrals of the first and second kinds for the values out of this range, use sym
to convert the numbers to symbolic objects, and then call ellipke for those symbolic
objects. Alternatively, use the ellipticK and ellipticE functions to compute the
integrals separately.

• For most symbolic (exact) numbers, ellipke returns results using the ellipticK
and ellipticE functions. You can approximate such results with floating-point
numbers using vpa.

 ellipke

4-409

• If m is a vector or a matrix, then [K,E] = ellipke(m) returns the complete elliptic
integrals of the first and second kinds, evaluated for each element of m.

Alternatives
You can use ellipticK and ellipticE to compute elliptic integrals of the first and
second kinds separately.

References
[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

See Also
ellipke | ellipticE | ellipticK | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-410

ellipticCE
Complementary complete elliptic integral of the second kind

Syntax
ellipticCE(m)

Description
ellipticCE(m) returns the complementary complete elliptic integral of the second kind
on page 4-414.

Examples

Find Complementary Complete Elliptic Integral of the Second
Kind
Compute the complementary complete elliptic integrals of the second kind for these
numbers. Because these numbers are not symbolic objects, you get floating-point results.

s = [ellipticCE(0), ellipticCE(pi/4),...
 ellipticCE(1), ellipticCE(pi/2)]

s =
 1.0000 1.4828 1.5708 1.7753

Compute the complementary complete elliptic integrals of the second kind for the same
numbers converted to symbolic objects. For most symbolic (exact) numbers, ellipticCE
returns unresolved symbolic calls.

s = [ellipticCE(sym(0)), ellipticCE(sym(pi/4)),...
 ellipticCE(sym(1)), ellipticCE(sym(pi/2))]

s =
[1, ellipticCE(pi/4), pi/2, ellipticCE(pi/2)]

 ellipticCE

4-411

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =
[1.0, 1.482786927, 1.570796327, 1.775344699]

Find Elliptic Integral for Matrix Input
Call ellipticCE for this symbolic matrix. When the input argument is a matrix,
ellipticCE computes the complementary complete elliptic integral of the second kind
for each element.

ellipticCE(sym([pi/6 pi/4; pi/3 pi/2]))

ans =
[ellipticCE(pi/6), ellipticCE(pi/4)]
[ellipticCE(pi/3), ellipticCE(pi/2)]

Differentiate Complementary Complete Elliptic Integral of the
Second Kind
Differentiate these expressions involving the complementary complete elliptic integral of
the second kind:

syms m
diff(ellipticCE(m))
diff(ellipticCE(m^2), m, 2)

ans =
ellipticCE(m)/(2*m - 2) - ellipticCK(m)/(2*m - 2)

ans =
(2*ellipticCE(m^2))/(2*m^2 - 2) -...
(2*ellipticCK(m^2))/(2*m^2 - 2) +...
2*m*(((2*m*ellipticCK(m^2))/(2*m^2 - 2) -...
ellipticCE(m^2)/(m*(m^2 - 1)))/(2*m^2 - 2) +...
(2*m*(ellipticCE(m^2)/(2*m^2 - 2) -...
ellipticCK(m^2)/(2*m^2 - 2)))/(2*m^2 - 2) -...
(4*m*ellipticCE(m^2))/(2*m^2 - 2)^2 +...
(4*m*ellipticCK(m^2))/(2*m^2 - 2)^2)

4 Functions — Alphabetical List

4-412

Here, ellipticCK represents the complementary complete elliptic integral of the first
kind.

Plot Complementary Complete Elliptic Integral of Second Kind
Plot the complementary complete elliptic integral of the second kind.

syms m
fplot(ellipticCE(m))
title('Complementary complete elliptic integral of the second kind')
ylabel('ellipticCE(m)')
grid on

 ellipticCE

4-413

Input Arguments
m — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Definitions
Complementary Complete Elliptic Integral of the Second Kind
The complementary complete elliptic integral of the second kind is defined as
E'(m) = E(1–m), where E(m) is the complete elliptic integral of the second kind:

E m = E π
2 m = ∫

0

π/2
1−msin2θdθ

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Tips
• ellipticCE returns floating-point results for numeric arguments that are not

symbolic objects.
• For most symbolic (exact) numbers, ellipticCE returns unresolved symbolic calls.

You can approximate such results with floating-point numbers using vpa.
• If m is a vector or a matrix, then ellipticCE(m) returns the complementary

complete elliptic integral of the second kind, evaluated for each element of m.

References
[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

4 Functions — Alphabetical List

4-414

See Also
ellipke | ellipticCK | ellipticCPi | ellipticE | ellipticF | ellipticK |
ellipticPi | vpa

Introduced in R2013a

 ellipticCE

4-415

ellipticCK
Complementary complete elliptic integral of the first kind

Syntax
ellipticCK(m)

Description
ellipticCK(m) returns the complementary complete elliptic integral of the first kind on
page 4-419.

Examples

Find Complementary Complete Elliptic Integral of First Kind
Compute the complementary complete elliptic integrals of the first kind for these
numbers. Because these numbers are not symbolic objects, you get floating-point results.

s = [ellipticCK(1/2), ellipticCK(pi/4), ellipticCK(1), ellipticCK(inf)]

s =
 1.8541 1.6671 1.5708 NaN

Compute the complete elliptic integrals of the first kind for the same numbers converted
to symbolic objects. For most symbolic (exact) numbers, ellipticCK returns unresolved
symbolic calls.

s = [ellipticCK(sym(1/2)), ellipticCK(sym(pi/4)),...
 ellipticCK(sym(1)), ellipticCK(sym(inf))]

s =
[ellipticCK(1/2), ellipticCK(pi/4), pi/2, ellipticCK(Inf)]

Use vpa to approximate this result with floating-point numbers:

4 Functions — Alphabetical List

4-416

vpa(s, 10)

ans =
[1.854074677, 1.667061338, 1.570796327, NaN]

Differentiate Complementary Complete Elliptic Integral of
First Kind
Differentiate these expressions involving the complementary complete elliptic integral of
the first kind:

syms m
diff(ellipticCK(m))
diff(ellipticCK(m^2), m, 2)

ans =
ellipticCE(m)/(2*m*(m - 1)) - ellipticCK(m)/(2*m - 2)

ans =
(2*(ellipticCE(m^2)/(2*m^2 - 2) -...
ellipticCK(m^2)/(2*m^2 - 2)))/(m^2 - 1) -...
(2*ellipticCE(m^2))/(m^2 - 1)^2 -...
(2*ellipticCK(m^2))/(2*m^2 - 2) +...
(8*m^2*ellipticCK(m^2))/(2*m^2 - 2)^2 +...
(2*m*((2*m*ellipticCK(m^2))/(2*m^2 - 2) -...
ellipticCE(m^2)/(m*(m^2 - 1))))/(2*m^2 - 2) -...
ellipticCE(m^2)/(m^2*(m^2 - 1))

Here, ellipticCE represents the complementary complete elliptic integral of the second
kind.

Find Elliptic Integral for Matrix Input
Call ellipticCK for this symbolic matrix. When the input argument is a matrix,
ellipticCK computes the complementary complete elliptic integral of the first kind for
each element.

ellipticCK(sym([pi/6 pi/4; pi/3 pi/2]))

ans =
[ellipticCK(pi/6), ellipticCK(pi/4)]
[ellipticCK(pi/3), ellipticCK(pi/2)]

 ellipticCK

4-417

Plot Complementary Complete Elliptic Integral of First Kind
Plot complementary complete elliptic integral of first kind.

syms m
fplot(ellipticCK(m),[0.1 5])
title('Complementary complete elliptic integral of the first kind')
ylabel('ellipticCK(m)')
grid on
hold off

4 Functions — Alphabetical List

4-418

Input Arguments
m — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Definitions
Complementary Complete Elliptic Integral of the First Kind
The complementary complete elliptic integral of the first kind is defined as K'(m) = K(1–
m), where K(m) is the complete elliptic integral of the first kind:

K m = F π
2 m = ∫

0

π/2
1

1−msin2θ
dθ

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Tips
• ellipticK returns floating-point results for numeric arguments that are not symbolic

objects.
• For most symbolic (exact) numbers, ellipticCK returns unresolved symbolic calls.

You can approximate such results with floating-point numbers using the vpa function.
• If m is a vector or a matrix, then ellipticCK(m) returns the complementary

complete elliptic integral of the first kind, evaluated for each element of m.

References
[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

 ellipticCK

4-419

See Also
ellipke | ellipticCE | ellipticCPi | ellipticE | ellipticF | ellipticK |
ellipticPi | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-420

ellipticCPi
Complementary complete elliptic integral of the third kind

Syntax
ellipticCPi(n,m)

Description
ellipticCPi(n,m) returns the complementary complete elliptic integral of the third
kind on page 4-423.

Examples

Compute Complementary Complete Elliptic Integrals of Third
Kind
Compute the complementary complete elliptic integrals of the third kind for these
numbers. Because these numbers are not symbolic objects, you get floating-point results.

s = [ellipticCPi(-1, 1/3), ellipticCPi(0, 1/2),...
 ellipticCPi(9/10, 1), ellipticCPi(-1, 0)]

s =
 1.3703 1.8541 4.9673 Inf

Compute the complementary complete elliptic integrals of the third kind for the same
numbers converted to symbolic objects. For most symbolic (exact) numbers,
ellipticCPi returns unresolved symbolic calls.

s = [ellipticCPi(-1, sym(1/3)), ellipticCPi(sym(0), 1/2),...
 ellipticCPi(sym(9/10), 1), ellipticCPi(-1, sym(0))]

s =
[ellipticCPi(-1, 1/3), ellipticCK(1/2), (pi*10^(1/2))/2, Inf]

 ellipticCPi

4-421

Here, ellipticCK represents the complementary complete elliptic integrals of the first
kind.

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =
[1.370337322, 1.854074677, 4.967294133, Inf]

Differentiate Complementary Complete Elliptic Integrals of
Third Kind
Differentiate these expressions involving the complementary complete elliptic integral of
the third kind:

syms n m
diff(ellipticCPi(n, m), n)
diff(ellipticCPi(n, m), m)

ans =
ellipticCK(m)/(2*n*(n - 1)) -...
ellipticCE(m)/(2*(n - 1)*(m + n - 1)) -...
(ellipticCPi(n, m)*(n^2 + m - 1))/(2*n*(n - 1)*(m + n - 1))

ans =
ellipticCE(m)/(2*m*(m + n - 1)) - ellipticCPi(n, m)/(2*(m + n - 1))

Here, ellipticCK and ellipticCE represent the complementary complete elliptic
integrals of the first and second kinds.

Input Arguments
n — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

4 Functions — Alphabetical List

4-422

m — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Definitions
Complementary Complete Elliptic Integral of the Third Kind
The complementary complete elliptic integral of the third kind is defined as
Π'(m) = Π(n, 1–m), where Π(n,m) is the complete elliptic integral of the third kind:

Π n, m = Π n; π
2 m = ∫

0

π/2
1

1− nsin2θ 1−msin2θ
dθ

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Tips
• ellipticCPi returns floating-point results for numeric arguments that are not

symbolic objects.
• For most symbolic (exact) numbers, ellipticCPi returns unresolved symbolic calls.

You can approximate such results with floating-point numbers using vpa.
• At least one input argument must be a scalar or both arguments must be vectors or

matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, then ellipticCPi expands the scalar into a vector or matrix of
the same size as the other argument with all elements equal to that scalar.

References
[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

 ellipticCPi

4-423

See Also
ellipke | ellipticCE | ellipticCK | ellipticE | ellipticF | ellipticK |
ellipticPi | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-424

ellipticE
Complete and incomplete elliptic integrals of the second kind

Syntax
ellipticE(m)
ellipticE(phi,m)

Description
ellipticE(m) returns the complete elliptic integral of the second kind on page 4-428.

ellipticE(phi,m) returns the incomplete elliptic integral of the second kind on page
4-428.

Examples

Find Complete Elliptic Integrals of Second Kind
Compute the complete elliptic integrals of the second kind for these numbers. Because
these numbers are not symbolic objects, you get floating-point results.

s = [ellipticE(-10.5), ellipticE(-pi/4),...
 ellipticE(0), ellipticE(1)]

s =
 3.7096 1.8443 1.5708 1.0000

Compute the complete elliptic integral of the second kind for the same numbers
converted to symbolic objects. For most symbolic (exact) numbers, ellipticE returns
unresolved symbolic calls.

s = [ellipticE(sym(-10.5)), ellipticE(sym(-pi/4)),...
 ellipticE(sym(0)), ellipticE(sym(1))]

 ellipticE

4-425

s =
[ellipticE(-21/2), ellipticE(-pi/4), pi/2, 1]

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =
[3.70961391, 1.844349247, 1.570796327, 1.0]

Differentiate Elliptic Integrals of Second Kind
Differentiate these expressions involving elliptic integrals of the second kind. ellipticK
and ellipticF represent the complete and incomplete elliptic integrals of the first kind,
respectively.

syms m
diff(ellipticE(pi/3, m))
diff(ellipticE(m^2), m, 2)

ans =
ellipticE(pi/3, m)/(2*m) - ellipticF(pi/3, m)/(2*m)

ans =
2*m*((ellipticE(m^2)/(2*m^2) -...
ellipticK(m^2)/(2*m^2))/m - ellipticE(m^2)/m^3 +...
ellipticK(m^2)/m^3 + (ellipticK(m^2)/m +...
ellipticE(m^2)/(m*(m^2 - 1)))/(2*m^2)) +...
ellipticE(m^2)/m^2 - ellipticK(m^2)/m^2

Elliptic Integral for Matrix Input
Call ellipticE for this symbolic matrix. When the input argument is a matrix,
ellipticE computes the complete elliptic integral of the second kind for each element.

ellipticE(sym([1/3 1; 1/2 0]))

ans =
[ellipticE(1/3), 1]
[ellipticE(1/2), pi/2]

4 Functions — Alphabetical List

4-426

Plot Complete and Incomplete Elliptic Integrals of Second
Kind
Plot the incomplete elliptic integrals ellipticE(phi,m) for phi = pi/4 and phi =
pi/3. Also plot the complete elliptic integral ellipticE(m).

syms m
fplot([ellipticE(pi/4,m) ellipticE(pi/3,m) ellipticE(m)])

title('Elliptic integrals of the second kind')
legend('E(\pi/4|m)','E(\pi/3|m)','E(m)','Location','Best')
grid on

 ellipticE

4-427

Input Arguments
m — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

phi — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Definitions
Incomplete Elliptic Integral of the Second Kind
The incomplete elliptic integral of the second kind is defined as follows:

E φ m = ∫
0

φ
1−msin2θdθ

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Complete Elliptic Integral of the Second Kind
The complete elliptic integral of the second kind is defined as follows:

E m = E π
2 m = ∫

0

π/2
1−msin2θdθ

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

4 Functions — Alphabetical List

4-428

Tips
• ellipticE returns floating-point results for numeric arguments that are not symbolic

objects.
• For most symbolic (exact) numbers, ellipticE returns unresolved symbolic calls.

You can approximate such results with floating-point numbers using vpa.
• If m is a vector or a matrix, then ellipticE(m) returns the complete elliptic integral

of the second kind, evaluated for each element of m.
• At least one input argument must be a scalar or both arguments must be vectors or

matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, then ellipticE expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

• ellipticE(pi/2, m) = ellipticE(m).

Alternatives
You can use ellipke to compute elliptic integrals of the first and second kinds in one
function call.

References
[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

See Also
ellipke | ellipticCE | ellipticCK | ellipticCPi | ellipticF | ellipticK |
ellipticPi | vpa

Introduced in R2013a

 ellipticE

4-429

ellipticF
Incomplete elliptic integral of the first kind

Syntax
ellipticF(phi,m)

Description
ellipticF(phi,m) returns the incomplete elliptic integral of the first kind on page 4-
433.

Examples
Find Incomplete Elliptic Integrals of First Kind
Compute the incomplete elliptic integrals of the first kind for these numbers. Because
these numbers are not symbolic objects, you get floating-point results.

s = [ellipticF(pi/3, -10.5), ellipticF(pi/4, -pi),...
 ellipticF(1, -1), ellipticF(pi/2, 0)]

s =
 0.6184 0.6486 0.8964 1.5708

Compute the incomplete elliptic integrals of the first kind for the same numbers
converted to symbolic objects. For most symbolic (exact) numbers, ellipticF returns
unresolved symbolic calls.

s = [ellipticF(sym(pi/3), -10.5), ellipticF(sym(pi/4), -pi),...
ellipticF(sym(1), -1), ellipticF(pi/6, sym(0))]

s =
[ellipticF(pi/3, -21/2), ellipticF(pi/4, -pi), ellipticF(1, -1), pi/6]

Use vpa to approximate this result with floating-point numbers:

4 Functions — Alphabetical List

4-430

vpa(s, 10)

ans =
[0.6184459461, 0.6485970495, 0.8963937895, 0.5235987756]

Differentiate Incomplete Elliptic Integrals of First Kind
Differentiate this expression involving the incomplete elliptic integral of the first kind.
ellipticE represents the incomplete elliptic integral of the second kind.

syms m
diff(ellipticF(pi/4, m))

ans =
1/(4*(1 - m/2)^(1/2)*(m - 1)) - ellipticF(pi/4, m)/(2*m) -...
ellipticE(pi/4, m)/(2*m*(m - 1))

Plot Incomplete and Complete Elliptic Integrals
Plot the incomplete elliptic integrals ellipticF(phi,m) for phi = pi/4 and phi =
pi/3. Also plot the complete elliptic integral ellipticK(m).

syms m
fplot([ellipticF(pi/4, m) ellipticF(pi/3, m) ellipticK(m)])
grid on

title('Elliptic integrals of the first kind')
legend('F(\pi/4,m)', 'F(\pi/3,m)', 'K(m)', 'Location', 'Best')

 ellipticF

4-431

Input Arguments
m — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

4 Functions — Alphabetical List

4-432

phi — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Definitions
Incomplete Elliptic Integral of the First Kind
The complete elliptic integral of the first kind is defined as follows:

F φ m = ∫
0

φ
1

1−msin2θ
dθ

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Tips
• ellipticF returns floating-point results for numeric arguments that are not symbolic

objects.
• For most symbolic (exact) numbers, ellipticF returns unresolved symbolic calls.

You can approximate such results with floating-point numbers using vpa.
• At least one input argument must be a scalar or both arguments must be vectors or

matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, ellipticF expands the scalar into a vector or matrix of the same
size as the other argument with all elements equal to that scalar.

• ellipticF(pi/2, m) = ellipticK(m).

References
[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

 ellipticF

4-433

See Also
ellipke | ellipticCE | ellipticCK | ellipticCPi | ellipticE | ellipticK |
ellipticPi | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-434

ellipticK
Complete elliptic integral of the first kind

Syntax
ellipticK(m)

Description
ellipticK(m) returns the complete elliptic integral of the first kind on page 4-438.

Examples
Find Complete Elliptic Integrals of First Kind
Compute the complete elliptic integrals of the first kind for these numbers. Because these
numbers are not symbolic objects, you get floating-point results.

s = [ellipticK(1/2), ellipticK(pi/4), ellipticK(1), ellipticK(-5.5)]

s =
 1.8541 2.2253 Inf 0.9325

Compute the complete elliptic integrals of the first kind for the same numbers converted
to symbolic objects. For most symbolic (exact) numbers, ellipticK returns unresolved
symbolic calls.

s = [ellipticK(sym(1/2)), ellipticK(sym(pi/4)),...
 ellipticK(sym(1)), ellipticK(sym(-5.5))]

s =
[ellipticK(1/2), ellipticK(pi/4), Inf, ellipticK(-11/2)]

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

 ellipticK

4-435

ans =
[1.854074677, 2.225253684, Inf, 0.9324665884]

Differentiate Complete Elliptic Integral of First Kind
Differentiate these expressions involving the complete elliptic integral of the first kind.
ellipticE represents the complete elliptic integral of the second kind.

syms m
diff(ellipticK(m))
diff(ellipticK(m^2), m, 2)

ans =
- ellipticK(m)/(2*m) - ellipticE(m)/(2*m*(m - 1))

ans =
(2*ellipticE(m^2))/(m^2 - 1)^2 - (2*(ellipticE(m^2)/(2*m^2) -...
ellipticK(m^2)/(2*m^2)))/(m^2 - 1) + ellipticK(m^2)/m^2 +...
(ellipticK(m^2)/m + ellipticE(m^2)/(m*(m^2 - 1)))/m +...
ellipticE(m^2)/(m^2*(m^2 - 1))

Elliptic Integral for Matrix Input
Call ellipticK for this symbolic matrix. When the input argument is a matrix,
ellipticK computes the complete elliptic integral of the first kind for each element.

ellipticK(sym([-2*pi -4; 0 1]))

ans =
[ellipticK(-2*pi), ellipticK(-4)]
[pi/2, Inf]

Plot Complete Elliptic Integral of First Kind
Plot the complete elliptic integral of the first kind.

syms m
fplot(ellipticK(m))
title('Complete elliptic integral of the first kind')
ylabel('ellipticK(m)')
grid on

4 Functions — Alphabetical List

4-436

Input Arguments
m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

 ellipticK

4-437

Definitions

Complete Elliptic Integral of the First Kind
The complete elliptic integral of the first kind is defined as follows:

K m = F π
2 m = ∫

0

π/2
1

1−msin2θ
dθ

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Tips
• ellipticK returns floating-point results for numeric arguments that are not symbolic

objects.
• For most symbolic (exact) numbers, ellipticK returns unresolved symbolic calls.

You can approximate such results with floating-point numbers using vpa.
• If m is a vector or a matrix, then ellipticK(m) returns the complete elliptic integral

of the first kind, evaluated for each element of m.

Alternatives
You can use ellipke to compute elliptic integrals of the first and second kinds in one
function call.

References
[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

4 Functions — Alphabetical List

4-438

See Also
ellipke | ellipticCE | ellipticCK | ellipticCPi | ellipticE | ellipticF |
ellipticPi | vpa

Introduced in R2013a

 ellipticK

4-439

ellipticNome
Elliptic nome function

Syntax
ellipticNome(m)

Description
ellipticNome(m) returns the “Elliptic Nome” on page 4-444 of m. If m is an array, then
ellipticNome acts element-wise.

Examples

Calculate Elliptic Nome for Numeric Inputs

ellipticNome(1.3)

ans =
 0.0881 - 0.2012i

Call ellipticNome on array inputs. ellipticNome acts element-wise when m is an
array.

ellipticNome([2 1 -3/2])

ans =
 0.0000 - 0.2079i 1.0000 + 0.0000i -0.0570 + 0.0000i

Calculate Elliptic Nome for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the elliptic nome. For
symbolic input where m = 0, 1/2, or 1, ellipticNome returns exact symbolic output.

4 Functions — Alphabetical List

4-440

ellipticNome([0 1/2 1])

ans =
 0 0.0432 1.0000

Show that for any other symbolic values of m, ellipticNome returns an unevaluated
function call.

ellipticNome(sym(2))

ans =
ellipticNome(2)

Find Elliptic Nome for Symbolic Variables or Expressions

For symbolic variables or expressions, ellipticNome returns the unevaluated function
call.

syms x
f = ellipticNome(x)

f =
ellipticNome(x)

Substitute values for the variables by using subs, and convert values to double by using
double.

f = subs(f, x, 5)

f =
ellipticNome(5)

fVal = double(f)

fVal =
 -0.1008 - 0.1992i

Calculate f to higher precision using vpa.

fVal = vpa(f)

 ellipticNome

4-441

fVal =
- 0.10080189716733475056506021415746 - 0.19922973618609837873340100821425i

Plot Elliptic Nome

Plot the real and imaginary values of the elliptic nome using fcontour. Fill plot contours
by setting Fill to on.

syms m
f = ellipticNome(m);

subplot(2,2,1)
fcontour(real(f),'Fill','on')
title('Real Values of Elliptic Nome')
xlabel('m')

subplot(2,2,2)
fcontour(imag(f),'Fill','on')
title('Imaginary Values of Elliptic Nome')
xlabel('m')

4 Functions — Alphabetical List

4-442

Input Arguments
m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

 ellipticNome

4-443

Definitions

Elliptic Nome
The elliptic nome is

q m e

K m

K m() =
-

¢()
()

p

where K is the complete elliptic integral of the first kind, implemented as ellipticK.

q m ≤ 1 holds for all m ∈ ℂ.

See Also
ellipticK | jacobiAM | jacobiCD | jacobiCN | jacobiCS | jacobiDC | jacobiDN |
jacobiDS | jacobiNC | jacobiND | jacobiNS | jacobiSC | jacobiSD | jacobiSN

Introduced in R2017b

4 Functions — Alphabetical List

4-444

ellipticPi
Complete and incomplete elliptic integrals of the third kind

Syntax
ellipticPi(n,m)
ellipticPi(n,phi,m)

Description
ellipticPi(n,m) returns the complete elliptic integral of the third kind on page 4-447.

ellipticPi(n,phi,m) returns the incomplete elliptic integral of the third kind on page
4-447.

Examples

Compute the Incomplete Elliptic Integrals of Third Kind
Compute the incomplete elliptic integrals of the third kind for these numbers. Because
these numbers are not symbolic objects, you get floating-point results.

s = [ellipticPi(-2.3, pi/4, 0), ellipticPi(1/3, pi/3, 1/2),...
ellipticPi(-1, 0, 1), ellipticPi(2, pi/6, 2)]

s =
 0.5877 1.2850 0 0.7507

Compute the incomplete elliptic integrals of the third kind for the same numbers
converted to symbolic objects. For most symbolic (exact) numbers, ellipticPi returns
unresolved symbolic calls.

s = [ellipticPi(-2.3, sym(pi/4), 0), ellipticPi(sym(1/3), pi/3, 1/2),...
ellipticPi(-1, sym(0), 1), ellipticPi(2, pi/6, sym(2))]

 ellipticPi

4-445

s =
[ellipticPi(-23/10, pi/4, 0), ellipticPi(1/3, pi/3, 1/2),...
0, (2^(1/2)*3^(1/2))/2 - ellipticE(pi/6, 2)]

Here, ellipticE represents the incomplete elliptic integral of the second kind.

Use vpa to approximate this result with floating-point numbers:

vpa(s, 10)

ans =
[0.5876852228, 1.285032276, 0, 0.7507322117]

Differentiate Incomplete Elliptic Integrals of Third Kind
Differentiate these expressions involving the complete elliptic integral of the third kind:

syms n m
diff(ellipticPi(n, m), n)
diff(ellipticPi(n, m), m)

ans =
ellipticK(m)/(2*n*(n - 1)) + ellipticE(m)/(2*(m - n)*(n - 1)) -...
(ellipticPi(n, m)*(- n^2 + m))/(2*n*(m - n)*(n - 1))

ans =
- ellipticPi(n, m)/(2*(m - n)) - ellipticE(m)/(2*(m - n)*(m - 1))

Here, ellipticK and ellipticE represent the complete elliptic integrals of the first
and second kinds.

Compute Integrals for Matrix Input
Call ellipticPi for the scalar and the matrix. When one input argument is a matrix,
ellipticPi expands the scalar argument to a matrix of the same size with all its
elements equal to the scalar.

ellipticPi(sym(0), sym([1/3 1; 1/2 0]))

ans =
[ellipticK(1/3), Inf]
[ellipticK(1/2), pi/2]

Here, ellipticK represents the complete elliptic integral of the first kind.

4 Functions — Alphabetical List

4-446

Input Arguments
n — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

m — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

phi — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Definitions
Incomplete Elliptic Integral of the Third Kind
The incomplete elliptic integral of the third kind is defined as follows:

Π n; φ m = ∫
0

φ
1

1− nsin2θ 1−msin2θ
dθ

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Complete Elliptic Integral of the Third Kind
The complete elliptic integral of the third kind is defined as follows:

 ellipticPi

4-447

Π n, m = Π n; π
2 m = ∫

0

π/2
1

1− nsin2θ 1−msin2θ
dθ

Note that some definitions use the elliptical modulus k or the modular angle α instead of
the parameter m. They are related as m = k2 = sin2α.

Tips
• ellipticPi returns floating-point results for numeric arguments that are not

symbolic objects.
• For most symbolic (exact) numbers, ellipticPi returns unresolved symbolic calls.

You can approximate such results with floating-point numbers using vpa.
• All non-scalar arguments must have the same size. If one or two input arguments are

non-scalar, then ellipticPi expands the scalars into vectors or matrices of the same
size as the non-scalar arguments, with all elements equal to the corresponding scalar.

• ellipticPi(n, pi/2, m) = ellipticPi(n, m).

References
[1] Milne-Thomson, L. M. “Elliptic Integrals.” Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun,
eds.). New York: Dover, 1972.

See Also
ellipke | ellipticCE | ellipticCK | ellipticCPi | ellipticE | ellipticF |
ellipticK | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-448

eq
Define symbolic equation

Syntax
A == B
eq(A,B)

Description
A == B defines a symbolic equation. Use the equation as input to functions such as
solve, assume, fcontour, and subs.

eq(A,B) is equivalent to A == B.

Examples

Define and Solve Equation

Solve this trigonometric equation. Define the equation by using the == operator.

syms x
eqn = sin(x) == cos(x);
solve(eqn,x)

ans =
pi/4

Plot Symbolic Equation

Plot the equation sin(x2) = sin(y2) by using fimplicit. Define the equation by using the
== operator.

 eq

4-449

syms x y
eqn = sin(x^2) == sin(y^2);
fimplicit(eqn)

Test Equality of Symbolic Expressions

Test the equality of two symbolic expressions by using isAlways.

syms x
eqn = x+1 == x+1;
isAlways(eqn)

4 Functions — Alphabetical List

4-450

ans =
 logical
 1

eqn = sin(x)/cos(x) == tan(x);
isAlways(eqn)

ans =
 logical
 1

Test Equality of Symbolic Matrices

Check the equality of two symbolic matrices by using isAlways.

A = sym(hilb(3));
B = sym([1 1/2 5; 1/2 2 1/4; 1/3 1/8 1/5]);
isAlways(A == B)

ans =
 3×3 logical array
 1 1 0
 1 0 1
 1 0 1

Compare a matrix and a scalar. The == operator expands the scalar into a matrix of the
same dimensions as the input matrix.

A = sym(hilb(3));
B = sym(1/2);
isAlways(A == B)

ans =
 3×3 logical array
 0 1 0

 eq

4-451

 1 0 0
 0 0 0

Input Arguments
A — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

B — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Tips
• Calling == or eq for nonsymbolic A and B invokes the MATLAB eq function. This

function returns a logical array with elements set to logical 1 (true) where A and B
are equal; otherwise, it returns logical 0 (false).

• If both A and B are arrays, then they must have the same dimensions. A == B returns
an array of equations A(i,j,...) == B(i,j,...).

See Also
ge | gt | isAlways | le | lt | ne | solve

Topics
“Solve Equations” on page 1-16
“Set Assumptions” on page 1-29

Introduced in R2012a

4 Functions — Alphabetical List

4-452

equationsToMatrix
Convert linear equations to matrix form

Syntax
[A,b] = equationsToMatrix(eqns)
[A,b] = equationsToMatrix(eqns,vars)
A = equationsToMatrix(___)

Description
[A,b] = equationsToMatrix(eqns) converts equations eqns to matrix form. eqns
must be a linear system of equations in all variables that symvar finds in eqns.

[A,b] = equationsToMatrix(eqns,vars) converts eqns to matrix form, where
eqns must be linear in vars.

A = equationsToMatrix(___) returns only the coefficient matrix of the system of
equations.

Examples

Convert Linear Equations to Matrix Form

Convert a system of linear equations to matrix form. equationsToMatrix automatically
detects the variables in the equations by using symvar.

syms x y z
eqns = [x+y-2*z == 0,
 x+y+z == 1,
 2*y-z == -5];
[A,b] = equationsToMatrix(eqns)

A =
[1, 1, -2]

 equationsToMatrix

4-453

[1, 1, 1]
[0, 2, -1]

b =
 0
 1
 -5

Specify Variables in Equations

Convert a linear system of equations to the matrix form by specifying independent
variables. This is useful when the equation are only linear in some variables.

For this system, specify the variables as [s t] because the system is not linear in r.

syms r s t
eqns = [s-2*t+r^2 == -1
 3*s-t == 10];
vars = [s t];
[A,b] = equationsToMatrix(eqns,vars)

A =
[1, -2]
[3, -1]

b =
 - r^2 - 1
 10

Return Only Coefficient Matrix of Equations

Return only the coefficient matrix of the equations by specifying a single output
argument.

syms x y z
eqns = [x + y - 2*z == 0,
 x + y + z == 1,
 2*y - z == -5];
vars = [x y z];
A = equationsToMatrix(eqns,vars)

4 Functions — Alphabetical List

4-454

A =
[1, 1, -2]
[1, 1, 1]
[0, 2, -1]

Input Arguments
eqns — Linear equations
vector of symbolic equations or expressions

Linear equations, specified as a vector of symbolic equations or expressions. Symbolic
equations are defined by using the == operator, such as x + y == 1. For symbolic
expressions, equationsToMatrix assumes that the right side is 0.

Equations must be linear in terms of vars.

vars — Independent variables
vector of symbolic variables (default)

Independent variables in eqns, specified as a vector of symbolic variables.

Output Arguments
A — Coefficient matrix
symbolic matrix

Coefficient matrix of the system of linear equations, specified as a symbolic matrix.

b — Right sides of equations
symbolic matrix

Vector containing the right sides of equations, specified as a symbolic matrix.

Definitions
Matrix Representation of System of Linear Equations
A system of linear equations

 equationsToMatrix

4-455

a11x1 + a12x2 + … + a1nxn = b1
a21x1 + a22x2 + … + a2nxn = b2

⋯
am1x1 + am2x2 + … + amnxn = bm

can be represented as the matrix equation A ⋅ x = b . Here, A is the coefficient matrix.

A =
a11 … a1n

⋮ ⋱ ⋮
am1 ⋯ amn

b is the vector containing the right sides of equations.

b =
b1

⋮
bm

See Also
linsolve | odeToVectorField | solve | symvar

Topics
“Solve System of Linear Equations” on page 2-179

Introduced in R2012b

4 Functions — Alphabetical List

4-456

erf
Error function

Syntax
erf(X)

Description
erf(X) represents the error function on page 4-461 of X. If X is a vector or a matrix,
erf(X) computes the error function of each element of X.

Examples

Error Function for Floating-Point and Symbolic Numbers
Depending on its arguments, erf can return floating-point or exact symbolic results.

Compute the error function for these numbers. Because these numbers are not symbolic
objects, you get the floating-point results:

A = [erf(1/2), erf(1.41), erf(sqrt(2))]

A =
 0.5205 0.9539 0.9545

Compute the error function for the same numbers converted to symbolic objects. For
most symbolic (exact) numbers, erf returns unresolved symbolic calls:

symA = [erf(sym(1/2)), erf(sym(1.41)), erf(sqrt(sym(2)))]

symA =
[erf(1/2), erf(141/100), erf(2^(1/2))]

Use vpa to approximate symbolic results with the required number of digits:

 erf

4-457

d = digits(10);
vpa(symA)
digits(d)

ans =
[0.5204998778, 0.9538524394, 0.9544997361]

Error Function for Variables and Expressions
For most symbolic variables and expressions, erf returns unresolved symbolic calls.

Compute the error function for x and sin(x) + x*exp(x):

syms x
f = sin(x) + x*exp(x);
erf(x)
erf(f)

ans =
erf(x)

ans =
erf(sin(x) + x*exp(x))

Error Function for Vectors and Matrices
If the input argument is a vector or a matrix, erf returns the error function for each
element of that vector or matrix.

Compute the error function for elements of matrix M and vector V:

M = sym([0 inf; 1/3 -inf]);
V = sym([1; -i*inf]);
erf(M)
erf(V)

ans =
[0, 1]
[erf(1/3), -1]

ans =
 erf(1)
 -Inf*1i

4 Functions — Alphabetical List

4-458

Special Values of Error Function
erf returns special values for particular parameters.

Compute the error function for x = 0, x = ∞, and x = –∞. Use sym to convert 0 and
infinities to symbolic objects. The error function has special values for these parameters:

[erf(sym(0)), erf(sym(Inf)), erf(sym(-Inf))]

ans =
[0, 1, -1]

Compute the error function for complex infinities. Use sym to convert complex infinities
to symbolic objects:

[erf(sym(i*Inf)), erf(sym(-i*Inf))]

ans =
[Inf*1i, -Inf*1i]

Handling Expressions That Contain Error Function
Many functions, such as diff and int, can handle expressions containing erf.

Compute the first and second derivatives of the error function:

syms x
diff(erf(x), x)
diff(erf(x), x, 2)

ans =
(2*exp(-x^2))/pi^(1/2)

ans =
-(4*x*exp(-x^2))/pi^(1/2)

Compute the integrals of these expressions:

int(erf(x), x)
int(erf(log(x)), x)

ans =
exp(-x^2)/pi^(1/2) + x*erf(x)

 erf

4-459

ans =
x*erf(log(x)) - int((2*exp(-log(x)^2))/pi^(1/2), x)

Plot Error Function
Plot the error function on the interval from -5 to 5.

syms x
fplot(erf(x),[-5 5])
grid on

4 Functions — Alphabetical List

4-460

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Error Function
The following integral defines the error function:

erf (x) = 2
π ∫0

x
e−t2dt

Tips
• Calling erf for a number that is not a symbolic object invokes the MATLAB erf

function. This function accepts real arguments only. If you want to compute the error
function for a complex number, use sym to convert that number to a symbolic object,
and then call erf for that symbolic object.

• For most symbolic (exact) numbers, erf returns unresolved symbolic calls. You can
approximate such results with floating-point numbers using vpa.

Algorithms
The toolbox can simplify expressions that contain error functions and their inverses. For
real values x, the toolbox applies these simplification rules:

• erfinv(erf(x)) = erfinv(1 - erfc(x)) = erfcinv(1 - erf(x)) =
erfcinv(erfc(x)) = x

 erf

4-461

• erfinv(-erf(x)) = erfinv(erfc(x) - 1) = erfcinv(1 + erf(x)) =
erfcinv(2 - erfc(x)) = -x

For any value x, the system applies these simplification rules:

• erfcinv(x) = erfinv(1 - x)
• erfinv(-x) = -erfinv(x)
• erfcinv(2 - x) = -erfcinv(x)
• erf(erfinv(x)) = erfc(erfcinv(x)) = x
• erf(erfcinv(x)) = erfc(erfinv(x)) = 1 - x

References
[1] Gautschi, W. “Error Function and Fresnel Integrals.” Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

See Also
erfc | erfcinv | erfi | erfinv

Introduced before R2006a

4 Functions — Alphabetical List

4-462

erfc
Complementary error function

Syntax
erfc(X)
erfc(K,X)

Description
erfc(X) represents the complementary error function on page 4-468 of X, that
is,erfc(X) = 1 - erf(X).

erfc(K,X) represents the iterated integral of the complementary error function on page
4-468 of X, that is, erfc(K, X) = int(erfc(K - 1, y), y, X, inf).

Examples
Complementary Error Function for Floating-Point and
Symbolic Numbers
Depending on its arguments, erfc can return floating-point or exact symbolic results.

Compute the complementary error function for these numbers. Because these numbers
are not symbolic objects, you get the floating-point results:

A = [erfc(1/2), erfc(1.41), erfc(sqrt(2))]

A =
 0.4795 0.0461 0.0455

Compute the complementary error function for the same numbers converted to symbolic
objects. For most symbolic (exact) numbers, erfc returns unresolved symbolic calls:

symA = [erfc(sym(1/2)), erfc(sym(1.41)), erfc(sqrt(sym(2)))]

 erfc

4-463

symA =
[erfc(1/2), erfc(141/100), erfc(2^(1/2))]

Use vpa to approximate symbolic results with the required number of digits:

d = digits(10);
vpa(symA)
digits(d)

ans =
[0.4795001222, 0.04614756064, 0.0455002639]

Error Function for Variables and Expressions
For most symbolic variables and expressions, erfc returns unresolved symbolic calls.

Compute the complementary error function for x and sin(x) + x*exp(x):

syms x
f = sin(x) + x*exp(x);
erfc(x)
erfc(f)

ans =
erfc(x)

ans =
erfc(sin(x) + x*exp(x))

Complementary Error Function for Vectors and Matrices
If the input argument is a vector or a matrix, erfc returns the complementary error
function for each element of that vector or matrix.

Compute the complementary error function for elements of matrix M and vector V:

M = sym([0 inf; 1/3 -inf]);
V = sym([1; -i*inf]);
erfc(M)
erfc(V)

ans =
[1, 0]
[erfc(1/3), 2]

4 Functions — Alphabetical List

4-464

ans =
 erfc(1)
 1 + Inf*1i

Compute the iterated integral of the complementary error function for the elements of V
and M, and the integer -1:

erfc(-1, M)
erfc(-1, V)

ans =
[2/pi^(1/2), 0]
[(2*exp(-1/9))/pi^(1/2), 0]

ans =
 (2*exp(-1))/pi^(1/2)
 Inf

Special Values of Complementary Error Function
erfc returns special values for particular parameters.

Compute the complementary error function for x = 0, x = ∞, and x = –∞. The
complementary error function has special values for these parameters:

[erfc(0), erfc(Inf), erfc(-Inf)]

ans =
 1 0 2

Compute the complementary error function for complex infinities. Use sym to convert
complex infinities to symbolic objects:

[erfc(sym(i*Inf)), erfc(sym(-i*Inf))]

ans =
[1 - Inf*1i, 1 + Inf*1i]

Handling Expressions That Contain Complementary Error
Function
Many functions, such as diff and int, can handle expressions containing erfc.

 erfc

4-465

Compute the first and second derivatives of the complementary error function:

syms x
diff(erfc(x), x)
diff(erfc(x), x, 2)

ans =
-(2*exp(-x^2))/pi^(1/2)

ans =
(4*x*exp(-x^2))/pi^(1/2)

Compute the integrals of these expressions:

syms x
int(erfc(-1, x), x)

ans =
erf(x)

int(erfc(x), x)

ans =
x*erfc(x) - exp(-x^2)/pi^(1/2)

int(erfc(2, x), x)

ans =
(x^3*erfc(x))/6 - exp(-x^2)/(6*pi^(1/2)) +...
(x*erfc(x))/4 - (x^2*exp(-x^2))/(6*pi^(1/2))

Plot Complementary Error Function
Plot the complementary error function on the interval from -5 to 5.

syms x
fplot(erfc(x),[-5 5])
grid on

4 Functions — Alphabetical List

4-466

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

 erfc

4-467

K — Input representing an integer larger than -2
number | symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input representing an integer larger than -2, specified as a number, symbolic number,
variable, expression, or function. This arguments can also be a vector or matrix of
numbers, symbolic numbers, variables, expressions, or functions.

Definitions
Complementary Error Function
The following integral defines the complementary error function:

erfc(x) = 2
π∫x

∞
e−t2dt = 1− erf x

Here erf(x) is the error function.

Iterated Integral of Complementary Error Function
The following integral is the iterated integral of the complementary error function:

erfc k, x = ∫
x

∞
erfc k− 1, y dy

Here, erfc 0, x = erfc x .

Tips
• Calling erfc for a number that is not a symbolic object invokes the MATLAB erfc

function. This function accepts real arguments only. If you want to compute the
complementary error function for a complex number, use sym to convert that number
to a symbolic object, and then call erfc for that symbolic object.

• For most symbolic (exact) numbers, erfc returns unresolved symbolic calls. You can
approximate such results with floating-point numbers using vpa.

4 Functions — Alphabetical List

4-468

• At least one input argument must be a scalar or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, then erfc expands the scalar into a vector or matrix of the same
size as the other argument with all elements equal to that scalar.

Algorithms
The toolbox can simplify expressions that contain error functions and their inverses. For
real values x, the toolbox applies these simplification rules:

• erfinv(erf(x)) = erfinv(1 - erfc(x)) = erfcinv(1 - erf(x)) =
erfcinv(erfc(x)) = x

• erfinv(-erf(x)) = erfinv(erfc(x) - 1) = erfcinv(1 + erf(x)) =
erfcinv(2 - erfc(x)) = -x

For any value x, the system applies these simplification rules:

• erfcinv(x) = erfinv(1 - x)
• erfinv(-x) = -erfinv(x)
• erfcinv(2 - x) = -erfcinv(x)
• erf(erfinv(x)) = erfc(erfcinv(x)) = x
• erf(erfcinv(x)) = erfc(erfinv(x)) = 1 - x

References
[1] Gautschi, W. “Error Function and Fresnel Integrals.” Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

See Also
erf | erfcinv | erfi | erfinv

Introduced in R2011b

 erfc

4-469

erfcinv
Inverse complementary error function

Syntax
erfcinv(X)

Description
erfcinv(X) computes the inverse complementary error function on page 4-474 of X. If X
is a vector or a matrix, erfcinv(X) computes the inverse complementary error function
of each element of X.

Examples

Inverse Complementary Error Function for Floating-Point and
Symbolic Numbers
Depending on its arguments, erfcinv can return floating-point or exact symbolic results.

Compute the inverse complementary error function for these numbers. Because these
numbers are not symbolic objects, you get floating-point results:

A = [erfcinv(1/2), erfcinv(1.33), erfcinv(3/2)]

A =
 0.4769 -0.3013 -0.4769

Compute the inverse complementary error function for the same numbers converted to
symbolic objects. For most symbolic (exact) numbers, erfcinv returns unresolved
symbolic calls:

symA = [erfcinv(sym(1/2)), erfcinv(sym(1.33)), erfcinv(sym(3/2))]

4 Functions — Alphabetical List

4-470

symA =
[-erfcinv(3/2), erfcinv(133/100), erfcinv(3/2)]

Use vpa to approximate symbolic results with the required number of digits:

d = digits(10);
vpa(symA)
digits(d)

ans =
[0.4769362762, -0.3013321461, -0.4769362762]

Inverse Complementary Error Function for Variables and
Expressions
For most symbolic variables and expressions, erfcinv returns unresolved symbolic calls.

Compute the inverse complementary error function for x and sin(x) + x*exp(x). For
most symbolic variables and expressions, erfcinv returns unresolved symbolic calls:

syms x
f = sin(x) + x*exp(x);
erfcinv(x)
erfcinv(f)

ans =
erfcinv(x)

ans =
erfcinv(sin(x) + x*exp(x))

Inverse Complementary Error Function for Vectors and
Matrices
If the input argument is a vector or a matrix, erfcinv returns the inverse
complementary error function for each element of that vector or matrix.

Compute the inverse complementary error function for elements of matrix M and vector V:

M = sym([0 1 + i; 1/3 1]);
V = sym([2; inf]);
erfcinv(M)
erfcinv(V)

 erfcinv

4-471

ans =
[Inf, NaN]
[-erfcinv(5/3), 0]

ans =
 -Inf
 NaN

Special Values of Inverse Complementary Error Function
erfcinv returns special values for particular parameters.

Compute the inverse complementary error function for x = 0, x = 1, and x = 2. The
inverse complementary error function has special values for these parameters:

[erfcinv(0), erfcinv(1), erfcinv(2)]

ans =
 Inf 0 -Inf

Handling Expressions That Contain Inverse Complementary
Error Function
Many functions, such as diff and int, can handle expressions containing erfcinv.

Compute the first and second derivatives of the inverse complementary error function:

syms x
diff(erfcinv(x), x)
diff(erfcinv(x), x, 2)

ans =
-(pi^(1/2)*exp(erfcinv(x)^2))/2

ans =
(pi*exp(2*erfcinv(x)^2)*erfcinv(x))/2

Compute the integral of the inverse complementary error function:

int(erfcinv(x), x)

ans =
exp(-erfcinv(x)^2)/pi^(1/2)

4 Functions — Alphabetical List

4-472

Plot Inverse Complementary Error Function
Plot the inverse complementary error function on the interval from 0 to 2.

syms x
fplot(erfcinv(x),[0 2])
grid on

 erfcinv

4-473

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Inverse Complementary Error Function
The inverse complementary error function is defined as erfc-1(x), such that
erfc(erfc-1(x)) = x. Here

erfc(x) = 2
π∫x

∞
e−t2dt = 1− erf x

is the complementary error function.

Tips
• Calling erfcinv for a number that is not a symbolic object invokes the MATLAB

erfcinv function. This function accepts real arguments only. If you want to compute
the inverse complementary error function for a complex number, use sym to convert
that number to a symbolic object, and then call erfcinv for that symbolic object.

• If x < 0 or x > 2, or if x is complex, then erfcinv(x) returns NaN.

Algorithms
The toolbox can simplify expressions that contain error functions and their inverses. For
real values x, the toolbox applies these simplification rules:

4 Functions — Alphabetical List

4-474

• erfinv(erf(x)) = erfinv(1 - erfc(x)) = erfcinv(1 - erf(x)) =
erfcinv(erfc(x)) = x

• erfinv(-erf(x)) = erfinv(erfc(x) - 1) = erfcinv(1 + erf(x)) =
erfcinv(2 - erfc(x)) = -x

For any value x, the toolbox applies these simplification rules:

• erfcinv(x) = erfinv(1 - x)
• erfinv(-x) = -erfinv(x)
• erfcinv(2 - x) = -erfcinv(x)
• erf(erfinv(x)) = erfc(erfcinv(x)) = x
• erf(erfcinv(x)) = erfc(erfinv(x)) = 1 - x

References
[1] Gautschi, W. “Error Function and Fresnel Integrals.” Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

See Also
erf | erfc | erfi | erfinv

Introduced in R2012a

 erfcinv

4-475

erfi
Imaginary error function

Syntax
erfi(x)

Description
erfi(x) returns the imaginary error function on page 4-480 of x. If x is a vector or a
matrix, erfi(x) returns the imaginary error function of each element of x.

Examples

Imaginary Error Function for Floating-Point and Symbolic
Numbers
Depending on its arguments, erfi can return floating-point or exact symbolic results.

Compute the imaginary error function for these numbers. Because these numbers are not
symbolic objects, you get floating-point results.

s = [erfi(1/2), erfi(1.41), erfi(sqrt(2))]

s =
 0.6150 3.7382 3.7731

Compute the imaginary error function for the same numbers converted to symbolic
objects. For most symbolic (exact) numbers, erfi returns unresolved symbolic calls.

s = [erfi(sym(1/2)), erfi(sym(1.41)), erfi(sqrt(sym(2)))]

s =
[erfi(1/2), erfi(141/100), erfi(2^(1/2))]

4 Functions — Alphabetical List

4-476

Use vpa to approximate this result with the 10-digit accuracy:

vpa(s, 10)

ans =
[0.6149520947, 3.738199581, 3.773122512]

Imaginary Error Function for Variables and Expressions
Compute the imaginary error function for x and sin(x) + x*exp(x). For most symbolic
variables and expressions, erfi returns unresolved symbolic calls.

syms x
f = sin(x) + x*exp(x);
erfi(x)
erfi(f)

ans =
erfi(x)

ans =
erfi(sin(x) + x*exp(x))

Imaginary Error Function for Vectors and Matrices
If the input argument is a vector or a matrix, erfi returns the imaginary error function
for each element of that vector or matrix.

Compute the imaginary error function for elements of matrix M and vector V:

M = sym([0 inf; 1/3 -inf]);
V = sym([1; -i*inf]);
erfi(M)
erfi(V)

ans =
[0, Inf]
[erfi(1/3), -Inf]

ans =
 erfi(1)
 -1i

 erfi

4-477

Special Values of Imaginary Error Function
Compute the imaginary error function for x = 0, x = ∞, and x = –∞. Use sym to convert 0
and infinities to symbolic objects. The imaginary error function has special values for
these parameters:

[erfi(sym(0)), erfi(sym(inf)), erfi(sym(-inf))]

ans =
[0, Inf, -Inf]

Compute the imaginary error function for complex infinities. Use sym to convert complex
infinities to symbolic objects:

[erfi(sym(i*inf)), erfi(sym(-i*inf))]

ans =
[1i, -1i]

Handling Expressions That Contain Imaginary Error Function
Many functions, such as diff and int, can handle expressions containing erfi.

Compute the first and second derivatives of the imaginary error function:

syms x
diff(erfi(x), x)
diff(erfi(x), x, 2)

ans =
(2*exp(x^2))/pi^(1/2)

ans =
(4*x*exp(x^2))/pi^(1/2)

Compute the integrals of these expressions:

int(erfi(x), x)
int(erfi(log(x)), x)

ans =
x*erfi(x) - exp(x^2)/pi^(1/2)

ans =
x*erfi(log(x)) - int((2*exp(log(x)^2))/pi^(1/2), x)

4 Functions — Alphabetical List

4-478

Plot Imaginary Error Function
Plot the imaginary error function on the interval from -2 to 2.

syms x
fplot(erfi(x),[-2,2])
grid on

 erfi

4-479

Input Arguments
x — Input
floating-point number | symbolic number | symbolic variable | symbolic expression |
symbolic function | symbolic vector | symbolic matrix

Input, specified as a floating-point or symbolic number, variable, expression, function,
vector, or matrix.

Definitions

Imaginary Error Function
The imaginary error function is defined as:

erf i x = − i erf ix = 2
π ∫0

x
et2dt

Tips
• erfi returns special values for these parameters:

• erfi(0) = 0
• erfi(inf) = inf
• erfi(-inf) = -inf
• erfi(i*inf) = i
• erfi(-i*inf) = -i

See Also
erf | erfc | erfcinv | erfinv | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-480

erfinv
Inverse error function

Syntax
erfinv(X)

Description
erfinv(X) computes the inverse error function on page 4-485 of X. If X is a vector or a
matrix, erfinv(X) computes the inverse error function of each element of X.

Examples

Inverse Error Function for Floating-Point and Symbolic
Numbers
Depending on its arguments, erfinv can return floating-point or exact symbolic results.

Compute the inverse error function for these numbers. Because these numbers are not
symbolic objects, you get floating-point results:

A = [erfinv(1/2), erfinv(0.33), erfinv(-1/3)]

A =
 0.4769 0.3013 -0.3046

Compute the inverse error function for the same numbers converted to symbolic objects.
For most symbolic (exact) numbers, erfinv returns unresolved symbolic calls:

symA = [erfinv(sym(1)/2), erfinv(sym(0.33)), erfinv(sym(-1)/3)]

symA =
[erfinv(1/2), erfinv(33/100), -erfinv(1/3)]

 erfinv

4-481

Use vpa to approximate symbolic results with the required number of digits:

d = digits(10);
vpa(symA)
digits(d)

ans =
[0.4769362762, 0.3013321461, -0.3045701942]

Inverse Error Function for Variables and Expressions
For most symbolic variables and expressions, erfinv returns unresolved symbolic calls.

Compute the inverse error function for x and sin(x) + x*exp(x). For most symbolic
variables and expressions, erfinv returns unresolved symbolic calls:

syms x
f = sin(x) + x*exp(x);
erfinv(x)
erfinv(f)

ans =
erfinv(x)

ans =
erfinv(sin(x) + x*exp(x))

Inverse Error Function for Vectors and Matrices
If the input argument is a vector or a matrix, erfinv returns the inverse error function
for each element of that vector or matrix.

Compute the inverse error function for elements of matrix M and vector V:

M = sym([0 1 + i; 1/3 1]);
V = sym([-1; inf]);
erfinv(M)
erfinv(V)

ans =
[0, NaN]
[erfinv(1/3), Inf]

4 Functions — Alphabetical List

4-482

ans =
 -Inf
 NaN

Special Values of Inverse Complementary Error Function
erfinv returns special values for particular parameters.

Compute the inverse error function for x = –1, x = 0, and x = 1. The inverse error
function has special values for these parameters:

[erfinv(-1), erfinv(0), erfinv(1)]

ans =
 -Inf 0 Inf

Handling Expressions That Contain Inverse Complementary
Error Function
Many functions, such as diff and int, can handle expressions containing erfinv.

Compute the first and second derivatives of the inverse error function:

syms x
diff(erfinv(x), x)
diff(erfinv(x), x, 2)

ans =
(pi^(1/2)*exp(erfinv(x)^2))/2

ans =
(pi*exp(2*erfinv(x)^2)*erfinv(x))/2

Compute the integral of the inverse error function:

int(erfinv(x), x)

ans =
-exp(-erfinv(x)^2)/pi^(1/2)

Plot Inverse Error Function
Plot the inverse error function on the interval from -1 to 1.

 erfinv

4-483

syms x
fplot(erfinv(x),[-1,1])
grid on

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

4 Functions — Alphabetical List

4-484

Definitions

Inverse Error Function
The inverse error function is defined as erf -1(x), such that erf(erf -1(x)) = erf -1(erf(x)) = x.
Here

erf (x) = 2
π ∫0

x
e−t2dt

is the error function.

Tips
• Calling erfinv for a number that is not a symbolic object invokes the MATLAB

erfinv function. This function accepts real arguments only. If you want to compute
the inverse error function for a complex number, use sym to convert that number to a
symbolic object, and then call erfinv for that symbolic object.

• If x < –1 or x > 1, or if x is complex, then erfinv(x) returns NaN.

Algorithms
The toolbox can simplify expressions that contain error functions and their inverses. For
real values x, the toolbox applies these simplification rules:

• erfinv(erf(x)) = erfinv(1 - erfc(x)) = erfcinv(1 - erf(x)) =
erfcinv(erfc(x)) = x

• erfinv(-erf(x)) = erfinv(erfc(x) - 1) = erfcinv(1 + erf(x)) =
erfcinv(2 - erfc(x)) = -x

For any value x, the toolbox applies these simplification rules:

• erfcinv(x) = erfinv(1 - x)
• erfinv(-x) = -erfinv(x)
• erfcinv(2 - x) = -erfcinv(x)

 erfinv

4-485

• erf(erfinv(x)) = erfc(erfcinv(x)) = x
• erf(erfcinv(x)) = erfc(erfinv(x)) = 1 - x

References
[1] Gautschi, W. “Error Function and Fresnel Integrals.” Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

See Also
erf | erfc | erfcinv | erfi

Introduced in R2012a

4 Functions — Alphabetical List

4-486

euler
Euler numbers and polynomials

Syntax
euler(n)
euler(n,x)

Description
euler(n) returns the nth Euler number on page 4-491.

euler(n,x) returns the nth Euler polynomial on page 4-491.

Examples

Euler Numbers with Odd and Even Indices
The Euler numbers with even indices alternate the signs. Any Euler number with an odd
index is 0.

Compute the even-indexed Euler numbers with the indices from 0 to 10:

euler(0:2:10)

ans =
 1 -1 5 -61...
 1385 -50521

Compute the odd-indexed Euler numbers with the indices from 1 to 11:

euler(1:2:11)

ans =
 0 0 0 0 0 0

 euler

4-487

Euler Polynomials
For the Euler polynomials, use euler with two input arguments.

Compute the first, second, and third Euler polynomials in variables x, y, and z,
respectively:

syms x y z
euler(1, x)
euler(2, y)
euler(3, z)

ans =
x - 1/2

ans =
y^2 - y

ans =
z^3 - (3*z^2)/2 + 1/4

If the second argument is a number, euler evaluates the polynomial at that number.
Here, the result is a floating-point number because the input arguments are not symbolic
numbers:

euler(2, 1/3)

ans =
 -0.2222

To get the exact symbolic result, convert at least one number to a symbolic object:

euler(2, sym(1/3))

ans =
-2/9

Plot Euler Polynomials
Plot the first six Euler polynomials.

syms x
fplot(euler(0:5, x), [-1 2])

4 Functions — Alphabetical List

4-488

title('Euler Polynomials')
grid on

Handle Expressions Containing Euler Polynomials
Many functions, such as diff and expand, can handle expressions containing euler.

Find the first and second derivatives of the Euler polynomial:

syms n x
diff(euler(n,x^2), x)

 euler

4-489

ans =
2*n*x*euler(n - 1, x^2)

diff(euler(n,x^2), x, x)

ans =
2*n*euler(n - 1, x^2) + 4*n*x^2*euler(n - 2, x^2)*(n - 1)

Expand these expressions containing the Euler polynomials:

expand(euler(n, 2 - x))

ans =
2*(1 - x)^n - (-1)^n*euler(n, x)

expand(euler(n, 2*x))

ans =
(2*2^n*bernoulli(n + 1, x + 1/2))/(n + 1) -...
(2*2^n*bernoulli(n + 1, x))/(n + 1)

Input Arguments
n — Index of the Euler number or polynomial
nonnegative integer | symbolic nonnegative integer | symbolic variable | symbolic
expression | symbolic function | symbolic vector | symbolic matrix

Index of the Euler number or polynomial, specified as a nonnegative integer, symbolic
nonnegative integer, variable, expression, function, vector, or matrix. If n is a vector or
matrix, euler returns Euler numbers or polynomials for each element of n. If one input
argument is a scalar and the other one is a vector or a matrix, euler(n,x) expands the
scalar into a vector or matrix of the same size as the other argument with all elements
equal to that scalar.

x — Polynomial variable
symbolic variable | symbolic expression | symbolic function | symbolic vector | symbolic
matrix

Polynomial variable, specified as a symbolic variable, expression, function, vector, or
matrix. If x is a vector or matrix, euler returns Euler numbers or polynomials for each
element of x. When you use the euler function to find Euler polynomials, at least one
argument must be a scalar or both arguments must be vectors or matrices of the same

4 Functions — Alphabetical List

4-490

size. If one input argument is a scalar and the other one is a vector or a matrix,
euler(n,x) expands the scalar into a vector or matrix of the same size as the other
argument with all elements equal to that scalar.

Definitions

Euler Polynomials
The Euler polynomials are defined as follows:

2ext

et + 1
= ∑

n = 0

∞
euler n, x tn

n!

Euler Numbers
The Euler numbers are defined in terms of Euler polynomials as follows:

euler n = 2neuler n, 1
2

Tips
• For the other meaning of Euler’s number, e = 2.71828…, call exp(1) to return the

double-precision representation. For the exact representation of Euler’s number e, call
exp(sym(1)).

• For the Euler-Mascheroni constant, see eulergamma.

See Also
bernoulli | eulergamma

Introduced in R2014a

 euler

4-491

eulergamma
Euler-Mascheroni constant

Syntax
eulergamma

Description
eulergamma represents the Euler-Mascheroni constant on page 4-493. To get a floating-
point approximation with the current precision set by digits, use vpa(eulergamma).

Examples

Represent and Numerically Approximate the Euler-Mascheroni
Constant
Represent the Euler-Mascheroni constant using eulergamma, which returns the symbolic
form eulergamma.

eulergamma

ans =
eulergamma

Use eulergamma in symbolic calculations. Numerically approximate your result with vpa.

a = eulergamma;
g = a^2 + log(a)
gVpa = vpa(g)

g =
log(eulergamma) + eulergamma^2
gVpa =
-0.21636138917392614801928563244766

4 Functions — Alphabetical List

4-492

Find the double-precision approximation of the Euler-Mascheroni constant using double.

double(eulergamma)

ans =
 0.5772

Show Relation of Euler-Mascheroni Constant to Gamma
Functions
Show the relations between the Euler-Mascheroni constant γ, digamma function Ψ, and
gamma function Γ.

Show that γ = −Ψ 1 .

-psi(sym(1))

ans =
eulergamma

Show that γ = − Γ′ x x = 1 .

syms x
-subs(diff(gamma(x)),x,1)

ans =
eulergamma

Definitions

Euler-Mascheroni Constant
The Euler-Mascheroni constant is defined as follows:

γ = lim
n ∞

∑
k = 1

n 1
k − ln n

 eulergamma

4-493

Tips
• For the value e = 2.71828…, called Euler’s number, use exp(1) to return the double-

precision representation. For the exact representation of Euler’s number e, call
exp(sym(1)).

• For the other meaning of Euler’s numbers and for Euler’s polynomials, see euler.

See Also
coshint | euler

Introduced in R2014a

4 Functions — Alphabetical List

4-494

evalin
(Not recommended) Evaluate MuPAD expressions without specifying their arguments

Note evalin(symengine,...) is not recommended. Use equivalent Symbolic Math
Toolbox™ functions that replace MuPAD® functions instead. For more information, see
“Compatibility Considerations”.

Syntax
result = evalin(symengine,MuPAD_expression)
[result,status] = evalin(symengine,MuPAD_expression)

Description
result = evalin(symengine,MuPAD_expression) evaluates the MuPAD expression
MuPAD_expression, and returns result as a symbolic object. If MuPAD_expression
throws an error in MuPAD, then this syntax throws an error in MATLAB.

[result,status] = evalin(symengine,MuPAD_expression) lets you catch errors
thrown by MuPAD. This syntax returns the error status in status and the error message
in result if status is nonzero. If status is 0, result is a symbolic object; otherwise, it
is a character vector.

Examples

Perform MuPAD Command
Compute the discriminant of the following polynomial:

evalin(symengine,'polylib::discrim(a*x^2+b*x+c,x)')

ans =
 b^2 - 4*a*c

 evalin

4-495

Input Arguments
MuPAD_expression — Input
character vector

Character vector containing a MuPAD expression.

Output Arguments
result — Computation result
character vector | symbolic object

Computation result returned as a symbolic object or character vector containing a MuPAD
error message.

status — Error status
integer

Error status returned as an integer. If F with the arguments x1,...,xn executes without
errors, the error status is 0.

Tips
• Results returned by evalin can differ from the results that you get using a MuPAD

notebook directly. The reason is that evalin sets a lower level of evaluation to
achieve better performance.

• evalin does not open a MuPAD notebook, and therefore, you cannot use this function
to access MuPAD graphics capabilities.

Compatibility Considerations

evalin(symengine,...) is not recommended
Not recommended starting in R2018b

Symbolic Math Toolbox includes operations and functions for symbolic math expressions
that parallel MATLAB functionality for numeric values. Unlike MuPAD functionality,

4 Functions — Alphabetical List

4-496

Symbolic Math Toolbox functions enable you to work in familiar interfaces, such as the
MATLAB Command Window or Live Editor, which offer a smooth workflow and are
optimized for usability.

Therefore, instead of passing MuPAD expressions to evalin, use the equivalent Symbolic
Math Toolbox functionality to work with symbolic math expressions. For a list of available
functions, see Symbolic Math Toolbox functions list.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook.

If you cannot find the Symbolic Math Toolbox equivalent for MuPAD functionality, contact
MathWorks Technical Support.

Although the use of evalin is not recommended, there are no plans to remove it at this
time.

Introduced in R2008b

 evalin

4-497

https://www.mathworks.com/support/contact_us.html

evaluateMuPADNotebook
Evaluate MuPAD notebook

Note

MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts”.

Syntax
evaluateMuPADNotebook(nb)
evaluateMuPADNotebook(nb,'IgnoreErrors',true)

Description
evaluateMuPADNotebook(nb) evaluates the MuPAD notebook with the handle nb and
returns logical 1 (true) if evaluation runs without errors. If nb is a vector of notebook
handles, then this syntax returns a vector of logical 1s.

evaluateMuPADNotebook(nb,'IgnoreErrors',true) does not stop evaluating the
notebook when it encounters an error. This syntax skips any input region of a MuPAD
notebook that causes errors, and proceeds to the next one. If the evaluation runs without
errors, this syntax returns logical 1 (true). Otherwise, it returns logical 0 (false). The
error messages appear in the MuPAD notebook only.

By default, evaluateMuPADNotebook uses 'IgnoreErrors',false, and therefore,
evaluateMuPADNotebook stops when it encounters an error in a notebook. The error
messages appear in the MATLAB Command Window and in the MuPAD notebook.

4 Functions — Alphabetical List

4-498

Examples

Evaluate Particular Notebook

Execute commands in all input regions of a MuPAD notebook. Results of the evaluation
appear in the output regions of the notebook.

Suppose that your current folder contains a MuPAD notebook named myFile1.mn. Open
this notebook keeping its handle in the variable nb1:

nb1 = mupad('myFile1.mn');

Evaluate all input regions in this notebook. If all calculations run without an error, then
evaluateMuPADNotebook returns logical 1 (true):

evaluateMuPADNotebook(nb1)

ans =
 1

Evaluate Several Notebooks

Use a vector of notebook handles to evaluate several notebooks.

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and
myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively.
Also create a new notebook with the handle nb3:

nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad

nb1 =
myFile1

nb2 =
myFile2

nb3 =
Notebook1

 evaluateMuPADNotebook

4-499

Evaluate myFile1.mn and myFile2.mn:

evaluateMuPADNotebook([nb1, nb2])

ans =
 1

Evaluate All Open Notebooks

Identify and evaluate all open MuPAD notebooks.

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and
myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively.
Also create a new notebook with the handle nb3:

nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad

nb1 =
myFile1

nb2 =
myFile2

nb3 =
Notebook1

Get a list of all currently open notebooks:

allNBs = allMuPADNotebooks;

Evaluate all notebooks. If all calculations run without an error, then
evaluateMuPADNotebook returns an array of logical 1s (true):

evaluateMuPADNotebook(allNBs)

ans =
 1
 1
 1

4 Functions — Alphabetical List

4-500

Evaluate All Open Notebooks Ignoring Errors

Identify and evaluate all open MuPAD notebooks skipping evaluations that cause errors.

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and
myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively.
Also create a new notebook with the handle nb3:

nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad

nb1 =
myFile1

nb2 =
myFile2

nb3 =
Notebook1

Get a list of all currently open notebooks:

allNBs = allMuPADNotebooks;

Evaluate all notebooks using 'IgnoreErrors',true to skip any calculations that cause
errors. If all calculations run without an error, then evaluateMuPADNotebook returns
an array of logical 1s (true):

evaluateMuPADNotebook(allNBs,'IgnoreErrors',true)

ans =
 1
 1
 1

Otherwise, it returns logical 0s for notebooks that cause errors (false):

ans =
 0

 evaluateMuPADNotebook

4-501

 1
 1

Input Arguments
nb — Pointer to MuPAD notebook
handle to notebook | vector of handles to notebooks

Pointer to MuPAD notebook, specified as a MuPAD notebook handle or a vector of
handles. You create the notebook handle when opening a notebook with the mupad or
openmn function.

You can get the list of all open notebooks using the allMuPADNotebooks function.
evaluateMuPADNotebook accepts a vector of handles returned by
allMuPADNotebooks.

See Also
allMuPADNotebooks | close | getVar | mupad | mupadNotebookTitle | openmn |
setVar

Topics
“Create MuPAD Notebooks” on page 3-4
“Open MuPAD Notebooks” on page 3-7
“Save MuPAD Notebooks” on page 3-13
“Evaluate MuPAD Notebooks from MATLAB” on page 3-14
“Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-55
“Close MuPAD Notebooks from MATLAB” on page 3-18

Introduced in R2013b

4 Functions — Alphabetical List

4-502

expand
Expand expressions and simplify inputs of functions by using identities

Syntax
expand(S)
expand(S,Name,Value)

Description
expand(S) multiplies all parentheses in S, and simplifies inputs to functions such as
cos(x + y) by applying standard identities.

expand(S,Name,Value) uses additional options specified by one or more name-value
pair arguments. For example, specifying 'IgnoreAnalyticConstraints' as true uses
convenient identities to simplify the input.

Examples

Expand Symbolic Expression

syms x
p = (x - 2)*(x - 4);
expand(p)

ans =
x^2 - 6*x + 8

Expand Trigonometric Expression

Expand the trigonometric expression cos(x + y). Simplify the cos function input x +
y to x or y by applying standard identities.

 expand

4-503

syms x y
expand(cos(x + y))

ans =
cos(x)*cos(y) - sin(x)*sin(y)

Expand Exponential Expression

Expand e(a + b)2. Simplify the exp function input, (a + b)^2, by applying standard
identities.

syms a b
f = exp((a + b)^2);
expand(f)

ans =
exp(a^2)*exp(b^2)*exp(2*a*b)

Expand Vector of Expressions

Expand expressions in a vector. Simplify the inputs to functions in the expressions by
applying identities.

syms t
V = [sin(2*t), cos(2*t)];
expand(V)

ans =
[2*cos(t)*sin(t), 2*cos(t)^2 - 1]

Expand Only Arithmetic and Suppress Expansion of Functions

By default, expand both expands terms raised to powers and expands functions by
applying identities that simplify inputs to the functions. Expand only terms raised to
powers and suppress expansion of functions by using 'ArithmeticOnly'.

Expand (sin(3*x) - 1)^2. By default, expand will expand the power ^2 and simplify
the sin input 3*x to x.

4 Functions — Alphabetical List

4-504

syms x
f = (sin(3*x) - 1)^2;
expand(f)

ans =
2*sin(x) + sin(x)^2 - 8*cos(x)^2*sin(x) - 8*cos(x)^2*sin(x)^2...
 + 16*cos(x)^4*sin(x)^2 + 1

Suppress expansion of functions, such as sin(3*x), by setting ArithmeticOnly to
true.

expand(f, 'ArithmeticOnly', true)

ans =
sin(3*x)^2 - 2*sin(3*x) + 1

Simplify Log Input by Removing Constraints

Simplify the input of log function calls. By default, expand does not simplify logarithm
input because the identities used are not valid for complex values of variables.

syms a b c
f = log((a*b/c)^2);
expand(f)

ans =
log((a^2*b^2)/c^2)

Apply identities to simplify the input of logarithms by setting
'IgnoreAnalyticConstraints' to true.

expand(f,'IgnoreAnalyticConstraints',true)

ans =
 2*log(a) + 2*log(b) - 2*log(c)

Input Arguments
S — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

 expand

4-505

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: expand(S,'ArithmeticOnly',true)

ArithmeticOnly — Expand only algebraic expressions
false (default) | true

Expand only algebraic expressions, specified as the comma-separated pair consisting of
'ArithmeticOnly' and true or false. If the value is true, the function expands the
arithmetic part of an expression without expanding trigonometric, hyperbolic,
logarithmic, and special functions. This option does not prevent the expansion of powers
and roots.

IgnoreAnalyticConstraints — Use convenient identities for simplification
false (default) | true

Use convenient identities for simplification, specified as the comma-separated pair
consisting of 'IgnoreAnalyticConstraints' and true or false. If the value is true,
expand applies identities that are convenient but do not hold for all values of variables.
This option can let expand return simpler results. See “Algorithms” on page 4-506.
Setting this option can lead to results that are not equivalent to the initial expression.

Algorithms
When you use 'IgnoreAnalyticConstraints', expand applies these rules.

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the following equality
is valid for all values of a, b, and c:

 (a·b)c = ac·bc.
• log(ab) = b·log(a) for all values of a and b. In particular, the following equality is valid

for all values of a, b, and c:

4 Functions — Alphabetical List

4-506

 (ab)c = ab·c.
• If f and g are standard mathematical functions and f(g(x)) = x for all small positive

numbers, f(g(x)) = x is assumed to be valid for all complex x.

• log(ex) = x
• asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x
• asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x
• Wk(x·ex) = x for all values of k

See Also
collect | combine | factor | horner | numden | rewrite | simplify |
simplifyFraction

Topics
“Choose Function to Rearrange Expression” on page 2-101

Introduced before R2006a

 expand

4-507

expint
Exponential integral function

Syntax
expint(x)
expint(n,x)

Description
expint(x) returns the one-argument exponential integral function defined as

expint x = ∫
1

∞
e−xt

t dt .

expint(n,x) returns the two-argument exponential integral function defined as

expint n, x = ∫
1

∞
e−xt

tn dt .

Examples

One-Argument Exponential Integral for Floating-Point and
Symbolic Numbers
Compute the exponential integrals for floating-point numbers. Because these numbers are
not symbolic objects, you get floating-point results.

s = [expint(1/3), expint(1), expint(-2)]

s =
 0.8289 + 0.0000i 0.2194 + 0.0000i -4.9542 - 3.1416i

4 Functions — Alphabetical List

4-508

Compute the exponential integrals for the same numbers converted to symbolic objects.
For positive values x, expint(x) returns -ei(-x). For negative values x, it returns -
pi*i - ei(-x).

s = [expint(sym(1)/3), expint(sym(1)), expint(sym(-2))]

s =
[-ei(-1/3), -ei(-1), - ei(2) - pi*1i]

Use vpa to approximate this result with 10-digit accuracy.

vpa(s, 10)

ans =
[0.8288877453, 0.2193839344, - 4.954234356 - 3.141592654i]

Two-Argument Exponential Integral for Floating-Point and
Symbolic Numbers
When computing two-argument exponential integrals, convert the numbers to symbolic
objects.

s = [expint(2, sym(1)/3), expint(sym(1), Inf), expint(-1, sym(-2))]

s =
[expint(2, 1/3), 0, -exp(2)/4]

Use vpa to approximate this result with 25-digit accuracy.

vpa(s, 25)

ans =
[0.4402353954575937050522018, 0, -1.847264024732662556807607]

Two-Argument Exponential Integral with Nonpositive First
Argument
Compute two-argument exponential integrals. If n is a nonpositive integer, then
expint(n, x) returns an explicit expression in the form exp(-x)*p(1/x), where p is a
polynomial of degree 1 - n.

syms x
expint(0, x)

 expint

4-509

expint(-1, x)
expint(-2, x)

ans =
exp(-x)/x

ans =
exp(-x)*(1/x + 1/x^2)

ans =
exp(-x)*(1/x + 2/x^2 + 2/x^3)

Derivatives of Exponential Integral
Compute the first, second, and third derivatives of a one-argument exponential integral.

syms x
diff(expint(x), x)
diff(expint(x), x, 2)
diff(expint(x), x, 3)

ans =
-exp(-x)/x

ans =
exp(-x)/x + exp(-x)/x^2

ans =
- exp(-x)/x - (2*exp(-x))/x^2 - (2*exp(-x))/x^3

Compute the first derivatives of a two-argument exponential integral.

syms n x
diff(expint(n, x), x)
diff(expint(n, x), n)

ans =
-expint(n - 1, x)

ans =
- hypergeom([1 - n, 1 - n], [2 - n, 2 - n],...
 -x)/(n - 1)^2 - (x^(n - 1)*pi*(psi(n) - ...
 log(x) + pi*cot(pi*n)))/(sin(pi*n)*gamma(n))

4 Functions — Alphabetical List

4-510

Input Arguments
x — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input specified as a symbolic number, variable, expression, function, vector, or matrix.

n — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input specified as a symbolic number, variable, expression, function, vector, or matrix.
When you compute the two-argument exponential integral function, at least one argument
must be a scalar.

Tips
• Calling expint for numbers that are not symbolic objects invokes the MATLAB

expint function. This function accepts one argument only. To compute the two-
argument exponential integral, use sym to convert the numbers to symbolic objects,
and then call expint for those symbolic objects. You can approximate the results with
floating-point numbers using vpa.

• The following values of the exponential integral differ from those returned by the
MATLAB expint function: expint(sym(Inf)) = 0, expint(-sym(Inf)) = -
Inf, expint(sym(NaN)) = NaN.

• For positive x, expint(x) = -ei(-x). For negative x, expint(x) = -pi*i -
ei(-x).

• If one input argument is a scalar and the other argument is a vector or a matrix, then
expint(n,x) expands the scalar into a vector or matrix of the same size as the other
argument with all elements equal to that scalar.

Algorithms
The relation between expint and ei is

expint(1,-x) = ei(x) + (ln(x)-ln(1/x))/2 - ln(-x)

 expint

4-511

Both functions ei(x) and expint(1,x) have a logarithmic singularity at the origin and
a branch cut along the negative real axis. The ei function is not continuous when
approached from above or below this branch cut.

The expint function is related to the upper incomplete gamma function igamma as

expint(n,x) = (x^(n-1))*igamma(1-n,x)

See Also
ei | expint | vpa

Introduced in R2013a

4 Functions — Alphabetical List

4-512

expm
Matrix exponential

Syntax
R = expm(A)

Description
R = expm(A) computes the matrix exponential on page 4-514 of the square matrix A.

Examples

Matrix Exponential
Compute the matrix exponential for the 2-by-2 matrix and simplify the result.

syms x
A = [0 x; -x 0];
simplify(expm(A))

ans =
[cos(x), sin(x)]
[-sin(x), cos(x)]

Input Arguments
A — Input matrix
square matrix

Input matrix, specified as a square symbolic matrix.

 expm

4-513

Output Arguments
R — Resulting matrix
symbolic matrix

Resulting function, returned as a symbolic matrix.

Definitions

Matrix Exponential
The matrix exponential eA of matrix A is

eA = ∑
k = 0

∞ 1
k! Ak = 1 + A + A2

2 + …

See Also
eig | funm | jordan | logm | sqrtm

Introduced before R2006a

4 Functions — Alphabetical List

4-514

ezcontour
Contour plotter

Note ezcontour is not recommended. Use fcontour instead.

Syntax
ezcontour(f)
ezcontour(f,domain)
ezcontour(___ ,n)

Description
ezcontour(f) plots the contour lines of f(x,y), where f is a symbolic expression that
represents a mathematical function of two variables, such as x and y. ezcontour
automatically adds a title and axis labels.

The function f is plotted over the default domain –2π < x < 2π, –2π < y < 2π. MATLAB
software chooses the computational grid according to the amount of variation that occurs;
if the function f is not defined (singular) for points on the grid, then these points are not
plotted.

ezcontour(f,domain) plots f(x,y) over the specified domain. domain can be either a 4-
by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x <
max, min < y < max). If f is a function of the variables u and v (rather than x and y), then
the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezcontour(u^2 - v^3,[0,1],[3,6]) plots the contour lines for u2 - v3 over 0 < u <
1, 3 < v < 6.

ezcontour(___ ,n) plots f over the default domain using an n-by-n grid. The default
value for n is 60.

 ezcontour

4-515

Examples

Plot Contour Lines of Symbolic Expression
The following mathematical expression defines a function of two variables, x and y.

f (x, y) = 3(1− x)2e−x2− (y + 1)2− 10 x
5 − x3− y5 e−x2− y2− 1

3e−(x + 1)2− y2 .

ezcontour requires a sym argument that expresses this function using MATLAB syntax
to represent exponents, natural logs, etc. This function is represented by the symbolic
expression

syms x y
f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2)...
 - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)...
 - 1/3*exp(-(x+1)^2 - y^2);

For convenience, this expression is written on three lines.

Pass the sym f to ezcontour along with a domain ranging from -3 to 3 and specify a
computational grid of 49-by-49.

ezcontour(f,[-3,3],49)

4 Functions — Alphabetical List

4-516

In this particular case, the title is too long to fit at the top of the graph so MATLAB
abbreviates the title.

Input Arguments
f — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

domain — Domain to plot over
symbolic vector

 ezcontour

4-517

Domain to plot over, specified as a symbolic vector. domain is a 4-by-1 vector [xmin,
xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x < max, min < y < max).
If f is a function of the variables u and v (rather than x and y), then the domain endpoints
umin, umax, vmin, and vmax are sorted alphabetically

n — grid points
number | symbolic number

Grid points, specified as a number or a symbolic number.

See Also
contour | fcontour | fmesh | fplot | fplot3 | fsurf

Introduced before R2006a

4 Functions — Alphabetical List

4-518

ezcontourf
Filled contour plotter

Note ezcontourf is not recommended. Use fcontour instead.

Syntax
ezcontourf(f)
ezcontourf(f,domain)
ezcontourf(___ ,n)

Description
ezcontourf(f) plots the contour lines of f(x,y), where f is a sym that represents a
mathematical function of two variables, such as x and y.

The function f is plotted over the default domain –2π < x < 2π, –2π < y < 2π. MATLAB
software chooses the computational grid according to the amount of variation that occurs;
if the function f is not defined (singular) for points on the grid, then these points are not
plotted.

ezcontourf automatically adds a title and axis labels.

ezcontourf(f,domain) plots f(x,y) over the specified domain. domain can be either a
4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x <
max, min < y < max). If f is a function of the variables u and v (rather than x and y), then
the domain endpoints umin, umax, vmin, and vmax are sorted alphabetically. Thus,
ezcontourf(u^2 - v^3,[0,1],[3,6]) plots the contour lines for u2 - v3 over 0 < u <
1, 3 < v < 6.

ezcontourf(___ ,n) plots f over the default domain using an n-by-n grid. The default
value for n is 60.

 ezcontourf

4-519

Examples

Plot Filled Contours
The following mathematical expression defines a function of two variables, x and y.

f (x, y) = 3(1− x)2e−x2− (y + 1)2− 10 x
5 − x3− y5 e−x2− y2− 1

3e−(x + 1)2− y2 .

ezcontourf requires a sym argument that expresses this function using MATLAB syntax
to represent exponents, natural logs, etc. This function is represented by the symbolic
expression

syms x y
f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2)...
 - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)...
 - 1/3*exp(-(x+1)^2 - y^2);

For convenience, this expression is written on three lines.

Pass the sym f to ezcontourf along with a domain ranging from -3 to 3 and specify a
grid of 49-by-49.

ezcontourf(f,[-3,3],49)

4 Functions — Alphabetical List

4-520

In this particular case, the title is too long to fit at the top of the graph so MATLAB
abbreviates the title.

Input Arguments
f — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

domain — Domain to plot over
symbolic vector

 ezcontourf

4-521

Domain to plot over, specified as a symbolic vector. domain is a 4-by-1 vector [xmin,
xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x < max, min < y < max).
If f is a function of the variables u and v (rather than x and y), then the domain endpoints
umin, umax, vmin, and vmax are sorted alphabetically

n — grid points
number | symbolic number

Grid points, specified as a number or a symbolic number.

See Also
contour | fcontour | fmesh | fplot | fplot3 | fsurf

Introduced before R2006a

4 Functions — Alphabetical List

4-522

ezmesh
3-D mesh plotter

Note ezmesh is not recommended. Use fmesh instead.

Syntax
ezmesh(f)
ezmesh(f,domain)
ezmesh(x,y,z)
ezmesh(x,y,z,domain)
ezmesh(___ ,n)
ezmesh(___ ,'circ')

Description
ezmesh(f) creates a graph of f(x,y), where f is a symbolic expression that represents a
mathematical function of two variables, such as x and y.

The function f is plotted over the default domain –2π < x < 2π, –2π < y < 2π. MATLAB
software chooses the computational grid according to the amount of variation that occurs;
if the function f is not defined (singular) for points on the grid, then these points are not
plotted.

ezmesh(f,domain) plots f over the specified domain. domain can be either a 4-by-1
vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x < max,
min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain endpoints
umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezmesh(u^2 - v^3,
[0,1],[3,6]) plots u2 - v3 over 0 < u < 1, 3 < v < 6.

ezmesh(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t) over the
square –2π < s < 2π, –2π < t < 2π.

ezmesh(x,y,z,domain) plots the parametric surface using the specified domain.

 ezmesh

4-523

ezmesh(___ ,n) plots f over the default domain using an n-by-n grid. The default value
for n is 60.

ezmesh(___ ,'circ') plots f over a disk centered on the domain.

Examples

3-D Mesh Plot of Symbolic Expression
This example visualizes the function,

f (x, y) = xe−x2− y2,

with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a uniform blue color
by setting the colormap to a single color.

syms x y
ezmesh(x*exp(-x^2-y^2),[-2.5,2.5],40)
colormap([0 0 1])

4 Functions — Alphabetical List

4-524

Input Arguments
f — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

x — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

 ezmesh

4-525

y — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

z — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

domain — Domain to plot over
symbolic vector

Domain to plot over, specified as a symbolic vector. domain is a 4-by-1 vector [xmin,
xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x < max, min < y < max).
If f is a function of the variables u and v (rather than x and y), then the domain endpoints
umin, umax, vmin, and vmax are sorted alphabetically.

n — grid points
number | symbolic number

Grid points, specified as a number or a symbolic number.

See Also
fcontour | fmesh | fplot | fplot3 | fsurf | mesh

Introduced before R2006a

4 Functions — Alphabetical List

4-526

ezmeshc
Combined mesh and contour plotter

Note ezmeshc is not recommended. Use fmesh instead.

Syntax
ezmeshc(f)
ezmeshc(f,domain)
ezmeshc(x,y,z)
ezmeshc(x,y,z,domain)
ezmeshc(___ ,n)
ezmeshc(___ ,'circ')

Description
ezmeshc(f) creates a graph of f(x,y), where f is a symbolic expression that represents a
mathematical function of two variables, such as x and y.

The function f is plotted over the default domain –2π < x < 2π, –2π < y < 2π. MATLAB
software chooses the computational grid according to the amount of variation that occurs;
if the function f is not defined (singular) for points on the grid, then these points are not
plotted.

ezmeshc(f,domain) plots f over the specified domain. domain can be either a 4-by-1
vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x < max,
min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain endpoints
umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezmeshc(u^2 - v^3,
[0,1],[3,6]) plots u2 – v3 over 0 < u < 1, 3 < v < 6.

ezmeshc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t) over
the square –2π < s < 2π, –2π < t < 2π.

ezmeshc(x,y,z,domain) plots the parametric surface using the specified domain.

 ezmeshc

4-527

ezmeshc(___ ,n) plots f over the default domain using an n-by-n grid. The default value
for n is 60.

ezmeshc(___ ,'circ') plots f over a disk centered on the domain.

Examples

3-D Mesh Plot with Contours
Create a mesh/contour graph of the expression,

f (x, y) = y
1 + x2 + y2 ,

over the domain –5 < x < 5, –2π < y < 2π. Use the mouse to rotate the axes to better
observe the contour lines (this picture uses a view of azimuth = –65 and elevation = 26).

syms x y
ezmeshc(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi])

4 Functions — Alphabetical List

4-528

Input Arguments
f — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

x — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

 ezmeshc

4-529

y — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

z — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

domain — Domain to plot over
symbolic vector

Domain to plot over, specified as a symbolic vector. domain is a 4-by-1 vector [xmin,
xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x < max, min < y < max).
If f is a function of the variables u and v (rather than x and y), then the domain endpoints
umin, umax, vmin, and vmax are sorted alphabetically.

n — grid points
number | symbolic number

Grid points, specified as a number or a symbolic number.

See Also
fcontour | fmesh | fplot | fplot3 | fsurf | meshc

Introduced before R2006a

4 Functions — Alphabetical List

4-530

ezplot
Plot symbolic expression, equation, or function

Note ezplot is not recommended. Use fplot instead. For implicit plots, use
fimplicit.

Syntax
ezplot(f)
ezplot(f,[min,max])
ezplot(f,[xmin,xmax,ymin,ymax])

ezplot(x,y)
ezplot(x,y,[tmin,tmax])

ezplot(f,[min,max],fig)
ezplot(f,[xmin,xmax,ymin,ymax],fig)
ezplot(x,y,[tmin,tmax],fig)

h = ezplot(___)

Description
ezplot(f) plots a symbolic expression, equation, or function f. By default, ezplot plots
a univariate expression or function over the range [–2π 2π] or over a subinterval of this
range. If f is an equation or function of two variables, the default range for both variables
is [–2π 2π] or over a subinterval of this range.

ezplot(f,[min,max]) plots f over the specified range. If f is a univariate expression
or function, then [min,max] specifies the range for that variable. This is the range along
the abscissa (horizontal axis). If f is an equation or function of two variables, then
[min,max] specifies the range for both variables, that is the ranges along both the
abscissa and the ordinate.

ezplot(f,[xmin,xmax,ymin,ymax]) plots f over the specified ranges along the
abscissa and the ordinate.

 ezplot

4-531

ezplot(x,y) plots the parametrically defined planar curve x = x(t) and y = y(t) over the
default range 0 <= t <= 2π or over a subinterval of this range.

ezplot(x,y,[tmin,tmax]) plots x = x(t) and y = y(t) over the specified range
tmin <= t <= tmax.

ezplot(f,[min,max],fig) plots f over the specified range in the figure with the
figure number or figure handle fig. The title of each plot window contains the word
Figure and the number, for example, Figure 1, Figure 2, and so on. If fig is already
open, ezplot overwrites the content of that figure with the new plot.

ezplot(f,[xmin,xmax,ymin,ymax],fig) plots f over the specified ranges along the
abscissa and the ordinate in fig.

ezplot(x,y,[tmin,tmax],fig) plots x = x(t) and y = y(t) over the specified range in
fig.

h = ezplot(___) returns the plot handle as either a chart line or contour object.

Examples

Plot Over Particular Range
Plot the expression erf(x)*sin(x) over the range [–π, π]:

syms x
ezplot(erf(x), [-pi, pi])

4 Functions — Alphabetical List

4-532

Plot Over Default Range
Plot this equation over the default range.

syms x y
ezplot(x^2 == y^4)

 ezplot

4-533

Plot Symbolic Function
Create this symbolic function f(x, y):

syms x y
f(x, y) = sin(x + y)*sin(x*y);

Plot this function over the default range:

ezplot(f)

4 Functions — Alphabetical List

4-534

Plot Parametric Curve
Plot this parametric curve:

syms t
x = t*sin(5*t);
y = t*cos(5*t);
ezplot(x, y)

 ezplot

4-535

Input Arguments
f — Input
symbolic expression | symbolic equation | symbolic function

Symbolic expression, equation, or function.

[min,max] — Numbers specifying the plotting range
[-2*pi,2*pi] (default) | vector | symbolic vector

Numbers specifying the plotting range, specified as a vector of length 2. For a univariate
expression or function, the plotting range applies to that variable. For an equation or

4 Functions — Alphabetical List

4-536

function of two variables, the plotting range applies to both variables. In this case, the
range is the same for the abscissa and the ordinate.

[xmin,xmax,ymin,ymax] — Numbers specifying the plotting range
[-2*pi,2*pi,-2*pi,2*pi] (default) | vector | symbolic vector

Numbers specifying the plotting range, specified as a numeric or symbolic vector along
the abscissa (first two numbers) and the ordinate (last two numbers).

fig — Figure
figure handle | figure window

Figure specified as a figure handle or figure window where you want to display a plot. For
figure handle, the current figure handle returned by gcf. For figure number, if no plot
windows are open, then 1. If one plot window is open, then the number in the title of that
window. If more than one plot window is open, then the highest number in the titles of
open windows.

x,y — Parametric curve
symbolic expression | symbolic function

Parametric curve specified as symbolic expressions or functions x = x(t) and y = y(t).

[tmin,tmax] — Plotting range for a parametric curve
[0,2*pi] (default) | vector | symbolic vector

Plotting range for a parametric curve specified as a numeric or symbolic vector.

Output Arguments
h — Chart line or contour line object
scalar

Chart line or contour line object, returned as a scalar. For details, see Chart Line and
Contour.

Tips
• If you do not specify a plot range, ezplot uses the interval [–2π 2π] as a starting

point. Then it can choose to display a part of the plot over a subinterval of [–2π 2π]

 ezplot

4-537

where the plot has significant variation. Also, when selecting the plotting range,
ezplot omits extreme values associated with singularities.

• ezplot open a plot window and displays a plot there. If any plot windows are already
open, ezplot does not create a new window. Instead, it displays the new plot in the
currently active window. (Typically, it is the window with the highest number.) To
display the new plot in a new plot window or in an existing window other than that
with highest number, use fig.

• If f is an equation or function of two variables, then the alphabetically first variable
defines the abscissa (horizontal axis) and the other variable defines the ordinate
(vertical axis). Thus, ezplot(x^2 == a^2,[-3,3,-2,2]) creates the plot of the
equation x2 = a2 with –3 <= a <= 3 along the horizontal axis, and –2 <= x <= 2 along
the vertical axis.

See Also
fcontour | fmesh | fplot | fplot3 | fsurf | plot

Topics
“Create Plots” on page 2-250

Introduced before R2006a

4 Functions — Alphabetical List

4-538

ezplot3
3-D parametric curve plotter

Note ezplot3 is not recommended. Use fplot3 instead.

Syntax
ezplot3(x,y,z)
ezplot3(x,y,z,[tmin,tmax])
ezplot3(___ ,'animate')

Description
ezplot3(x,y,z) plots the spatial curve x = x(t), y = y(t), and z = z(t) over the default
domain 0 < t < 2π.

ezplot3(x,y,z,[tmin,tmax]) plots the curve x = x(t), y = y(t), and z = z(t) over the
domain tmin < t < tmax.

ezplot3(___ ,'animate') produces an animated trace of the spatial curve.

Examples

3-D Parametric Curve
Plot the parametric curve x = sin(t), y = cos(t), z = t over the domain [0, 6π].

syms t
ezplot3(sin(t), cos(t), t,[0,6*pi])

 ezplot3

4-539

Input Arguments
x — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

y — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

4 Functions — Alphabetical List

4-540

z — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

[tmin,tmax] — Domain to plot over
symbolic vector

Domain to plot over, specified as a symbolic vector. ezplot3 plots over the domain tmin
< t < tmax

See Also
fcontour | fmesh | fplot | fplot3 | fsurf | plot3

Introduced before R2006a

 ezplot3

4-541

ezpolar
Polar coordinate plotter

Syntax
ezpolar(f)
ezpolar(f, [a b])

Description
ezpolar(f) plots the polar curve r = f(θ) over the default domain 0 < θ < 2π.

ezpolar(f, [a b]) plots f for a < θ < b.

Examples

Polar Plot of Symbolic Expression
This example creates a polar plot of the function, 1 + cos(t), over the domain [0, 2π].

syms t
ezpolar(1 + cos(t))

4 Functions — Alphabetical List

4-542

Input Arguments
f — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

[a b] — Angle to plot over
vector | symbolic vector

Angle to plot over, specified as a vector, or a symbolic vector.

 ezpolar

4-543

Introduced before R2006a

4 Functions — Alphabetical List

4-544

ezsurf
Plot 3-D surface

Note ezsurf is not recommended. Use fsurf instead.

Syntax
ezsurf(f)
ezsurf(f,[xmin,xmax])
ezsurf(f,[xmin,xmax,ymin,ymax])

ezsurf(x,y,z)
ezsurf(x,y,z,[smin,smax])
ezsurf(x,y,z,[smin,smax,tmin,tmax])

ezsurf(___ ,n)
ezsurf(___ ,'circ')

h = ezsurf(___)

Description
ezsurf(f) plots a two-variable symbolic expression or function f(x,y) over the range
-2*pi < x < 2*pi, -2*pi < y < 2*pi.

ezsurf(f,[xmin,xmax]) plots f(x,y) over the specified range xmin < x < xmax.
This is the range along the abscissa (horizontal axis).

ezsurf(f,[xmin,xmax,ymin,ymax]) plots f(x,y) over the specified ranges along
the abscissa, xmin < x < xmax, and the ordinate, ymin < y < ymax.

When determining the range values, ezsurf sorts variables alphabetically. For example,
ezsurf(x^2 - a^3, [0,1,3,6]) plots x^2 - a^3 over 0 < a < 1, 3 < x < 6.

ezsurf(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), z = z(s,t)
over the range -2*pi < s < 2*pi, -2*pi < t < 2*pi.

 ezsurf

4-545

ezsurf(x,y,z,[smin,smax]) plots the parametric surface x = x(s,t), y =
y(s,t), z = z(s,t) over the specified range smin < s < smax.

ezsurf(x,y,z,[smin,smax,tmin,tmax]) plots the parametric surface x = x(s,t),
y = y(s,t), z = z(s,t) over the specified ranges smin < s < smax and tmin < t
< tmax.

ezsurf(___ ,n) specifies the grid. You can specify n after the input arguments in any of
the previous syntaxes. By default, n = 60.

ezsurf(___ ,'circ') creates the surface plot over a disk centered on the range. You
can specify'circ' after the input arguments in any of the previous syntaxes.

h = ezsurf(___) returns a handle h to the surface plot object. You can use the output
argument h with any of the previous syntaxes.

Examples

Plot Function Over Default Range

Plot the symbolic function f(x,y) = real(atan(x + i*y)) over the default range
-2*pi < x < 2*pi, -2*pi < y < 2*pi.

Create the symbolic function.

syms f(x,y)
f(x,y) = real(atan(x + i*y));

Plot this function using ezsurf.

ezsurf(f)

4 Functions — Alphabetical List

4-546

Specify Plotting Ranges

Plot the symbolic expression x^2 + y^2 over the range -1 < x < 1. Because you do
not specify the range for the y-axis, ezsurf chooses it automatically.

syms x y
ezsurf(x^2 + y^2, [-1, 1])

 ezsurf

4-547

Specify the range for both axes.

ezsurf(x^2 + y^2, [-1, 1, -0.5, 1.5])

4 Functions — Alphabetical List

4-548

Plot Parameterized Surface

Define the parametric surface x(s,t), y(s,t), z(s,t) as follows.

syms s t
r = 2 + sin(7*s + 5*t);
x = r*cos(s)*sin(t);
y = r*sin(s)*sin(t);
z = r*cos(t);

Plot the function using ezsurf.

 ezsurf

4-549

ezsurf(x, y, z, [0, 2*pi, 0, pi])
title('Parametric surface')

To create a smoother plot, increase the number of mesh points.

ezsurf(x, y, z, [0, 2*pi, 0, pi], 120)
title('Parametric surface with grid = 120')

4 Functions — Alphabetical List

4-550

Specify Disk Plotting Range

First, plot the expression sin(x^2 + y^2) over the square range -pi/2 < x < pi/2,
-pi/2 < y < pi/2.

syms x y
ezsurf(sin(x^2 + y^2), [-pi/2, pi/2, -pi/2, pi/2])

 ezsurf

4-551

Now, plot the same expression over the disk range.

ezsurf(sin(x^2 + y^2), [-pi/2, pi/2, -pi/2, pi/2],'circ')

4 Functions — Alphabetical List

4-552

Use Handle to Surface Plot

Plot the symbolic expression sin(x)cos(x), and assign the result to the handle h.

syms x y
h = ezsurf(sin(x)*cos(y), [-pi, pi])

 ezsurf

4-553

h =
 Surface with properties:

 EdgeColor: [0 0 0]
 LineStyle: '-'
 FaceColor: 'flat'
 FaceLighting: 'flat'
 FaceAlpha: 1
 XData: [60x60 double]
 YData: [60x60 double]
 ZData: [60x60 double]
 CData: [60x60 double]

4 Functions — Alphabetical List

4-554

 Show all properties

You can use this handle to change properties of the plot. For example, change the color of
the area outline.

h.EdgeColor = 'red'

h =
 Surface with properties:

 EdgeColor: [1 0 0]
 LineStyle: '-'
 FaceColor: 'flat'

 ezsurf

4-555

 FaceLighting: 'flat'
 FaceAlpha: 1
 XData: [60x60 double]
 YData: [60x60 double]
 ZData: [60x60 double]
 CData: [60x60 double]

 Show all properties

Input Arguments
f — Function to plot
symbolic expression with two variables | symbolic function of two variables

Function to plot, specified as a symbolic expression or function of two variables.
Example: ezsurf(x^2 + y^2)

x,y,z — Parametric function to plot
three symbolic expressions with two variables | three symbolic functions of two variables

Parametric function to plot, specified as three symbolic expressions or functions of two
variables.
Example: ezsurf(s*cos(t), s*sin(t), t)

n — Grid value
integer

Grid value, specified as an integer. The default grid value is 60.

Output Arguments
h — Surface plot handle
scalar

Surface plot handle, returned as a scalar. It is a unique identifier, which you can use to
query and modify properties of the surface plot.

4 Functions — Alphabetical List

4-556

Tips
• ezsurf chooses the computational grid according to the amount of variation that

occurs. If f is singular for some points on the grid, then ezsurf omits these points.
The value at these points is set to NaN.

See Also
fcontour | fmesh | fplot | fplot3 | fsurf | surf

Topics
“Create Plots” on page 2-250

Introduced before R2006a

 ezsurf

4-557

ezsurfc
Combined surface and contour plotter

Note ezsurfc is not recommended. Use fsurf instead.

Syntax
ezsurfc(f)
ezsurfc(f,domain)
ezsurfc(x,y,z)
ezsurfc(x,y,z,domain)
ezsurfc(___ ,n)
ezsurfc(___ ,'circ')

Description
ezsurfc(f) creates a graph of f(x,y), where f is a symbolic expression that represents a
mathematical function of two variables, such as x and y. The function f is plotted over the
default domain –2π < x < 2π, –2π < y < 2π. MATLAB software chooses the computational
grid according to the amount of variation that occurs; if the function f is not defined
(singular) for points on the grid, then these points are not plotted.

ezsurfc(f,domain) plots f over the specified domain. domain can be either a 4-by-1
vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x < max,
min < y < max).

If f is a function of the variables u and v (rather than x and y), then the domain endpoints
umin, umax, vmin, and vmax are sorted alphabetically. Thus, ezsurfc(u^2 - v^3,
[0,1],[3,6]) plots u2 – v3 over 0 < u < 1, 3 < v < 6.

ezsurfc(x,y,z) plots the parametric surface x = x(s,t), y = y(s,t), and z = z(s,t) over
the square –2π < s < 2π, –2π < t < 2π.

ezsurfc(x,y,z,domain) plots the parametric surface using the specified domain.

4 Functions — Alphabetical List

4-558

ezsurfc(___ ,n) plots f over the default domain using an n-by-n grid. The default value
for n is 60.

ezsurfc(___ ,'circ') plots f over a disk centered on the domain.

Examples

3-D Surface Plot with Contours
Create a surface/contour plot of the expression,

f (x, y) = y
1 + x2 + y2 ,

over the domain –5 < x < 5, –2π < y < 2π, with a computational grid of size 35-by-35. Use
the mouse to rotate the axes to better observe the contour lines (this picture uses a view
of azimuth = -65 and elevation = 26).

syms x y
ezsurfc(y/(1 + x^2 + y^2),[-5,5,-2*pi,2*pi],35)

 ezsurfc

4-559

Input Arguments
f — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

x — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

4 Functions — Alphabetical List

4-560

y — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

z — Input
symbolic function | symbolic expression

Input, specified as a symbolic function or expression.

domain — Domain to plot over
symbolic vector

Domain to plot over, specified as a symbolic vector. domain is a 4-by-1 vector [xmin,
xmax, ymin, ymax] or a 2-by-1 vector [min, max] (where, min < x < max, min < y < max).
If f is a function of the variables u and v (rather than x and y), then the domain endpoints
umin, umax, vmin, and vmax are sorted alphabetically.

n — grid points
number | symbolic number

Grid points, specified as a number or a symbolic number.

See Also
fcontour | fmesh | fplot | fplot3 | fsurf | surfc

Introduced before R2006a

 ezsurfc

4-561

factor
Factorization

Syntax
F = factor(x)
F = factor(x,vars)
F = factor(___ ,Name,Value)

Description
F = factor(x) returns all irreducible factors of x in vector F. If x is an integer, factor
returns the prime factorization of x. If x is a symbolic expression, factor returns the
subexpressions that are factors of x.

F = factor(x,vars) returns an array of factors F, where vars specifies the variables
of interest. All factors not containing a variable in vars are separated into the first entry
F(1). The other entries are irreducible factors of x that contain one or more variables
from vars.

F = factor(___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. This syntax can use any of the input arguments from the
previous syntaxes.

Examples
Factor Integer Numbers
F = factor(823429252)

F =
 2 2 59 283 12329

To factor integers greater than flintmax, convert the integer to a symbolic object using
sym. Then place the number in quotation marks to represent it accurately.

4 Functions — Alphabetical List

4-562

F = factor(sym('82342925225632328'))

F =
[2, 2, 2, 251, 401, 18311, 5584781]

To factor a negative integer, convert it to a symbolic object using sym.

F = factor(sym(-92465))

F =
[-1, 5, 18493]

Perform Prime Factorization of Large Numbers
Perform prime factorization for 41758540882408627201. Since the integer is greater
than flintmax, convert it to a symbolic object using sym, and place the number in
quotation marks to represent it accurately.

n = sym('41758540882408627201');
factor(n)

ans =
[479001599, 87178291199]

Factor Symbolic Fractions
Factor the fraction 112/81 by converting it into a symbolic object using sym.

F = factor(sym(112/81))

F =
[2, 2, 2, 2, 7, 1/3, 1/3, 1/3, 1/3]

Factor Polynomials
Factor the polynomial x^6-1.

syms x
F = factor(x^6-1)

F =
[x - 1, x + 1, x^2 + x + 1, x^2 - x + 1]

Factor the polynomial y^6-x^6.

 factor

4-563

syms y
F = factor(y^6-x^6)

F =
[-1, x - y, x + y, x^2 + x*y + y^2, x^2 - x*y + y^2]

Separate Factors Containing Specified Variables
Factor y^2*x^2 for factors containing x.

syms x y
F = factor(y^2*x^2,x)

F =
[y^2, x, x]

factor combines all factors without x into the first element. The remaining elements of F
contain irreducible factors that contain x.

Factor the polynomial y for factors containing symbolic variables b and c.

syms a b c d
y = -a*b^5*c*d*(a^2 - 1)*(a*d - b*c);
F = factor(y,[b c])

F =
[-a*d*(a - 1)*(a + 1), b, b, b, b, b, c, a*d - b*c]

factor combines all factors without b or c into the first element of F. The remaining
elements of F contain irreducible factors of y that contain either b or c.

Choose Factorization Modes
Use the FactorMode argument to choose a particular factorization mode.

Factor an expression without specifying the factorization mode. By default, factor uses
factorization over rational numbers. In this mode, factor keeps rational numbers in their
exact symbolic form.

syms x
factor(x^3 + 2, x)

ans =
x^3 + 2

4 Functions — Alphabetical List

4-564

Factor the same expression, but this time use numeric factorization over real numbers.
This mode factors the expression into linear and quadratic irreducible polynomials with
real coefficients and converts all numeric values to floating-point numbers.

factor(x^3 + 2, x, 'FactorMode', 'real')

ans =
[x + 1.2599210498948731647672106072782,...
 x^2 - 1.2599210498948731647672106072782*x + 1.5874010519681994747517056392723]

Factor this expression using factorization over complex numbers. In this mode, factor
reduces quadratic polynomials to linear expressions with complex coefficients. This mode
converts all numeric values to floating-point numbers.

factor(x^3 + 2, x, 'FactorMode', 'complex')

ans =
[x + 1.2599210498948731647672106072782,...
 x - 0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i,...
 x - 0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i]

Factor this expression using the full factorization mode. This mode factors the expression
into linear expressions, reducing quadratic polynomials to linear expressions with
complex coefficients. This mode keeps rational numbers in their exact symbolic form.

factor(x^3 + 2, x, 'FactorMode', 'full')

ans =
[x + 2^(1/3),...
 x - 2^(1/3)*((3^(1/2)*1i)/2 + 1/2),...
 x + 2^(1/3)*((3^(1/2)*1i)/2 - 1/2)]

Approximate the result with floating-point numbers by using vpa. Because the expression
does not contain any symbolic parameters besides the variable x, the result is the same as
in complex factorization mode.

vpa(ans)

ans =
[x + 1.2599210498948731647672106072782,...
 x - 0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i,...
 x - 0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i]

 factor

4-565

Approximate Results Containing RootOf
In the full factorization mode,factor also can return results as a symbolic sums over
polynomial roots expressed as RootOf.

Factor this expression.

syms x
s = factor(x^3 + x - 3, x, 'FactorMode','full')

s =
[x - root(z^3 + z - 3, z, 1),...
 x - root(z^3 + z - 3, z, 2),...
 x - root(z^3 + z - 3, z, 3)]

Approximate the result with floating-point numbers by using vpa.

 vpa(s)

ans =
[x - 1.2134116627622296341321313773815,...
 x + 0.60670583138111481706606568869074 + 1.450612249188441526515442203395i,...
 x + 0.60670583138111481706606568869074 - 1.450612249188441526515442203395i]

Input Arguments
x — Input to factor
number | symbolic number | symbolic expression | symbolic function

Input to factor, specified as a number, or a symbolic number, expression, or function.

vars — Variables of interest
symbolic variable | vector of symbolic variables

Variables of interest, specified as a symbolic variable or a vector of symbolic variables.
Factors that do not contain a variable specified in vars are grouped into the first element
of F. The remaining elements of F contain irreducible factors of x that contain a variable
in vars.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

4 Functions — Alphabetical List

4-566

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: factor(x^3 - 2,x,'FactorMode','real')

FactorMode — Factorization mode
'rational' (default) | 'real' | 'complex' | 'full'

Factorization mode, specified as the comma-separated pair consisting of 'FactorMode'
and one of these character vectors.

'rational' Factorization over rational numbers.
'real' Factorization over real numbers. A real numeric factorization is a

factorization into linear and quadratic irreducible polynomials with
real coefficients. This factorization mode requires the coefficients
of the input to be convertible to real floating-point numbers. All
other inputs (for example, those inputs containing symbolic or
complex coefficients) are treated as irreducible.

'complex' Factorization over complex numbers. A complex numeric
factorization is a factorization into linear factors whose coefficients
are floating-point numbers. Such factorization is only available if
the coefficients of the input are convertible to floating-point
numbers, that is, if the roots can be determined numerically.
Symbolic inputs are treated as irreducible.

'full' Full factorization. A full factorization is a symbolic factorization
into linear factors. The result shows these factors using radicals or
as a symsum ranging over a RootOf.

Output Arguments
F — Factors of input
symbolic vector

Factors of input, returned as a symbolic vector.

 factor

4-567

Tips
• To factor an integer greater than flintmax, wrap the integer with sym. Then place

the integer in quotation marks to represent it accurately, for example,
sym('465971235659856452').

• To factor a negative integer, wrap the integer with sym, for example, sym(-3).

See Also
collect | combine | divisors | expand | horner | numden | rewrite | simplify |
simplifyFraction

Introduced before R2006a

4 Functions — Alphabetical List

4-568

factorial
Factorial of symbolic input

Syntax
factorial(n)

Description
factorial(n) returns the factorial on page 4-571 of n. If n is an array, factorial
acts element-wise on n.

Examples

Compute Factorial Function for Symbolic Input

Compute the factorial function for a symbolic expression. Because the input is symbolic,
factorial returns exact symbolic output as the function call.

syms n
f = n^2 + 1;
fFac = factorial(f)

fFac =
factorial(n^2 + 1)

Calculate fFac for a value of n by substituting n with the value.

subs(fFac,n,3) % value at n=3

ans =
 3628800

Differentiate Factorial Function

Differentiate an expression containing the factorial function.

 factorial

4-569

syms n
f = factorial(n^2 + n + 1);
diff(f)

ans =
factorial(n^2 + n + 1)*psi(n^2 + n + 2)*(2*n + 1)

Expand Factorial Function

Expand an expression containing the factorial function.

syms n
f = factorial(n^2 + n + 1);
expand(f)

ans =
factorial(n^2 + n)*(n^2 + n + 1)

Limit of Factorial Function

Compute the limit at infinity for an expression containing the factorial function.

syms n
f = factorial(n)/exp(n);
limit(f,n,Inf)

ans =
Inf

Compute Factorial Function for Array Input

Call factorial for array input. factorial acts element-wise on array input.

A = sym([1 2; 3 4]);
factorial(A)

4 Functions — Alphabetical List

4-570

ans =
[1, 2]
[6, 24]

Input Arguments
n — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Definitions

Factorial Function
The factorial of a number n is defined as follows.

n! = ∏
k = 1

n
k

The factorial of 0 is 1.

Tips
• Calling factorial for a number that is not a symbolic object invokes the MATLAB

factorial function.

See Also
beta | gamma | nchoosek | psi

Introduced in R2012a

 factorial

4-571

factorIntegerPower
Perfect power factoring

Syntax
x = factorIntegerPower(n)
[x,k] = factorIntegerPower(n)

Description
x = factorIntegerPower(n) factors the number n into its perfect power xk and
returns the base x. If several perfect powers exist, x is returned for maximum k. The
function factorIntegerPower acts element-wise on array input.

[x,k] = factorIntegerPower(n) returns both the base x and power k.

Examples

Factor Integer into Perfect Power

Factor 64 into its perfect power. If several perfect powers exist for a number, the
maximum k is returned.

n = 64;
[x,k] = factorIntegerPower(n)

x =
 2
k =
 6

Find perfect powers of 7, 841, and 2541865828329.

n = [7 841 2541865828329];
[x,k] = factorIntegerPower(n)

4 Functions — Alphabetical List

4-572

x =
 7 29 3
k =
 1 2 26

Reconstruct the numbers. Return exact symbolic integers instead of floating point by
converting x to symbolic form.

sym(x).^k

ans =
[7, 841, 2541865828329]

Test if Number Is Perfect Power

If a number is not a perfect power, factorIntegerPower returns the number itself as
the base with exponent 1. So, a number is a perfect power if it does not equal its base.

Check if 125 is a perfect power. isequal returns logical 0 (false), meaning 125 is not
equal to the returned base. Therefore, 125 is a perfect power.

n = 125;
isequal(n,factorIntegerPower(n))

ans =
 logical
 0

Input Arguments
n — Input
number | vector | matrix | array | symbolic number | symbolic array

Input, specified as a number, vector, matrix, array, or a symbolic number or array. n must
be a positive integer.

 factorIntegerPower

4-573

Output Arguments
x — Base in perfect power
number | vector | matrix | array | symbolic number | symbolic array

Base in perfect power, returned as a number, vector, matrix, array, or a symbolic number
or array.

k — Power in perfect power
number | vector | matrix | array | symbolic number | symbolic array

Power in perfect power, returned as a number, vector, matrix, array, or a symbolic number
or array.

See Also
factor

Introduced in R2018a

4 Functions — Alphabetical List

4-574

fanimator
Create stop-motion animation object

Syntax
fanimator(f)
fanimator(f,args)

fanimator(___ ,Name,Value)
fanimator(ax, ___)
fp = fanimator(___)

Description
fanimator(f) creates a stop-motion animation object from the function f. The function
f must return graphics objects that depend on only one variable. This variable defines the
time parameter of the animation.

By default, fanimator creates stop-motion frames of f(t0), generating 10 frames per
unit interval of t0 within the range of t0 from 0 to 10.

fanimator(f,args) allows the function f to depend on multiple variables. args
specifies the input arguments of f.

By default, the variable t = sym('t') is the time parameter of the animation. This
syntax creates stop-motion frames of f(subs(args,t,t0)) within the range of t0 from 0 to
10. You can animate a specific property of the graphics objects by setting its value to
depend on t in the input argument args.

fanimator(___ ,Name,Value) specifies the animation properties using one or more
Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes. Name-value pair settings apply to the animation
object created.

 fanimator

4-575

fanimator(ax, ___) creates a stop-motion animation object in the axis specified by ax
instead of in the current axis (gca). The option ax can precede any input argument
combinations in the previous syntaxes.

fp = fanimator(___) returns an Animator object. Use fp to query and modify the
properties of a specific animation object. For a list of properties, see Animator Properties.

Examples

Create Animation of Moving Point and Circle

Animate a point and a circle that move along a straight line.

First, create a function to plot a point at (t,1). The variable t defines the time
parameter of the animation.

f = @(t) plot(t,1,'r*');

Create a stop-motion animation object defined by f.

fanimator(f)

4 Functions — Alphabetical List

4-576

Next, create a function handle by using fplot to plot a unit circle. The circle is a function
of two variables.

Create two symbolic variables t and x. Use t to set the center of the circle at (t,1) and
x to parameterize the perimeter of the circle within the range [-pi pi]. Add the circle
animation object to the existing plot. Set the x-axis and y-axis to be equal length.

syms t x
hold on
fanimator(@fplot,cos(x)+t,sin(x)+1,[-pi pi])
axis equal
hold off

 fanimator

4-577

Enter the command playAnimation to play the animation. By default, fanimator
creates an animation object, generating 10 frames per unit time within the range of t
from 0 to 10.

4 Functions — Alphabetical List

4-578

Create Animation of Changing Line

Animate a line that changes vertical length and line width. You can animate a specific
graphics property by setting its value to depend on the animation time parameter. By
default, the variable t is the time parameter of the animation.

Create two symbolic variables, y and t. Plot a line with y coordinates within the interval
[0 t] by using fplot. Use the fanimator function to create the line animation object.
fanimator changes the line vertical length by increasing the value of t from 0 to 10.

syms y t
fanimator(@fplot,1,y,[0 t])

 fanimator

4-579

Enter the command playAnimation to play the animation.

4 Functions — Alphabetical List

4-580

Now plot a line with y coordinates within the interval [0 2] by using fplot. Set the
'LineWidth' property value to t+1. Use the fanimator function to create the line
animation object. fanimator changes the line width by increasing the value of t from 0
to 10.

fanimator(@fplot,1,y,[0 2],'LineWidth',t+1)

 fanimator

4-581

Enter the command playAnimation to play the animation.

4 Functions — Alphabetical List

4-582

Create Animation of Circle with Timer

Animate a circle with a timer.

First, create a function that plots a unit circle and save it in a file named circ.m. The
function uses fplot to plot a unit circle centered at (t,1), and the local symbolic
variable x to parameterize the perimeter of the circle.

function C = circ(t)
 x = sym('x');
 C = fplot(cos(x)+t,sin(x)+1,[0 2*pi],'Color','red');

 fanimator

4-583

end

Use fanimator to create a unit circle animation object. Set the animation range of the
time parameter to [2 4.5] and the frame rate per unit time to 4. Set the x-axis and y-
axis to be equal length.

fanimator(@circ,'AnimationRange',[2 4.5],'FrameRate',4)
axis equal

Next, add a timer animation object. Create a piece of text to count the elapsed time by
using the text function. Use num2str to convert the time parameter to a string. Set the
animation range of the timer to [0 4.5].

4 Functions — Alphabetical List

4-584

hold on
fanimator(@(t) text(4.5,2.5,"Timer: "+num2str(t,2)),'AnimationRange',[0 4.5])
hold off

Enter the command playAnimation to play the animation. The timer counts the elapsed
time from 0 to 4.5 seconds. The moving circle starts at 2 seconds and stops at 4.5
seconds.

 fanimator

4-585

Create Animation of Cycloids

Animate two cycloids in separate axes. A cycloid is the curve traced by a fixed point on a
circle as the circle moves along a straight line without slipping.

First, create two symbolic variables x and t. Create a figure with two subplots and return
the first axes object as ax1. Create a moving circle animation object in ax1 and add a
fixed point on the rim of the circle. Set the x-axis and y-axis to be equal length.

syms x t
ax1 = subplot(2,1,1);
fanimator(ax1, @fplot, cos(x)+t, sin(x)+1, [-pi pi])

4 Functions — Alphabetical List

4-586

axis equal
hold on
fanimator(ax1, @(t) plot(t-sin(t), 1-cos(t), 'r*'))

To trace the cycloid, use a time variable in the plotting interval. The fplot function plots
a curve within the interval [0 t]. Create the cycloid animation object. By default,
fanimator creates stop-motion frames within the range of t from 0 to 10 seconds.
fanimator plots the first frame at t equal to 0.

fanimator(ax1, @fplot, x-sin(x), 1-cos(x), [0 t], 'k')
hold off

 fanimator

4-587

Next, create another cycloid on the second axes object ax2. Trace the curve created by a
fixed point at a distance of 1/2 from the center of the circle. Set the x-axis and y-axis to be
equal length.

ax2 = subplot(2,1,2);
fanimator(ax2, @fplot, cos(x)+t, sin(x)+1, [-pi pi])
axis equal
hold on
fanimator(ax2, @(t) plot(t-sin(t)/2, 1-cos(t)/2, 'r*'))
fanimator(ax2, @fplot, x-sin(x)/2, 1-cos(x)/2, [0 t], 'k')
hold off

4 Functions — Alphabetical List

4-588

Enter the command playAnimation to play the animation.

 fanimator

4-589

Create Animation in UI Figure

Create a UI figure. Specify the UI axes of the figure.

fig = uifigure;
ax = uiaxes(fig);

Add an animation object to the UI axes using fanimator. Create two symbolic variables,
x and t. Plot a curve that grows exponentially as a function of time t within the interval
[0 3].

syms x t;
fanimator(ax,@fplot,exp(x),[0 t],'r','AnimationRange',[0 3])

4 Functions — Alphabetical List

4-590

Play the animation in the UI figure fig by entering the command playAnimation(fig).
Alternatively, you can also use the command playAnimation(ax.Parent).

Input Arguments
f — Function returning graphics objects
function handle

Function returning graphics objects, specified as a function handle. For more information
about function handles, see “Create Function Handle” (MATLAB).

 fanimator

4-591

args — Further arguments
input arguments

Further arguments, specified as input arguments of a function handle that returns the
graphics objects.

ax — Target axes
Axes object

Target axes, specified as an Axes object. For more information about Axes objects, see
axes.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'AnimationRange',[2 8],'FrameRate',30

AnimationParameter — Animation time parameter
sym('t') (default) | symbolic variable

Animation time parameter, specified as a symbolic variable.
Example: sym('y')

AnimationRange — Range of animation time parameter
[0 10] (default) | two-element row vector

Range of the animation time parameter, specified as a two-element row vector. The two
elements must be real values that are increasing.
Example: [-2 4.5]

FrameRate — Frame rate
10 (default) | positive value

Frame rate, specified as a positive value. The frame rate defines the number of frames
per unit time for the animation object.
Example: 30

4 Functions — Alphabetical List

4-592

Output Arguments
fp — Animation object
scalar

Animation object, returned as a scalar. You can use this object to query and modify the
properties of the generated animation frames. For a list of properties, see Animator
Properties.

Tips
• When you create a graph by using a plotting function, such as fplot, MATLAB

creates a series of graphics objects. You can then animate a specific property of the
graphics objects by using the fanimator and the playAnimation functions. Note
that some functions, such as title and xlabel, create text objects that cannot be
animated. Instead, use the text function to create text objects that can be animated.

See Also
animationToFrame | playAnimation | rewindAnimation | writeAnimation

Introduced in R2019a

 fanimator

4-593

fcontour
Plot contours

Syntax
fcontour(f)
fcontour(f,[min max])
fcontour(f,[xmin xmax ymin ymax])

fcontour(___ ,LineSpec)
fcontour(___ ,Name,Value)
fcontour(ax, ___)
fc = fcontour(___)

Description
fcontour(f) plots the contour lines of symbolic expression f(x,y) over the default
interval of x and y, which is [-5 5].

fcontour(f,[min max]) plots f over the interval min < x < max and min < y < max.

fcontour(f,[xmin xmax ymin ymax]) plots f over the interval xmin < x < xmax
and ymin < y < ymax. The fcontour function uses symvar to order the variables and
assign intervals.

fcontour(___ ,LineSpec) uses LineSpec to set the line style and color. fcontour
doesn’t support markers.

fcontour(___ ,Name,Value) specifies line properties using one or more Name,Value
pair arguments. Use this option with any of the input argument combinations in the
previous syntaxes. Name,Value pair settings apply to all the lines plotted. To set options
for individual plots, use the objects returned by fcontour.

fcontour(ax, ___) plots into the axes object ax instead of the current axes object gca.

fc = fcontour(___) returns a function contour object. Use the object to query and
modify properties of a specific contour plot. For details, see Function Contour.

4 Functions — Alphabetical List

4-594

Examples

Plot Contours of Symbolic Expression
Plot the contours of sin(x) + cos(y) over the default range of −5 < x < 5 and −5 < y < 5.
Show the colorbar. Find a contour's level by matching the contour's color with the
colorbar value.

syms x y
fcontour(sin(x) + cos(y))
colorbar

 fcontour

4-595

Plot Contours of Symbolic Function
Plot the contours of f (x, y) = sin(x) + cos(y) over the default range of −5 < x < 5 and
−5 < y < 5.

syms f(x,y)
f(x,y) = sin(x) + cos(y);
fcontour(f)

4 Functions — Alphabetical List

4-596

Specify Plotting Interval
Plot sin(x) + cos(y) over −π/2 < x < π/2 and 0 < y < 5 by specifying the plotting interval
as the second argument of fcontour.

syms x y
f = sin(x) + cos(y);
fcontour(f,[-pi/2 pi/2 0 5])

 fcontour

4-597

Change Line Style, Color and Width
Plot the contours of x2− y2 as blue, dashed lines by specifying the LineSpec input.
Specify a LineWidth of 2. Markers are not supported by fcontour.

syms x y
fcontour(x^2 - y^2,'--b','LineWidth',2)

Plot Multiple Contour Plots on Same Figure
Plot multiple contour plots either by passing the inputs as a vector or by using hold on
to successively plot on the same figure. If you specify LineStyle and Name-Value

4 Functions — Alphabetical List

4-598

arguments, they apply to all contour plots. You cannot specify individual LineStyle and
Name-Value pair arguments for each plot.

Divide a figure into two subplots by using subplot. On the first subplot, plot
sin(x) + cos(y) and x− y by using vector input. On the second subplot, plot the same
expressions by using hold on.

syms x y
subplot(2,1,1)
fcontour([sin(x)+cos(y) x-y])
title('Multiple Contour Plots Using Vector Inputs')

subplot(2,1,2)
fcontour(sin(x)+cos(y))
hold on
fcontour(x-y)
title('Multiple Contour Plots Using Hold Command')

hold off

 fcontour

4-599

Modify Contour Plot After Creation

Plot the contours of e−(x/3)2− (y/3)2 + e−(x + 2)2− (y + 2)2. Specify an output to make
fcontour return the plot object.

syms x y
f = exp(-(x/3)^2-(y/3)^2) + exp(-(x+2)^2-(y+2)^2);
fc = fcontour(f)

4 Functions — Alphabetical List

4-600

fc =
 FunctionContour with properties:

 Function: [1x1 sym]
 LineColor: 'flat'
 LineStyle: '-'
 LineWidth: 0.5000
 Fill: 'off'
 LevelList: [0.2000 0.4000 0.6000 0.8000 1 1.2000 1.4000]

 Show all properties

 fcontour

4-601

Change the LineWidth to 1 and the LineStyle to a dashed line by using dot notation to
set properties of the object fc. Visualize contours close to 0 and 1 by setting LevelList
to [1 0.9 0.8 0.2 0.1].

fc.LineStyle = '--';
fc.LineWidth = 1;
fc.LevelList = [1 0.9 0.8 0.2 0.1];
colorbar

4 Functions — Alphabetical List

4-602

Fill Area Between Contours
Fill the area between contours by setting the Fill input of fcontour to 'on'. If you
want interpolated shading instead, use the fsurf function with its option 'EdgeColor'
set to 'none' followed by the command view(0,90).

Create a plot that looks like a sunset by filling the contours of

erf((y + 2)3)− e(− 0 . 65((x− 2)2 + (y − 2)2) .

syms x y
f = erf((y+2)^3) - exp(-0.65*((x-2)^2+(y-2)^2));
fcontour(f,'Fill','on')

 fcontour

4-603

Specify Levels for Contour Lines
Set the values at which fcontour draws contours by using the 'LevelList' option.

syms x y
f = sin(x) + cos(y);
fcontour(f,'LevelList',[-1 0 1])

4 Functions — Alphabetical List

4-604

Control Resolution of Contour Lines
Control the resolution of contour lines by using the 'MeshDensity' option. Increasing
'MeshDensity' can make smoother, more accurate plots while decreasing it can
increase plotting speed.

Divide a figure into two using subplot. In the first subplot, plot the contours of
sin(x)sin(y). The corners of the squares do not meet. To fix this issue, increase
'MeshDensity' to 200 in the second subplot. The corners now meet, showing that by
increasing 'MeshDensity' you increase the plot's resolution.

syms x y
subplot(2,1,1)
fcontour(sin(x).*sin(y))
title('Default MeshDensity = 71')

subplot(2,1,2)
fcontour(sin(x).*sin(y),'MeshDensity',200)
title('Increased MeshDensity = 200')

 fcontour

4-605

Add Title and Axis Labels and Format Ticks
Plot xsin(y)− ycos(x). Add a title and axis labels. Create the x-axis ticks by spanning the x-
axis limits at intervals of pi/2. Display these ticks by using the XTick property. Create x-
axis labels by using arrayfun to apply texlabel to S. Display these labels by using the
XTickLabel property. Repeat these steps for the y-axis.

To use LaTeX in plots, see latex.

syms x y
fcontour(x*sin(y)-y*cos(x), [-2*pi 2*pi])
grid on

4 Functions — Alphabetical List

4-606

title('xsin(y)-ycos(x) for -2\pi < x < 2\pi and -2\pi < y < 2\pi')
xlabel('x')
ylabel('y')
ax = gca;

S = sym(ax.XLim(1):pi/2:ax.XLim(2));
ax.XTick = double(S);
ax.XTickLabel = arrayfun(@texlabel, S, 'UniformOutput', false);

S = sym(ax.YLim(1):pi/2:ax.YLim(2));
ax.YTick = double(S);
ax.YTickLabel = arrayfun(@texlabel, S, 'UniformOutput', false);

 fcontour

4-607

Create Animations
Create animations by changing the displayed expression using the Function property of
the function handle, and then using drawnow to update the plot. To export to GIF, see
imwrite.

By varying the variable i from –π/8 to π/8, animate the parametric curve isin(x) + icos(y).

syms x y
fc = fcontour(-pi/8.*sin(x)-pi/8.*cos(y));
for i=-pi/8:0.01:pi/8
 fc.Function = i.*sin(x)+i.*cos(y);
 drawnow
 pause(0.05)
end

4 Functions — Alphabetical List

4-608

Input Arguments
f — Expression or function to be plotted
symbolic expression | symbolic function

Expression or function to be plotted, specified as a symbolic expression or function.

[min max] — Plotting range for x and y
[–5 5] (default) | vector of two numbers

Plotting range for x and y, specified as a vector of two numbers. The default range is [-5
5].

 fcontour

4-609

[xmin xmax ymin ymax] — Plotting range for x and y
[–5 5 –5 5] (default) | vector of four numbers

Plotting range for x and y, specified as a vector of four numbers. The default range is [-5
5 -5 5].

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then the plot function uses the current
axes.

LineSpec — Line style and color
character vector | string

Line style and color, specified as a character vector or string containing a line style
specifier, a color specifier, or both.
Example: '--r' specifies red dashed lines

These two tables list the line style and color options.

Line Style Specifier Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Color Specifier Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white

4 Functions — Alphabetical List

4-610

Color Specifier Description
k black

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MeshDensity',30

The properties listed here are only a subset. For a complete list, see Function Contour.

MeshDensity — Number of evaluation points per direction
71 (default) | number

Number of evaluation points per direction, specified as a number. The default is 71.
Because fcontour uses adaptive evaluation, the actual number of evaluation points is
greater.
Example: 30

Fill — Fill between contour lines
'off' (default) | 'on'

Fill between contour lines, specified as one of these values:

• 'off' — Do not fill the spaces between contour lines with a color.
• 'on' — Fill the spaces between contour lines with color.

LevelList — Contour levels
vector of z values

Contour levels, specified as a vector of z values. By default, the fcontour function
chooses values that span the range of values in the ZData property.

Setting this property sets the associated mode property to manual.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

 fcontour

4-611

LevelListMode — Selection mode for LevelList
'auto' (default) | 'manual'

Selection mode for the LevelList, specified as one of these values:

• 'auto' — Determine the values based on the ZData values.
• 'manual' — Use manually specified values. To specify the values, set the LevelList

property. When the mode is 'manual', the LevelList values do not change if you
change the Function property or the limits.

LevelStep — Spacing between contour lines
0 (default) | scalar numeric value

Spacing between contour lines, specified as a scalar numeric value. For example, specify
a value of 2 to draw contour lines at increments of 2. By default, LevelStep is
determined by using the ZData values.

Setting this property sets the associated mode property to 'manual'.
Example: 3.4
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 |
uint32 | uint64

LevelStepMode — Selection mode for LevelStep
'auto' (default) | 'manual'

Selection mode for the LevelStep, specified as one of these values:

• 'auto' — Determine the value based on the ZData values.
• 'manual' — Use a manually specified value. To specify the value, set the LevelStep

property. When the mode is 'manual', the value of LevelStepMode does not change
when the Function property or the limits change.

LineColor — Color of contour lines
'flat' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Color of contour lines, specified as 'flat', an RGB triplet, a hexadecimal color code, a
color name, or a short name. To use a different color for each contour line, specify
'flat'. The color is determined by the contour value of the line, the colormap, and the
scaling of data values into the colormap. For more information on color scaling, see
caxis.

4 Functions — Alphabetical List

4-612

To use the same color for all the contour lines, specify an RGB triplet, a hexadecimal color
code, a color name, or a short name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

 fcontour

4-613

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Output Arguments
fc — One or more function contour objects
scalar | vector

One or more function contour objects, returned as a scalar or a vector. These objects are
unique identifiers, which you can use to query and modify the properties of a specific
contour plot. For details, see Function Contour.

4 Functions — Alphabetical List

4-614

Algorithms
fcontour assigns the symbolic variables in f to the x axis, then the y axis, and symvar
determines the order of the variables to be assigned. Therefore, variable and axis names
might not correspond. To force fcontour to assign x or y to its corresponding axis,
create the symbolic function to plot, then pass the symbolic function to fcontour.

For example, the following code plots the contour of the surface f(x,y) = sin(y) in two
ways. The first way forces the waves to oscillate with respect to the y axis. The second
way assigns y to the x axis because it is the first (and only) variable in the symbolic
function.

syms x y;
f(x,y) = sin(y);

figure;
subplot(2,1,1)
fcontour(f);
subplot(2,1,2)
fcontour(f(x,y)); % Or fcontour(sin(y));

 fcontour

4-615

See Also
Functions
fimplicit | fimplicit3 | fmesh | fplot | fplot3 | fsurf

Properties
Function Contour

Topics
“Create Plots” on page 2-250

4 Functions — Alphabetical List

4-616

Introduced in R2016a

 fcontour

4-617

feval
(Not recommended) Evaluate MuPAD expressions specifying their arguments

Note feval(symengine,...) is not recommended. Use equivalent Symbolic Math
Toolbox™ functions that replace MuPAD® functions instead. For more information, see
“Compatibility Considerations”.

Syntax
result = feval(symengine,F,x1,...,xn)
[result,status] = feval(symengine,F,x1,...,xn)

Description
result = feval(symengine,F,x1,...,xn) evaluates F, which is either a MuPAD
function name or a symbolic object, with arguments x1,...,xn. Here, the returned
value result is a symbolic object. If F with the arguments x1,...,xn throws an error in
MuPAD, then this syntax throws an error in MATLAB.

[result,status] = feval(symengine,F,x1,...,xn) lets you catch errors thrown
by MuPAD. This syntax returns the error status in status, and the error message in
result if status is nonzero. If status is 0, result is a symbolic object. Otherwise,
result is a character vector.

Examples

Perform MuPAD Command

syms a b c x
p = a*x^2+b*x+c;
feval(symengine,'polylib::discrim', p, x)

4 Functions — Alphabetical List

4-618

ans =
b^2 - 4*a*c

Alternatively, the same calculation based on variables not defined in the MATLAB
workspace is:

feval(symengine,'polylib::discrim', 'a*x^2 + b*x + c', 'x')

ans =
b^2 - 4*a*c

Input Arguments
F — Input
MuPAD function name | symbolic object

Input specified as a MuPAD function name or symbolic object.

x1,...,xn — Arguments
symbolic expression

Arguments specified as symbolic expressions.

Output Arguments
result — Computation result
character vector | symbolic object

Computation result returned as a symbolic object or character vector containing a MuPAD
error message.

status — Error status
integer

Error status returned as an integer. If F with the arguments x1,...,xn executes without
errors, the error status is 0.

 feval

4-619

Tips
• Results returned by feval can differ from the results that you get using a MuPAD

notebook directly. The reason is that feval sets a lower level of evaluation to achieve
better performance.

• feval does not open a MuPAD notebook, and therefore, you cannot use this function
to access MuPAD graphics capabilities.

Compatibility Considerations

feval(symengine,...) is not recommended
Not recommended starting in R2018b

Symbolic Math Toolbox includes operations and functions for symbolic math expressions
that parallel MATLAB functionality for numeric values. Unlike MuPAD functionality,
Symbolic Math Toolbox functions enable you to work in familiar interfaces, such as the
MATLAB Command Window or Live Editor, which offer a smooth workflow and are
optimized for usability.

Therefore, instead of passing MuPAD expressions to feval, use the equivalent Symbolic
Math Toolbox functionality to work with symbolic math expressions. For a list of available
functions, see Symbolic Math Toolbox functions list.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook.

If you cannot find the Symbolic Math Toolbox equivalent for MuPAD functionality, contact
MathWorks Technical Support.

Although the use of feval is not recommended, there are no plans to remove it at this
time.

Introduced in R2008b

4 Functions — Alphabetical List

4-620

https://www.mathworks.com/support/contact_us.html

fibonacci
Fibonacci numbers

Syntax
fibonacci(n)

Description
fibonacci(n) returns the nth “Fibonacci Number” on page 4-626.

Examples
Find Fibonacci Numbers
Find the sixth Fibonacci number by using fibonacci.

fibonacci(6)

ans =
 8

Find the first 10 Fibonacci numbers.

n = 1:10;
fibonacci(n)

ans =
 1 1 2 3 5 8 13 21 34 55

Fibonacci Sequence Approximates Golden Ratio
The ratio of successive Fibonacci numbers converges to the golden ratio 1 . 61803
Show this convergence by plotting this ratio against the golden ratio for the first 10
Fibonacci numbers.

 fibonacci

4-621

n = 2:10;
ratio = fibonacci(n)./fibonacci(n-1);

plot(n,ratio,'--o')
hold on

line(xlim,[1.618 1.618])
hold off

Symbolically Represent Fibonacci Numbers
Use Fibonacci numbers in symbolic calculations by representing them with symbolic
input. fibonacci returns the input.

4 Functions — Alphabetical List

4-622

Represent the nth Fibonacci number.

syms n
fibonacci(n)

ans =
fibonacci(n)

Find Large Fibonacci Numbers
Find large Fibonacci numbers by specifying the input symbolically using sym. Symbolic
input returns exact symbolic output instead of double output. Convert symbolic numbers
to double by using the double function.

Find the 300th Fibonacci number.

num = sym(300);
fib300 = fibonacci(num)

fib300 =
222232244629420445529739893461909967206666939096499764990979600

Convert fib300 to double. The result is a floating-point approximation.

double(fib300)

ans =
 2.2223e+62

For more information on symbolic and double arithmetic, see “Choose Symbolic or
Numeric Arithmetic” on page 2-121.

Golden Spiral Using Fibonacci Numbers
The Fibonacci numbers are commonly visualized by plotting the Fibonacci spiral. The
Fibonacci spiral approximates the golden spiral.

Approximate the golden spiral for the first 8 Fibonacci numbers. Define the four cases for
the right, top, left, and bottom squares in the plot by using a switch statement. Form the
spiral by defining the equations of arcs through the squares in eqnArc. Draw the squares
and arcs by using rectangle and fimplicit respectively.

x = 0;
y = 1;

 fibonacci

4-623

syms v u

axis off
hold on

for n = 1:8

 a = fibonacci(n);

 % Define squares and arcs
 switch mod(n,4)
 case 0
 y = y - fibonacci(n-2);
 x = x - a;
 eqnArc = (u-(x+a))^2 + (v-y)^2 == a^2;
 case 1
 y = y - a;
 eqnArc = (u-(x+a))^2 + (v-(y+a))^2 == a^2;
 case 2
 x = x + fibonacci(n-1);
 eqnArc = (u-x)^2 + (v-(y+a))^2 == a^2;
 case 3
 x = x - fibonacci(n-2);
 y = y + fibonacci(n-1);
 eqnArc = (u-x)^2 + (v-y)^2 == a^2;
 end

 % Draw square
 pos = [x y a a];
 rectangle('Position', pos)

 % Add Fibonacci number
 xText = (x+x+a)/2;
 yText = (y+y+a)/2;
 text(xText, yText, num2str(a))

 % Draw arc
 interval = [x x+a y y+a];
 fimplicit(eqnArc, interval, 'b')

end

4 Functions — Alphabetical List

4-624

Input Arguments
n — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

 fibonacci

4-625

Definitions

Fibonacci Number
The Fibonacci numbers are the sequence 0, 1, 1, 2, 3, 5, 8, 13, 21….

Given that the first two numbers are 0 and 1, the nth Fibonacci number is

Fn = Fn–1 + Fn–2.

Applying this formula repeatedly generates the Fibonacci numbers.

Introduced in R2017a

4 Functions — Alphabetical List

4-626

fimplicit
Plot implicit symbolic equation or function

Syntax
fimplicit(f)
fimplicit(f,[min max])
fimplicit(f,[xmin xmax ymin ymax])

fimplicit(___ ,LineSpec)
fimplicit(___ ,Name,Value)
fimplicit(ax, ___)
fi = fimplicit(___)

Description
fimplicit(f) plots the implicit symbolic equation or function f over the default interval
[-5 5] for x and y.

fimplicit(f,[min max]) plots f over the interval min < x < max and min < y < max.

fimplicit(f,[xmin xmax ymin ymax]) plots f over the interval xmin < x < xmax
and ymin < y < ymax. The fimplicit function uses symvar to order the variables and
assign intervals.

fimplicit(___ ,LineSpec) uses LineSpec to set the line style, marker symbol, and
line color.

fimplicit(___ ,Name,Value) specifies line properties using one or more
Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes. Name,Value pair settings apply to all the lines
plotted. To set options for individual lines, use the objects returned by fimplicit.

fimplicit(ax, ___) plots into the axes specified by ax instead of the current axes
gca.

 fimplicit

4-627

fi = fimplicit(___) returns an implicit function line object. Use the object to query
and modify properties of a specific line. For details, see Implicit Function Line.

Examples

Plot Implicit Symbolic Equation

Plot the hyperbola x2− y2 = 1 by using fimplicit. The fimplicit function uses the
default interval of [− 5, 5] for x and y.

syms x y
fimplicit(x^2 - y^2 == 1)

4 Functions — Alphabetical List

4-628

Plot Implicit Symbolic Function

Plot the hyperbola described by the function f (x, y) = x2− y2− 1 by first declaring the
symbolic function f(x,y) using syms. The fimplicit function uses the default interval
of [− 5, 5] for x and y.

syms f(x,y)
f(x,y) = x^2 - y^2 - 1;
fimplicit(f)

 fimplicit

4-629

Specify Plotting Interval

Plot half of the circle x2 + y2 = 3 by using the intervals −4 < x < 0 and −2 < y < 2.
Specify the plotting interval as the second argument of fimplicit.

syms x y
circle = x^2 + y^2 == 3;
fimplicit(circle, [-4 0 -2 2])

4 Functions — Alphabetical List

4-630

Plot Multiple Implicit Equations

You can plot multiple equations either by passing the inputs as a vector or by using hold
on to successively plot on the same figure. If you specify LineSpec and Name-Value
arguments, they apply to all lines. To set options for individual plots, use the function
handles returned by fimplicit.

Divide a figure into two subplots by using subplot. On the first subplot, plot
x2 + y2 = = 1 and x2 + y2 = = 3 using vector input. On the second subplot, plot the same
inputs by using hold on.

 fimplicit

4-631

syms x y
circle1 = x^2 + y^2 == 1;
circle2 = x^2 + y^2 == 3;

subplot(2,1,1)
fimplicit([circle1 circle2])
title('Multiple Equations Using Vector Input')

subplot(2,1,2)
fimplicit(circle1)
hold on
fimplicit(circle2)
title('Multiple Equations Using hold on Command')

hold off

4 Functions — Alphabetical List

4-632

Change Line Properties and Display Markers

Plot three concentric circles of increasing diameter. For the first line, use a linewidth of 2.
For the second, specify a dashed red line style with circle markers. For the third, specify a
cyan, dash-dot line style with asterisk markers. Display the legend.

syms x y
circle = x^2 + y^2;
fimplicit(circle == 1, 'Linewidth', 2)
hold on
fimplicit(circle == 2, '--or')

 fimplicit

4-633

fimplicit(circle == 3, '-.*c')
legend('show','Location','best')
hold off

Modify Implicit Plot After Creation

Plot ysin(x) + xcos(y) = 1. Specify an output to make fimplicit return the plot object.

syms x y
eqn = y*sin(x) + x*cos(y) == 1;
fi = fimplicit(eqn)

4 Functions — Alphabetical List

4-634

fi =
 ImplicitFunctionLine with properties:

 Function: [1x1 sym]
 Color: [0 0.4470 0.7410]
 LineStyle: '-'
 LineWidth: 0.5000

 Show all properties

Change the plotted equation to xcos(y) + ysin(x) = 0 by using dot notation to set
properties. Similarly, change the line color to red and line style to a dash-dot line. The
horizontal and vertical lines in the output are artifacts that should be ignored.

 fimplicit

4-635

fi.Function = x/cos(y) + y/sin(x) == 0;
fi.Color = 'r';
fi.LineStyle = '-.';

Add Title and Axis Labels and Format Ticks

Plot xcos(y) + ysin(x) = 1 over the interval −2π < x < 2π and −2π < y < 2π. Add a title
and axis labels. Create the x-axis ticks by spanning the x-axis limits at intervals of pi/2.
Display these ticks by using the XTick property. Create x-axis labels by using arrayfun
to apply texlabel to S. Display these labels by using the XTickLabel property. Repeat
these steps for the y-axis.

4 Functions — Alphabetical List

4-636

To use LaTeX in plots, see latex.

syms x y
eqn = x*cos(y) + y*sin(x) == 1;
fimplicit(eqn, [-2*pi 2*pi])
grid on
title('x cos(y) + y sin(x) for -2\pi < x < 2\pi and -2\pi < y < 2\pi')
xlabel('x')
ylabel('y')
ax = gca;

S = sym(ax.XLim(1):pi/2:ax.XLim(2));
ax.XTick = double(S);
ax.XTickLabel = arrayfun(@texlabel, S, 'UniformOutput', false);

S = sym(ax.YLim(1):pi/2:ax.YLim(2));
ax.YTick = double(S);
ax.YTickLabel = arrayfun(@texlabel, S, 'UniformOutput', false);

 fimplicit

4-637

Re-evaluation on Zoom

When you zoom into a plot, fimplicit re-evaluates the plot automatically. This re-
evaluation on zoom can reveal hidden detail at smaller scales.

Divide a figure into two by using subplot. Plot xcos(y) + ysin(1/x) = 0 in both the first
and second subplots. Zoom into the second subplot by using zoom. The zoomed subplot
shows detail that is not visible in the first subplot.

syms x y
eqn = x*cos(y) + y*sin(1/x) == 0;

4 Functions — Alphabetical List

4-638

subplot(2,1,1)
fimplicit(eqn)

subplot(2,1,2)
fimplicit(eqn)
zoom(2)

Input Arguments
f — Implicit equation or function to plot
symbolic equation | symbolic expression | symbolic function

 fimplicit

4-639

Implicit equation or function to plot, specified as a symbolic equation, expression, or
function. If the right-hand side is not specified, then it is assumed to be 0.

[min max] — Plotting range for x and y
[–5 5] (default) | vector of two numbers

Plotting range for x and y, specified as a vector of two numbers. The default range is [-5
5].

[xmin xmax ymin ymax] — Plotting range for x and y
[–5 5 –5 5] (default) | vector of four numbers

Plotting range for x and y, specified as a vector of four numbers. The default range is [-5
5 -5 5].

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then fimplicit uses the current axes
gca.

LineSpec — Line specification
character vector | string

Line specification, specified as a character vector or string with a line style, marker, and
color. The elements can appear in any order, and you can omit one or more options. To
show only markers with no connecting lines, specify a marker and omit the line style.
Example: 'r--o' specifies a red color, a dashed line, and circle markers

Line Style Specifier Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Specifier Description
o Circle
+ Plus sign

4 Functions — Alphabetical List

4-640

Marker Specifier Description
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Color Specifier Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The function line properties listed here are only a subset. For a complete list, see Implicit
Function Line.

 fimplicit

4-641

Example: 'Marker','o','MarkerFaceColor','red'

MeshDensity — Number of evaluation points per direction
151 (default) | number

Number of evaluation points per direction, specified as a number. The default is 151.

Color — Line color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

4 Functions — Alphabetical List

4-642

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

 fimplicit

4-643

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | 's' | 'd' | ...

Marker symbol, specified as one of the values in this table. By default, a line does not
have markers. Add markers at selected points along the line by specifying a marker.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to

4 Functions — Alphabetical List

4-644

F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

 fimplicit

4-645

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' value uses the same color as the MarkerEdgeColor
property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

4 Functions — Alphabetical List

4-646

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

Output Arguments
fi — One or more implicit function line objects
scalar | vector

One or more implicit function line objects, returned as a scalar or a vector. You can use
these objects to query and modify properties of a specific line. For a list of properties, see
Implicit Function Line.

Algorithms
fimplicit assigns the symbolic variables in f to the x axis, then the y axis, and symvar
determines the order of the variables to be assigned. Therefore, variable and axis names
might not correspond. To force fimplicit to assign x or y to its corresponding axis,
create the symbolic function to plot, then pass the symbolic function to fimplicit.

For example, the following code plots the roots of the implicit function f(x,y) = sin(y) in
two ways. The first way forces the waves to oscillate with respect to the y axis. The
second way assigns y to the x axis because it is the first (and only) variable in the
symbolic function.

 fimplicit

4-647

syms x y;
f(x,y) = sin(y);
intvl = [-6 6]*pi;

figure;
subplot(2,1,1)
fimplicit(f,intvl);
subplot(2,1,2)
fimplicit(f(x,y),intvl); % Or fimplicit(sin(y) == 0,intvl);

4 Functions — Alphabetical List

4-648

See Also
Functions
fcontour | fimplicit3 | fmesh | fplot | fplot3 | fsurf

Properties
Implicit Function Line

Topics
“Create Plots” on page 2-250

Introduced in R2016b

 fimplicit

4-649

fimplicit3
Plot 3-D implicit equation or function

Syntax
fimplicit3(f)
fimplicit3(f,[min max])
fimplicit3(f,[xmin xmax ymin ymax zmin zmax])

fimplicit3(___ ,LineSpec)
fimplicit3(___ ,Name,Value)
fimplicit3(ax, ___)
fi = fimplicit3(___)

Description
fimplicit3(f) plots the 3-D implicit equation or function f(x,y,z) over the default
interval [-5 5] for x, y, and z.

fimplicit3(f,[min max]) plots f(x,y,z) over the interval [min max] for x, y, and
z.

fimplicit3(f,[xmin xmax ymin ymax zmin zmax]) plots f(x,y,z) over the
interval [xmin xmax] for x, [ymin ymax] for y, and [zmin zmax] for z. The
fimplicit3 function uses symvar to order the variables and assign intervals.

fimplicit3(___ ,LineSpec) uses LineSpec to set the line style, marker symbol, and
face color.

fimplicit3(___ ,Name,Value) specifies line properties using one or more
Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

fimplicit3(ax, ___) plots into the axes with the object ax instead of the current axes
object gca.

4 Functions — Alphabetical List

4-650

fi = fimplicit3(___) returns an implicit function surface object. Use the object to
query and modify properties of a specific surface. For details, see Implicit Function
Surface.

Examples

Plot 3-D Implicit Symbolic Equation

Plot the hyperboloid x2 + y2− z2 = 0 by using fimplicit3. The fimplicit3 function
plots over the default interval of [− 5, 5] for x, y, and z.

syms x y z
fimplicit3(x^2 + y^2 - z^2)

 fimplicit3

4-651

Plot 3-D Implicit Symbolic Function

Plot the hyperboloid specified by the function f (x, y, z) = x2 + y2− z2. The fimplicit3
function plots over the default interval of [− 5, 5] for x, y, and z.

syms f(x,y,z)
f(x,y,z) = x^2 + y^2 - z^2;
fimplicit3(f)

4 Functions — Alphabetical List

4-652

Specify Plotting Interval

Specify the plotting interval by specifying the second argument to fimplicit3. Plot the
upper half of the hyperboloid x2 + y2− z2 = 0 by specifying the interval 0 < z < 5. For x
and y, use the default interval [− 5, 5].

syms x y z
f = x^2 + y^2 - z^2;
interval = [-5 5 -5 5 0 5];
fimplicit3(f, interval)

 fimplicit3

4-653

Add Title and Axis Labels and Format Ticks

Plot the implicit equation xsin(y) + zcos(x) = 0 over the interval (− 2π, 2π) for all axes.

Create the x-axis ticks by spanning the x-axis limits at intervals of pi/2. Convert the axis
limits to precise multiples of pi/2 by using round and get the symbolic tick values in S.
Display these ticks by using the XTick property. Create x-axis labels by using arrayfun
to apply texlabel to S. Display these labels by using the XTickLabel property. Repeat
these steps for the y-axis.

To use LaTeX in plots, see latex.

4 Functions — Alphabetical List

4-654

syms x y z
eqn = x*sin(y) + z*cos(x);
fimplicit3(eqn,[-2*pi 2*pi])
title('xsin(y) + zcos(x) for -2\pi < x < 2\pi and -2\pi < y < 2\pi')
xlabel('x')
ylabel('y')
ax = gca;

S = sym(ax.XLim(1):pi/2:ax.XLim(2));
S = sym(round(vpa(S/pi*2))*pi/2);
ax.XTick = double(S);
ax.XTickLabel = arrayfun(@texlabel,S,'UniformOutput',false);

S = sym(ax.YLim(1):pi/2:ax.YLim(2));
S = sym(round(vpa(S/pi*2))*pi/2);
ax.YTick = double(S);
ax.YTickLabel = arrayfun(@texlabel, S, 'UniformOutput', false);

 fimplicit3

4-655

Line Style and Width for Implicit Surface Plot

Plot the implicit surface x2 + y2− z2 = 0 with different line styles for different values of z.
For −5 < z < − 2, use a dashed line with green dot markers. For −2 < z < 2, use a
LineWidth of 1 and a green face color. For 2 < z < 5, turn off the lines by setting
EdgeColor to none.

syms x y z
f = x^2 + y^2 - z^2;
fimplicit3(f,[-5 5 -5 5 -5 -2],'--.','MarkerEdgeColor','g')
hold on

4 Functions — Alphabetical List

4-656

fimplicit3(f,[-5 5 -5 5 -2 2],'LineWidth',1,'FaceColor','g')
fimplicit3(f,[-5 5 -5 5 2 5],'EdgeColor','none')

Modify Implicit Surface After Creation

Plot the implicit surface 1/x2− 1/y2 + 1/z2 = 0. Specify an output to make fimplicit3
return the plot object.

syms x y z
f = 1/x^2 - 1/y^2 + 1/z^2;
fi = fimplicit3(f)

 fimplicit3

4-657

fi =
 ImplicitFunctionSurface with properties:

 Function: [1x1 sym]
 EdgeColor: [0 0 0]
 LineStyle: '-'
 FaceColor: 'interp'

 Show all properties

Show only the positive x-axis by setting the XRange property of fi to [0 5]. Remove the
lines by setting the EdgeColor property to 'none'. Visualize the hidden surfaces by
making the plot transparent by setting the FaceAlpha property to 0.8.

4 Functions — Alphabetical List

4-658

fi.XRange = [0 5];
fi.EdgeColor = 'none';
fi.FaceAlpha = 0.8;

Control Resolution of Implicit Surface Plot

Control the resolution of an implicit surface plot by using the 'MeshDensity' option.
Increasing 'MeshDensity' can make smoother, more accurate plots while decreasing
'MeshDensity' can increase plotting speed.

 fimplicit3

4-659

Divide a figure into two by using subplot. In the first subplot, plot the implicit surface
sin(1/(xyz)). The surface has large gaps. Fix this issue by increasing the 'MeshDensity'
to 40 in the second subplot. fimplicit3 fills the gaps showing that by increasing
'MeshDensity' you increased the resolution of the plot.

syms x y z
f = sin(1/(x*y*z));

subplot(2,1,1)
fimplicit3(f)
title('Default MeshDensity = 35')

subplot(2,1,2)
fimplicit3(f,'MeshDensity',40)
title('Increased MeshDensity = 40')

4 Functions — Alphabetical List

4-660

Input Arguments
f — 3-D implicit equation or function to plot
symbolic equation | symbolic expression | symbolic function

3-D implicit equation or function to plot, specified as a symbolic equation, expression, or
function. If an expression or function is specified, then fimplicit3 assumes the right-
hand size to be 0.

[min max] — Plotting interval for x-, y- and z- axes
[–5 5] (default) | vector of two numbers

 fimplicit3

4-661

Plotting interval for x-, y- and z- axes, specified as a vector of two numbers. The default is
[-5 5].

[xmin xmax ymin ymax zmin zmax] — Plotting interval for x-, y- and z- axes
[–5 5 –5 5 –5 5] (default) | vector of six numbers

Plotting interval for x-, y- and z- axes, specified as a vector of six numbers. The default is
[-5 5 -5 5 -5 5].

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then fimplicit3 uses the current axes.

LineSpec — Line style, marker symbol, and face color
character vector

Line style, marker symbol, and face color, specified as a character vector. The elements of
the character vector can appear in any order, and you can omit one or more options from
the character vector specifier.
Example: '--or' is a red surface with circle markers and dashed lines

Specifier Line Style
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Specifier Marker
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond

4 Functions — Alphabetical List

4-662

Specifier Marker
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Specifier Color
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Marker','o','MarkerFaceColor','red'

The properties listed here are only a subset. For a complete list, see Implicit Function
Surface.

MeshDensity — Number of evaluation points per direction
35 (default) | number

Number of evaluation points per direction, specified as a number. The default is 35.
Example: 100

 fimplicit3

4-663

EdgeColor — Line color
[0 0 0] (default) | 'interp' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as 'interp', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default RGB triplet value of [0 0 0] corresponds to black.
The 'interp' value colors the edges based on the ZData values.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

4 Functions — Alphabetical List

4-664

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | 's' | 'd' | ...

Marker symbol, specified as one of the values in this table. By default, a line does not
have markers. Add markers at selected points along the line by specifying a marker.

 fimplicit3

4-665

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
EdgeColor property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

4 Functions — Alphabetical List

4-666

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.5 0.5 0.5]
Example: 'blue'
Example: '#D2F9A7'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

 fimplicit3

4-667

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' value uses the same color as the MarkerEdgeColor
property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

4 Functions — Alphabetical List

4-668

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

Output Arguments
fi — One or more objects
scalar | vector

One or more objects, returned as a scalar or a vector. The object is an implicit function
surface object. You can use these objects to query and modify properties of a specific line.
For details, see Implicit Function Surface.

Algorithms
fimplicit3 assigns the symbolic variables in f to the x axis, the y axis, then the z axis,
and symvar determines the order of the variables to be assigned. Therefore, variable and
axis names might not correspond. To force fimplicit3 to assign x, y, or z to its
corresponding axis, create the symbolic function to plot, then pass the symbolic function
to fimplicit3.

For example, the following code plots the roots of the implicit function f(x,y,z) = x + z in
two ways. The first way forces fimplicit3 to assign x and z to their corresponding axes.

 fimplicit3

4-669

In the second way, fimplicit3 defers to symvar to determine variable order and axis
assignment: fimplicit3 assigns x and z to the x and y axes, respectively.

syms x y z;
f(x,y,z) = x + z;

figure;
subplot(2,1,1)
fimplicit3(f);
view(-38,71);
subplot(2,1,2)
fimplicit3(f(x,y,z)); % Or fimplicit3(x + z);

4 Functions — Alphabetical List

4-670

See Also
Functions
fcontour | fimplicit | fmesh | fplot | fplot3 | fsurf

Properties
Implicit Function Surface

Topics
“Create Plots” on page 2-250

Introduced in R2016b

 fimplicit3

4-671

findDecoupledBlocks
Search for decoupled blocks in systems of equations

Syntax
[eqsBlocks,varsBlocks] = findDecoupledBlocks(eqs,vars)

Description
[eqsBlocks,varsBlocks] = findDecoupledBlocks(eqs,vars) identifies subsets
(blocks) of equations that can be used to define subsets of variables. The number of
variables vars must coincide with the number of equations eqs.

The ith block is the set of equations determining the variables in
vars(varsBlocks{i}). The variables in vars([varsBlocks{1},
…,varsBlocks{i-1}]) are determined recursively by the previous blocks of equations.
After you solve the first block of equations for the first block of variables, the second
block of equations, given by eqs(eqsBlocks{2}), defines a decoupled subset of
equations containing only the subset of variables given by the second block of variables,
vars(varsBlock{2}), plus the variables from the first block (these variables are known
at this time). Thus, if a nontrivial block decomposition is possible, you can split the
solution process for a large system of equations involving many variables into several
steps, where each step involves a smaller subsystem.

The number of blocks length(eqsBlocks) coincides with length(varsBlocks). If
length(eqsBlocks) = length(varsBlocks) = 1, then a nontrivial block
decomposition of the equations is not possible.

Examples
Block Lower Triangular Decomposition of DAE System
Compute a block lower triangular decomposition (BLT decomposition) of a symbolic
system of differential algebraic equations (DAEs).

4 Functions — Alphabetical List

4-672

Create the following system of four differential algebraic equations. Here, the symbolic
function calls x1(t), x2(t), x3(t), and x4(t) represent the state variables of the
system. The system also contains symbolic parameters c1, c2, c3, c4, and functions
f(t,x,y) and g(t,x,y).

syms x1(t) x2(t) x3(t) x4(t)
syms c1 c2 c3 c4
syms f(t,x,y) g(t,x,y)

eqs = [c1*diff(x1(t),t)+c2*diff(x3(t),t)==c3*f(t,x1(t),x3(t));...
 c2*diff(x1(t),t)+c1*diff(x3(t),t)==c4*g(t,x3(t),x4(t));...
 x1(t)==g(t,x1(t),x3(t));...
 x2(t)==f(t,x3(t),x4(t))];

vars = [x1(t), x2(t), x3(t), x4(t)];

Use findDecoupledBlocks to find the block structure of the system.

[eqsBlocks, varsBlocks] = findDecoupledBlocks(eqs, vars)

eqsBlocks =
 1×3 cell array
 {1×2 double} {[2]} {[4]}
varsBlocks =
 1×3 cell array
 {1×2 double} {[4]} {[2]}

The first block contains two equations in two variables.

eqs(eqsBlocks{1})

ans =
 c1*diff(x1(t), t) + c2*diff(x3(t), t) == c3*f(t, x1(t), x3(t))
 x1(t) == g(t, x1(t), x3(t))

vars(varsBlocks{1})

ans =
[x1(t), x3(t)]

After you solve this block for the variables x1(t), x3(t), you can solve the next block of
equations. This block consists of one equation.

eqs(eqsBlocks{2})

 findDecoupledBlocks

4-673

ans =
c2*diff(x1(t), t) + c1*diff(x3(t), t) == c4*g(t, x3(t), x4(t))

The block involves one variable.

vars(varsBlocks{2})

ans =
x4(t)

After you solve the equation from block 2 for the variable x4(t), the remaining block of
equations, eqs(eqsBlocks{3}), defines the remaining variable,
vars(varsBlocks{3}).

eqs(eqsBlocks{3})
vars(varsBlocks{3})

ans =
x2(t) == f(t, x3(t), x4(t))

ans =
x2(t)

Find the permutations that convert the system to a block lower triangular form.

eqsPerm = [eqsBlocks{:}]
varsPerm = [varsBlocks{:}]

eqsPerm =
 1 3 2 4

varsPerm =
 1 3 4 2

Convert the system to a block lower triangular system of equations.

eqs = eqs(eqsPerm)
vars = vars(varsPerm)

eqs =
 c1*diff(x1(t), t) + c2*diff(x3(t), t) == c3*f(t, x1(t), x3(t))
 x1(t) == g(t, x1(t), x3(t))
 c2*diff(x1(t), t) + c1*diff(x3(t), t) == c4*g(t, x3(t), x4(t))
 x2(t) == f(t, x3(t), x4(t))

4 Functions — Alphabetical List

4-674

vars =
[x1(t), x3(t), x4(t), x2(t)]

Find the incidence matrix of the resulting system. The incidence matrix shows that the
system of permuted equations has three diagonal blocks of size 2-by-2, 1-by-1, and 1-by-1.

incidenceMatrix(eqs, vars)

ans =
 1 1 0 0
 1 1 0 0
 1 1 1 0
 0 1 1 1

BLT Decomposition and Solution of Linear System
Find blocks of equations in a linear algebraic system, and then solve the system by
sequentially solving each block of equations starting from the first one.

Create the following system of linear algebraic equations.

syms x1 x2 x3 x4 x5 x6 c1 c2 c3

eqs = [c1*x1 + x3 + x5 == c1 + c2 + 1;...
 x1 + x3 + x4 + 2*x6 == 4 + c2;...
 x1 + 2*x3 + c3*x5 == 1 + 2*c2 + c3;...
 x2 + x3 + x4 + x5 == 2 + c2;...
 x1 - c2*x3 + x5 == 2 - c2^2;...
 x1 - x3 + x4 - x6 == 1 - c2];

vars = [x1, x2, x3, x4, x5, x6];

Use findDecoupledBlocks to convert the system to a lower triangular form. For this
system, findDecoupledBlocks identifies three blocks of equations and corresponding
variables.

[eqsBlocks, varsBlocks] = findDecoupledBlocks(eqs, vars)

eqsBlocks =
 1×3 cell array
 {1×3 double} {1×2 double} {[4]}
varsBlocks =
 1×3 cell array
 {1×3 double} {1×2 double} {[2]}

 findDecoupledBlocks

4-675

Identify the variables in the first block. This block consists of three equations in three
variables.

vars(varsBlocks{1})

ans =
[x1, x3, x5]

Solve the first block of equations for the first block of variables assigning the solutions to
the corresponding variables.

[x1,x3,x5] = solve(eqs(eqsBlocks{1}), vars(varsBlocks{1}))

x1 =
1

x3 =
c2

x5 =
1

Identify the variables in the second block. This block consists of two equations in two
variables.

vars(varsBlocks{2})

ans =
[x4, x6]

Solve this block of equations assigning the solutions to the corresponding variables.

[x4, x6] = solve(eqs(eqsBlocks{2}), vars(varsBlocks{2}))

x4 =
x3/3 - x1 - c2/3 + 2

x6 =
(2*c2)/3 - (2*x3)/3 + 1

Use subs to evaluate the result for the already known values of variables x1, x3, and x5.

x4 = subs(x4)
x6 = subs(x6)

x4 =
1

4 Functions — Alphabetical List

4-676

x6 =
1

Identify the variables in the third block. This block consists of one equation in one
variable.

vars(varsBlocks{3})

ans =
x2

Solve this equation assigning the solution to x2.

x2 = solve(eqs(eqsBlocks{3}), vars(varsBlocks{3}))

x2 =
c2 - x3 - x4 - x5 + 2

Use subs to evaluate the result for the already known values of all other variables of this
system.

x2 = subs(x2)

x2 =
0

Alternatively, you can rewrite this example using the for-loop. This approach lets you use
the example for larger systems of equations.

syms x1 x2 x3 x4 x5 x6 c1 c2 c3

eqs = [c1*x1 + x3 + x5 == c1 + c2 + 1;...
 x1 + x3 + x4 + 2*x6 == 4 + c2;...
 x1 + 2*x3 + c3*x5 == 1 + 2*c2 + c3;...
 x2 + x3 + x4 + x5 == 2 + c2;...
 x1 - c2*x3 + x5 == 2 - c2^2
 x1 - x3 + x4 - x6 == 1 - c2];

vars = [x1, x2, x3, x4, x5, x6];

[eqsBlocks, varsBlocks] = findDecoupledBlocks(eqs, vars);

vars_sol = vars;

 findDecoupledBlocks

4-677

for i = 1:numel(eqsBlocks)
 sol = solve(eqs(eqsBlocks{i}), vars(varsBlocks{i}));
 vars_sol_per_block = subs(vars(varsBlocks{i}), sol);
 for k=1:i-1
 vars_sol_per_block = subs(vars_sol_per_block, vars(varsBlocks{k}),...
 vars_sol(varsBlocks{k}));
 end
 vars_sol(varsBlocks{i}) = vars_sol_per_block
end

vars_sol =
[1, x2, c2, x4, 1, x6]

vars_sol =
[1, x2, c2, 1, 1, 1]

vars_sol =
[1, 0, c2, 1, 1, 1]

Input Arguments
eqs — System of equations
vector of symbolic equations | vector of symbolic expressions

System of equations, specified as a vector of symbolic equations or expressions.

vars — Variables
vector of symbolic variables | vector of symbolic functions | vector of symbolic function
calls

Variables, specified as a vector of symbolic variables, functions, or function calls, such as
x(t).
Example: [x(t),y(t)] or [x(t);y(t)]

Output Arguments
eqsBlocks — Indices defining blocks of equations
cell array

Indices defining blocks of equations, returned as a cell array. Each block of indices is a
row vector of double-precision integer numbers. The ith block of equations consists of the

4 Functions — Alphabetical List

4-678

equations eqs(eqsBlocks{i}) and involves only the variables in
vars(varsBlocks{1:i}).

varsBlocks — Indices defining blocks of variables
cell array

Indices defining blocks of variables, returned as a cell array. Each block of indices is a
row vector of double-precision integer numbers. The ith block of equations consists of the
equations eqs(eqsBlocks{i}) and involves only the variables in
vars(varsBlocks{1:i}).

Tips
• The implemented algorithm requires that for each variable in vars there must be at

least one matching equation in eqs involving this variable. The same equation cannot
also be matched to another variable. If the system does not satisfy this condition, then
findDecoupledBlocks throws an error. In particular, findDecoupledBlocks
requires that length(eqs) = length(vars).

• Applying the permutations e = [eqsBlocks{:}] to the vector eqs and v =
[varsBlocks{:}] to the vector vars produces an incidence matrix
incidenceMatrix(eqs(e), vars(v)) that has a block lower triangular sparsity
pattern.

See Also
daeFunction | decic | diag | incidenceMatrix | isLowIndexDAE |
massMatrixForm | odeFunction | reduceDAEIndex | reduceDAEToODE |
reduceDifferentialOrder | reduceRedundancies | tril | triu

Introduced in R2014b

 findDecoupledBlocks

4-679

findSymType
Find symbolic subobjects of specific type

Syntax
X = findSymType(symObj,type)
X = findSymType(symObj,funType,vars)

Description
X = findSymType(symObj,type) returns a vector of symbolic subobjects of type type
from the symbolic object symObj. The input type must be a case-sensitive string scalar
or character vector, and it can include a logical expression.

• If symObj does not contain a symbolic subobject of type type, then findSymType
returns an empty scalar.

• If symObj contains several subexpressions of type type, then findSymType returns
the largest matching subexpression.

X = findSymType(symObj,funType,vars) returns a vector of unassigned symbolic
functions that depend on the variables vars from the symbolic input symObj.

You can set the function type funType to 'symfunOf' or 'symfunDependingOn'. For
example, syms f(x); findSymType(f,'symfunOf',x) returns f(x).

Examples

Symbolic Number and Constant

Find and return specific symbolic numbers and constants in a symbolic expression.

Create a symbolic expression.

expr = sym('1/2')*pi + vpa(pi)

4 Functions — Alphabetical List

4-680

expr = 4.7124

Find symbolic numbers of type 'integer'.

X = findSymType(expr,'integer')

X = 1 2

Find symbolic numbers of type 'integer | real'.

X = findSymType(expr,'integer | real')

X = 0.5000 3.1416

Find symbolic numbers of type 'vpareal'.

X = findSymType(expr,'vpareal')

X = 3.1416

Find symbolic numbers of type 'complex'.

X = findSymType(expr,'complex')

X =

Empty sym: 1-by-0

The findSymType function returns an empty scalar since the expression expr does not
contain any complex numbers.

Now find symbolic constant of type 'constant'.

X = findSymType(expr,'constant')

X = 4.7124

When there are several subexpressions of type 'constant', findSymType returns the
largest matching subexpression.

 findSymType

4-681

Symbolic Variable and Function

Find and return symbolic variables and functions in a symbolic equation.

Create a symbolic equation.

syms y(t) k
eq = diff(y) + k*y == sin(y)

eq(t) =
∂
∂t y t + k y t = sin y t

Find symbolic variables of type 'variable' in the equation.

X = findSymType(eq,'variable')

X = k t

Find an unassigned symbolic function of type 'symfun' in the equation.

X = findSymType(eq,'symfun')

X = y t

Find a symbolic math function of type 'diff' in the equation.

X = findSymType(eq,'diff')

X =
∂
∂t y t

Symbolic Function of Specific Variables

Find and return symbolic functions with specific variable dependencies in an expression.

Create a symbolic expression.

syms n f(x) g(x) y(x,t)
expr = x + f(x^n) + g(x)+ y(x,t)

expr = x + f xn + g x + y x, t

4 Functions — Alphabetical List

4-682

Find unassigned symbolic functions of type 'symfun' in the expression.

X = findSymType(expr,'symfun')

X = f xn g x y x, t

Find symbolic functions that depend on the exact sequence of variables [x t] using
'symfunOf'.

X = findSymType(expr,'symfunOf',[x t])

X = y x, t

Find symbolic functions that have a dependency on the variable x using
'symfunDependingOn'.

X = findSymType(expr,'symfunDependingOn',x)

X = g x y x, t

Input Arguments
symObj — Symbolic objects
symbolic expressions | symbolic functions | symbolic variables | symbolic numbers |
symbolic units

Symbolic objects, specified as symbolic expressions, symbolic functions, symbolic
variables, symbolic numbers, or symbolic units.

type — Symbolic types
scalar string | character vector

Symbolic types, specified as a case-sensitive scalar string or character vector. The input
type can contain a logical expression. The value options follow.

 findSymType

4-683

Symbolic Type
Category

String Values

numbers • 'integer' — integer numbers
• 'rational' — rational numbers
• 'vpareal' — variable-precision floating-point real numbers
• 'complex' — complex numbers
• 'real' — real numbers, including 'integer', 'rational',

and 'vpareal'
• 'number' — numbers, including 'integer', 'rational',

'vpareal', 'complex', and 'real'
constants 'constant' — symbolic constants, including 'number'
symbolic math
functions

'vpa', 'sin', 'exp', and so on — symbolic math functions in
symbolic expressions

unassigned symbolic
functions

• 'F', 'g', and so on — function name of an unassigned
symbolic function

• 'symfun' — unassigned symbolic functions
arithmetic operators • 'plus' — addition operator + and subtraction operator -

• 'times' — multiplication operator * and division operator /
• 'power' — power or exponentiation operator ^ and square

root operator sqrt
variables 'variable' — symbolic variables
units 'units' — symbolic units
expressions 'expression' — symbolic expressions, including all of the

preceding symbolic types
logical expressions • 'or' — logical OR operator |

• 'and' — logical AND operator &
• 'not' — logical NOT operator ~
• 'xor' — logical exclusive-OR operator xor
• 'logicalexpression' — logical expressions, including

'or', 'and', 'not', and 'xor'

4 Functions — Alphabetical List

4-684

Symbolic Type
Category

String Values

equations and
inequalities

• 'eq' — equality operator ==
• 'ne' — inequality operator ~=
• 'lt' — less-than operator < or greater-than operator >
• 'le' — less-than-or-equal-to operator <= or greater-than-or-

equal-to operator >=
• 'equation' — symbolic equations and inequalities, including

'eq', 'ne', 'lt', and 'le'
unsupported
symbolic types

'unsupported' — unsupported symbolic types

If symObj contains several subexpressions of type type, then findSymType returns the
largest matching subexpression (topmost matching node in a tree data structure).

funType — Function type
'symfunOf' | 'symfunDependingOn'

Function type, specified as 'symfunOf' or 'symfunDependingOn'.

• 'symfunOf' finds and returns the unassigned symbolic functions that depend on the
exact sequence of variables specified by the array vars. For example, syms f(x,y);
findSymType(f,'symfunOf',[x y]) returns f(x,y).

• 'symfunDependingOn' finds and returns the unassigned symbolic functions that
have a dependency on the variables specified by the array vars. For example, syms
f(x,y); findSymType(f,'symfunDependingOn',x) returns f(x,y).

vars — Input variables
symbolic variables | symbolic array

Input variables, specified as symbolic variables or a symbolic array.

See Also
hasSymType | isSymType | mapSymType | sym | symFunType | symType | syms

Introduced in R2019a

 findSymType

4-685

findUnits
Find units in input

Syntax
U = findUnits(expr)

Description
U = findUnits(expr) returns a row vector of units in the symbolic expression expr.

Examples

Find Units in Expression
Find the units in an expression by using findUnits.

u = symunit;
syms x
units = findUnits(x*u.m + 2*u.N)

units =
[[N], [m]]

Find Units in Array of Equations or Expressions
Find the units in an array of equations or expressions by using findUnits. The
findUnits function concatenates all units found in the input to return a row vector of
units. findUnits returns only base units.

u = symunit;
array = [2*u.m + 3*u.K, 1*u.N == 1*u.kg/(u.m*u.s^2)];
units = findUnits(array)

4 Functions — Alphabetical List

4-686

units =
[[K], [N], [kg], [m], [s]]

Input Arguments
expr — Input
symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic
multidimensional array | symbolic function | symbolic expression

Input, specified as a symbolic number, variable, vector, matrix, multidimensional array,
function, or expression.

See Also
checkUnits | isUnit | newUnit | separateUnits | str2symunit | symunit |
symunit2str | unitConversionFactor

Topics
“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

External Websites
The International System of Units (SI)

Introduced in R2017a

 findUnits

4-687

https://www.bipm.org/en/publications/si-brochure/

finverse
Functional inverse

Syntax
g = finverse(f)
g = finverse(f,var)

Description
g = finverse(f) returns the inverse of function f, such that f(g(x)) = x. If f
contains more than one variable, use the next syntax to specify the independent variable.

g = finverse(f,var) uses the symbolic variable var as the independent variable,
such that f(g(var)) = var.

Examples

Compute Functional Inverse

Compute functional inverse for this trigonometric function.

syms x
f(x) = 1/tan(x);
g = finverse(f)

g(x) =
atan(1/x)

Compute functional inverse for this exponential function by specifying the independent
variable.

syms u v
finverse(exp(u-2*v), u)

4 Functions — Alphabetical List

4-688

ans =
2*v + log(u)

Input Arguments
f — Input
symbolic expression | symbolic function

Input, specified as a symbolic expression or function.

var — Independent variable
symbolic variable

Independent variable, specified as a symbolic variable.

Tips
• finverse does not issue a warning when the inverse is not unique.

See Also
compose | syms

Introduced before R2006a

 finverse

4-689

fmesh
Plot 3-D mesh

Syntax
fmesh(f)
fmesh(f,[min max])
fmesh(f,[xmin xmax ymin ymax])

fmesh(funx,funy,funz)
fmesh(funx,funy,funz,[uvmin uvmax])
fmesh(funx,funy,funz,[umin umax vmin vmax])

fmesh(___ ,LineSpec)
fmesh(___ ,Name,Value)
fmesh(ax, ___)
obj = fmesh(___)

Description
fmesh(f) creates a mesh plot of the symbolic expression f(x,y) over the default
interval [-5 5] for x and y.

fmesh(f,[min max]) plots f(x,y) over the interval [min max] for x and y.

fmesh(f,[xmin xmax ymin ymax]) plots f(x,y) over the interval [xmin xmax] for
x and [ymin ymax] for y. The fmesh function uses symvar to order the variables and
assign intervals.

fmesh(funx,funy,funz) plots the parametric mesh x = x(u,v), y = y(u,v), z =
z(u,v) over the interval [-5 5] for u and v.

fmesh(funx,funy,funz,[uvmin uvmax]) plots the parametric mesh x = x(u,v), y
= y(u,v), z = z(u,v) over the interval [uvmin uvmax] for u and v.

fmesh(funx,funy,funz,[umin umax vmin vmax]) plots the parametric mesh x =
x(u,v), y = y(u,v), z = z(u,v) over the interval [umin umax] for u and [vmin

4 Functions — Alphabetical List

4-690

vmax] for v. The fmesh function uses symvar to order the parametric variables and
assign intervals.

fmesh(___ ,LineSpec) uses the LineSpec to set the line style, marker symbol, and
plot color.

fmesh(___ ,Name,Value) specifies surface properties using one or more Name,Value
pair arguments. Use this option with any of the input argument combinations in the
previous syntaxes.

fmesh(ax, ___) plots into the axes with the object ax instead of the current axes object
gca.

obj = fmesh(___) returns a function surface object or a parameterized function
surface object. Use the object to query and modify properties of a specific mesh.

Examples

Additional Examples: See fsurf Page

Note For additional examples, follow the fsurf page because fmesh and fsurf share
the same syntax. All examples on the fsurf page apply to fmesh.

3-D Mesh Plot of Symbolic Expression
Plot a mesh of the input sin(x) + cos(y) over the default range −5 < x < 5 and −5 < y < 5.

syms x y
fmesh(sin(x)+cos(y))

 fmesh

4-691

3-D Mesh Plot of Symbolic Function

Plot a 3-D mesh of the real part of tan−1(x + iy) over the default range −5 < x < 5 and
−5 < y < 5.

syms f(x,y)
f(x,y) = real(atan(x + i*y));
fmesh(f)

4 Functions — Alphabetical List

4-692

Specify Plotting Interval of Mesh Plot
Plot sin(x) + cos(y) over −π < x < π and −5 < y < 5 by specifying the plotting interval as
the second argument of fmesh.

syms x y
f = sin(x) + cos(y);
fmesh(f, [-pi pi -5 5])

 fmesh

4-693

Parameterized Mesh Plot
Plot the parameterized mesh

x = rcos(s)sin(t)
y = rsin(s)sin(t)

z = rcos(t)
where r = 8 + sin(7s + 5t)

for 0 < s < 2π and 0 < t < π. Make the aspect ratio of the axes equal using axis equal.
See the entire mesh by making the mesh partially transparent using alpha.

4 Functions — Alphabetical List

4-694

syms s t
r = 8 + sin(7*s + 5*t);
x = r*cos(s)*sin(t);
y = r*sin(s)*sin(t);
z = r*cos(t);
fmesh(x, y, z, [0 2*pi 0 pi], 'Linewidth', 2)
axis equal

alpha(0.8)

 fmesh

4-695

Additional Examples: See fsurf Page

Note For additional examples, follow the fsurf page because fmesh and fsurf share
the same syntax. All examples on the fsurf page apply to fmesh.

Input Arguments
f — 3-D expression or function to be plotted
symbolic expression | symbolic function

Expression or function to be plotted, specified as a symbolic expression or function.

[min max] — Plotting interval for x- and y-axes
[–5 5] (default) | vector of two numbers

Plotting interval for x- and y-axes, specified as a vector of two numbers. The default is
[-5 5].

[xmin xmax ymin ymax] — Plotting interval for x- and y-axes
[–5 5 –5 5] (default) | vector of four numbers

Plotting interval for x- and y-axes, specified as a vector of four numbers. The default is
[-5 5 -5 5].

funx,funy,funz — Parametric functions of u and v
symbolic expressions | symbolic functions

Parametric functions of u and v, specified as a symbolic expression or function.

[uvmin uvmax] — Plotting interval for u and v
[–5 5] (default) | vector of two numbers

Plotting interval for u and v axes, specified as a vector of two numbers. The default is [-5
5].

[umin umax vmin vmax] — Plotting interval for u and v
[–5 5 –5 5] (default) | vector of four numbers

Plotting interval for u and v, specified as a vector of four numbers. The default is [-5 5
-5 5].

4 Functions — Alphabetical List

4-696

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then fmesh uses the current axes.

LineSpec — Line style, marker symbol, and line color
character vector

Line style, marker symbol, and line color, specified as a character vector. The elements of
the character vector can appear in any order, and you can omit one or more options from
the character vector specifier.
Example: '--or' is a red mesh with circle markers

Specifier Line Style
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Specifier Marker
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

 fmesh

4-697

Specifier Color
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Marker','o','MarkerFaceColor','red'

MeshDensity — Number of evaluation points per direction
35 (default) | number

Number of evaluation points per direction, specified as a number. The default is 35.
Because fmesh objects use adaptive evaluation, the actual number of evaluation points is
greater.
Example: 100

ShowContours — Display contour plot under plot
'off' (default) | 'on'

Display contour plot under plot, specified as 'off' (default) or 'on'.

EdgeColor — Line color
'interp' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Line color, specified as 'interp', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default value of 'interp' colors the edges based on the
ZData property values.

4 Functions — Alphabetical List

4-698

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'

 fmesh

4-699

RGB Triplet Hexadecimal Color Code Appearance
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | 's' | 'd' | ...

Marker symbol, specified as one of the values in this table. By default, a line does not
have markers. Add markers at selected points along the line by specifying a marker.

4 Functions — Alphabetical List

4-700

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
EdgeColor property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

 fmesh

4-701

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.5 0.5 0.5]
Example: 'blue'
Example: '#D2F9A7'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

4 Functions — Alphabetical List

4-702

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' value uses the same color as the MarkerEdgeColor
property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

 fmesh

4-703

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

Output Arguments
obj — One or more objects
scalar | vector

One or more objects, returned as a scalar or a vector. The object is either a function
surface object or parameterized mesh object, depending on the type of plot. You can use
these objects to query and modify properties of a specific line. For details, see Function
Surface and Parameterized Function Surface.

Algorithms
fmesh assigns the symbolic variables in f to the x axis, then the y axis, and symvar
determines the order of the variables to be assigned. Therefore, variable and axis names
might not correspond. To force fmesh to assign x or y to its corresponding axis, create
the symbolic function to plot, then pass the symbolic function to fmesh.

For example, the following code plots the mesh of f(x,y) = sin(y) in two ways. The first
way forces the waves to oscillate with respect to the y axis. The second way assigns y to
the x axis because it is the first (and only) variable in the symbolic function.

4 Functions — Alphabetical List

4-704

syms x y;
f(x,y) = sin(y);

figure;
subplot(2,1,1)
fmesh(f);
subplot(2,1,2)
fmesh(f(x,y)); % Or fmesh(sin(y));

 fmesh

4-705

See Also
Functions
fcontour | fimplicit | fimplicit3 | fplot | fplot3 | fsurf

Properties
Function Surface | Parameterized Function Surface

Topics
“Create Plots” on page 2-250

Introduced in R2016a

4 Functions — Alphabetical List

4-706

fold
Combine (fold) vector using function

Syntax
fold(fun,v)
fold(fun,v,defaultVal)

Description
fold(fun,v) folds v by using fun. That is, fold calls fun on the first two elements of v,
and then repeatedly calls fun on the result and the next element till the last element is
combined. Programmatically, the fold operation is fold(fun,v) =
fun(fold(fun,v(1:end-1)),v(end)).

fold(fun,v,defaultVal) returns the value defaultVal if v is empty.

Examples

Fold Vector Using Function
Fold a vector of symbolic variables using the power function. The output shows how fold
combines elements of the vector from left to right by using the specified function.

syms a b c d e
fold(@power, [a b c d e])

ans =
(((a^b)^c)^d)^e

 fold

4-707

Assume Variable Belongs to Set of Values
Assume the variable x belongs to the set of values 1, 2, ..., 10 by applying or to the
conditions x == 1, ..., x == 10 using fold. Check that the assumption is set by using
assumptions.

syms x
cond = fold(@or, x == 1:10);
assume(cond)
assumptions

ans =
x == 1 | x == 2 | x == 3 | x == 4 | x == 5 |...
 x == 6 | x == 7 | x == 8 | x == 9 | x == 10

Specify Default Value of Fold Operation
Specify the default value of fold when the input is empty by specifying the third
argument. If the third argument is not specified and the input is empty, then fold throws
an error.

When creating a function to sum a vector, specify a default value of 0, such that the
function returns 0 when the vector is empty.

sumVector = @(x) fold(@plus, x, 0);
sumVector([])

ans =
 0

Input Arguments
fun — Function used to fold vector
function handle

Function used to fold vector, specified as a function handle.
Example: @or

v — Vector to fold
vector | symbolic vector | cell vector

4 Functions — Alphabetical List

4-708

Vector to fold, specified as a vector, symbolic vector, or cell vector. If an element of v is a
symbolic function, then the formula of the symbolic function is used by calling formula.

defaultVal — Default value of fold operation
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Default value of fold operation, specified as a number, vector, matrix, or multidimensional
array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or
expression.

See Also
prod | sum

Introduced in R2016b

 fold

4-709

formula
Return body of symbolic function

Syntax
formula(f)

Description
formula(f) returns the body, or definition, of the symbolic function f.

Examples

Return Body of Symbolic Function

Return the body, or definition, of a symbolic function by using formula.

syms x y
f(x,y) = x + y;
formula(f)

ans =
x + y

If the symbolic function does not have a definition, formula returns the symbolic
function.

syms g(x,y)
formula(g)

4 Functions — Alphabetical List

4-710

ans =
g(x, y)

Input Arguments
f — Input
symbolic function

Input specified as a symbolic function.

See Also
argnames | sym | syms | symvar

Introduced in R2012a

 formula

4-711

fortran
Fortran representation of symbolic expression

Syntax
fortran(f)
fortran(f,Name,Value)

Description
fortran(f) returns Fortran code for the symbolic expression f.

fortran(f,Name,Value) uses additional options specified by one or more Name,Value
pair arguments.

Examples

Generate Fortran Code from Symbolic Expression

Generate Fortran code from the symbolic expression log(1+x).

syms x
f = log(1+x);
fortran(f)

ans =
 ' t0 = log(x+1.0D0)'

Generate Fortran code for the 3-by-3 Hilbert matrix.

H = sym(hilb(3));
fortran(H)

ans =
 ' H(1,1) = 1.0D0

4 Functions — Alphabetical List

4-712

 H(1,2) = 1.0D0/2.0D0
 H(1,3) = 1.0D0/3.0D0
 H(2,1) = 1.0D0/2.0D0
 H(2,2) = 1.0D0/3.0D0
 H(2,3) = 1.0D0/4.0D0
 H(3,1) = 1.0D0/3.0D0
 H(3,2) = 1.0D0/4.0D0
 H(3,3) = 1.0D0/5.0D0'

Write Fortran Code to File with Comments

Write generated Fortran code to a file by specifying the File option. When writing to a
file, fortran optimizes the code using intermediate variables named t0, t1, .… Include
comments in the file by using the Comments option.

syms x
f = diff(tan(x));
fortran(f,'File','fortrantest')

 t0 = tan(x)**2+1.0D0

Include the comment Version: 1.1. Comment lines must be shorter than 71 characters
to conform with Fortran 77.

fortran(f,'File','fortrantest','Comments','Version: 1.1')

*Version: 1.1
 t0 = tan(x)**2+1.0D0

Input Arguments
f — Symbolic input
symbolic expression

Symbolic input, specified as a symbolic expression.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.

 fortran

4-713

You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: fortran(x^2,'File','fortrancode','Comments','V1.2')

File — File to write to
character vector | string

File to write to, specified as a character vector or string. When writing to a file, fortran
optimizes the code using intermediate variables named t0, t1,

Comments — Comments to include in file header
character vector | cell array of character vectors | string vector

Comments to include in the file header, specified as a character vector, cell array of
character vectors, or string vector. Comment lines must be shorter than 71 characters to
conform with Fortran 77.

Tips
• MATLAB is left-associative while Fortran is right-associative. If ambiguity exists in an

expression, the fortran function must follow MATLAB to create an equivalent
representation. For example, fortran represents a^b^c in MATLAB as (a**b)**c in
Fortran.

See Also
ccode | latex | matlabFunction

Introduced before R2006a

4 Functions — Alphabetical List

4-714

fourier
Fourier transform

Syntax
fourier(f)
fourier(f,transVar)
fourier(f,var,transVar)

Description
fourier(f) returns the “Fourier Transform” on page 4-721 of f. By default, the
function symvar determines the independent variable, and w is the transformation
variable.

fourier(f,transVar) uses the transformation variable transVar instead of w.

fourier(f,var,transVar) uses the independent variable var and the transformation
variable transVar instead of symvar and w, respectively.

Examples

Fourier Transform of Common Inputs
Compute the Fourier transform of common inputs. By default, the transform is in terms of
w.

Function Input Output
Rectangular pulse syms a b t

f = rectangularPulse(a,b,t);
f_FT = fourier(f)

f_FT =
- (sin(a*w) + cos(a*w)*1i)/w + (sin(b*w) + cos(b*w)*1i)/w

Unit impulse (Dirac delta) f = dirac(t);
f_FT = fourier(f)

f_FT =
1

 fourier

4-715

Function Input Output
Absolute value f = a*abs(t);

f_FT = fourier(f)
f_FT =
-(2*a)/w^2

Step (Heaviside) f = heaviside(t);
f_FT = fourier(f)

f_FT =
pi*dirac(w) - 1i/w

Constant f = a;
f_FT = fourier(a)

f_FT =
pi*dirac(1, w)*2i

Cosine syms w0
f = a*cos(w0*t);
f_FT = fourier(f)

f_FT =
pi*a*(dirac(t - w) + dirac(t + w))

Sine f = a*sin(w0*t);
f_FT = fourier(f)

f_FT =
-pi*a*(dirac(t - w) - dirac(t + w))*1i

Sign f = sign(t);
f_FT = fourier(f)

f_FT =
-2i/w

Triangle syms c
f = triangularPulse(a,b,c,t);
f_FT = fourier(f)

f_FT =
-(a*exp(-b*w*1i) - b*exp(-a*w*1i) - a*exp(-c*w*1i) + c*exp(-a*w*1i) + b*exp(-c*w*1i) - c*exp(-b*w*1i))/(w^2*(a - b)*(b - c))

Right-sided exponential Also calculate transform
with condition a > 0. Clear
assumptions.

f = exp(-t*abs(a))*heaviside(t);
f_FT = fourier(f)

assume(a > 0)
f_FT_condition = fourier(f)
assume(a,'clear')

f_FT =
1/(abs(a) + w*1i) - (sign(abs(a))/2 - 1/2)*fourier(exp(-t*abs(a)), t, w)

f_FT_condition =
1/(a + w*1i)

Double-sided exponential Assume a > 0. Clear
assumptions.

assume(a > 0)
f = exp(-a*t^2);
f_FT = fourier(f)
assume(a,'clear')

f_FT =
(pi^(1/2)*exp(-w^2/(4*a)))/a^(1/2)

4 Functions — Alphabetical List

4-716

Function Input Output
Gaussian Assume b and c are real.

Simplify result and clear
assumptions.

assume([b c],'real')
f = a*exp(-(t-b)^2/(2*c^2));
f_FT = fourier(f)

f_FT_simplify = simplify(f_FT)
assume([b c],'clear')

f_FT =
(a*pi^(1/2)*exp(- (c^2*(w + (b*1i)/c^2)^2)/2 - b^2/(2*c^2)))/(1/(2*c^2))^(1/2)

f_FT_simplify =
2^(1/2)*a*pi^(1/2)*exp(-(w*(w*c^2 + b*2i))/2)*abs(c)

Bessel of first kind with nu
= 1

Simplify the result.

syms x
f = besselj(1,x);
f_FT = fourier(f);
f_FT = simplify(f_FT)

f_FT =
(2*w*(heaviside(w - 1)*1i - heaviside(w + 1)*1i))/(1 - w^2)^(1/2)

Specify Independent Variable and Transformation Variable
Compute the Fourier transform of exp(-t^2-x^2). By default, symvar determines the
independent variable, and w is the transformation variable. Here, symvar chooses x.

syms t x
f = exp(-t^2-x^2);
fourier(f)

ans =
pi^(1/2)*exp(- t^2 - w^2/4)

Specify the transformation variable as y. If you specify only one variable, that variable is
the transformation variable. symvar still determines the independent variable.

syms y
fourier(f,y)

ans =
pi^(1/2)*exp(- t^2 - y^2/4)

Specify both the independent and transformation variables as t and y in the second and
third arguments, respectively.

 fourier

4-717

fourier(f,t,y)

ans =
pi^(1/2)*exp(- x^2 - y^2/4)

Fourier Transforms Involving Dirac and Heaviside Functions
Compute the following Fourier transforms. The results are in terms of the Dirac and
Heaviside functions.

syms t w
fourier(t^3, t, w)

ans =
-pi*dirac(3, w)*2i

syms t0
fourier(heaviside(t - t0), t, w)

ans =
exp(-t0*w*1i)*(pi*dirac(w) - 1i/w)

Specify Fourier Transform Parameters
Specify parameters of the Fourier transform.

Compute the Fourier transform of f using the default values of the Fourier parameters c
= 1, s = -1. For details, see “Fourier Transform” on page 4-721.

syms t w
f = t*exp(-t^2);
fourier(f,t,w)

ans =
-(w*pi^(1/2)*exp(-w^2/4)*1i)/2

Change the Fourier parameters to c = 1, s = 1 by using sympref, and compute the
transform again. The result changes.

sympref('FourierParameters',[1 1]);
fourier(f,t,w)

ans =
(w*pi^(1/2)*exp(-w^2/4)*1i)/2

4 Functions — Alphabetical List

4-718

Change the Fourier parameters to c = 1/(2*pi), s = 1. The result changes.

sympref('FourierParameters', [1/(2*sym(pi)), 1]);
fourier(f,t,w)

ans =
(w*exp(-w^2/4)*1i)/(4*pi^(1/2))

Preferences set by sympref persist through your current and future MATLAB sessions.
Restore the default values of c and s by setting FourierParameters to 'default'.

sympref('FourierParameters','default');

Fourier Transform of Array Inputs
Find the Fourier transform of the matrix M. Specify the independent and transformation
variables for each matrix entry by using matrices of the same size. When the arguments
are nonscalars, fourier acts on them element-wise.

syms a b c d w x y z
M = [exp(x) 1; sin(y) i*z];
vars = [w x; y z];
transVars = [a b; c d];
fourier(M,vars,transVars)

ans =
[2*pi*exp(x)*dirac(a), 2*pi*dirac(b)]
[-pi*(dirac(c - 1) - dirac(c + 1))*1i, -2*pi*dirac(1, d)]

If fourier is called with both scalar and nonscalar arguments, then it expands the
scalars to match the nonscalars by using scalar expansion. Nonscalar arguments must be
the same size.

fourier(x,vars,transVars)

ans =
[2*pi*x*dirac(a), pi*dirac(1, b)*2i]
[2*pi*x*dirac(c), 2*pi*x*dirac(d)]

If Fourier Transform Cannot Be Found
If fourier cannot transform the input then it returns an unevaluated call.

 fourier

4-719

syms f(t) w
F = fourier(f,t,w)

F =
fourier(f(t), t, w)

Return the original expression by using ifourier.

ifourier(F,w,t)

ans =
f(t)

Input Arguments
f — Input
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic expression, function, vector, or matrix.

var — Independent variable
x (default) | symbolic variable

Independent variable, specified as a symbolic variable. This variable is often called the
"time variable" or the "space variable." If you do not specify the variable, then fourier
uses the function symvar to determine the independent variable.

transVar — Transformation variable
w (default) | v | symbolic variable | symbolic expression | symbolic vector | symbolic
matrix

Transformation variable, specified as a symbolic variable, expression, vector, or matrix.
This variable is often called the "frequency variable." By default, fourier uses w. If w is
the independent variable of f, then fourier uses v.

4 Functions — Alphabetical List

4-720

Definitions

Fourier Transform
The Fourier transform of the expression f = f(x) with respect to the variable x at the point
w is

F w = c ∫
−∞

∞
f x eiswxdx .

c and s are parameters of the Fourier transform. The fourier function uses c = 1, s = –
1.

Tips
• If any argument is an array, then fourier acts element-wise on all elements of the

array.
• If the first argument contains a symbolic function, then the second argument must be

a scalar.
• To compute the inverse Fourier transform, use ifourier.
• fourier does not transform piecewise. Instead, try to rewrite piecewise by using

the functions heaviside, rectangularPulse, or triangularPulse.

References
[1] Oberhettinger F., "Tables of Fourier Transforms and Fourier Transforms of

Distributions." Springer, 1990.

See Also
ifourier | ilaplace | iztrans | laplace | sympref | ztrans

Topics
“Fourier and Inverse Fourier Transforms” on page 2-230

 fourier

4-721

Introduced before R2006a

4 Functions — Alphabetical List

4-722

fplot
Plot symbolic expression or function

Syntax
fplot(f)
fplot(f,[xmin xmax])

fplot(xt,yt)
fplot(xt,yt,[tmin tmax])

fplot(___ ,LineSpec)
fplot(___ ,Name,Value)
fplot(ax, ___)
fp = fplot(___)

Description
fplot(f) plots symbolic input f over the default interval [-5 5].

fplot(f,[xmin xmax]) plots f over the interval [xmin xmax].

fplot(xt,yt) plots xt = x(t) and yt = y(t) over the default range of t, which is [–5 5].

fplot(xt,yt,[tmin tmax]) plots xt = x(t) and yt = y(t) over the specified range
[tmin tmax].

fplot(___ ,LineSpec) uses LineSpec to set the line style, marker symbol, and line
color.

fplot(___ ,Name,Value) specifies line properties using one or more Name,Value pair
arguments. Use this option with any of the input argument combinations in the previous
syntaxes. Name,Value pair settings apply to all the lines plotted. To set options for
individual lines, use the objects returned by fplot.

fplot(ax, ___) plots into the axes specified by ax instead of the current axes gca.

 fplot

4-723

fp = fplot(___) returns a function line object or parameterized line object,
depending on the type of plot. Use the object to query and modify properties of a specific
line. For details, see Function Line and Parameterized Function Line.

Examples

Plot Symbolic Expression
Plot tan(x) over the default range of [-5 5]. fplot shows poles by default. For details,
see the ShowPoles argument in “Name-Value Pair Arguments” on page 4-741.

syms x
fplot(tan(x))

4 Functions — Alphabetical List

4-724

Plot Symbolic Function
Plot the symbolic function f (x) = cos(x) over the default range [-5 5].

syms f(x)
f(x) = cos(x);
fplot(f)

 fplot

4-725

Plot Parametric Curve
Plot the parametric curve x = cos(3t) and y = sin(2t).

syms t
x = cos(3*t);
y = sin(2*t);
fplot(x,y)

4 Functions — Alphabetical List

4-726

Specify Plotting Interval
Plot sin(x) over [− π/2, π/2] by specifying the plotting interval as the second input to
fplot.

syms x
fplot(sin(x),[-pi/2 pi/2])

 fplot

4-727

Plot Multiple Lines on Same Figure
You can plot multiple lines either by passing the inputs as a vector or by using hold on
to successively plot on the same figure. If you specify LineSpec and Name-Value
arguments, they apply to all lines. To set options for individual plots, use the function
handles returned by fplot.

Divide a figure into two subplots using subplot. On the first subplot, plot sin(x) and
cos(x) using vector input. On the second subplot, plot sin(x) and cos(x) using hold on.

syms x
subplot(2,1,1)

4 Functions — Alphabetical List

4-728

fplot([sin(x) cos(x)])
title('Multiple Lines Using Vector Inputs')

subplot(2,1,2)
fplot(sin(x))
hold on
fplot(cos(x))
title('Multiple Lines Using hold on Command')

hold off

 fplot

4-729

Change Line Properties and Display Markers
Plot three sine curves with a phase shift between each line. For the first line, use a
linewidth of 2. For the second, specify a dashed red line style with circle markers. For the
third, specify a cyan, dash-dot line style with asterisk markers. Display the legend.

syms x
fplot(sin(x+pi/5),'Linewidth',2)
hold on
fplot(sin(x-pi/5),'--or')
fplot(sin(x),'-.*c')
legend('show','Location','best')
hold off

4 Functions — Alphabetical List

4-730

Control Resolution of Plot
Control the resolution of a plot by using the MeshDensity option. Increasing
MeshDensity can make smoother, more accurate plots, while decreasing it can increase
plotting speed.

Divide a figure into two by using subplot. In the first subplot, plot a step function from x
= 2.1 to x = 2.15. The plot's resolution is too low to detect the step function. Fix this
issue by increasing MeshDensity to 39 in the second subplot. The plot now detects the
step function and shows that by increasing MeshDensity you increased the plot's
resolution.

syms x
stepFn = rectangularPulse(2.1, 2.15, x);

subplot(2,1,1)
fplot(stepFn);
title('Default MeshDensity = 23')

subplot(2,1,2)
fplot(stepFn,'MeshDensity',39);
title('Increased MeshDensity = 39')

 fplot

4-731

Modify Plot After Creation
Plot sin(x). Specify an output to make fplot return the plot object.

syms x
h = fplot(sin(x))

4 Functions — Alphabetical List

4-732

h =
 FunctionLine with properties:

 Function: [1x1 sym]
 Color: [0 0.4470 0.7410]
 LineStyle: '-'
 LineWidth: 0.5000

 Show all properties

Change the default blue line to a dashed red line by using dot notation to set properties.
Similarly, add 'x' markers and set the marker color to blue.

 fplot

4-733

h.LineStyle = '--';
h.Color = 'r';
h.Marker = 'x';
h.MarkerEdgeColor = 'b';

Add Title and Axis Labels and Format Ticks
For x from −2π to 2π, plot sin(x). Add a title and axis labels. Create the x-axis ticks by
spanning the x-axis limits at intervals of pi/2. Display these ticks by using the XTick
property. Create x-axis labels by using arrayfun to apply texlabel to S. Display these
labels by using the XTickLabel property.

4 Functions — Alphabetical List

4-734

To use LaTeX in plots, see latex.

syms x
fplot(sin(x),[-2*pi 2*pi])
grid on
title('sin(x) from -2\pi to 2\pi')
xlabel('x')
ylabel('y')

ax = gca;
S = sym(ax.XLim(1):pi/2:ax.XLim(2));
ax.XTick = double(S);
ax.XTickLabel = arrayfun(@texlabel,S,'UniformOutput',false);

 fplot

4-735

Re-evaluation on Zoom
When you zoom into a plot, fplot re-evaluates the plot automatically. This re-evaluation
on zoom reveals hidden detail at smaller scales.

Plot x^3*sin(1/x) for -2 < x < 2 and -0.02 < y < 0.02. Zoom in on the plot using
zoom and redraw the plot using drawnow. Because of re-evaluation on zoom, fplot
reveals smaller-scale detail. Repeat the zoom 6 times to view smaller-scale details. To play
the animation, click the image.

syms x
fplot(x^3*sin(1/x));
axis([-2 2 -0.02 0.02]);
for i=1:6
 zoom(1.7)
 pause(0.5)
end

4 Functions — Alphabetical List

4-736

Create Animations
Create animations by changing the displayed expression using the Function,
XFunction, and YFunction properties and then by using drawnow to update the plot.
To export to GIF, see imwrite.

By varying the variable i from 0.1 to 3, animate the parametric curve

x = itsin it
y = itcos it .

To play the animation, click the image.

 fplot

4-737

syms t
fp = fplot(t, t);
axis([-15 15 -15 15])
for i=0.1:0.05:3
 fp.XFunction = i.*t.*sin(i*t);
 fp.YFunction = i.*t.*cos(i*t);
 drawnow
end

4 Functions — Alphabetical List

4-738

Input Arguments
f — Expression or function to plot
symbolic expression | symbolic function

Expression or function to plot, specified as a symbolic expression or function.

[xmin xmax] — Plotting interval for x-coordinates
[–5 5] (default) | vector of two numbers

Plotting interval for x-coordinates, specified as a vector of two numbers. The default
range is [-5 5]. However, if fplot detects a finite number of discontinuities in f, then
fplot expands the range to show them.

xt — Parametric input for x-coordinates
symbolic expression | symbolic function

Parametric input for x-coordinates, specified as a symbolic expression or function. fplot
uses symvar to find the parameter.

yt — Parametric input for y-axis
symbolic expression | symbolic function

Parametric input for y-axis, specified as a symbolic expression or function. fplot uses
symvar to find the parameter.

[tmin tmax] — Range of values of parameter t
[–5 5] (default) | vector of two numbers

Range of values of parameter t, specified as a vector of two numbers. The default range
is [-5 5].

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then fplot uses the current axes gca.

LineSpec — Line specification
character vector | string

 fplot

4-739

Line specification, specified as a character vector or string with a line style, marker, and
color. The elements can appear in any order, and you can omit one or more options. To
show only markers with no connecting lines, specify a marker and omit the line style.
Example: 'r--o' specifies a red color, a dashed line, and circle markers

Line Style Specifier Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

Marker Specifier Description
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Color Specifier Description
y yellow
m magenta
c cyan
r red

4 Functions — Alphabetical List

4-740

Color Specifier Description
g green
b blue
w white
k black

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

The function line properties listed here are only a subset. For a complete list, see
Function Line.
Example: 'Marker','o','MarkerFaceColor','red'

MeshDensity — Number of evaluation points
23 (default) | number

Number of evaluation points, specified as a number. The default is 23. Because fplot
uses adaptive evaluation, the actual number of evaluation points is greater.

ShowPoles — Display asymptotes at poles
'on' (default) | 'off'

Display asymptotes at poles, specified as 'on' (default) or 'off'. The asymptotes display
as gray, dashed vertical lines. fplot displays asymptotes only with the fplot(f) syntax
or variants, and not with the fplot(xt,yt) syntax.

Color — Line color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

 fplot

4-741

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'

4 Functions — Alphabetical List

4-742

Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | 's' | 'd' | ...

Marker symbol, specified as one of the values in this table. By default, a line does not
have markers. Add markers at selected points along the line by specifying a marker.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross

 fplot

4-743

Value Description
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'

4 Functions — Alphabetical List

4-744

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' value uses the same color as the MarkerEdgeColor
property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

 fplot

4-745

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]

4 Functions — Alphabetical List

4-746

Example: 'green'
Example: '#D2F9A7'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

Output Arguments
fp — One or more function or parameterized line objects
scalar | vector

One or more function or parameterized function line objects, returned as a scalar or a
vector.

• If you use the fplot(f) syntax or a variation of this syntax, then fplot returns
function line objects.

• If you use the fplot(xt,yt) syntax or a variation of this syntax, then fplot returns
parameterized line objects.

You can use these objects to query and modify properties of a specific line. For a list of
properties, see Function Line and Parameterized Function Line.

Tips
• If fplot detects a finite number of discontinuities in f, then fplot expands the range

to show them.

See Also
Functions
fcontour | fimplicit | fimplicit3 | fmesh | fplot3 | fsurf

Properties
Function Line | Parameterized Function Line

 fplot

4-747

Topics
“Create Plots” on page 2-250

Introduced in R2016a

4 Functions — Alphabetical List

4-748

fplot3
Plot 3-D parametric curve

Syntax
fplot3(xt,yt,zt)
fplot3(xt,yt,zt,[tmin tmax])

fplot3(___ ,LineSpec)
fplot3(___ ,Name,Value)
fplot3(ax, ___)
fp = fplot3(___)

Description
fplot3(xt,yt,zt) plots the parametric curve xt = x(t), yt = y(t), and zt = z(t) over the
default interval –5 < t < 5.

fplot3(xt,yt,zt,[tmin tmax]) plots xt = x(t), yt = y(t), and zt = z(t) over the
interval tmin < t < tmax.

fplot3(___ ,LineSpec) uses LineSpec to set the line style, marker symbol, and line
color.

fplot3(___ ,Name,Value) specifies line properties using one or more Name,Value
pair arguments. Use this option with any of the input argument combinations in the
previous syntaxes. Name,Value pair settings apply to all the lines plotted. To set options
for individual lines, use the objects returned by fplot3.

fplot3(ax, ___) plots into the axes object ax instead of the current axes gca.

fp = fplot3(___) returns a parameterized function line object. Use the object to
query and modify properties of a specific parameterized line. For details, see
Parameterized Function Line.

 fplot3

4-749

Examples

Plot 3-D Parametric Line
Plot the 3-D parametric line

x = sin(t)
y = cos(t)

z = t

over the default parameter range [-5 5].

syms t
xt = sin(t);
yt = cos(t);
zt = t;
fplot3(xt,yt,zt)

4 Functions — Alphabetical List

4-750

Specify Parameter Range
Plot the parametric line

x = e−t/10sin(5t)
y = e−t/10cos(5t)

z = t

over the parameter range [-10 10] by specifying the fourth argument of fplot3.

syms t
xt = exp(-t/10).*sin(5*t);

 fplot3

4-751

yt = exp(-t/10).*cos(5*t);
zt = t;
fplot3(xt,yt,zt,[-10 10])

Change Line Properties and Display Markers
Plot the same 3-D parametric curve three times over different intervals of the parameter.
For the first curve, use a linewidth of 2. For the second, specify a dashed red line style
with circle markers. For the third, specify a cyan, dash-dot line style with asterisk
markers.

syms t
fplot3(sin(t), cos(t), t, [0 2*pi], 'LineWidth', 2)

4 Functions — Alphabetical List

4-752

hold on
fplot3(sin(t), cos(t), t, [2*pi 4*pi], '--or')
fplot3(sin(t), cos(t), t, [4*pi 6*pi], '-.*c')

Plot 3-D Parametric Line Using Symbolic Functions
Plot the 3-D parametric line

x(t) = sin(t)
y(t) = cos(t)

z(t) = cos(2t) .

 fplot3

4-753

syms x(t) y(t) z(t)
x(t) = sin(t);
y(t) = cos(t);
z(t) = cos(2*t);
fplot3(x,y,z)

Plot Multiple Lines on Same Figure
Plot multiple lines either by passing the inputs as a vector or by using hold on to
successively plot on the same figure. If you specify LineSpec and Name-Value
arguments, they apply to all lines. To set options for individual lines, use the function
handles returned by fplot3.

4 Functions — Alphabetical List

4-754

Divide a figure into two subplots using subplot. On the first subplot, plot two
parameterized lines using vector input. On the second subplot, plot the same lines using
hold on.

syms t
subplot(2,1,1)
fplot3([t -t], t, [t -t])
title('Multiple Lines Using Vector Inputs')

subplot(2,1,2)
fplot3(t, t, t)
hold on
fplot3(-t, t, -t)
title('Multiple Lines Using Hold On Command')

hold off

 fplot3

4-755

Modify 3-D Parametric Line After Creation
Plot the parametric line

x = e− t /10sin(5 t)

y = e− t /10cos(5 t)
z = t .

Provide an output to make fplot return the plot object.

4 Functions — Alphabetical List

4-756

syms t
xt = exp(-abs(t)/10).*sin(5*abs(t));
yt = exp(-abs(t)/10).*cos(5*abs(t));
zt = t;
fp = fplot3(xt,yt,zt)

fp =
 ParameterizedFunctionLine with properties:

 XFunction: [1x1 sym]
 YFunction: [1x1 sym]
 ZFunction: [1x1 sym]
 Color: [0 0.4470 0.7410]
 LineStyle: '-'

 fplot3

4-757

 LineWidth: 0.5000

 Show all properties

Change the range of parameter values to [-10 10] and the line color to red by using the
TRange and Color properties of fp respectively.

fp.TRange = [-10 10];
fp.Color = 'r';

4 Functions — Alphabetical List

4-758

Add Title and Axis Labels and Format Ticks
For t values in the range −2π to 2π, plot the parametric line

x = t
y = t/2

z = sin(6t) .

Add a title and axis labels. Create the x-axis ticks by spanning the x-axis limits at intervals
of pi/2. Display these ticks by using the XTick property. Create x-axis labels by using
arrayfun to apply texlabel to S. Display these labels by using the XTickLabel
property. Repeat these steps for the y-axis.

To use LaTeX in plots, see latex.

syms t
xt = t;
yt = t/2;
zt = sin(6*t);
fplot3(xt,yt,zt,[-2*pi 2*pi],'MeshDensity',30)
view(52.5,30)
xlabel('x')
ylabel('y')
title('x=t, y=t/2, z=sin(6t) for -2\pi < t < 2\pi')
ax = gca;

S = sym(ax.XLim(1):pi/2:ax.XLim(2));
ax.XTick = double(S);
ax.XTickLabel = arrayfun(@texlabel, S, 'UniformOutput', false);

S = sym(ax.YLim(1):pi/2:ax.YLim(2));
ax.YTick = double(S);
ax.YTickLabel = arrayfun(@texlabel, S, 'UniformOutput', false);

 fplot3

4-759

Create Animations
Create animations by changing the displayed expression using the XFunction,
YFunction, and ZFunction properties and then by using drawnow to update the plot.
To export to GIF, see imwrite.

By varying the variable i from 0 to 4π, animate the parametric curve

x = t + sin 40t
y = − t + cos 40t
z = sin(t + i) .

4 Functions — Alphabetical List

4-760

To play the animation, click the image.

syms t
fp = fplot3(t+sin(40*t),-t+cos(40*t), sin(t));
for i=0:pi/10:4*pi
 fp.ZFunction = sin(t+i);
drawnow
end

Input Arguments
xt — Parametric input for x-axis
symbolic expression | symbolic function

 fplot3

4-761

Parametric input for x-axis, specified as a symbolic expression or function. fplot3 uses
symvar to find the parameter.

yt — Parametric input for y-axis
symbolic expression | symbolic function

Parametric input for y-axis, specified as a symbolic expression or function. fplot3 uses
symvar to find the parameter.

zt — Parametric input for z-axis
symbolic expression | symbolic function

Parametric input for z-axis, specified as a symbolic expression or function. fplot3 uses
symvar to find the parameter.

[tmin tmax] — Range of values of parameter
[–5 5] (default) | vector of two numbers

Range of values of parameter, specified as a vector of two numbers. The default range is
[-5 5].

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then fplot3 uses the current axes.

LineSpec — Line specification
character vector | string

Line specification, specified as a character vector or string with a line style, marker, and
color. The elements can appear in any order, and you can omit one or more options. To
show only markers with no connecting lines, specify a marker and omit the line style.
Example: 'r--o' specifies a red color, a dashed line, and circle markers

Line Style Specifier Description
- Solid line (default)
-- Dashed line
: Dotted line
-. Dash-dot line

4 Functions — Alphabetical List

4-762

Marker Specifier Description
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Color Specifier Description
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 fplot3

4-763

Example: 'Marker','o','MarkerFaceColor','red'

The properties listed here are only a subset. For a complete list, see Parameterized
Function Line.

MeshDensity — Number of evaluation points
23 (default) | number

Number of evaluation points, specified as a number. The default is 23. Because fplot3
uses adaptive evaluation, the actual number of evaluation points is greater.

Color — Line color
[0 0.4470 0.7410] (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short
name.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'

4 Functions — Alphabetical List

4-764

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: 'blue'
Example: [0 0 1]
Example: '#0000FF'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

 fplot3

4-765

Line Style Description Resulting Line
'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | 's' | 'd' | ...

Marker symbol, specified as one of the values in this table. By default, a line does not
have markers. Add markers at selected points along the line by specifying a marker.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

4 Functions — Alphabetical List

4-766

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
Color property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'

 fplot3

4-767

RGB Triplet Hexadecimal Color Code Appearance
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' value uses the same color as the MarkerEdgeColor
property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'

4 Functions — Alphabetical List

4-768

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

MarkerSize — Marker size
6 (default) | positive value

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

Output Arguments
fp — One or more parameterized function line objects
scalar | vector

 fplot3

4-769

One or more parameterized line objects, returned as a scalar or a vector. You can use
these objects to query and modify properties of a specific parameterized line. For details,
see Parameterized Function Line.

See Also
Functions
fcontour | fimplicit | fimplicit3 | fmesh | fplot | fsurf

Properties
Parameterized Function Line

Topics
“Create Plots” on page 2-250

Introduced in R2016a

4 Functions — Alphabetical List

4-770

fresnelc
Fresnel cosine integral function

Syntax
fresnelc(z)

Description
fresnelc(z) returns the Fresnel cosine integral on page 4-775 of z.

Examples

Fresnel Cosine Integral Function for Numeric and Symbolic
Input Arguments
Find the Fresnel cosine integral function for these numbers. Since these are not symbolic
objects, you receive floating-point results.

fresnelc([-2 0.001 1.22+0.31i])

ans =
-0.4883 + 0.0000i 0.0010 + 0.0000i 0.8617 - 0.2524i

Find the Fresnel cosine integral function symbolically by converting the numbers to
symbolic objects:

y = fresnelc(sym([-2 0.001 1.22+0.31i]))

y =
[-fresnelc(2), fresnelc(1/1000), fresnelc(61/50 + 31i/100)]

Use vpa to approximate results:

vpa(y)

 fresnelc

4-771

ans =
[-0.48825340607534075450022350335726, 0.00099999999999975325988997279422003,...
 0.86166573430841730950055370401908 - 0.25236540291386150167658349493972i]

Fresnel Cosine Integral Function for Special Values
Find the Fresnel cosine integral function for special values:

fresnelc([0 Inf -Inf i*Inf -i*Inf])

ans =
0.0000 + 0.0000i 0.5000 + 0.0000i -0.5000 + 0.0000i...
 0.0000 + 0.5000i 0.0000 - 0.5000i

Fresnel Cosine Integral for Symbolic Functions
Find the Fresnel cosine integral for the function exp(x) + 2*x:

syms f(x)
f = exp(x)+2*x;
fresnelc(f)

ans =
fresnelc(2*x + exp(x))

Fresnel Cosine Integral for Symbolic Vectors and Arrays
Find the Fresnel cosine integral for elements of vector V and matrix M:

syms x
V = [sin(x) 2i -7];
M = [0 2; i exp(x)];
fresnelc(V)
fresnelc(M)

ans =
[fresnelc(sin(x)), fresnelc(2i), -fresnelc(7)]
ans =
[0, fresnelc(2)]
[fresnelc(1i), fresnelc(exp(x))]

4 Functions — Alphabetical List

4-772

Plot Fresnel Cosine Integral Function
Plot the Fresnel cosine integral function from x = -5 to x = 5.

syms x
fplot(fresnelc(x),[-5 5])
grid on

Differentiate and Find Limits of Fresnel Cosine Integral
The functions diff and limit handle expressions containing fresnelc.

Find the third derivative of the Fresnel cosine integral function:

 fresnelc

4-773

syms x
diff(fresnelc(x),x,3)

ans =
- pi*sin((pi*x^2)/2) - x^2*pi^2*cos((pi*x^2)/2)

Find the limit of the Fresnel cosine integral function as x tends to infinity:

syms x
limit(fresnelc(x),Inf)

ans =
1/2

Taylor Series Expansion of Fresnel Cosine Integral
Use taylor to expand the Fresnel cosine integral in terms of the Taylor series:

syms x
taylor(fresnelc(x))

ans =
x - (x^5*pi^2)/40

Simplify Expressions Containing fresnelc
Use simplify to simplify expressions:

syms x
simplify(3*fresnelc(x)+2*fresnelc(-x))

ans =
fresnelc(x)

Input Arguments
z — Upper limit on Fresnel cosine integral
numeric value | vector | matrix | multidimensional array | symbolic variable | symbolic
expression | symbolic vector | symbolic matrix | symbolic function

4 Functions — Alphabetical List

4-774

Upper limit on the Fresnel cosine integral, specified as a numeric value, vector, matrix, or
as a multidimensional array, or a symbolic variable, expression, vector, matrix, or
function.

Definitions

Fresnel Cosine Integral
The Fresnel cosine integral of z is

fresnelc z =∫0 z
cos πt2

2 dt .

Algorithms
fresnelc is analytic throughout the complex plane. It satisfies fresnelc(-z) = -fresnelc(z),
conj(fresnelc(z)) = fresnelc(conj(z)), and fresnelc(i*z) = i*fresnelc(z) for all complex
values of z.

fresnelc returns special values for z = 0, z = ±∞, and z = ±i∞ which are 0, ±5, and
±0.5i. fresnelc(z) returns symbolic function calls for all other symbolic values of z.

See Also
erf | fresnels

Introduced in R2014a

 fresnelc

4-775

fresnels
Fresnel sine integral function

Syntax
fresnels(z)

Description
fresnels(z) returns the Fresnel sine integral on page 4-780 of z.

Examples

Fresnel Sine Integral Function for Numeric and Symbolic
Arguments
Find the Fresnel sine integral function for these numbers. Since these are not symbolic
objects, you receive floating-point results.

fresnels([-2 0.001 1.22+0.31i])

ans =
-0.3434 + 0.0000i 0.0000 + 0.0000i 0.7697 + 0.2945i

Find the Fresnel sine integral function symbolically by converting the numbers to
symbolic objects:

y = fresnels(sym([-2 0.001 1.22+0.31i]))

y =
[-fresnels(2), fresnels(1/1000), fresnels(61/50 + 31i/100)]

Use vpa to approximate the results:

vpa(y)

4 Functions — Alphabetical List

4-776

ans =
[-0.34341567836369824219530081595807, 0.00000000052359877559820659249174920261227,...
 0.76969209233306959998384249252902 + 0.29449530344285433030167256417637i]

Fresnel Sine Integral for Special Values
Find the Fresnel sine integral function for special values:

fresnels([0 Inf -Inf i*Inf -i*Inf])

ans =
0.0000 + 0.0000i 0.5000 + 0.0000i -0.5000 + 0.0000i 0.0000 - 0.5000i...
 0.0000 + 0.5000i

Fresnel Sine Integral for Symbolic Functions
Find the Fresnel sine integral for the function exp(x) + 2*x:

syms x
f = symfun(exp(x)+2*x,x);
fresnels(f)

ans(x) =
fresnels(2*x + exp(x))

Fresnel Sine Integral for Symbolic Vectors and Arrays
Find the Fresnel sine integral for elements of vector V and matrix M:

syms x
V = [sin(x) 2i -7];
M = [0 2; i exp(x)];
fresnels(V)
fresnels(M)

ans =
[fresnels(sin(x)), fresnels(2i), -fresnels(7)]
ans =
[0, fresnels(2)]
[fresnels(1i), fresnels(exp(x))]

Plot Fresnel Sine Integral Function
Plot the Fresnel sine integral function from x = -5 to x = 5.

 fresnels

4-777

syms x
fplot(fresnels(x),[-5 5])
grid on

Differentiate and Find Limits of Fresnel Sine Integral
The functions diff and limit handle expressions containing fresnels.

Find the fourth derivative of the Fresnel sine integral function:

syms x
diff(fresnels(x),x,4)

4 Functions — Alphabetical List

4-778

ans =
- 3*x*pi^2*sin((pi*x^2)/2) - x^3*pi^3*cos((pi*x^2)/2)

Find the limit of the Fresnel sine integral function as x tends to infinity:

syms x
limit(fresnels(x),Inf)

ans =
1/2

Taylor Series Expansion of Fresnel Sine Integral
Use taylor to expand the Fresnel sine integral in terms of the Taylor series:

syms x
taylor(fresnels(x))

ans =
(pi*x^3)/6

Simplify Expressions Containing fresnels
Use simplify to simplify expressions:

syms x
simplify(3*fresnels(x)+2*fresnels(-x))

ans =
fresnels(x)

Input Arguments
z — Upper limit on the Fresnel sine integral
numeric value | vector | matrix | multidimensional array | symbolic variable | symbolic
expression | symbolic vector | symbolic matrix | symbolic function

Upper limit on the Fresnel sine integral, specified as a numeric value, vector, matrix, or a
multidimensional array or as a symbolic variable, expression, vector, matrix, or function.

 fresnels

4-779

Definitions

Fresnel Sine Integral
The Fresnel sine integral of z is

fresnels(z) =∫0 z
sin πt2

2 dt

.

Algorithms
The fresnels(z) function is analytic throughout the complex plane. It satisfies
fresnels(-z) = -fresnels(z), conj(fresnels(z)) = fresnels(conj(z)), and fresnels(i*z) = -
i*fresnels(z) for all complex values of z.

fresnels(z) returns special values for z = 0, z = ±∞, and z = ±i∞ which are 0, ±5, and
∓0.5i. fresnels(z) returns symbolic function calls for all other symbolic values of z.

See Also
erf | fresnelc

Introduced in R2014a

4 Functions — Alphabetical List

4-780

fsurf
Plot 3-D surface

Syntax
fsurf(f)
fsurf(f,[min max])
fsurf(f,[xmin xmax ymin ymax])

fsurf(funx,funy,funz)
fsurf(funx,funy,funz,[uvmin uvmax])
fsurf(funx,funy,funz,[umin umax vmin vmax])

fsurf(___ ,LineSpec)
fsurf(___ ,Name,Value)
fsurf(ax, ___)
fs = fsurf(___)

Description
fsurf(f) creates a surface plot of the symbolic expression f(x,y) over the default
interval [-5 5] for x and y.

fsurf(f,[min max]) plots f(x,y) over the interval [min max] for x and y.

fsurf(f,[xmin xmax ymin ymax]) plots f(x,y) over the interval [xmin xmax] for
x and [ymin ymax] for y. The fsurf function uses symvar to order the variables and
assign intervals.

fsurf(funx,funy,funz) plots the parametric surface x = x(u,v), y = y(u,v), z =
z(u,v) over the interval [-5 5] for u and v.

fsurf(funx,funy,funz,[uvmin uvmax]) plots the parametric surface x = x(u,v),
y = y(u,v), z = z(u,v) over the interval [uvmin uvmax] for u and v.

fsurf(funx,funy,funz,[umin umax vmin vmax]) plots the parametric surface x =
x(u,v), y = y(u,v), z = z(u,v) over the interval [umin umax] for u and [vmin

 fsurf

4-781

vmax] for v. The fsurf function uses symvar to order the parametric variables and
assign intervals.

fsurf(___ ,LineSpec) uses LineSpec to set the line style, marker symbol, and face
color. Use this option after any of the previous input argument combinations.

fsurf(___ ,Name,Value) specifies line properties using one or more Name,Value pair
arguments. Use this option after any of the input argument combinations in the previous
syntaxes.

fsurf(ax, ___) plots into the axes with the object ax instead of the current axes object
gca.

fs = fsurf(___) returns a function surface object or parameterized function surface
object, depending on the type of surface. Use the object to query and modify properties of
a specific surface. For details, see Function Surface and Parameterized Function Surface.

Examples

3-D Surface Plot of Symbolic Expression
Plot the input sin(x) + cos(y) over the default range −5 < x < 5 and −5 < y < 5.

syms x y
fsurf(sin(x)+cos(y))

4 Functions — Alphabetical List

4-782

3-D Surface Plot of Symbolic Function

Plot the real part of tan−1(x + iy) over the default range −5 < x < 5 and −5 < y < 5.

syms f(x,y)
f(x,y) = real(atan(x + i*y));
fsurf(f)

 fsurf

4-783

Specify Plotting Interval of Surface Plot
Plot sin(x) + cos(y) over −π < x < π and −5 < y < 5 by specifying the plotting interval as
the second argument of fsurf.

syms x y
f = sin(x) + cos(y);
fsurf(f, [-pi pi -5 5])

4 Functions — Alphabetical List

4-784

Parameterized Surface Plot
Plot the parameterized surface

x = rcos(s)sin(t)
y = rsin(s)sin(t)

z = rcos(t)
where r = 2 + sin(7s + 5t)

for 0 < s < 2π and 0 < t < π.

Improve the plot's appearance by using camlight.

 fsurf

4-785

syms s t
r = 2 + sin(7*s + 5*t);
x = r*cos(s)*sin(t);
y = r*sin(s)*sin(t);
z = r*cos(t);
fsurf(x, y, z, [0 2*pi 0 pi])
camlight
view(46,52)

Surface Plot of Piecewise Expression
Plot the piecewise expression of the Klein bottle

4 Functions — Alphabetical List

4-786

x u, v =
−4 cos u 1 + sin u − r u cos u cos v 0 < u ≤ π
−4 cos u 1 + sin u + r u cos v π < u < 2π

y u, v = r u sin v

z u, v =
−14 sin u − r u sin u cos v 0 < u ≤ π

−14 sin u π < u < 2π
where r u = 4− 2 cos u

for 0 < u < 2π and 0 < v < 2π .

Show that the Klein bottle has only a one-sided surface.

syms u v;
r = @(u) 4 - 2*cos(u);
x = piecewise(u <= pi, -4*cos(u)*(1+sin(u)) - r(u)*cos(u)*cos(v),...
 u > pi, -4*cos(u)*(1+sin(u)) + r(u)*cos(v));
y = r(u)*sin(v);
z = piecewise(u <= pi, -14*sin(u) - r(u)*sin(u)*cos(v),...
 u > pi, -14*sin(u));
h = fsurf(x,y,z, [0 2*pi 0 2*pi]);

 fsurf

4-787

Add Title and Axis Labels and Format Ticks
For x and y from −2π to 2π, plot the 3-D surface ysin(x)− xcos(y). Add a title and axis
labels.

Create the x-axis ticks by spanning the x-axis limits at intervals of pi/2. Convert the axis
limits to precise multiples of pi/2 by using round and get the symbolic tick values in S.
Display these ticks by using the XTick property. Create x-axis labels by using arrayfun
to apply texlabel to S. Display these labels by using the XTickLabel property. Repeat
these steps for the y-axis.

To use LaTeX in plots, see latex.

4 Functions — Alphabetical List

4-788

syms x y
fsurf(y.*sin(x)-x.*cos(y), [-2*pi 2*pi])
title('ysin(x) - xcos(y) for x and y in [-2\pi,2\pi]')
xlabel('x')
ylabel('y')
zlabel('z')

ax = gca;
S = sym(ax.XLim(1):pi/2:ax.XLim(2));
S = sym(round(vpa(S/pi*2))*pi/2);
ax.XTick = double(S);
ax.XTickLabel = arrayfun(@texlabel,S,'UniformOutput',false);

S = sym(ax.YLim(1):pi/2:ax.YLim(2));
S = sym(round(vpa(S/pi*2))*pi/2);
ax.YTick = double(S);
ax.YTickLabel = arrayfun(@texlabel,S,'UniformOutput',false);

 fsurf

4-789

Line Style and Width for Surface Plot
Plot the parametric surface x = ssin(t), y = − scos(t), z = t with different line styles for
different values of t. For −5 < t < − 2, use a dashed line with green dot markers. For
−2 < t < 2, use a LineWidth of 1 and a green face color. For 2 < t < 5, turn off the lines
by setting EdgeColor to none.

syms s t
fsurf(s*sin(t),-s*cos(t),t,[-5 5 -5 -2],'--.','MarkerEdgeColor','g')
hold on
fsurf(s*sin(t),-s*cos(t),t,[-5 5 -2 2],'LineWidth',1,'FaceColor','g')
fsurf(s*sin(t),-s*cos(t),t,[-5 5 2 5],'EdgeColor','none')

4 Functions — Alphabetical List

4-790

Modify Surface After Creation
Plot the parametric surface

x = e− u /10sin(5 v)

y = e− u /10cos(5 v)
z = u .

Specify an output to make fcontour return the plot object.

 fsurf

4-791

syms u v
x = exp(-abs(u)/10).*sin(5*abs(v));
y = exp(-abs(u)/10).*cos(5*abs(v));
z = u;
fs = fsurf(x,y,z)

fs =
 ParameterizedFunctionSurface with properties:

 XFunction: [1x1 sym]
 YFunction: [1x1 sym]
 ZFunction: [1x1 sym]
 EdgeColor: [0 0 0]
 LineStyle: '-'

4 Functions — Alphabetical List

4-792

 FaceColor: 'interp'

 Show all properties

Change the range of u to [-30 30] by using the URange property of fs. Set the line
color to blue by using the EdgeColor property and specify white, dot markers by using
the Marker and MarkerEdgeColor properties.

fs.URange = [-30 30];
fs.EdgeColor = 'b';
fs.Marker = '.';
fs.MarkerEdgeColor = 'w';

 fsurf

4-793

Multiple Surface Plots and Transparent Surfaces
Plot multiple surfaces using vector input to fsurf. Alternatively, use hold on to plot
successively on the same figure. When displaying multiple surfaces on the same figure,
transparency is useful. Adjust the transparency of surface plots by using the FaceAlpha
property. FaceAlpha varies from 0 to 1, where 0 is full transparency and 1 is no
transparency.

Plot the planes x + y and x− y using vector input to fsurf. Show both planes by making
them half transparent using FaceAlpha.

syms x y
h = fsurf([x+y x-y]);
h(1).FaceAlpha = 0.5;
h(2).FaceAlpha = 0.5;
title('Planes (x+y) and (x-y) at half transparency')

4 Functions — Alphabetical List

4-794

Control Resolution of Surface Plot
Control the resolution of a surface plot using the 'MeshDensity' option. Increasing
'MeshDensity' can make smoother, more accurate plots while decreasing it can
increase plotting speed.

Divide a figure into two using subplot. In the first subplot, plot the parametric surface
x = sin(s), y = cos(s), and z = (t/10)sin(1/s). The surface has a large gap. Fix this issue by
increasing the 'MeshDensity' to 40 in the second subplot. fsurf fills the gap showing
that by increasing 'MeshDensity' you increased the plot's resolution.

 fsurf

4-795

syms s t

subplot(2,1,1)
fsurf(sin(s), cos(s), t/10.*sin(1./s))
view(-172,25)
title('Default MeshDensity = 35')

subplot(2,1,2)
fsurf(sin(s), cos(s), t/10.*sin(1./s),'MeshDensity',40)
view(-172,25)
title('Increased MeshDensity = 40')

4 Functions — Alphabetical List

4-796

Show Contours Below Surface Plot
Show contours for the surface plot of the expression f by setting the 'ShowContours'
option to 'on'.

syms x y
f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2)...
- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)...
- 1/3*exp(-(x+1)^2 - y^2);
fsurf(f,[-3 3],'ShowContours','on')

 fsurf

4-797

Create Animations of Surface Plots
Create animations by changing the displayed expression using the Function,
XFunction, YFunction, and ZFunction properties and then by using drawnow to
update the plot. To export to GIF, see imwrite.

By varying the variable i from 1 to 3, animate the parametric surface

x = tsin s
y = cos s

z = sin i
s .

for -0.1 < u < 0.1 and 0 < v < 1. Increase plotting speed by reducing MeshDensity to 9.

syms s t
h = fsurf(t.*sin(s), cos(s), sin(1./s), [-0.1 0.1 0 1]);
h.MeshDensity = 9;
for i=1:0.05:3
 h.ZFunction = sin(i./s);
 drawnow
end

4 Functions — Alphabetical List

4-798

Improve Appearance of Surface Plot
Create a symbolic expression f for the function

f = 3(1− x)2exp(− (x2)− (y + 1)2)− 10(x/5− x3− y5)exp(− x2− y2)− 1/3exp(− (x
+ 1)2− y2) .

Plot the expression f as a surface. Improve the appearance of the surface plot by using
the properties of the handle returned by fsurf, the lighting properties, and the
colormap.

Create a light by using camlight. Increase brightness by using brighten. Remove the
lines by setting EdgeColor to 'none'. Increase the ambient light using

 fsurf

4-799

AmbientStrength. For details, see “Lighting, Transparency, and Shading” (MATLAB).
Turn the axes box on. For the title, convert f to LaTeX using latex. Finally, to improve
the appearance of the axes ticks, axes labels, and title, set 'Interpreter' to 'latex'.

syms x y
f = 3*(1-x)^2*exp(-(x^2)-(y+1)^2)...
 - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)...
 - 1/3*exp(-(x+1)^2 - y^2);
h = fsurf(f,[-3 3]);

camlight(110,70)
brighten(0.6)
h.EdgeColor = 'none';
h.AmbientStrength = 0.4;

a = gca;
a.TickLabelInterpreter = 'latex';
a.Box = 'on';
a.BoxStyle = 'full';

xlabel('x','Interpreter','latex')
ylabel('y','Interpreter','latex')
zlabel('z','Interpreter','latex')
title_latex = ['$' latex(f) '$'];
title(title_latex,'Interpreter','latex')

4 Functions — Alphabetical List

4-800

Input Arguments
f — 3-D expression or function to be plotted
symbolic expression | symbolic function

Expression or function to be plotted, specified as a symbolic expression or function.

[min max] — Plotting interval for x- and y-axes
[–5 5] (default) | vector of two numbers

Plotting interval for x- and y-axes, specified as a vector of two numbers. The default is
[-5 5].

 fsurf

4-801

[xmin xmax ymin ymax] — Plotting interval for x- and y-axes
[–5 5 –5 5] (default) | vector of four numbers

Plotting interval for x- and y-axes, specified as a vector of four numbers. The default is
[-5 5 -5 5].

funx,funy,funz — Parametric functions of u and v
symbolic expressions | symbolic functions

Parametric functions of u and v, specified as a symbolic expression or function.

[uvmin uvmax] — Plotting interval for u and v
[–5 5] (default) | vector of two numbers

Plotting interval for u and v axes, specified as a vector of two numbers. The default is [-5
5].

[umin umax vmin vmax] — Plotting interval for u and v
[–5 5 –5 5] (default) | vector of four numbers

Plotting interval for u and v, specified as a vector of four numbers. The default is [-5 5
-5 5].

ax — Axes object
axes object

Axes object. If you do not specify an axes object, then fsurf uses the current axes.

LineSpec — Line style, marker symbol, and face color
character vector

Line style, marker symbol, and color, specified as a character vector. The elements of the
character vector can appear in any order, and you can omit one or more options from the
character vector specifier.
Example: '--or' is a red surface with circle markers and dashed lines

Specifier Line Style
- Solid line (default)
-- Dashed line
: Dotted line

4 Functions — Alphabetical List

4-802

Specifier Line Style
-. Dash-dot line

Specifier Marker
o Circle
+ Plus sign
* Asterisk
. Point
x Cross
s Square
d Diamond
^ Upward-pointing triangle
v Downward-pointing triangle
> Right-pointing triangle
< Left-pointing triangle
p Pentagram
h Hexagram

Specifier Color
y yellow
m magenta
c cyan
r red
g green
b blue
w white
k black

 fsurf

4-803

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Marker','o','MarkerFaceColor','red'

The properties listed here are only a subset. For a complete list, see Function Surface.

MeshDensity — Number of evaluation points per direction
35 (default) | number

Number of evaluation points per direction, specified as a number. The default is 35.
Because fsurf objects use adaptive evaluation, the actual number of evaluation points is
greater.
Example: 100

ShowContours — Display contour plot under plot
'off' (default) | 'on'

Display contour plot under plot, specified as 'off' (default) or 'on'.

EdgeColor — Line color
[0 0 0] (default) | 'interp' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b'
| ...

Line color, specified as 'interp', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The default RGB triplet value of [0 0 0] corresponds to black.
The 'interp' value colors the edges based on the ZData values.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

4 Functions — Alphabetical List

4-804

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

LineStyle — Line style
'-' (default) | '--' | ':' | '-.' | 'none'

Line style, specified as one of the options listed in this table.

 fsurf

4-805

Line Style Description Resulting Line
'-' Solid line

'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

LineWidth — Line width
0.5 (default) | positive value

Line width, specified as a positive value in points, where 1 point = 1/72 of an inch. If the
line has markers, then the line width also affects the marker edges.

Marker — Marker symbol
'none' (default) | 'o' | '+' | '*' | '.' | 'x' | 's' | 'd' | ...

Marker symbol, specified as one of the values in this table. By default, a line does not
have markers. Add markers at selected points along the line by specifying a marker.

Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle

4 Functions — Alphabetical List

4-806

Value Description
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

MarkerEdgeColor — Marker outline color
'auto' (default) | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker outline color, specified as 'auto', an RGB triplet, a hexadecimal color code, a
color name, or a short name. The default value of 'auto' uses the same color as the
EdgeColor property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

 fsurf

4-807

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'none' Not
applicable

Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.5 0.5 0.5]
Example: 'blue'
Example: '#D2F9A7'

MarkerFaceColor — Marker fill color
'none' (default) | 'auto' | RGB triplet | hexadecimal color code | 'r' | 'g' | 'b' | ...

Marker fill color, specified as 'auto', an RGB triplet, a hexadecimal color code, a color
name, or a short name. The 'auto' value uses the same color as the MarkerEdgeColor
property.

For a custom color, specify an RGB triplet or a hexadecimal color code.

• An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1]; for example, [0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a
hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to
F. The values are not case sensitive. Thus, the color codes '#FF8800', '#ff8800',
'#F80', and '#f80' are equivalent.

4 Functions — Alphabetical List

4-808

Alternatively, you can specify some common colors by name. This table lists the named
color options, the equivalent RGB triplets, and hexadecimal color codes.

Color
Name

Short
Name

RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'
'none' Not

applicable
Not applicable Not applicable No color

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB
uses in many types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Example: [0.3 0.2 0.1]
Example: 'green'
Example: '#D2F9A7'

MarkerSize — Marker size
6 (default) | positive value

 fsurf

4-809

Marker size, specified as a positive value in points, where 1 point = 1/72 of an inch.

Output Arguments
fs — One or more objects
scalar | vector

One or more objects, returned as a scalar or a vector. The object is either a function
surface object or parameterized surface object, depending on the type of plot. You can use
these objects to query and modify properties of a specific line. For details, see Function
Surface and Parameterized Function Surface.

Algorithms
fsurf assigns the symbolic variables in f to the x axis, then the y axis, and symvar
determines the order of the variables to be assigned. Therefore, variable and axis names
might not correspond. To force fsurf to assign x or y to its corresponding axis, create
the symbolic function to plot, then pass the symbolic function to fsurf.

For example, the following code plots f(x,y) = sin(y) in two ways. The first way forces the
waves to oscillate with respect to the y axis. The second way assigns y to the x axis
because it is the first (and only) variable in the symbolic function.

syms x y;
f(x,y) = sin(y);

figure;
subplot(2,1,1)
fsurf(f);
subplot(2,1,2)
fsurf(f(x,y)); % Or fsurf(sin(y));

4 Functions — Alphabetical List

4-810

See Also
Functions
fcontour | fimplicit | fimplicit3 | fmesh | fplot | fplot3

Properties
Function Surface | Parameterized Function Surface

Topics
“Create Plots” on page 2-250

 fsurf

4-811

Introduced in R2016a

4 Functions — Alphabetical List

4-812

functionalDerivative
Functional derivative

Syntax
D = functionalDerivative(f,y)

Description
D = functionalDerivative(f,y) returns the “Functional Derivative” on page 4-817
of the functional F =∫ f x, y x , y′ x ... dx with respect to the function y = y(x), where x
represents one or more independent variables. If y is a vector of symbolic functions,
functionalDerivative returns a vector of functional derivatives with respect to the
functions in y, where all functions in y must depend on the same independent variables.

Examples

Find Functional Derivative
Find the functional derivative of the function given by f y = y x sin y x with respect to
the function y.

syms y(x)
f = y*sin(y);
D = functionalDerivative(f,y)

D(x) =
sin(y(x)) + cos(y(x))*y(x)

 functionalDerivative

4-813

Find Functional Derivative of Vector of Functionals

Find the functional derivative of the function given by H u, v = u2dv
dx + vd2u

dx2 with respect

to the functions u and v.

syms u(x) v(x)
H = u^2*diff(v,x)+v*diff(u,x,x);
D = functionalDerivative(H,[u v])

D(x) =
 2*u(x)*diff(v(x), x) + diff(v(x), x, x)
 diff(u(x), x, x) - 2*u(x)*diff(u(x), x)

functionalDerivative returns a vector of symbolic functions containing the
functional derivatives of H with respect to u and v, respectively.

Find Euler-Lagrange Equation for Spring
First find the Lagrangian for a spring with mass m and spring constant k, and then derive
the Euler-Lagrange equation. The Lagrangian is the difference of kinetic energy T and
potential energy V which are functions of the displacement x(t).

syms m k x(t)
T = sym(1)/2*m*diff(x,t)^2;
V = sym(1)/2*k*x^2;
L = T - V

L(t) =
(m*diff(x(t), t)^2)/2 - (k*x(t)^2)/2

Find the Euler-Lagrange equation by finding the functional derivative of L with respect to
x, and equate it to 0.

eqn = functionalDerivative(L,x) == 0

eqn(t) =
- m*diff(x(t), t, t) - k*x(t) == 0

diff(x(t), t, t) is the acceleration. The equation eqn represents the expected
differential equation that describes spring motion.

4 Functions — Alphabetical List

4-814

Solve eqn using dsolve. Obtain the expected form of the solution by assuming mass m
and spring constant k are positive.

assume(m,'positive')
assume(k,'positive')
xSol = dsolve(eqn,x(0) == 0)

xSol =
-C3*sin((k^(1/2)*t)/m^(1/2))

Clear assumptions for further calculations.

assume([k m],'clear')

Find Differential Equation for Brachistochrone Problem
The Brachistochrone problem is to find the quickest path of descent under gravity. The
time for a body to move along a curve y(x) under gravity is given by

f = 1 + y′2
2gy ,

where g is the acceleration due to gravity.

Find the quickest path by minimizing f with respect to the path y. The condition for a
minimum is

δf
δy = 0.

Compute this condition to obtain the differential equation that describes the
Brachistochrone problem. Use simplify to simplify the solution to its expected form.

syms g y(x)
assume(g,'positive')
f = sqrt((1+diff(y)^2)/(2*g*y));
eqn = functionalDerivative(f,y) == 0;
eqn = simplify(eqn)

eqn(x) =
diff(y(x), x)^2 + 2*y(x)*diff(y(x), x, x) == -1

This equation is the standard differential equation for the Brachistochrone problem.

 functionalDerivative

4-815

Find Minimal Surface in 3-D Space
If the function u(x,y) describes a surface in 3-D space, then the surface area is found by
the functional

F u =∬ f x, y, u, ux, uy dxdy =∬ 1 + ux
2 + uy

2dxdy,

where ux and uy are the partial derivatives of u with respect to x and y.

Find the equation that describes the minimal surface for a 3-D surface described by the
function u(x,y) by finding the functional derivative of f with respect to u.

syms u(x,y)
f = sqrt(1 + diff(u,x)^2 + diff(u,y)^2);
D = functionalDerivative(f,u)

D(x, y) =
-(diff(u(x, y), y)^2*diff(u(x, y), x, x)...
 + diff(u(x, y), x)^2*diff(u(x, y), y, y)...
 - 2*diff(u(x, y), x)*diff(u(x, y), y)*diff(u(x, y), x, y)...
 + diff(u(x, y), x, x)...
 + diff(u(x, y), y, y))/(diff(u(x, y), x)^2...
 + diff(u(x, y), y)^2 + 1)^(3/2)

The solutions to this equation D describe minimal surfaces in 3-D space such as soap
bubbles.

Input Arguments
f — Expression to find functional derivative of
symbolic variable | symbolic function | symbolic expression

Expression to find functional derivative of, specified as a symbolic variable, function, or
expression. The argument f represents the density of the functional.

y — Differentiation function
symbolic function | vector of symbolic functions | matrix of symbolic functions |
multidimensional array of symbolic functions

Differentiation function, specified as a symbolic function or a vector, matrix, or
multidimensional array of symbolic functions. The argument y can be a function of one or

4 Functions — Alphabetical List

4-816

more independent variables. If y is a vector of symbolic functions,
functionalDerivative returns a vector of functional derivatives with respect to the
functions in y, where all functions in y must depend on the same independent variables.

Output Arguments
D — Functional derivative
symbolic function | vector of symbolic functions

Functional derivative, returned as a symbolic function or a vector of symbolic functions. If
input y is a vector, then D is a vector.

Definitions
Functional Derivative
Consider functionals

F y = ∫
Ω

f x, y x , y′ x , y′′ x , ... dx,

where Ω is a region in x-space.

For a small change in the value of y, δy, the change in the functional F is

δF
δy = d

dε ε = 0
F y + εδy = ∫

Ω

δf x
δy δy x dx + boundary terms.

The expression δf x
δy is the functional derivative of f with respect to y.

See Also
diff | dsolve | int

Topics
“Functional Derivatives Tutorial” on page 2-54

 functionalDerivative

4-817

Introduced in R2015a

4 Functions — Alphabetical List

4-818

funm
General matrix function

Syntax
F = funm(A,f)

Description
F = funm(A,f) computes the function f(A) for the square matrix A. For details, see
“Matrix Function” on page 4-824.

Examples

Matrix Cube Root
Find matrix B, such that B3 = A, where A is a 3-by-3 identity matrix.

To solve B3 = A, compute the cube root of the matrix A using the funm function. Create
the symbolic function f(x) = x^(1/3) and use it as the second argument for funm. The
cube root of an identity matrix is the identity matrix itself.

A = sym(eye(3))

syms f(x)
f(x) = x^(1/3);

B = funm(A,f)

A =
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

B =

 funm

4-819

[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

Replace one of the 0 elements of matrix A with 1 and compute the matrix cube root again.

A(1,2) = 1
B = funm(A,f)

A =
[1, 1, 0]
[0, 1, 0]
[0, 0, 1]

B =
[1, 1/3, 0]
[0, 1, 0]
[0, 0, 1]

Now, compute the cube root of the upper triangular matrix.

A(1:2,2:3) = 1
B = funm(A,f)

A =
[1, 1, 1]
[0, 1, 1]
[0, 0, 1]

B =
[1, 1/3, 2/9]
[0, 1, 1/3]
[0, 0, 1]

Verify that B3 = A.

B^3

ans =
[1, 1, 1]
[0, 1, 1]
[0, 0, 1]

4 Functions — Alphabetical List

4-820

Matrix Lambert W Function
Find the matrix Lambert W function.

First, create a 3-by-3 matrix A using variable-precision arithmetic with five digit accuracy.
In this example, using variable-precision arithmetic instead of exact symbolic numbers
lets you speed up computations and decrease memory usage. Using only five digits helps
the result to fit on screen.

savedefault = digits(5);
A = vpa(magic(3))

A =
[8.0, 1.0, 6.0]
[3.0, 5.0, 7.0]
[4.0, 9.0, 2.0]

Create the symbolic function f(x) = lambertw(x).

syms f(x)
f(x) = lambertw(x);

To find the Lambert W function (W0 branch) in a matrix sense, callfunm using f(x) as its
second argument.

W0 = funm(A,f)

W0 =
[1.5335 + 0.053465i, 0.11432 + 0.47579i, 0.36208 - 0.52925i]
[0.21343 + 0.073771i, 1.3849 + 0.65649i, 0.41164 - 0.73026i]
[0.26298 - 0.12724i, 0.51074 - 1.1323i, 1.2362 + 1.2595i]

Verify that this result is a solution of the matrix equation A = W0·eW0 within the specified
accuracy.

W0*expm(W0)

ans =
[8.0, 1.0 - 5.6843e-13i, 6.0 + 1.1369e-13i]
[3.0 - 2.2737e-13i, 5.0 - 2.8422e-14i, 7.0 - 4.1211e-13i]
[4.0 - 2.2737e-13i, 9.0 - 9.9476e-14i, 2.0 + 1.4779e-12i]

Now, create the symbolic function f(x) representing the branch W-1 of the Lambert W
function.

 funm

4-821

f(x) = lambertw(-1,x);

Find the W-1 branch for the matrix A.

Wm1 = funm(A,f)

Wm1 =
[0.40925 - 4.7154i, 0.54204 + 0.5947i, 0.13764 - 0.80906i]
[0.38028 + 0.033194i, 0.65189 - 3.8732i, 0.056763 - 1.0898i]
[0.2994 - 0.24756i, - 0.105 - 1.6513i, 0.89453 - 3.0309i]

Verify that this result is the solution of the matrix equation A = Wm1·eWm1 within the
specified accuracy.

Wm1*expm(Wm1)

ans =
[8.0 - 8.3844e-13i, 1.0 - 3.979e-13i, 6.0 - 9.0949e-13i]
[3.0 - 9.6634e-13i, 5.0 + 1.684e-12i, 7.0 + 4.5475e-13i]
[4.0 - 1.3642e-12i, 9.0 + 1.6698e-12i, 2.0 + 1.7053e-13i]

Matrix Exponential, Logarithm, and Square Root
You can use funm with appropriate second arguments to find matrix exponential,
logarithm, and square root. However, the more efficient approach is to use the functions
expm, logm, and sqrtm for this task.

Create this square matrix and find its exponential, logarithm, and square root.

syms x
A = [1 -1; 0 x]
expA = expm(A)
logA = logm(A)
sqrtA = sqrtm(A)

A =
[1, -1]
[0, x]

expA =
[exp(1), (exp(1) - exp(x))/(x - 1)]
[0, exp(x)]

logA =

4 Functions — Alphabetical List

4-822

[0, -log(x)/(x - 1)]
[0, log(x)]

sqrtA =
[1, 1/(x - 1) - x^(1/2)/(x - 1)]
[0, x^(1/2)]

Find the matrix exponential, logarithm, and square root of A using funm. Use the
symbolic expressions exp(x), log(x), and sqrt(x) as the second argument of funm.
The results are identical.

expA = funm(A,exp(x))
logA = funm(A,log(x))
sqrtA = funm(A,sqrt(x))

expA =
[exp(1), exp(1)/(x - 1) - exp(x)/(x - 1)]
[0, exp(x)]

logA =
[0, -log(x)/(x - 1)]
[0, log(x)]

sqrtA =
[1, 1/(x - 1) - x^(1/2)/(x - 1)]
[0, x^(1/2)]

Input Arguments
A — Input matrix
square matrix

Input matrix, specified as a square symbolic or numeric matrix.

f — Function
symbolic function | symbolic expression

Function, specified as a symbolic function or expression.

 funm

4-823

Output Arguments
F — Resulting matrix
symbolic matrix

Resulting function, returned as a symbolic matrix.

Definitions

Matrix Function
Matrix function is a scalar function that maps one matrix to another.

Suppose, f(x), where x is a scalar, has a Taylor series expansion. Then the matrix
function f(A), where A is a matrix, is defined by the Taylor series of f(A), with addition
and multiplication performed in the matrix sense.

If A can be represented as A = P·D·P-1, where D is a diagonal matrix, such that

D =
d1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ dn

then the matrix function f(A) can be computed as follows:

f A = P ⋅
f d1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ f dn

⋅ P−1

Non-diagonalizable matrices can be represented as A = P·J·P-1, where J is a Jordan
form of the matrix A. Then, the matrix function f(A) can be computed by using the
following definition on each Jordan block:

4 Functions — Alphabetical List

4-824

f

λ 1 0 ⋯ 0
0 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
⋮ ⋱ ⋱ ⋱ 1
0 ⋯ ⋯ 0 λ

=

f λ
0!

f ′ λ
1!

f ″ λ
2! ⋯ f n− 1 λ

n− 1 !
0 ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ f ″ λ
2!

⋮ ⋱ ⋱ ⋱ f ′ λ
1!

0 ⋯ ⋯ 0 f λ
0!

Tips
• For compatibility with the MATLAB funm function, funm accepts the following

arguments:

• Function handles such as @exp and @sin, as its second input argument.
• The options input argument, such as funm(A,f,options).
• Additional input arguments of the function f, such as

funm(A,f,options,p1,p2,...)
• The exitflag output argument, such as [F,exitflag] = funm(A,f). Here,

exitflag is 1 only if the funm function call errors, for example, if it encounters a
division by zero. Otherwise, exitflag is 0.

For more details and a list of all acceptable function handles, see the MATLAB funm
function.

• If the input matrix A is numeric (not a symbolic object) and the second argument f is a
function handle, then the funm call invokes the MATLAB funm function.

See Also
eig | expm | jordan | logm | sqrtm

Introduced in R2014b

 funm

4-825

funtool
Function calculator

Syntax
funtool

Description
funtool is a visual function calculator that manipulates and displays functions of one
variable. At the click of a button, for example, funtool draws a graph representing the
sum, product, difference, or ratio of two functions that you specify. funtool includes a
function memory that allows you to store functions for later retrieval.

At startup, funtool displays graphs of a pair of functions, f(x) = x and g(x) = 1. The
graphs plot the functions over the domain [-2*pi, 2*pi]. funtool also displays a
control panel that lets you save, retrieve, redefine, combine, and transform f and g.

4 Functions — Alphabetical List

4-826

The top of the control panel contains a group of editable text fields.

f= Displays a symbolic expression representing f. Edit this field to
redefine f.

g= Displays a symbolic expression representing g. Edit this field to
redefine g.

x= Displays the domain used to plot f and g. Edit this field to specify a
different domain.

a= Displays a constant factor used to modify f (see button
descriptions in the next section). Edit this field to change the value
of the constant factor.

 funtool

4-827

funtool redraws f and g to reflect any changes you make to the contents of the control
panel's text fields.

The bottom part of the control panel contains an array of buttons that transform f and
perform other operations.

The first row of control buttons replaces f with various transformations of f.

df/dx Derivative of f
int f Integral of f
simplify f Simplified form of f, if possible
num f Numerator of f
den f Denominator of f
1/f Reciprocal of f

4 Functions — Alphabetical List

4-828

finv Inverse of f

The operators int f and finv can fail if the corresponding symbolic
expressions do not exist in closed form.

The second row of buttons translates and scales f and the domain
of f by a constant factor. To specify the factor, enter its value in the
field labeled a= on the calculator control panel. The operations are

f+a Replaces f(x) by f(x) + a.
f-a Replaces f(x) by f(x) - a.
f*a Replaces f(x) by f(x) * a.
f/a Replaces f(x) by f(x) / a.
f^a Replaces f(x) by f(x) ^ a.
f(x+a) Replaces f(x) by f(x + a).
f(x*a) Replaces f(x) by f(x * a).

The first four buttons of the third row replace f with a combination
of f and g.

f+g Replaces f(x) by f(x) + g(x).
f-g Replaces f(x) by f(x)-g(x).
f*g Replaces f(x) by f(x) * g(x).
f/g Replaces f(x) by f(x) / g(x).

The remaining buttons on the third row interchange f and g.

g=f Replaces g with f.
swap Replaces f with g and g with f.

The first three buttons in the fourth row allow you to store and
retrieve functions from the calculator's function memory.

Insert Adds f to the end of the list of stored functions.
Cycle Replaces f with the next item on the function

list.

 funtool

4-829

Delete Deletes f from the list of stored functions.

The other four buttons on the fourth row perform miscellaneous
functions:

Reset Resets the calculator to its initial state.
Help Displays the online help for the calculator.
Demo Runs a short demo of the calculator.
Close Closes the calculator's windows.

See Also
fplot | syms

Introduced before R2006a

4 Functions — Alphabetical List

4-830

gamma
Gamma function

Syntax
gamma(X)

Description
gamma(X) returns the gamma function on page 4-834 of a symbolic variable or symbolic
expression X.

Examples
Gamma Function for Numeric and Symbolic Arguments
Depending on its arguments, gamma returns floating-point or exact symbolic results.

Compute the gamma function for these numbers. Because these numbers are not
symbolic objects, you get floating-point results.

A = gamma([-11/3, -7/5, -1/2, 1/3, 1, 4])

A =
 0.2466 2.6593 -3.5449 2.6789 1.0000 6.0000

Compute the gamma function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, gamma returns unresolved symbolic calls.

symA = gamma(sym([-11/3, -7/5, -1/2, 1/3, 1, 4]))

symA =
[(27*pi*3^(1/2))/(440*gamma(2/3)), gamma(-7/5),...
-2*pi^(1/2), (2*pi*3^(1/2))/(3*gamma(2/3)), 1, 6]

Use vpa to approximate symbolic results with floating-point numbers:

 gamma

4-831

vpa(symA)

ans =
[0.24658411512650858900694446388517,...
2.6592718728800305399898810505738,...
-3.5449077018110320545963349666823,...
2.6789385347077476336556929409747,...
1.0, 6.0]

Plot Gamma Function
Plot the gamma function and add grid lines.

syms x
fplot(gamma(x))
grid on

4 Functions — Alphabetical List

4-832

Handle Expressions Containing Gamma Function
Many functions, such as diff, limit, and simplify, can handle expressions containing
gamma.

Differentiate the gamma function, and then substitute the variable t with the value 1:

syms t
u = diff(gamma(t^3 + 1))
u1 = subs(u, t, 1)

u =
3*t^2*gamma(t^3 + 1)*psi(t^3 + 1)

 gamma

4-833

u1 =
3 - 3*eulergamma

Approximate the result using vpa:

vpa(u1)

ans =
1.2683530052954014181804637297528

Compute the limit of the following expression that involves the gamma function:

syms x
limit(x/gamma(x), x, inf)

ans =
0

Simplify the following expression:

syms x
simplify(gamma(x)*gamma(1 - x))

ans =
pi/sin(pi*x)

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as symbolic number, variable, expression, function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Gamma Function
The following integral defines the gamma function:

4 Functions — Alphabetical List

4-834

Γ z = ∫
0

∞
tz − 1e−tdt .

See Also
beta | factorial | gammaln | igamma | nchoosek | pochhammer | psi

Introduced before R2006a

 gamma

4-835

gammaln
Logarithmic gamma function

Syntax
gammaln(X)

Description
gammaln(X) returns the logarithmic gamma function for each element of X.

Examples

Logarithmic Gamma Function for Numeric and Symbolic
Arguments
Depending on its arguments, gammaln returns floating-point or exact symbolic results.

Compute the logarithmic gamma function for these numbers. Because these numbers are
not symbolic objects, you get floating-point results.

A = gammaln([1/5, 1/2, 2/3, 8/7, 3])

A =
 1.5241 0.5724 0.3032 -0.0667 0.6931

Compute the logarithmic gamma function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, gammaln returns results in terms of the gammaln,
log, and gamma functions.

symA = gammaln(sym([1/5, 1/2, 2/3, 8/7, 3]))

symA =
[gammaln(1/5), log(pi^(1/2)), gammaln(2/3),...
log(gamma(1/7)/7), log(2)]

4 Functions — Alphabetical List

4-836

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[1.5240638224307845248810564939263,...
0.57236494292470008707171367567653,...
0.30315027514752356867586281737201,...
-0.066740877459477468649396334098109,...
0.69314718055994530941723212145818]

Definition of the Logarithmic Gamma Function on Complex
Plane
gammaln is defined for all complex arguments, except negative infinity.

Compute the logarithmic gamma function for positive integer arguments. For such
arguments, the logarithmic gamma function is defined as the natural logarithm of the
gamma function, gammaln(x) = log(gamma(x)).

pos = gammaln(sym([1/4, 1/3, 1, 5, Inf]))

pos =
[log((pi*2^(1/2))/gamma(3/4)), log((2*pi*3^(1/2))/(3*gamma(2/3))), 0, log(24), Inf]

Compute the logarithmic gamma function for nonpositive integer arguments. For
nonpositive integers, gammaln returns Inf.

nonposint = gammaln(sym([0, -1, -2, -5, -10]))

nonposint =
[Inf, Inf, Inf, Inf, Inf]

Compute the logarithmic gamma function for complex and negative rational arguments.
For these arguments, gammaln returns unresolved symbolic calls.

complex = gammaln(sym([i, -1 + 2*i , -2/3, -10/3]))

complex =
[gammaln(1i), gammaln(- 1 + 2i), gammaln(-2/3), gammaln(-10/3)]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(complex)

 gammaln

4-837

ans =
[- 0.65092319930185633888521683150395 - 1.8724366472624298171188533494366i,...
- 3.3739449232079248379476073664725 - 3.4755939462808110432931921583558i,...
1.3908857550359314511651871524423 - 3.1415926535897932384626433832795i,...
- 0.93719017334928727370096467598178 - 12.566370614359172953850573533118i]

Compute the logarithmic gamma function of negative infinity:

gammaln(sym(-Inf))

ans =
NaN

Plot Logarithmic Gamma Function
Plot the logarithmic gamma function on the interval from 0 to 10.

syms x
fplot(gammaln(x),[0 10])
grid on

4 Functions — Alphabetical List

4-838

To see the negative values better, plot the same function on the interval from 1 to 2.

fplot(gammaln(x),[1 2])
grid on

 gammaln

4-839

Handle Expressions Containing Logarithmic Gamma Function
Many functions, such as diff and limit, can handle expressions containing lngamma.

Differentiate the logarithmic gamma function:

syms x
diff(gammaln(x), x)

ans =
psi(x)

Compute the limits of these expressions containing the logarithmic gamma function:

4 Functions — Alphabetical List

4-840

syms x
limit(1/gammaln(x), x, Inf)

ans =
0

limit(gammaln(x - 1) - gammaln(x - 2), x, 0)

ans =
log(2) + pi*1i

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as symbolic number, variable, expression, function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Algorithms
For single or double input to gammaln(x), x must be real and positive.

For symbolic input,

• gammaln(x) is defined for all complex x except the singular points 0, -1, -2,
• For positive real x, gammaln(x) represents the logarithmic gamma function

log(gamma(x)).
• For negative real x or for complex x, gammaln(x) = log(gamma(x)) + f(x)2πi where f(x)

is some integer valued function. The integer multiples of 2πi are chosen such that
gammaln(x) is analytic throughout the complex plane with a branch cut along the
negative real semi axis.

• For negative real x, gammaln(x) is equal to the limit of log(gamma(x)) from
‘above’.

See Also
beta | gamma | log | nchoosek | psi

 gammaln

4-841

Introduced in R2014a

4 Functions — Alphabetical List

4-842

gcd
GCD of numbers and polynomials

Syntax
G = gcd(A)
G = gcd(A,B)
[G,M] = gcd(A)
[G,C,D] = gcd(A,B,X)

Description
G = gcd(A) finds the greatest common divisor of all elements of A.

G = gcd(A,B) finds the greatest common divisor of A and B.

[G,M] = gcd(A) returns the GCD G of all elements of A, and returns in M the linear
combination of A that equals G.

[G,C,D] = gcd(A,B,X) finds the greatest common divisor of A and B, and also returns
the Bézout coefficients, C and D, such that G = A*C + B*D, and X does not appear in the
denominator of Cand D. If you do not specify X, then gcd uses the default variable
determined by symvar.

Examples

Greatest Common Divisor of Four Integers
To find the greatest common divisor of three or more values, specify those values as a
symbolic vector or matrix.

Find the greatest common divisor of these four integers, specified as elements of a
symbolic vector.

 gcd

4-843

A = sym([4420, -128, 8984, -488])
gcd(A)

A =
[4420, -128, 8984, -488]

ans =
4

Alternatively, specify these values as elements of a symbolic matrix.

A = sym([4420, -128; 8984, -488])
gcd(A)

A =
[4420, -128]
[8984, -488]

ans =
4

Greatest Common Divisor of Rational Numbers
The greatest common divisor of rational numbers a1,a2,... is a number g, such that
g/a1,g/a2,... are integers, and gcd(g) = 1.

Find the greatest common divisor of these rational numbers, specified as elements of a
symbolic vector.

gcd(sym([1/4, 1/3, 1/2, 2/3, 3/4]))

ans =
1/12

Greatest Common Divisor of Complex Numbers
gcd computes the greatest common divisor of complex numbers over the Gaussian
integers (complex numbers with integer real and imaginary parts). It returns a complex
number with a positive real part and a nonnegative imaginary part.

Find the greatest common divisor of these complex numbers.

gcd(sym([10 - 5*i, 20 - 10*i, 30 - 15*i]))

4 Functions — Alphabetical List

4-844

ans =
5 + 10i

Greatest Common Divisor of Elements of Matrices
For vectors and matrices, gcd finds the greatest common divisors element-wise.
Nonscalar arguments must be the same size.

Find the greatest common divisors for the elements of these two matrices.

A = sym([309, 186; 486, 224]);
B = sym([558, 444; 1024, 1984]);
gcd(A,B)

ans =
[3, 6]
[2, 32]

Find the greatest common divisors for the elements of matrix A and the value 200. Here,
gcd expands 200 into the 2-by-2 matrix with all elements equal to 200.

gcd(A,200)

ans =
[1, 2]
[2, 8]

Greatest Common Divisor of Polynomials
Find the greatest common divisor of univariate and multivariate polynomials.

Find the greatest common divisor of these univariate polynomials.

syms x
gcd(x^3 - 3*x^2 + 3*x - 1, x^2 - 5*x + 4)

ans =
x - 1

Find the greatest common divisor of these multivariate polynomials. Because there are
more than two polynomials, specify them as elements of a symbolic vector.

syms x y
gcd([x^2*y + x^3, (x + y)^2, x^2 + x*y^2 + x*y + x + y^3 + y])

 gcd

4-845

ans =
x + y

GCD Is Positive Linear Combination of Inputs
A theorem in number theory states that the GCD of two numbers is the smallest positive
linear combination of those numbers. Show that the GCD is a positive linear combination
for 64 and 44.

A = sym([64 44]);
[G,M] = gcd(A)

G =
4
M =
[-2, 3]

isequal(G,sum(M.*A))

ans =
 logical
 1

Bézout Coefficients
Find the greatest common divisor and the Bézout coefficients of these polynomials. For
multivariate expressions, use the third input argument to specify the polynomial variable.
When computing Bézout coefficients, gcd ensures that the polynomial variable does not
appear in their denominators.

Find the greatest common divisor and the Bézout coefficients of these polynomials with
respect to variable x.

[G,C,D] = gcd(x^2*y + x^3, (x + y)^2, x)

G =
x + y

C =
1/y^2

D =
1/y - x/y^2

4 Functions — Alphabetical List

4-846

Find the greatest common divisor and the Bézout coefficients of the same polynomials
with respect to variable y.

[G,C,D] = gcd(x^2*y + x^3, (x + y)^2, y)

G =
x + y

C =
1/x^2

D =
0

If you do not specify the polynomial variable, then the toolbox uses symvar to determine
the variable.

[G,C,D] = gcd(x^2*y + x^3, (x + y)^2)

G =
x + y

C =
1/y^2

D =
1/y - x/y^2

Solution to Diophantine Equation
Solve the Diophantine equation, 30x + 56y = 8, for x and y.

Find the greatest common divisor and a pair of Bézout coefficients for 30 and 56.

[G,C,D] = gcd(sym(30),56)

G =
2

C =
-13

D =
7

 gcd

4-847

C = -13 and D = 7 satisfy the Bézout's identity, (30*(-13)) + (56*7) = 2.

Rewrite Bézout's identity so that it looks more like the original equation. Do this by
multiplying by 4. Use == to verify that both sides of the equation are equal.

isAlways((30*C*4) + (56*D*4) == G*4)

ans =
 logical
 1

Calculate the values of x and y that solve the problem.

x = C*4
y = D*4

x =
-52

y =
28

Input Arguments
A — Input value
number | symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input value, specified as a number, symbolic number, variable, expression, function, or a
vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

B — Input value
number | symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input value, specified as a number, symbolic number, variable, expression, function, or a
vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

X — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

4 Functions — Alphabetical List

4-848

Output Arguments
G — Greatest common divisor
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Greatest common divisor, returned as a symbolic number, variable, expression, function,
or a vector or matrix of symbolic numbers, variables, expressions, or functions.

M — Linear combination of input
symbolic vector | symbolic matrix | symbolic array

Linear combination of input that equals GCD of input, returned as a symbolic vector,
matrix, or array.

C,D — Bézout coefficients
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Bézout coefficients, returned as symbolic numbers, variables, expressions, functions, or
vectors or matrices of symbolic numbers, variables, expressions, or functions.

Tips
• Calling gcd for numbers that are not symbolic objects invokes the MATLAB gcd

function.
• The MATLAB gcd function does not accept rational or complex arguments. To find the

greatest common divisor of rational or complex numbers, convert these numbers to
symbolic objects by using sym, and then use gcd.

• Nonscalar arguments must be the same size. If one input argument is nonscalar, then
gcd expands the scalar into a vector or matrix of the same size as the nonscalar
argument, with all elements equal to the corresponding scalar.

See Also
lcm

 gcd

4-849

Introduced in R2014b

4 Functions — Alphabetical List

4-850

ge
Define greater than or equal to condition

Syntax
A >= B
ge(A,B)

Description
A >= B creates the condition greater than or equal.

ge(A,B) is equivalent to A >= B.

Examples

Set and Use Assumption Using Greater Than Equal To

Set the assumption that x is greater than or equal to 3 by using assume.

syms x
assume(x >= 3)

Solve this equation involving x. The solver only returns solutions that are valid under the
assumption on x.

eqn = (x-1)*(x-2)*(x-3)*(x-4) == 0;
solve(eqn,x)

 ge

4-851

ans =
 3
 4

Find Values that Satisfy Condition

Set the condition abs(sin(x)) >= 1/2.

syms x
cond = abs(sin(x)) >= 1/2;

Find multiples of π/24 that satisfy the condition by using a for loop from 0 to π.

for i = 0:sym(pi/12):sym(pi)
 if subs(cond,x,i)
 disp(i)
 end
end

pi/6
pi/4
pi/3
(5*pi)/12
pi/2
(7*pi)/12
(2*pi)/3
(3*pi)/4
(5*pi)/6

Input Arguments
A — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

B — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

4 Functions — Alphabetical List

4-852

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Tips
• Calling >= or ge for non-symbolic A and B invokes the MATLAB ge function. This

function returns a logical array with elements set to logical 1 (true) where A is
greater than or equal to B; otherwise, it returns logical 0 (false).

• If both A and B are arrays, then these arrays must have the same dimensions. A >= B
returns an array of relations A(i,j,...) >= B(i,j,...)

• If one input is scalar and the other an array, then the scalar input is expanded into an
array of the same dimensions as the other array.

• The field of complex numbers is not an ordered field. MATLAB projects complex
numbers in relations to a real axis. For example, x >= i becomes x >= 0, and x >=
3+2*i becomes x >= 3.

See Also
eq | gt | isAlways | le | lt | ne

Topics
“Set Assumptions” on page 1-29

Introduced in R2012a

 ge

4-853

gegenbauerC
Gegenbauer polynomials

Syntax
gegenbauerC(n,a,x)

Description
gegenbauerC(n,a,x) represents the nth-degree Gegenbauer (ultraspherical)
polynomial on page 4-858 with parameter a at the point x.

Examples
First Four Gegenbauer Polynomials
Find the first four Gegenbauer polynomials for the parameter a and variable x.

syms a x
gegenbauerC([0, 1, 2, 3], a, x)

ans =
[1, 2*a*x, (2*a^2 + 2*a)*x^2 - a,...
((4*a^3)/3 + 4*a^2 + (8*a)/3)*x^3 + (- 2*a^2 - 2*a)*x]

Gegenbauer Polynomials for Numeric and Symbolic
Arguments
Depending on its arguments, gegenbauerC returns floating-point or exact symbolic
results.

Find the value of the fifth-degree Gegenbauer polynomial for the parameter a = 1/3 at
these points. Because these numbers are not symbolic objects, gegenbauerC returns
floating-point results.

4 Functions — Alphabetical List

4-854

gegenbauerC(5, 1/3, [1/6, 1/4, 1/3, 1/2, 2/3, 3/4])

ans =
 0.1520 0.1911 0.1914 0.0672 -0.1483 -0.2188

Find the value of the fifth-degree Gegenbauer polynomial for the same numbers
converted to symbolic objects. For symbolic numbers, gegenbauerC returns exact
symbolic results.

gegenbauerC(5, 1/3, sym([1/6, 1/4, 1/3, 1/2, 2/3, 3/4]))

ans =
[26929/177147, 4459/23328, 33908/177147, 49/729, -26264/177147, -7/32]

Evaluate Chebyshev Polynomials with Floating-Point Numbers
Floating-point evaluation of Gegenbauer polynomials by direct calls of gegenbauerC is
numerically stable. However, first computing the polynomial using a symbolic variable,
and then substituting variable-precision values into this expression can be numerically
unstable.

Find the value of the 500th-degree Gegenbauer polynomial for the parameter 4 at 1/3
and vpa(1/3). Floating-point evaluation is numerically stable.

gegenbauerC(500, 4, 1/3)
gegenbauerC(500, 4, vpa(1/3))

ans =
 -1.9161e+05

ans =
-191609.10250897532784888518393655

Now, find the symbolic polynomial C500 = gegenbauerC(500, 4, x), and substitute x
= vpa(1/3) into the result. This approach is numerically unstable.

syms x
C500 = gegenbauerC(500, 4, x);
subs(C500, x, vpa(1/3))

ans =
-8.0178726380235741521208852037291e+35

 gegenbauerC

4-855

Approximate the polynomial coefficients by using vpa, and then substitute x =
sym(1/3) into the result. This approach is also numerically unstable.

subs(vpa(C500), x, sym(1/3))

ans =
-8.1125412405858470246887213923167e+36

Plot Gegenbauer Polynomials
Plot the first five Gegenbauer polynomials for the parameter a = 3.

syms x y
fplot(gegenbauerC(0:4,3,x))
axis([-1 1 -10 10])
grid on

ylabel('G_n^3(x)')
title('Gegenbauer polynomials')
legend('G_0^3(x)', 'G_1^3(x)', 'G_2^3(x)', 'G_3^3(x)', 'G_4^3(x)',...
 'Location', 'Best')

4 Functions — Alphabetical List

4-856

Input Arguments
n — Degree of polynomial
nonnegative integer | symbolic variable | symbolic expression | symbolic function | vector
| matrix

Degree of the polynomial, specified as a nonnegative integer, symbolic variable,
expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

 gegenbauerC

4-857

a — Parameter
number | symbolic number | symbolic variable | symbolic expression | symbolic function |
vector | matrix

Parameter, specified as a nonnegative integer, symbolic variable, expression, or function,
or as a vector or matrix of numbers, symbolic numbers, variables, expressions, or
functions.

x — Evaluation point
number | symbolic number | symbolic variable | symbolic expression | symbolic function |
vector | matrix

Evaluation point, specified as a number, symbolic number, variable, expression, or
function, or as a vector or matrix of numbers, symbolic numbers, variables, expressions,
or functions.

Definitions

Gegenbauer Polynomials
Gegenbauer polynomials are defined by this recursion formula.

G 0, a, x = 1, G 1, a, x = 2ax, G n, a, x = 2x n + a− 1
n G n− 1, a, x

− n + 2a− 2
n G n− 2, a, x

For all real a > -1/2, Gegenbauer polynomials are orthogonal on the interval -1 ≤ x ≤ 1
with respect to the weight function

w x = 1− x2 a− 1
2

Chebyshev polynomials of the first and second kinds are a special case of the Gegenbauer
polynomials.

T n, x = n
2G n, 0, x

U n, x = G n, 1, x

4 Functions — Alphabetical List

4-858

Legendre polynomials are also a special case of the Gegenbauer polynomials.

P n, x = G n, 1
2, x

Tips
• gegenbauerC returns floating-point results for numeric arguments that are not

symbolic objects.
• gegenbauerC acts element-wise on nonscalar inputs.
• All nonscalar arguments must have the same size. If one or two input arguments are

nonscalar, then gegenbauerC expands the scalars into vectors or matrices of the
same size as the nonscalar arguments, with all elements equal to the corresponding
scalar.

References
[1] Hochstrasser, U. W. “Orthogonal Polynomials.” Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A.
Stegun, eds.). New York: Dover, 1972.

See Also
chebyshevT | chebyshevU | hermiteH | jacobiP | laguerreL | legendreP

Introduced in R2014b

 gegenbauerC

4-859

getVar
Get variable from MuPAD notebook

Note

MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts”.

Syntax
MATLABvar = getVar(nb,'MuPADvar')

Description
MATLABvar = getVar(nb,'MuPADvar') assigns the variable MuPADvar in the MuPAD
notebook nb to a symbolic variable MATLABvar in the MATLAB workspace.

Examples

Copy Variable from MuPAD to MATLAB

Copy a variable with a value assigned to it from a MuPAD notebook to the MATLAB
workspace.

Create a new MuPAD notebook and specify a handle mpnb to that notebook:

mpnb = mupad;

4 Functions — Alphabetical List

4-860

In the MuPAD notebook, enter the following command. This command creates the
variable f and assigns the value x^2 to this variable. At this point, the variable and its
value exist only in MuPAD.

f := x^2

Return to the MATLAB Command Window and use the getVar function:

f = getVar(mpnb,'f')

f =
x^2

After you call getVar, the variable f appears in the MATLAB workspace. The value of the
variable f in the MATLAB workspace is x^2.

Now, use getVar to copy variables a and b from the same notebook. Although you do not
specify these variables explicitly, and they do not have any values assigned to them, they
exist in MuPAD.

a = getVar(mpnb,'a')
b = getVar(mpnb,'b')

a =
a

b =
b

Input Arguments
nb — Pointer to MuPAD notebook
handle to notebook

Pointer to a MuPAD notebook, specified as a MuPAD notebook handle. You create the
notebook handle when opening a notebook with the mupad or openmn function.

MuPADvar — Variable in MuPAD notebook
variable

Variable in a MuPAD notebook, specified as a variable. A variable exists in MuPAD even if
it has no value assigned to it.

 getVar

4-861

Output Arguments
MATLABvar — Variable in MATLAB workspace
symbolic variable

Variable in the MATLAB workspace, returned as a symbolic variable.

See Also
mupad | openmu | setVar

Topics
“Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-55

Introduced in R2008b

4 Functions — Alphabetical List

4-862

gradient
Gradient vector of scalar function

Syntax
gradient(f,v)

Description
gradient(f,v) finds the gradient vector of the scalar function f with respect to vector
v in Cartesian coordinates.

If you do not specify v, then gradient(f) finds the gradient vector of the scalar function
f with respect to a vector constructed from all symbolic variables found in f. The order of
variables in this vector is defined by symvar.

Examples

Find Gradient of Function
The gradient of a function f with respect to the vector v is the vector of the first partial
derivatives of f with respect to each element of v.

Find the gradient vector of f(x, y, z) with respect to vector [x, y, z]. The gradient
is a vector with these components.

syms x y z
f = 2*y*z*sin(x) + 3*x*sin(z)*cos(y);
gradient(f, [x, y, z])

ans =
 3*cos(y)*sin(z) + 2*y*z*cos(x)
 2*z*sin(x) - 3*x*sin(y)*sin(z)
 2*y*sin(x) + 3*x*cos(y)*cos(z)

 gradient

4-863

Plot Gradient of Function
Find the gradient of a function f(x, y), and plot it as a quiver (velocity) plot.

Find the gradient vector of f(x, y) with respect to vector [x, y]. The gradient is
vector g with these components.

syms x y
f = -(sin(x) + sin(y))^2;
g = gradient(f, [x, y])

g =
 -2*cos(x)*(sin(x) + sin(y))
 -2*cos(y)*(sin(x) + sin(y))

Now plot the vector field defined by these components. MATLAB provides the quiver
plotting function for this task. The function does not accept symbolic arguments. First,
replace symbolic variables in expressions for components of g with numeric values. Then
use quiver:

[X, Y] = meshgrid(-1:.1:1,-1:.1:1);
G1 = subs(g(1), [x y], {X,Y});
G2 = subs(g(2), [x y], {X,Y});
quiver(X, Y, G1, G2)

4 Functions — Alphabetical List

4-864

Input Arguments
f — Scalar function
symbolic expression | symbolic function

Scalar function, specified as symbolic expression or symbolic function.

v — Vector with respect to which you find gradient vector
symbolic vector

 gradient

4-865

Vector with respect to which you find gradient vector, specified as a symbolic vector. By
default, v is a vector constructed from all symbolic variables found in f. The order of
variables in this vector is defined by symvar.

If v is a scalar, gradient(f,v) = diff(f,v). If v is an empty symbolic object, such as
sym([]), then gradient returns an empty symbolic object.

Definitions

Gradient Vector
The gradient vector of f(x) with respect to the vector x is the vector of the first partial
derivatives of f.

∇ f = ∂ f
∂x1

, ∂ f
∂x2

, …, ∂ f
∂xn

See Also
curl | diff | divergence | hessian | jacobian | laplacian | potential | quiver |
vectorPotential

Introduced in R2011b

4 Functions — Alphabetical List

4-866

gbasis
Reduced Groebner basis

Syntax
gbasis(poly)
gbasis(poly,vars)
gbasis(___ ,'MonomialOrder',MonomialOrder)

Description
gbasis(poly) returns the Groebner basis of the vector of polynomials poly. By default,
gbasis finds independent variables in poly by using symvar, and uses the monomial
ordering degreeInverseLexicographic.

gbasis(poly,vars) also uses the independent variables vars.

gbasis(___ ,'MonomialOrder',MonomialOrder) also uses the specified monomial
order in addition to the input arguments in previous syntaxes. Options are
'degreeInverseLexicographic', 'degreeLexicographic', or 'lexicographic'.
By default, gbasis uses 'degreeInverseLexicographic'.

Examples

Groebner Basis of Polynomials

Calculate the Groebner basis of the polynomials x^2-y^2 and x^2+y. By default, gbasis
finds the independent variables by using symvar.

syms x y
p = [x^2-y^2, x^2+y];
gbasis(p)

 gbasis

4-867

ans =
[x^2 + y, y^2 + y]

Specify Independent Variables

Specify the independent variables as the second argument of gbasis.

Compute the Groebner basis of the polynomials a*y+x^2*y+a and a*x^2+y with the
independent variables [x y].

syms x y a
p = [a*y + x^2*y + a, a*x^2 + y];
vars = [x y];
grobnerBasis = gbasis(p,vars)

grobnerBasis =
[a*x^2 + y, - y^2/a + a*y + a]

Groebner Basis with Monomial Order

By default, gbasis uses the monomial order degreeInverseLexicographic. Change
the monomial order by using the 'MonomialOrder' name-value pair argument.

Find the Groebner basis of the polynomials y*z^2+1 and y^2*x^2-y-z^3 with
lexicographic monomial order.

syms x y z
p = [y*z^2 + 1, y^2*x^2 - y - z^3];
grobnerBasis = gbasis(p,'MonomialOrder','lexicographic')

grobnerBasis =
[x^2 - z^7 + z^2, y*z^2 + 1]

Use the variables [z y] with degreeLexicographic monomial order.

grobnerBasis = gbasis(p,[z y],'MonomialOrder','degreeLexicographic')

4 Functions — Alphabetical List

4-868

grobnerBasis =
[x^2*y^2 - y - z^3, y*z^2 + 1, x^2*y^3 - y^2 + z]

Input Arguments
poly — Polynomials
vector of symbolic expressions

Polynomials, specified as a vector of symbolic expressions.

vars — Independent variables
vector of symbolic variables

Independent variables, specified as a vector of symbolic variables.

MonomialOrder — Monomial order
'degreeInverseLexicographic' (default) | 'degreeLexicographic' |
'lexicographic'

Monomial order, specified as the comma-separated pair of 'MonomialOrder' and one of
the values 'degreeInverseLexicographic', 'degreeLexicographic', or
'lexicographic'. If vars is specified, then monomials are sorted with respect to the
order of variables in vars.

• lexicographic sorts the terms of the polynomial using lexicographic ordering.
• degreeLexicographic sorts the terms of a polynomial according to the total degree

of each term. If terms have equal total degrees, polynomialReduce sorts them using
lexicographic ordering.

• degreeInverseLexicographic sorts the terms of a polynomial according to the
total degree of each term. If terms have equal total degrees, polynomialReduce
sorts them using inverse lexicographic ordering.

See Also
eliminate | solve

Topics
“Solve Algebraic Equation” on page 2-152

 gbasis

4-869

“Solve System of Linear Equations” on page 2-179

Introduced in R2018a

4 Functions — Alphabetical List

4-870

gt
Define greater than relation

Syntax
A > B
gt(A,B)

Description
A > B creates a greater than relation.

gt(A,B) is equivalent to A > B.

Examples

Set and Use Assumption Using Greater Than
Use assume and the relational operator > to set the assumption that x is greater than 3:

syms x
assume(x > 3)

Solve this equation. The solver takes into account the assumption on variable x, and
therefore returns this solution.

solve((x - 1)*(x - 2)*(x - 3)*(x - 4) == 0, x)

ans =
4

Find Values that Satisfy Condition
Use the relational operator > to set this condition on variable x:

 gt

4-871

syms x
cond = abs(sin(x)) + abs(cos(x)) > 7/5;

for i = 0:sym(pi/24):sym(pi)
 if subs(cond, x, i)
 disp(i)
 end
end

Use the for loop with step π/24 to find angles from 0 to π that satisfy that condition:

(5*pi)/24
pi/4
(7*pi)/24
(17*pi)/24
(3*pi)/4
(19*pi)/24

Input Arguments
A — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

B — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Tips
• Calling > or gt for non-symbolic A and B invokes the MATLAB gt function. This

function returns a logical array with elements set to logical 1 (true) where A is
greater than B; otherwise, it returns logical 0 (false).

4 Functions — Alphabetical List

4-872

• If both A and B are arrays, then these arrays must have the same dimensions. A > B
returns an array of relations A(i,j,...) > B(i,j,...)

• If one input is scalar and the other an array, then the scalar input is expanded into an
array of the same dimensions as the other array. In other words, if A is a variable (for
example, x), and B is an m-by-n matrix, then A is expanded into m-by-n matrix of
elements, each set to x.

• The field of complex numbers is not an ordered field. MATLAB projects complex
numbers in relations to a real axis. For example, x > i becomes x > 0, and x > 3 +
2*i becomes x > 3.

See Also
eq | ge | isAlways | le | lt | ne

Topics
“Set Assumptions” on page 1-29

Introduced in R2012a

 gt

4-873

harmonic
Harmonic function (harmonic number)

Syntax
harmonic(x)

Description
harmonic(x) returns the harmonic function on page 4-879 of x. For integer values of x,
harmonic(x) generates harmonic numbers.

Examples

Generate Harmonic Numbers
Generate the first 10 harmonic numbers.

harmonic(sym(1:10))

ans =
[1, 3/2, 11/6, 25/12, 137/60, 49/20, 363/140, 761/280, 7129/2520, 7381/2520]

Harmonic Function for Numeric and Symbolic Arguments
Find the harmonic function for these numbers. Since these are not symbolic objects, you
get floating-point results.

harmonic([2 i 13/3])

ans =
 1.5000 + 0.0000i 0.6719 + 1.0767i 2.1545 + 0.0000i

Find the harmonic function symbolically by converting the numbers to symbolic objects.

4 Functions — Alphabetical List

4-874

y = harmonic(sym([2 i 13/3]))

y =
[3/2, harmonic(1i), 8571/1820 - (pi*3^(1/2))/6 - (3*log(3))/2]

If the denominator of x is 2, 3, 4, or 6, and |x| < 500, then the result is expressed in terms
of pi and log.

Use vpa to approximate the results obtained.

vpa(y)

ans =
[1.5, 0.67186598552400983787839057280431...
 + 1.07667404746858117413405079475i,...
 2.1545225442213858782694336751358]

For |x| > 1000, harmonic returns the function call as it is. Use vpa to force harmonic to
evaluate the function call.

harmonic(sym(1001))
vpa(harmonic(sym(1001)))

ans =
harmonic(1001)
ans =
7.4864698615493459116575172053329

Harmonic Function for Special Values
Find the harmonic function for special values.

harmonic([0 1 -1 Inf -Inf])

ans =
 0 1 Inf Inf NaN

Harmonic Function for Symbolic Functions
Find the harmonic function for the symbolic function f.

syms f(x)
f(x) = exp(x) + tan(x);
y = harmonic(f)

 harmonic

4-875

y(x) =
harmonic(exp(x) + tan(x))

Harmonic Function for Symbolic Vectors and Matrices
Find the harmonic function for elements of vector V and matrix M.

syms x
V = [x sin(x) 3*i];
M = [exp(i*x) 2; -6 Inf];
harmonic(V)
harmonic(M)

ans =
[harmonic(x), harmonic(sin(x)), harmonic(3i)]
ans =
[harmonic(exp(x*1i)), 3/2]
[Inf, Inf]

Plot Harmonic Function
Plot the harmonic function from x = -5 to x = 5.

syms x
fplot(harmonic(x),[-5 5])
grid on

4 Functions — Alphabetical List

4-876

Differentiate and Find Limit of Harmonic Function
The functions diff and limit handle expressions containing harmonic.

Find the second derivative of harmonic(x^2+1).

syms x
diff(harmonic(x^2+1),x,2)

ans =
2*psi(1, x^2 + 2) + 4*x^2*psi(2, x^2 + 2)

 harmonic

4-877

Find the limit of harmonic(x) as x tends to ∞ and of (x+1)*harmonic(x) as x tends to
-1.

syms x
limit(harmonic(x),Inf)
limit((x+1)*harmonic(x),-1)

ans =
Inf
ans =
-1

Taylor Series Expansion of Harmonic Function
Use taylor to expand the harmonic function in terms of the Taylor series.

syms x
taylor(harmonic(x))

ans =
(pi^6*x^5)/945 - zeta(5)*x^4 + (pi^4*x^3)/90...
 - zeta(3)*x^2 + (pi^2*x)/6

Expand Harmonic Function
Use expand to expand the harmonic function.

syms x
expand(harmonic(2*x+3))

ans =
harmonic(x + 1/2)/2 + log(2) + harmonic(x)/2 - 1/(2*(x + 1/2))...
 + 1/(2*x + 1) + 1/(2*x + 2) + 1/(2*x + 3)

Input Arguments
x — Input
number | vector | matrix | multidimensional array | symbolic variable | symbolic
expression | symbolic function | symbolic vector | symbolic matrix | symbolic N-D array

4 Functions — Alphabetical List

4-878

Input, specified as number, vector, matrix, or as a multidimensional array or symbolic
variable, expression, function, vector, matrix, or multidimensional array.

Definitions
Harmonic Function
The harmonic function for x is defined as

harmonic x = Σ
k = 1

x 1
k

It is also defined as

harmonic x = Ψ x + 1 + γ

where Ψ(x) is the polygamma function and γ is the Euler-Mascheroni constant.

Algorithms
The harmonic function is defined for all complex arguments z except for negative integers
-1, -2,... where a singularity occurs.

If x has denominator 1, 2, 3, 4, or 6, then an explicit result is computed and returned. For
other rational numbers, harmonic uses the functional equation
harmonic x + 1 = harmonic x + 1

x to obtain a result with an argument x from the
interval [0, 1].

expand expands harmonic using the equations harmonic x + 1 = harmonic x + 1
x ,

harmonic −x = harmonic x − 1
x + πcot πx , and the Gauss multiplication formula for

harmonic(kx), where k is an integer.

harmonic implements the following explicit formulae:

harmonic −1
2 = − 2ln 2

 harmonic

4-879

harmonic −2
3 = − 3

2ln 3 − 3
6 π

harmonic −1
3 = − 3

2ln 3 + 3
6 π

harmonic −3
4 = − 3ln 2 − π

2

harmonic −1
4 = − 3ln 2 + π

2

harmonic −5
6 = − 2ln 2 − 3

2ln 3 − 3
2 π

harmonic −1
6 = − 2ln 2 − 3

2ln 3 + 3
2 π

harmonic 0 = 0

harmonic 1
2 = 2− 2ln 2

harmonic 1
3 = 3− 3

2ln 3 − 3
6 π

harmonic 2
3 = 3

2 −
3
2ln 3 + 3

6 π

harmonic 1
4 = 4− 3ln 2 − π

2

harmonic 3
4 = 4

3 − 3ln 2 + π
2

harmonic 1
6 = 6− 2ln 2 − 3

2ln 3 − 3
2 π

harmonic 5
6 = 6

5 − 2ln 2 − 3
2ln 3 + 3

2 π

harmonic 1 = 1

harmonic ∞ = ∞

4 Functions — Alphabetical List

4-880

harmonic −∞ = NaN

See Also
beta | factorial | gamma | gammaln | nchoosek | zeta

Introduced in R2014a

 harmonic

4-881

has
Check if expression contains particular subexpression

Syntax
has(expr,subexpr)

Description
has(expr,subexpr) returns logical 1 (true) if expr contains subexpr. Otherwise, it
returns logical 0 (false).

• If expr is an array, has(expr,subexpr) returns an array of the same size as expr.
The returned array contains logical 1s (true) where the elements of expr contain
subexpr, and logical 0s (false) where they do not.

• If subexpr is an array, has(expr,subexpr) checks if expr contains any element of
subexpr.

Examples
Check If Expression Contains Particular Subexpression
Use the has function to check if an expression contains a particular variable or
subexpression.

Check if these expressions contain variable z.

syms x y z
has(x + y + z, z)

ans =
 logical
 1

has(x + y, z)

4 Functions — Alphabetical List

4-882

ans =
 logical
 0

Check if x + y + z contains the following subexpressions. Note that has finds the
subexpression x + z even though the terms x and z do not appear next to each other in
the expression.

has(x + y + z, x + y)
has(x + y + z, y + z)
has(x + y + z, x + z)

ans =
 logical
 1
ans =
 logical
 1
ans =
 logical
 1

Check if the expression (x + 1)^2 contains x^2. Although (x + 1)^2 is
mathematically equivalent to the expression x^2 + 2*x + 1, the result is a logical 0
because has typically does not transform expressions to different forms when testing for
subexpressions.

has((x + 1)^2, x^2)

ans =
 logical
 0

Expand the expression and then call has to check if the result contains x^2. Because
expand((x + 1)^2) transforms the original expression to x^2 + 2*x + 1, the has
function finds the subexpression x^2 and returns logical 1.

has(expand((x + 1)^2), x^2)

ans =
 logical
 1

 has

4-883

Check If Expression Contains Any of Specified Subexpressions
Check if a symbolic expression contains any of subexpressions specified as elements of a
vector.

If an expression contains one or more of the specified subexpressions, has returns logical
1.

syms x
has(sin(x) + cos(x) + x^2, [tan(x), cot(x), sin(x), exp(x)])

ans =
 logical
 1

If an expression does not contain any of the specified subexpressions, has returns logical
0.

syms x
has(sin(x) + cos(x) + x^2, [tan(x), cot(x), exp(x)])

ans =
 logical
 0

Find Matrix Elements Containing Particular Subexpression
Using has, find those elements of a symbolic matrix that contain a particular
subexpression.

First, create a matrix.

syms x y
M = [sin(x)*sin(y), cos(x*y) + 1; cos(x)*tan(x), 2*sin(x)^2]

M =
[sin(x)*sin(y), cos(x*y) + 1]
[cos(x)*tan(x), 2*sin(x)^2]

Use has to check which elements of M contain sin(x). The result is a matrix of the same
size as M, with 1s and 0s as its elements. For the elements of M containing the specified
expression, has returns logical 1s. For the elements that do not contain that
subexpression, has returns logical 0s.

4 Functions — Alphabetical List

4-884

T = has(M, sin(x))

T =
 2×2 logical array
 1 0
 0 1

Return only the elements that contain sin(x) and replace all other elements with 0 by
multiplying M by T elementwise.

M.*T

ans =
[sin(x)*sin(y), 0]
[0, 2*sin(x)^2]

To check if any of matrix elements contain a particular subexpression, use any.

any(has(M(:), sin(x)))

ans =
 logical
 1

any(has(M(:), cos(y)))

ans =
 logical
 0

Find Vector Elements Containing Any of Specified
Subexpressions
Using has, find those elements of a symbolic vector that contain any of the specified
subexpressions.

syms x y z
T = has([x + 1, cos(y) + 1, y + z, 2*x*cos(y)], [x, cos(y)])

T =
 1×4 logical array
 1 1 0 1

Return only the elements of the original vector that contain x or cos(y) or both, and
replace all other elements with 0 by multiplying the original vector by T elementwise.

 has

4-885

[x + 1, cos(y) + 1, y + z, 2*x*cos(y)].*T

ans =
[x + 1, cos(y) + 1, 0, 2*x*cos(y)]

Use has for Symbolic Functions
If expr or subexpr is a symbolic function, has uses formula(expr) or
formula(subexpr). This approach lets the has function check if an expression defining
the symbolic function expr contains an expression defining the symbolic function
subexpr.

Create a symbolic function.

syms x
f(x) = sin(x) + cos(x);

Here, sin(x) + cos(x) is an expression defining the symbolic function f.

formula(f)

ans =
cos(x) + sin(x)

Check if f and f(x) contain sin(x). In both cases has checks if the expression sin(x)
+ cos(x) contains sin(x).

has(f, sin(x))
has(f(x), sin(x))

ans =
 logical
 1
ans =
 logical
 1

Check if f(x^2) contains f. For these arguments, has returns logical 0 (false) because it
does not check if the expression f(x^2) contains the letter f. This call is equivalent to
has(f(x^2), formula(f)), which, in turn, resolves to has(cos(x^2) + sin(x^2),
cos(x) + sin(x)).

has(f(x^2), f)

4 Functions — Alphabetical List

4-886

ans =
 logical
 0

Check for Calls to Particular Function
Check for calls to a particular function by specifying the function name as the second
argument. Check for calls to any one of multiple functions by specifying the multiple
functions as a cell array of character vectors.

Integrate tan(x^7). Determine if the integration is successful by checking the result for
calls to int. Because has finds the int function and returns logical 1 (true), the
integration is not successful.

syms x
f = int(tan(x^7), x);
has(f, 'int')

ans =
 logical
 1

Check if the solution to a differential equation contains calls to either sin or cos by
specifying the second argument as {'sin','cos'}. The has function returns logical 0
(false), which means the solution does not contain calls to either sin or cos.

syms y(x) a
sol = dsolve(diff(y,x) == a*y);
has(sol, {'sin' 'cos'})

ans =
 logical
 0

Input Arguments
expr — Expression to test
symbolic expression | symbolic function | symbolic equation | symbolic inequality |
symbolic vector | symbolic matrix | symbolic array

 has

4-887

Expression to test, specified as a symbolic expression, function, equation, or inequality.
Also it can be a vector, matrix, or array of symbolic expressions, functions, equations, and
inequalities.

subexpr — Subexpression to check for
symbolic variable | symbolic expression | symbolic function | symbolic equation | symbolic
inequality | symbolic vector | symbolic matrix | symbolic array | character vector | cell
array of character vectors

Subexpression to test for, specified as a symbolic variable, expression, function, equation,
or inequality, or a character vector, or a cell array of character vectors. subexpr can also
be a vector, matrix, or array of symbolic variables, expressions, functions, equations, and
inequalities.

Tips
• has does not transform or simplify expressions. This is why it does not find

subexpressions like x^2 in expressions like (x + 1)^2. However, in some cases has
might find that an expression or subexpression can be represented in a form other
than its original form. For example, has finds that the expression -x - 1 can be
represented as -(x + 1). Thus, the call has(-x - 1, x + 1) returns 1.

• If expr is an empty symbolic array, has returns an empty logical array of the same
size as expr.

See Also
subexpr | subs | times

Introduced in R2015b

4 Functions — Alphabetical List

4-888

hasSymType
Determine whether symbolic object contains specific type

Syntax
TF = hasSymType(symObj,type)
TF = hasSymType(symObj,funType,vars)

Description
TF = hasSymType(symObj,type) returns logical 1 (true) if the symbolic object
symObj contains a subobject of type type, and logical 0 (false) otherwise. The input
type must be a case-sensitive string scalar or character vector, and it can include a
logical expression.

TF = hasSymType(symObj,funType,vars) checks whether symObj contains an
unassigned symbolic function that depends on the variables vars.

You can set the function type funType to 'symfunOf' or 'symfunDependingOn'. For
example, syms f(x); hasSymType(f,'symfunOf',x) returns logical 1.

Examples

Symbolic Variable, Constant, or Number

Determine whether a symbolic expression contains a symbolic variable, constant, or
number of a specific type.

Create a symbolic expression.

syms x;
expr = sym('1/2') + 2*pi + x

expr =

 hasSymType

4-889

x + 2 π + 1
2

Check whether expr contains a symbolic variable of type 'variable'.

TF = hasSymType(expr,'variable')

TF = logical
 1

Check whether expr contains a symbolic constant of type 'constant'.

TF = hasSymType(expr,'constant')

TF = logical
 1

Check whether expr contains a symbolic number of type 'integer'.

TF = hasSymType(expr,'integer')

TF = logical
 1

Check whether expr contains a symbolic number of type 'integer | real'.

TF = hasSymType(expr,'integer | real')

TF = logical
 1

Check whether expr contains a symbolic number of type 'complex'.

TF = hasSymType(expr,'complex')

TF = logical
 0

4 Functions — Alphabetical List

4-890

Symbolic Function or Operator

Determine whether a symbolic equation contains a symbolic function or operator of a
specific type.

Create a symbolic equation.

syms f(x) n
eq = f(x^n) + int(f(x),x) + vpa(2.7) == 1i

eq =
f xn +∫ f x dx + 2.7000 = 1 i

Check whether eq contains the symbolic function 'f'.

TF = hasSymType(eq,'f')

TF = logical
 1

Check whether eq contains an unassigned symbolic function of type 'symfun'.

TF = hasSymType(eq,'symfun')

TF = logical
 1

Check whether eq contains a symbolic math function of type 'int'.

TF = hasSymType(eq,'int')

TF = logical
 1

Check whether eq contains an operator of type 'power'.

TF = hasSymType(eq,'power')

TF = logical
 1

 hasSymType

4-891

Function of Multiple Variables

Create a symbolic function of multiple variables using syms.

syms f(x,y,z)
g = f + x*y + pi

g(x, y, z) = π + x y + f x, y, z

Check whether g depends on the exact variable x using 'symfunOf'.

TF = hasSymType(g,'symfunOf',x)

TF = logical
 0

Check whether g depends on the exact sequence of variables [x y z] using
'symfunOf'.

TF = hasSymType(g,'symfunOf',[x y z])

TF = logical
 1

Check whether g has any dependency on the variables [y x] using
'symfunDependingOn'.

TF = hasSymType(g,'symfunDependingOn',[y x])

TF = logical
 1

Input Arguments
symObj — Symbolic objects
symbolic expressions | symbolic functions | symbolic variables | symbolic numbers |
symbolic units

4 Functions — Alphabetical List

4-892

Symbolic objects, specified as symbolic expressions, symbolic functions, symbolic
variables, symbolic numbers, or symbolic units.

type — Symbolic types
scalar string | character vector

Symbolic types, specified as a case-sensitive scalar string or character vector. The input
type can contain a logical expression. The value options follow.

Symbolic
Type
Category

String Values Examples Returning
Logical 1

numbers • 'integer' — integer numbers
• 'rational' — rational numbers
• 'vpareal' — variable-precision
floating-point real numbers

• 'complex' — complex numbers
• 'real' — real numbers, including

'integer', 'rational', and
'vpareal'

• 'number' — numbers, including
'integer', 'rational', 'vpareal',
'complex', and 'real'

• hasSymType(sym(2),'
integer')

• hasSymType(sym(1/2)
,'rational')

• hasSymType(vpa(0.5)
,'vpareal')

• hasSymType(vpa(1i),
'complex')

• hasSymType([sym(1/2
) vpa(0.5)],'real')

• hasSymType([vpa(1i)
sym(1/2)],'number')

constants 'constant' — symbolic constants,
including 'number'

hasSymType([vpa(1i)
sym(pi)],'constant')

symbolic math
functions

'vpa', 'sin', 'exp', and so on —
symbolic math functions in symbolic
expressions

hasSymType(vpa(sym(pi)
),'vpa')

unassigned
symbolic
functions

• 'F', 'g', and so on — function name of
an unassigned symbolic function

• 'symfun' — unassigned symbolic
functions

• syms F(x);
hasSymType(F(x
+2),'F')

• syms g(x);
hasSymType(g(x),'sy
mfun')

 hasSymType

4-893

Symbolic
Type
Category

String Values Examples Returning
Logical 1

arithmetic
operators

• 'plus' — addition operator + and
subtraction operator -

• 'times' — multiplication operator *
and division operator /

• 'power' — power or exponentiation
operator ^ and square root operator
sqrt

• syms x y;
hasSymType(2*x +
y,'plus')

• syms x y;
hasSymType(x*y,'tim
es')

• syms x y;
hasSymType(x^(y
+2),'power')

variables 'variable' — symbolic variables hasSymType(sym('x'),'v
ariable')

units 'units' — symbolic units hasSymType(symunit('m'
),'units')

expressions 'expression' — symbolic expressions,
including all of the preceding symbolic
types

hasSymType(sym('x')
+1,'expression')

logical
expressions

• 'or' — logical OR operator |
• 'and' — logical AND operator &
• 'not' — logical NOT operator ~
• 'xor' — logical exclusive-OR operator

xor
• 'logicalexpression' — logical

expressions, including 'or', 'and',
'not', and 'xor'

• syms x y;
hasSymType(x|
y,'or')

• syms x y;
hasSymType(x&y,'and
')

• syms x;
hasSymType(~x,'not'
)

• syms x y;
hasSymType(xor(x,y)
,'xor')

• syms x y;
hasSymType(~x|
y,'logicalexpressio
n')

4 Functions — Alphabetical List

4-894

Symbolic
Type
Category

String Values Examples Returning
Logical 1

equations and
inequalities

• 'eq' — equality operator ==
• 'ne' — inequality operator ~=
• 'lt' — less-than operator < or greater-

than operator >
• 'le' — less-than-or-equal-to operator

<= or greater-than-or-equal-to operator
>=

• 'equation' — symbolic equations and
inequalities, including 'eq', 'ne',
'lt', and 'le'

• syms x;
hasSymType(x==2,'eq
')

• syms x;
hasSymType(x~=1,'ne
')

• syms x;
hasSymType(x>0,'lt'
)

• syms x;
hasSymType(x<=2,'le
')

• syms x;
hasSymType([x>0
x~=1],'equation')

unsupported
symbolic
types

'unsupported' — unsupported symbolic
types

funType — Function type
'symfunOf' | 'symfunDependingOn'

Function type, specified as 'symfunOf' or 'symfunDependingOn'.

• 'symfunOf' checks whether symObj contains an unassigned symbolic function that
depends on the exact sequence of variables specified by the array vars. For example,
syms f(x,y); hasSymType(f,'symfunOf',[x y]) returns logical 1.

• 'symfunDependingOn' checks whether symObj contains an unassigned symbolic
function that has a dependency on the variables specified by the array vars. For
example, syms f(x,y); hasSymType(f,'symfunDependingOn',[y x]) returns
logical 1.

vars — Input variables
symbolic variables | symbolic array

Input variables, specified as symbolic variables or a symbolic array.

 hasSymType

4-895

Tips
• To check whether a symbolic expression contains a particular subexpression, use the

has function.

See Also
findSymType | has | isSymType | mapSymType | sym | symFunType | symType | syms

Introduced in R2019a

4 Functions — Alphabetical List

4-896

heaviside
Heaviside step function

Syntax
heaviside(x)

Description
heaviside(x) returns the value 0 for x < 0, 1 for x > 0, and 1/2 for x = 0.

Examples

Evaluate Heaviside Function for Numeric and Symbolic
Arguments
Depending on the argument value, heaviside returns one of these values: 0, 1, or 1/2.
If the argument is a floating-point number (not a symbolic object), then heaviside
returns floating-point results.

For x < 0, the function heaviside(x) returns 0:

heaviside(sym(-3))

ans =
0

For x > 0, the function heaviside(x) returns 1:

heaviside(sym(3))

ans =
1

For x = 0, the function heaviside(x) returns 1/2:

 heaviside

4-897

heaviside(sym(0))

ans =
1/2

For numeric x = 0, the function heaviside(x) returns the numeric result:

heaviside(0)

ans =
 0.5000

Use Assumptions on Variables
heaviside takes into account assumptions on variables.

syms x
assume(x < 0)
heaviside(x)

ans =
0

For further computations, clear the assumptions on x by recreating it using syms:

syms x

Plot Heaviside Function
Plot the Heaviside step function for x and x - 1.

syms x
fplot(heaviside(x), [-2, 2])

4 Functions — Alphabetical List

4-898

fplot(heaviside(x - 1), [-2, 2])

 heaviside

4-899

Evaluate Heaviside Function for Symbolic Matrix
Call heaviside for this symbolic matrix. When the input argument is a matrix,
heaviside computes the Heaviside function for each element.

syms x
heaviside(sym([-1 0; 1/2 x]))

ans =
[0, 1/2]
[1, heaviside(x)]

4 Functions — Alphabetical List

4-900

Differentiate and Integrate Expressions Involving Heaviside
Function
Compute derivatives and integrals of expressions involving the Heaviside function.

Find the first derivative of the Heaviside function. The first derivative of the Heaviside
function is the Dirac delta function.

syms x
diff(heaviside(x), x)

ans =
dirac(x)

Find the integral of the expression involving the Heaviside function:

syms x
int(exp(-x)*heaviside(x), x, -Inf, Inf)

ans =
1

Change Value of Heaviside Function at Origin
heaviside assumes that the value of the Heaviside function at the origin is 1/2.

heaviside(sym(0))

ans =
1/2

Other common values for the Heaviside function at the origin are 0 and 1. To change the
value of heaviside at the origin, use the 'HeavisideAtOrigin' preference of
sympref. Store the previous parameter value returned by sympref, so that you can
restore it later.

oldparam = sympref('HeavisideAtOrigin',1);

Check the new value of heaviside at 0.

heaviside(sym(0))

ans =
1

 heaviside

4-901

The preferences set by sympref persist throughout your current and future MATLAB
sessions. To restore the previous value of heaviside at the origin, use the value stored
in oldparam.

sympref('HeavisideAtOrigin',oldparam);

Alternatively, you can restore the default value of 'HeavisideAtOrigin' by using the
'default' setting.

sympref('HeavisideAtOrigin','default');

Input Arguments
x — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, function, vector, or matrix.

See Also
dirac | sympref

Introduced before R2006a

4 Functions — Alphabetical List

4-902

hermiteForm
Hermite form of matrix

Syntax
H = hermiteForm(A)
[U,H] = hermiteForm(A)

___ = hermiteForm(A,var)

Description
H = hermiteForm(A) returns the Hermite normal form on page 4-908 of a matrix A.
The elements of A must be integers or polynomials in a variable determined by
symvar(A,1). The Hermite form H is an upper triangular matrix.

[U,H] = hermiteForm(A) returns the Hermite normal form of A and a unimodular
transformation matrix U, such that H = U*A.

___ = hermiteForm(A,var) assumes that the elements of A are univariate
polynomials in the specified variable var. If A contains other variables, hermiteForm
treats those variables as symbolic parameters.

You can use the input argument var in any of the previous syntaxes.

If A does not contain var, then hermiteForm(A) and hermiteForm(A,var) return
different results.

Examples

Hermite Form for Matrix of Integers
Find the Hermite form of an inverse Hilbert matrix.

 hermiteForm

4-903

A = sym(invhilb(5))
H = hermiteForm(A)

A =
[25, -300, 1050, -1400, 630]
[-300, 4800, -18900, 26880, -12600]
[1050, -18900, 79380, -117600, 56700]
[-1400, 26880, -117600, 179200, -88200]
[630, -12600, 56700, -88200, 44100]

H =
[5, 0, -210, -280, 630]
[0, 60, 0, 0, 0]
[0, 0, 420, 0, 0]
[0, 0, 0, 840, 0]
[0, 0, 0, 0, 2520]

Hermite Form for Matrix of Univariate Polynomials
Create a 2-by-2 matrix, the elements of which are polynomials in the variable x.

syms x
A = [x^2 + 3, (2*x - 1)^2; (x + 2)^2, 3*x^2 + 5]

A =
[x^2 + 3, (2*x - 1)^2]
[(x + 2)^2, 3*x^2 + 5]

Find the Hermite form of this matrix.

H = hermiteForm(A)

H =
[1, (4*x^3)/49 + (47*x^2)/49 - (76*x)/49 + 20/49]
[0, x^4 + 12*x^3 - 13*x^2 - 12*x - 11]

Hermite Form for Matrix of Multivariate Polynomials
Create a 2-by-2 matrix that contains two variables: x and y.

syms x y
A = [2/x + y, x^2 - y^2; 3*sin(x) + y, x]

4 Functions — Alphabetical List

4-904

A =
[y + 2/x, x^2 - y^2]
[y + 3*sin(x), x]

Find the Hermite form of this matrix. If you do not specify the polynomial variable,
hermiteForm uses symvar(A,1) and thus determines that the polynomial variable is x.
Because 3*sin(x) + y is not a polynomial in x, hermiteForm throws an error.

H = hermiteForm(A)

Error using mupadengine/feval (line 163)
Cannot convert the matrix entries to integers or univariate polynomials.

Find the Hermite form of A specifying that all elements of A are polynomials in the
variable y.

H = hermiteForm(A,y)

H =
[1, (x*y^2)/(3*x*sin(x) - 2) + (x*(x - x^2))/(3*x*sin(x) - 2)]
[0, 3*y^2*sin(x) - 3*x^2*sin(x) + y^3 + y*(- x^2 + x) + 2]

Hermite Form and Transformation Matrix
Find the Hermite form and the corresponding transformation matrix for an inverse
Hilbert matrix.

A = sym(invhilb(3));
[U,H] = hermiteForm(A)

U =
[13, 9, 7]
[6, 4, 3]
[20, 15, 12]

H =
[3, 0, 30]
[0, 12, 0]
[0, 0, 60]

Verify that H = U*A.

isAlways(H == U*A)

 hermiteForm

4-905

ans =
 3×3 logical array
 1 1 1
 1 1 1
 1 1 1

Find the Hermite form and the corresponding transformation matrix for a matrix of
polynomials.

syms x y
A = [2*(x - y), 3*(x^2 - y^2);
 4*(x^3 - y^3), 5*(x^4 - y^4)];
[U,H] = hermiteForm(A,x)

U =
[1/2, 0]
[2*x^2 + 2*x*y + 2*y^2, -1]

H =
[x - y, (3*x^2)/2 - (3*y^2)/2]
[0, x^4 + 6*x^3*y - 6*x*y^3 - y^4]

Verify that H = U*A.

isAlways(H == U*A)

ans =
 2×2 logical array
 1 1
 1 1

If You Specify Variable for Integer Matrix
If a matrix does not contain a particular variable, and you call hermiteForm specifying
that variable as the second argument, then the result differs from what you get without
specifying that variable. For example, create a matrix that does not contain any variables.

A = [9 -36 30; -36 192 -180; 30 -180 180]

A =
 9 -36 30
 -36 192 -180
 30 -180 180

4 Functions — Alphabetical List

4-906

Call hermiteForm specifying variable x as the second argument. In this
case, hermiteForm assumes that the elements of A are univariate polynomials in x.

syms x
hermiteForm(A,x)

ans =
 1 0 0
 0 1 0
 0 0 1

Call hermiteForm without specifying variables. In this case, hermiteForm treats A as a
matrix of integers.

hermiteForm(A)

ans =
 3 0 30
 0 12 0
 0 0 60

Input Arguments
A — Input matrix
symbolic matrix

Input matrix, specified as a symbolic matrix, the elements of which are integers or
univariate polynomials. If the elements of A contain more than one variable, use the var
argument to specify a polynomial variable, and treat all other variables as symbolic
parameters. If A is multivariate, and you do not specify var, then hermiteForm uses
symvar(A,1) to determine a polynomial variable.

var — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

Output Arguments
H — Hermite normal form of input matrix
symbolic matrix

 hermiteForm

4-907

Hermite normal form of input matrix, returned as a symbolic matrix. The Hermite form of
a matrix is an upper triangular matrix.

U — Transformation matrix
unimodular symbolic matrix

Transformation matrix, returned as a unimodular symbolic matrix. If elements of A are
integers, then elements of U are also integers, and det(U) = 1 or det(U) = -1. If
elements of A are polynomials, then elements of U are univariate polynomials, and
det(U) is a constant.

Definitions

Hermite Normal Form
For any square n-by-n matrix A with integer coefficients, there exists an n-by-n matrix H
and an n-by-n unimodular matrix U, such that A*U = H, where H is the Hermite normal
form of A. A unimodular matrix is a real square matrix, such that its determinant equals 1
or -1. If A is a matrix of polynomials, then the determinant of U is a constant.

hermiteForm returns the Hermite normal form of a nonsingular integer square matrix A

as an upper triangular matrix H, such that H j j ≥ 0 and −
H j j
2 < Hi j ≤

H j j
2 for j > i. If A is

not a square matrix or a singular matrix, the matrix H is simply an upper triangular
matrix.

See Also
jordan | smithForm

Introduced in R2015b

4 Functions — Alphabetical List

4-908

hermiteH
Hermite polynomials

Syntax
hermiteH(n,x)

Description
hermiteH(n,x) represents the nth-degree Hermite polynomial at the point x.

Examples

First Five Hermite Polynomials

Find the first five Hermite polynomials for the variable x.

syms x
hermiteH([0 1 2 3 4], x)

ans =
[1, 2*x, 4*x^2 - 2, 8*x^3 - 12*x, 16*x^4 - 48*x^2 + 12]

Hermite Polynomials for Numeric and Symbolic Arguments

Depending on whether the input is numeric or symbolic, hermiteH returns numeric or
exact symbolic results.

Find the value of the fifth-degree Hermite polynomial at 1/3. Because the input is
numeric, hermiteH returns numeric results.

hermiteH(5,1/3)

 hermiteH

4-909

ans =
 34.2058

Find the same result for exact symbolic input. hermiteH returns an exact symbolic
result.

hermiteH(5,sym(1/3))

ans =
8312/243

Plot Hermite Polynomials

Plot the first five Hermite polynomials.

syms x y
fplot(hermiteH(0:4,x))
axis([-2 2 -30 30])
grid on

ylabel('H_n(x)')
legend('H_0(x)', 'H_1(x)', 'H_2(x)', 'H_3(x)', 'H_4(x)', 'Location', 'Best')
title('Hermite polynomials')

4 Functions — Alphabetical List

4-910

Input Arguments
n — Degree of polynomial
nonnegative integer | symbolic variable | symbolic expression | symbolic function | vector
| matrix

Degree of the polynomial, specified as a nonnegative integer, symbolic variable,
expression, or function, or as a vector or matrix of numbers, symbolic numbers, variables,
expressions, or functions.

 hermiteH

4-911

x — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Definitions

Hermite Polynomials
Hermite polynomials are defined by this recursion formula.

H 0, x = 1, H 1, x = 2x, H n, x = 2xH n− 1, x − 2 n− 1 H n− 2, x

Hermite polynomials in MATLAB satisfy this normalization.

∫−∞
∞

Hn(x) 2e−x2dx = 2n πn!

Tips
• hermiteH returns floating-point results for numeric arguments that are not symbolic

objects.
• hermiteH acts element-wise on nonscalar inputs.
• At least one input argument must be a scalar or both arguments must be vectors or

matrices of the same size. If one input argument is a scalar and the other one is a
vector or a matrix, then hermiteH expands the scalar into a vector or matrix of the
same size as the other argument with all elements equal to that scalar.

References
[1] Hochstrasser, U. W. “Orthogonal Polynomials.” Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A.
Stegun, eds.). New York: Dover, 1972.

4 Functions — Alphabetical List

4-912

See Also
chebyshevT | chebyshevU | gegenbauerC | jacobiP | laguerreL | legendreP

Introduced in R2014b

 hermiteH

4-913

hessian
Hessian matrix of scalar function

Syntax
hessian(f,v)

Description
hessian(f,v) finds the Hessian matrix on page 4-915 of the scalar function f with
respect to vector v in Cartesian coordinates.

If you do not specify v, then hessian(f) finds the Hessian matrix of the scalar function
f with respect to a vector constructed from all symbolic variables found in f. The order of
variables in this vector is defined by symvar.

Examples

Find Hessian Matrix of Scalar Function
Find the Hessian matrix of a function by using hessian. Then find the Hessian matrix of
the same function as the Jacobian of the gradient of the function.

Find the Hessian matrix of this function of three variables:

syms x y z
f = x*y + 2*z*x;
hessian(f,[x,y,z])

ans =
[0, 1, 2]
[1, 0, 0]
[2, 0, 0]

4 Functions — Alphabetical List

4-914

Alternatively, compute the Hessian matrix of this function as the Jacobian of the gradient
of that function:

jacobian(gradient(f))

ans =
[0, 1, 2]
[1, 0, 0]
[2, 0, 0]

Input Arguments
f — Scalar function
symbolic expression | symbolic function

Scalar function, specified as symbolic expression or symbolic function.

v — Vector with respect to which you find Hessian matrix
symbolic vector

Vector with respect to which you find Hessian matrix, specified as a symbolic vector. By
default, v is a vector constructed from all symbolic variables found in f. The order of
variables in this vector is defined by symvar.

If v is an empty symbolic object, such as sym([]), then hessian returns an empty
symbolic object.

Definitions

Hessian Matrix
The Hessian matrix of f(x) is the square matrix of the second partial derivatives of f(x).

 hessian

4-915

H(f) =

∂2 f
∂x1

2
∂2 f
∂x1∂x2

⋯ ∂2 f
∂x1∂xn

∂2 f
∂x2∂x1

∂2 f
∂x2

2 ⋯ ∂2 f
∂x2∂xn

⋮ ⋮ ⋱ ⋮
∂2 f
∂xn∂x1

∂2 f
∂xn∂x2

⋯ ∂2 f
∂xn

2

See Also
curl | diff | divergence | gradient | jacobian | laplacian | potential |
vectorPotential

Introduced in R2011b

4 Functions — Alphabetical List

4-916

horner
Horner nested polynomial representation

Syntax
horner(p)
horner(p,var)

Description
horner(p) returns the Horner form of the polynomial p.

horner(p,var) uses the variable in var.

Examples

Horner Form of Polynomial

Find the Horner representation of a polynomial.

syms x
p = x^3 - 6*x^2 + 11*x - 6;
horner(p)

ans =
x*(x*(x - 6) + 11) - 6

Specify the variable in the polynomial by using the second argument.

syms a b y
p = a*y*x^3 - y*x^2 - 11*b*y*x + 2;
horner(p,x)

ans =
2 - x*(11*b*y + x*(y - a*x*y))

 horner

4-917

horner(p,y)

ans =
2 - y*(- a*x^3 + x^2 + 11*b*x)

Input Arguments
p — Polynomial
symbolic expression | symbolic function | array of symbolic expressions | array of symbolic
functions

Polynomial, specified as a symbolic expression or function, or an array of symbolic
expressions or functions.

var — Variable
symbolic variable | array of symbolic variables

Variable, specified as a symbolic variable or an array of symbolic variables.

See Also
collect | combine | expand | factor | numden | rewrite | simplify |
simplifyFraction

Introduced before R2006a

4 Functions — Alphabetical List

4-918

horzcat
Concatenate symbolic arrays horizontally

Syntax
horzcat(A1,...,AN)
[A1 ... AN]

Description
horzcat(A1,...,AN) horizontally concatenates the symbolic arrays A1,...,AN. For
vectors and matrices, all inputs must have the same number of rows. For
multidimensional arrays, horzcat concatenates inputs along the second dimension. The
remaining dimensions must match.

[A1 ... AN] is a shortcut for horzcat(A1,...,AN).

Examples

Concatenate Two Symbolic Matrices Horizontally
Create matrices A and B.

A = sym('a%d%d',[2 2])
B = sym('b%d%d',[2 2])

A =
[a11, a12]
[a21, a22]
B =
[b11, b12]
[b21, b22]

Concatenate A and B.

 horzcat

4-919

horzcat(A,B)

ans =
[a11, a12, b11, b12]
[a21, a22, b21, b22]

Alternatively, use the shortcut [A B].

[A B]

ans =
[a11, a12, b11, b12]
[a21, a22, b21, b22]

Concatenate Multiple Symbolic Arrays Horizontally
A = sym('a%d',[3 1]);
B = sym('b%d%d',[3 3]);
C = sym('c%d%d',[3 2]);
horzcat(C,A,B)

ans =
[c11, c12, a1, b11, b12, b13]
[c21, c22, a2, b21, b22, b23]
[c31, c32, a3, b31, b32, b33]

Alternatively, use the shortcut [C A B].

[C A B]

ans =
[c11, c12, a1, b11, b12, b13]
[c21, c22, a2, b21, b22, b23]
[c31, c32, a3, b31, b32, b33]

Concatenate Multidimensional Arrays Horizontally
Create the 3-D symbolic arrays A and B.

A = sym('a%d%d',[2 3]);
A(:,:,2) = -A
B = sym('b%d%d', [2 2]);
B(:,:,2) = -B

4 Functions — Alphabetical List

4-920

A(:,:,1) =
[a11, a12, a13]
[a21, a22, a23]
A(:,:,2) =
[-a11, -a12, -a13]
[-a21, -a22, -a23]

B(:,:,1) =
[b11, b12]
[b21, b22]
B(:,:,2) =
[-b11, -b12]
[-b21, -b22]

Use horzcat to concatenate A and B.

horzcat(A,B)

ans(:,:,1) =
[a11, a12, a13, b11, b12]
[a21, a22, a23, b21, b22]
ans(:,:,2) =
[-a11, -a12, -a13, -b11, -b12]
[-a21, -a22, -a23, -b21, -b22]

Alternatively, use the shortcut [A B].

[A B]

ans(:,:,1) =
[a11, a12, a13, b11, b12]
[a21, a22, a23, b21, b22]
ans(:,:,2) =
[-a11, -a12, -a13, -b11, -b12]
[-a21, -a22, -a23, -b21, -b22]

Input Arguments
A1,...,AN — Input arrays
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array

Input arrays, specified as symbolic variables, vectors, matrices, or multidimensional
arrays.

 horzcat

4-921

See Also
cat | vertcat

Introduced before R2006a

4 Functions — Alphabetical List

4-922

htrans
Hilbert transform

Syntax
H = htrans(f)
H = htrans(f,transVar)
H = htrans(f,var,transVar)

Description
H = htrans(f) returns the Hilbert transform of symbolic function f. By default, the
independent variable is t and the transformation variable is x.

H = htrans(f,transVar) uses the transformation variable transVar instead of x.

H = htrans(f,var,transVar) uses the independent variable var and the
transformation variable transVar instead of t and x, respectively.

• If all input arguments are arrays of the same size, then htrans acts element-wise.
• If one input is a scalar and the others are arrays of the same size, then htrans

expands the scalar into an array of the same size.
• If f is an array of symbolic expressions with different independent variables, then var

must be a symbolic array with elements corresponding to the independent variables.

Examples

Transform Symbolic Expression

Compute the Hilbert transform of sin(t). By default, the transform returns a function of
x.

 htrans

4-923

syms t;
f = sin(t);
H = htrans(f)

H = −cos x

Transform Sinc Function

Compute the Hilbert transform of the sinc function, which is equal to sin(πx)/πx.
Express the result as a function of u.

syms f(x) H(u);
f(x) = sinc(x);
H(u) = htrans(f,u)

H(u) =

−
cos π u

u − 1
u

π

Plot the sinc function and its Hilbert transform.

fplot(f(x),[0 6])
hold on
fplot(H(u),[0 6])
legend('sinc(x)','H(u)')

4 Functions — Alphabetical List

4-924

Apply Phase Shifts

Create a sine wave with a positive frequency in real space.

syms A x t u;
assume([x t],'real')
y = A*sin(2*pi*10*t + 5*x)

y = A sin 5 x + 20 π t

Apply a –90-degree phase shift to the positive frequency component using the Hilbert
transform. Specify the independent variable as t and the transformation variable as u.

 htrans

4-925

H = htrans(y,t,u)

H = −A cos 5 x + 20 π u

Now create a complex signal with negative frequency. Apply a 90-degree phase shift to
the negative frequency component using the Hilbert transform.

z = A*exp(-1i*10*t)

z = A e−10 t i

H = htrans(z)

H = A e−10 x i i

Calculate Instantaneous Frequency

Create a real-valued signal f t with two frequency components, 60 Hz and 90 Hz.

syms t f(t) F(s)
f(t) = sin(2*pi*60*t) + sin(2*pi*90*t)

f(t) = sin 120 π t + sin 180 π t

Calculate the corresponding analytic signal F s using the Hilbert transform.

F(s) = f(s) + 1i*htrans(f(t),s)

F(s) = sin 120 π s + sin 180 π s − cos 120 π s i − cos 180 π s i

Calculate the instantaneous frequency of F s using

f instant(s) = 1
2π

dϕ(s)
ds ,

where ϕ s = arg F(s) is the instantaneous phase of the analytic signal.

InstantFreq(s) = diff(angle(F(s)),s)/(2*pi);
assume(s,'real')
simplify(InstantFreq(s))

ans = 75

4 Functions — Alphabetical List

4-926

Input Arguments
f — Input
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic expression, symbolic function, symbolic vector, or symbolic
matrix.

var — Independent variable
t (default) | symbolic variable | symbolic vector | symbolic matrix

Independent variable, specified as a symbolic variable, symbolic vector, or symbolic
matrix. This variable is usually in the time domain. If you do not specify the variable, then
htrans uses t by default. If f does not contain t, then htrans uses the function symvar
to determine the independent variable.

transVar — Transformation variable
x (default) | v | symbolic variable | symbolic vector | symbolic matrix

Transformation variable, specified as a symbolic variable, symbolic vector, or symbolic
matrix. This variable is in the same domain as var. If you do not specify the variable, then
htrans uses x by default. If x is the independent variable of f, then htrans uses the
transformation variable v.

Output Arguments
H — Hilbert transform of f
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Hilbert transform or harmonic conjugate of the input function f. The output H is a
function of the variable specified by transVar.

When htrans cannot transform the input function, it returns an unevaluated call. To
return the original expression, apply the inverse Hilbert transform to the output by using
ihtrans.

 htrans

4-927

Definitions

Hilbert Transform
The Hilbert transform H = H(x) of the expression f = f(t) with respect to the variable t at
point x is

H x = 1
πp.v. ∫

−∞

∞
f t

x− tdt .

Here, p.v. represents the Cauchy principal value of the integral. The function f(t) can be
complex, but t and x must be real.

Tips
• To compute the inverse Hilbert transform, use ihtrans. The Hilbert transform of a

function is equal to the negative of its inverse Hilbert transform.
• For a signal in the time domain, the Hilbert transform applies a –90-degree phase shift

to positive frequencies of the corresponding Fourier components. It also applies a 90-
degree phase shift to negative frequencies.

• For a real-valued signal a, the Hilbert transform b = htrans(a) returns its harmonic
conjugate b. The real signal a = real(z) and its Hilbert transform b = imag(z)
form the analytic signal z = a + 1i*b.

See Also
fourier | ifourier | ihtrans | ilaplace | laplace

Introduced in R2019a

4 Functions — Alphabetical List

4-928

hurwitzZeta
Hurwitz zeta function

Syntax
Z = hurwitzZeta(s,a)
Z = hurwitzZeta(n,s,a)

Description
Z = hurwitzZeta(s,a) evaluates the Hurwitz zeta function on page 4-933 for the
numeric or symbolic inputs s and a. The Hurwitz zeta function is defined only if s is not 1
and a is neither 0 nor a negative integer.

Z = hurwitzZeta(n,s,a) returns the nth derivative of hurwitzZeta(s,a) with
respect to the variable s.

Examples

Numeric and Symbolic Inputs

Evaluate the Hurwitz zeta function with numeric input arguments.

Z = hurwitzZeta(0,1)

Z = -0.5000

Compute the symbolic output of hurwitzZeta by converting the inputs to symbolic
numbers using sym.

symZ = hurwitzZeta(sym([0 2]),1)

symZ =

−1
2

π2
6

 hurwitzZeta

4-929

Use the vpa function to approximate symbolic results with the default 32 digits of
precision.

valZ = vpa(symZ)

valZ = −0.5 1.644934066848226436472415166646

Special Values

For certain parameter values, symbolic evaluation of the Hurwitz zeta function returns
special values that are related to other symbolic functions.

For a = 1, the Hurwitz zeta function returns the Riemann zeta function zeta.

syms s a;
Z = hurwitzZeta(s,1)

Z = ζ s

For s = 2, the Hurwitz zeta function returns the first derivative of the digamma function
psi.

Z = hurwitzZeta(2,a)

Z = ψ′ a

For nonpositive integers s, the Hurwitz zeta function returns polynomials in terms of a.

Z = hurwitzZeta(0,a)

Z =
1
2 − a

Z = hurwitzZeta(-1,a)

Z =

− a2
2 + a

2 −
1
12

Z = hurwitzZeta(-2,a)

Z =

4 Functions — Alphabetical List

4-930

− a3
3 + a2

2 − a
6

Differentiate Hurwitz Zeta Function

Find the first derivative of the Hurwitz zeta function with respect to the variable s.

syms s a
Z = hurwitzZeta(1,s,a)

Z = ζ′ s, a

Evaluate the first derivative at s = 0 and a = 1 by using the subs function.

symZ = subs(Z,[s a],[0 1])

symZ = −0.9189

Use the diff function to find the first derivative of the Hurwitz zeta function with respect
to a.

Z = diff(hurwitzZeta(s,a),a)

Z = −s ζ s + 1, a

Plot Hurwitz Zeta Function

Plot the Hurwitz zeta function for s within the interval [-20 10], given a = 0.7.

fplot(@(s) hurwitzZeta(s,0.7),[-20 10])
axis([-20 10 -40 35]);

 hurwitzZeta

4-931

Input Arguments
s — Input
number | array | symbolic number | symbolic variable | symbolic function | symbolic
expression | symbolic array

Input, specified as a number, array, symbolic number, symbolic variable, symbolic
function, symbolic expression, or symbolic array. The Hurwitz zeta function is defined
only for values of s not equal to 1.
Data Types: single | double | sym | symfun

4 Functions — Alphabetical List

4-932

Complex Number Support: Yes

a — Input
number | array | symbolic number | symbolic variable | symbolic function | symbolic
expression | symbolic array

Input, specified as a number, array, symbolic number, symbolic variable, symbolic
function, symbolic expression, or symbolic array. The Hurwitz zeta function is defined
only for values of a not equal to 0 or a negative integer.
Data Types: single | double | sym | symfun
Complex Number Support: Yes

n — Order of derivative
nonnegative integer

Order of derivative, specified as a nonnegative integer.

Definitions

Hurwitz Zeta Function
The Hurwitz zeta function is defined by the formula

ζ s, a = ∑
k = 0

∞ 1
k + a s .

The summation series converges only when Re(s) > 1 and a is neither 0 nor a negative
integer. Analytic continuation extends the definition of the function to the entire complex
plane, except for a simple pole at s = 1.

Tips
• Floating-point evaluation of the Hurwitz zeta function can be slow for complex

arguments or high-precision numbers. To increase the computational speed, you can
reduce the floating-point precision by using the vpa and digits functions. For more
information, see “Increase Speed by Reducing Precision” on page 2-130.

 hurwitzZeta

4-933

• The Hurwitz zeta function is related to other special functions. For example, it can be
expressed in terms of the polylogarithm Lis(z) and the gamma function Γ(z):

ζ 1− s, a = Γ s
2π s e−iπs/2 Lis e2πia + eiπs/2 Lis e−2πia .

Here, Re(s) > 0 and Im(a) > 0, or Re(s) > 1 and Im(a) = 0.

References
[1] Olver, F. W. J., A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W.

Clark, B. R. Miller, and B. V. Saunders, eds., Chapter 25. Zeta and Related
Functions, NIST Digital Library of Mathematical Functions, Release 1.0.20, Sept.
15, 2018.

See Also
bernoulli | gamma | polylog | psi | zeta

Introduced in R2019a

4 Functions — Alphabetical List

4-934

https://dlmf.nist.gov/25
https://dlmf.nist.gov/25

hypergeom
Hypergeometric function

Syntax
hypergeom(a,b,z)

Description
hypergeom(a,b,z) represents the generalized hypergeometric function on page 4-
938.

Examples

Hypergeometric Function for Numeric and Symbolic
Arguments
Depending on whether the input is floating point or symbolic, hypergeom returns floating
point or symbolic results.

Compute the hypergeometric function for these numbers. Because these numbers are
floating point, hypergeom returns floating-point results.

A = [hypergeom([1 2], 2.5, 2),...
 hypergeom(1/3, [2 3], pi),...
 hypergeom([1 1/2], 1/3, 3*i)]

A =
 -1.2174 - 0.8330i 1.2091 + 0.0000i -0.2028 + 0.2405i

Return exact symbolic results by converting at least one of the inputs to symbolic form by
using sym. For most symbolic (exact) inputs, hypergeom returns unresolved symbolic
calls.

 hypergeom

4-935

symA = [hypergeom([1 2], 2.5, sym(2)),...
 hypergeom(1/3, [2 3], sym(pi)),...
 hypergeom([1 1/2], sym(1/3), 3*i)]

symA =
[hypergeom([1, 2], 5/2, 2), hypergeom(1/3, [2, 3], pi), hypergeom([1/2, 1], 1/3, 3i)]

Convert the symbolic result to high-precision floating-point by using vpa.

vpa(symA)

ans =
[- 1.2174189301051728850455150601879 - 0.83304055090469367131547768563638i,...
 1.2090631887094273193917339575087,...
 - 0.20275169745081962937527290365593 + 0.24050134226872040357481317881983i]

Special Values of Hypergeometric Function
Show that hypergeom returns special values for certain input values.

syms a b c d x
hypergeom([], [], x)

ans =
exp(x)

hypergeom([a b c d], [a b c d], x)

ans =
exp(x)

hypergeom(a, [], x)

ans =
1/(1 - x)^a

Show that the hypergeometric function is always 1 at 0.

syms a b c d
hypergeom([a b], [c d], 0)

ans =
1

4 Functions — Alphabetical List

4-936

If, after cancelling identical parameters in the first two arguments, the list of upper
parameters contains 0, the resulting hypergeometric function is constant with the value
1. For details, see “Algorithms” on page 4-939.

hypergeom([0 0 2 3], [a 0 4], x)

ans =
1

If, after canceling identical parameters in the first two arguments, the upper parameters
contain a negative integer larger than the largest negative integer in the lower
parameters, the hypergeometric function is a polynomial.

hypergeom([-4 -2 3], [-3 1 4], x)

ans =
(3*x^2)/5 - 2*x + 1

Hypergeometric functions reduce to other special functions for certain input values.

hypergeom([1], [a], x)
hypergeom([a], [a, b], x)

ans =
(exp(x/2)*whittakerM(1 - a/2, a/2 - 1/2, -x))/(-x)^(a/2)

ans =
 x^(1/2 - b/2)*gamma(b)*besseli(b - 1, 2*x^(1/2))

Handling Expressions That Contain Hypergeometric Functions
Many symbolic functions, such as diff and taylor, handle expressions containing
hypergeom.

Differentiate this expression containing the hypergeometric function.

syms a b c d x
diff(1/x*hypergeom([a b],[c d],x), x)

ans =
(a*b*hypergeom([a + 1, b + 1], [c + 1, d + 1], x))/(c*d*x)...
 - hypergeom([a, b], [c, d], x)/x^2

Compute the Taylor series of this hypergeometric function.

 hypergeom

4-937

taylor(hypergeom([1 2],3,x), x)

ans =
(2*x^5)/7 + x^4/3 + (2*x^3)/5 + x^2/2 + (2*x)/3 + 1

Input Arguments
a — Upper parameters of hypergeometric function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector

Upper parameters of hypergeometric function, specified as a number, variable, symbolic
expression, symbolic function, or vector.

b — Lower parameters of hypergeometric function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector

Lower parameters of hypergeometric function, specified as a number, variable, symbolic
expression, symbolic function, or vector.

z — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Definitions

Generalized Hypergeometric Function
The generalized hypergeometric function of order p, q is defined as follows.

Fp q a; b; z = Fp q a1, …, a j, …, ap; b1, …, bk, …, bq; z = ∑
n = 0

∞ a1 n… a j n… ap n
b1 n… bk n… bq n

zn

n! .

Here a = [a1,a2,...,ap] and b = [b1,b2,...,bq] are vectors of lengths p and q, respectively.

4 Functions — Alphabetical List

4-938

(a)k and (b)k are Pochhammer symbols.

For empty vectors a and b, hypergeom is defined as follows.

F0 q ; b; z = ∑
k = 0

∞ 1
b1 k b2 k… bq k

zk

k!

Fp 0 a; ; z = ∑
k = 0

∞
a1 k a2 k… ap k

zk

k!

F0 0 ; ; z = ∑
k = 0

∞ zk

k! = ez .

Pochhammer Symbol

x n = Γ x + n
Γ x .

If n is a positive integer, then (x)n = x(x + 1)...(x + n - 1).

Algorithms
The hypergeometric function is

Fp q a; b; z = Fp q a1, …, a j, …, ap; b1, …, bk, …, bq; z = ∑
n = 0

∞ a1 n… a j n… ap n
b1 n… bk n… bq n

zn

n! .

• The hypergeometric function has convergence criteria:

• Converges if p ≤ q and |z| < ∞.
• Converges if p = q + 1 and |z| < 1. For |z| >= 1, the series diverges, and is defined

by analytic continuation.
• Diverges if p > q + 1 and z ≠ 0. Here, the series is defined by an asymptotic

expansion of pFq(a;b;z) around z = 0. The branch cut is the positive real axis.
• The function is a polynomial, called the hypergeometric polynomial, if any aj is a

nonpositive integer.
• The function is undefined:

 hypergeom

4-939

• If any bk is a nonpositive integer such that bk > aj where aj is also a nonpositive
integer, because division by 0 occurs

• If any bk is a nonpositive integer and no aj is a nonpositive integer
• The function has reduced order when upper and lower parameter values are equal and

cancel. If r values of the upper and lower parameters are equal (that is, a = [a1,…,ap - r,
c1,…,cr], b = [b1,…,bq - r, c1,…,cr]), then the order (p, q) of pFq(a;b;z) is reduced to (p - r,
q - r):

Fp q a1, …, ap− r, c1, …, cr; b1, …, bq− r, c1, …, cr; z =
Fp− r q− r a1, …, ap− r; b1, …, bq− r; z

This rule applies even if any ci is zero or a negative integer [2].
• pFq(a;b;z) is symmetric. That is, it does not depend on the order a1, a2, … in a or b1, b2,

… in b.
• U z = Fp q a; b; z satisfies the differential equation in z

δ δ + b− 1 − z(δ + a) U z = 0, δ = z ∂∂z .

Here, (δ + a) represents

∏
i = 1

p
δ + ai .

And (δ + b) represents

∏
j = 1

q
δ + b j .

Thus, the order of this differential equation is max(p, q + 1), and the hypergeometric
function is only one of its solutions. If p < q + 1, this differential equation has a
regular singularity at z = 0 and an irregular singularity at z = ∞. If p = q + 1, the
points z = 0, z = 1, and z = ∞ are regular singularities, which explains the
convergence properties of the hypergeometric series.

• The hypergeometric function has these special values:

• pFp(a;a;z) = 0F0(;;z) = ez.
• pFq(a;b;z) = 1 if the list of upper parameters a contains more 0s than the list of

lower parameters b.

4 Functions — Alphabetical List

4-940

• pFq(a;b;0) = 1.

References
[1] Oberhettinger, F. “Hypergeometric Functions.” Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A.
Stegun, eds.). New York: Dover, 1972.

[2] Luke, Y.L. "The Special Functions and Their Approximations", Vol. 1, Academic Press,
New York, 1969.

[3] Prudnikov, A.P., Yu.A. Brychkov, and O.I. Marichev, "Integrals and Series", Vol. 3: More
Special Functions, Gordon and Breach, 1990.

See Also
kummerU | meijerG | whittakerM | whittakerW

Introduced before R2006a

 hypergeom

4-941

ifourier
Inverse Fourier transform

Syntax
ifourier(F)
ifourier(F,transVar)
ifourier(F,var,transVar)

Description
ifourier(F) returns the “Inverse Fourier Transform” on page 4-946 of F. By default,
the independent variable is w and the transformation variable is x. If F does not contain w,
ifourier uses the function symvar.

ifourier(F,transVar) uses the transformation variable transVar instead of x.

ifourier(F,var,transVar) uses the independent variable var and the
transformation variable transVar instead of w and x, respectively.

Examples

Inverse Fourier Transform of Symbolic Expression

Compute the inverse Fourier transform of exp(-w^2/4). By default, the inverse
transform is in terms of x.

syms w
F = exp(-w^2/4);
ifourier(F)

ans =
exp(-x^2)/pi^(1/2)

4 Functions — Alphabetical List

4-942

Default Independent Variable and Transformation Variable

Compute the inverse Fourier transform of exp(-w^2-a^2). By default, the independent
and transformation variables are w and x, respectively.

syms a w t
F = exp(-w^2-a^2);
ifourier(F)

ans =
exp(- a^2 - x^2/4)/(2*pi^(1/2))

Specify the transformation variable as t. If you specify only one variable, that variable is
the transformation variable. The independent variable is still w.

ifourier(F,t)

ans =
exp(- a^2 - t^2/4)/(2*pi^(1/2))

Inverse Fourier Transforms Involving Dirac and Heaviside Functions

Compute the inverse Fourier transform of expressions in terms of Dirac and Heaviside
functions.

syms t w
ifourier(dirac(w), w, t)

ans =
1/(2*pi)

f = 2*exp(-abs(w))-1;
ifourier(f,w,t)

ans =
-(2*pi*dirac(t) - 4/(t^2 + 1))/(2*pi)

f = exp(-w)*heaviside(w);
ifourier(f,w,t)

ans =
-1/(2*pi*(- 1 + t*1i))

 ifourier

4-943

Specify Parameters of Inverse Fourier Transform

Specify parameters of the inverse Fourier transform.

Compute the inverse Fourier transform of this expression using the default values of the
Fourier parameters c = 1, s = -1. For details, see “Inverse Fourier Transform” on page
4-946.

syms t w
f = -(sqrt(sym(pi))*w*exp(-w^2/4)*i)/2;
ifourier(f,w,t)

ans =
t*exp(-t^2)

Change the Fourier parameters to c = 1, s = 1 by using sympref, and compute the
transform again. The sign of the result changes.

sympref('FourierParameters',[1 1]);
ifourier(f,w,t)

ans =
-t*exp(-t^2)

Change the Fourier parameters to c = 1/(2*pi), s = 1. The result changes.

sympref('FourierParameters', [1/(2*sym(pi)) 1]);
ifourier(f,w,t)

ans =
-2*pi*t*exp(-t^2)

Preferences set by sympref persist through your current and future MATLAB sessions.
Restore the default values of c and s by setting FourierParameters to 'default'.

sympref('FourierParameters','default');

Inverse Fourier Transform of Array Inputs

Find the inverse Fourier transform of the matrix M. Specify the independent and
transformation variables for each matrix entry by using matrices of the same size. When
the arguments are nonscalars, ifourier acts on them element-wise.

4 Functions — Alphabetical List

4-944

syms a b c d w x y z
M = [exp(x), 1; sin(y), i*z];
vars = [w, x; y, z];
transVars = [a, b; c, d];
ifourier(M,vars,transVars)

ans =
[exp(x)*dirac(a), dirac(b)]
[(dirac(c - 1)*1i)/2 - (dirac(c + 1)*1i)/2, dirac(1, d)]

If ifourier is called with both scalar and nonscalar arguments, then it expands the
scalars to match the nonscalars by using scalar expansion. Nonscalar arguments must be
the same size.

ifourier(x,vars,transVars)

ans =
[x*dirac(a), -dirac(1, b)*1i]
[x*dirac(c), x*dirac(d)]

If Inverse Fourier Transform Cannot Be Found

If ifourier cannot transform the input, then it returns an unevaluated call to fourier.

syms F(w) t
f = ifourier(F,w,t)

f =
fourier(F(w), w, -t)/(2*pi)

Input Arguments
F — Input
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic expression, function, vector, or matrix.

var — Independent variable
x (default) | symbolic variable

Independent variable, specified as a symbolic variable. This variable is often called the
"frequency variable." If you do not specify the variable, then ifourier uses w. If F does

 ifourier

4-945

not contain w, then ifourier uses the function symvar to determine the independent
variable.

transVar — Transformation variable
x (default) | t | symbolic variable | symbolic expression | symbolic vector | symbolic
matrix

Transformation variable, specified as a symbolic variable, expression, vector, or matrix. It
is often called the "time variable" or "space variable." By default, ifourier uses x. If x is
the independent variable of F, then ifourier uses t.

Definitions
Inverse Fourier Transform
The inverse Fourier transform of the expression F = F(w) with respect to the variable w at
the point x is

f x = s
2πc ∫

−∞

∞
F w e−iswxdw .

c and s are parameters of the inverse Fourier transform. The ifourier function uses
c = 1, s = –1.

Tips
• If any argument is an array, then ifourier acts element-wise on all elements of the

array.
• If the first argument contains a symbolic function, then the second argument must be

a scalar.
• The toolbox computes the inverse Fourier transform via the Fourier transform:

if ourier F, w, t = 1
2π fourier F, w, − t .

If ifourier cannot find an explicit representation of the inverse Fourier transform,
then it returns results in terms of the Fourier transform.

4 Functions — Alphabetical List

4-946

• To compute the Fourier transform, use fourier.

References
[1] Oberhettinger, F. "Tables of Fourier Transforms and Fourier Transforms of

Distributions." Springer, 1990.

See Also
fourier | ilaplace | iztrans | laplace | sympref | ztrans

Topics
“Fourier and Inverse Fourier Transforms” on page 2-230

Introduced before R2006a

 ifourier

4-947

igamma
Incomplete gamma function

Syntax
igamma(nu,z)

Description
igamma(nu,z) returns the incomplete gamma function.

igamma uses the definition of the upper incomplete gamma function on page 4-950. The
MATLAB gammainc function uses the definition of the lower incomplete gamma function
on page 4-950, gammainc(z, nu) = 1 - igamma(nu, z)/gamma(nu). The order of
input arguments differs between these functions.

Examples

Compute Incomplete Gamma Function for Numeric and
Symbolic Arguments
Depending on its arguments, igamma returns floating-point or exact symbolic results.

Compute the incomplete gamma function for these numbers. Because these numbers are
not symbolic objects, you get floating-point results.
A = [igamma(0, 1), igamma(3, sqrt(2)), igamma(pi, exp(1)), igamma(3, Inf)]

A =
 0.2194 1.6601 1.1979 0

Compute the incomplete gamma function for the numbers converted to symbolic objects:

symA = [igamma(sym(0), 1), igamma(3, sqrt(sym(2))),...
igamma(sym(pi), exp(sym(1))), igamma(3, sym(Inf))]

4 Functions — Alphabetical List

4-948

symA =
[-ei(-1), exp(-2^(1/2))*(2*2^(1/2) + 4), igamma(pi, exp(1)), 0]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[0.21938393439552027367716377546012,...
1.6601049038903044104826564373576,...
1.1979302081330828196865548471769,...
0]

Compute Lower Incomplete Gamma Function
igamma is implemented according to the definition of the upper incomplete gamma
function. If you want to compute the lower incomplete gamma function, convert results
returned by igamma as follows.

Compute the lower incomplete gamma function for these arguments using the MATLAB
gammainc function:

A = [-5/3, -1/2, 0, 1/3];
gammainc(A, 1/3)

ans =
 1.1456 + 1.9842i 0.5089 + 0.8815i 0.0000 + 0.0000i 0.7175 + 0.0000i

Compute the lower incomplete gamma function for the same arguments using igamma:

1 - igamma(1/3, A)/gamma(1/3)

ans =
 1.1456 + 1.9842i 0.5089 + 0.8815i 0.0000 + 0.0000i 0.7175 + 0.0000i

If one or both arguments are complex numbers, use igamma to compute the lower
incomplete gamma function. gammainc does not accept complex arguments.

1 - igamma(1/2, i)/gamma(1/2)

ans =
 0.9693 + 0.4741i

 igamma

4-949

Input Arguments
nu — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

z — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions
Upper Incomplete Gamma Function
The following integral defines the upper incomplete gamma function:

Γ η, z = ∫
z

∞
tη− 1e−tdt

Lower Incomplete Gamma Function
The following integral defines the lower incomplete gamma function:

γ η, z = ∫
0

z
tη− 1e−tdt

Tips
• The MATLAB gammainc function does not accept complex arguments. For complex

arguments, use igamma.

4 Functions — Alphabetical List

4-950

• gammainc(z, nu) = 1 - igamma(nu, z)/gamma(nu) represents the lower
incomplete gamma function in terms of the upper incomplete gamma function.

• igamma(nu,z) = gamma(nu)(1 - gammainc(z, nu)) represents the upper
incomplete gamma function in terms of the lower incomplete gamma function.

• gammainc(z, nu, 'upper') = igamma(nu, z)/gamma(nu).

See Also
ei | erfc | factorial | gamma | gammainc | int

Introduced in R2014a

 igamma

4-951

ihtrans
Inverse Hilbert transform

Syntax
f = ihtrans(H)
f = ihtrans(H,transVar)
f = ihtrans(H,var,transVar)

Description
f = ihtrans(H) returns the inverse Hilbert transform of symbolic function H. By
default, the independent variable is x and the transformation variable is t.

f = ihtrans(H,transVar) uses the transformation variable transVar instead of t.

f = ihtrans(H,var,transVar) uses the independent variable var and the
transformation variable transVar instead of x and t, respectively.

• If all input arguments are arrays of the same size, then ihtrans acts element-wise.
• If one input is a scalar and the others are arrays of the same size, then ihtrans

expands the scalar into an array of the same size.
• If f is an array of symbolic expressions with different independent variables, then var

must be a symbolic array with elements corresponding to the independent variables.

Examples

Inverse Hilbert Transform of Symbolic Expression

Compute the inverse Hilbert transform of cos(x). By default, the inverse transform
returns a function of t.

4 Functions — Alphabetical List

4-952

syms x;
f = cos(x);
H = ihtrans(f)

H = −sin t

Inverse Hilbert Transform of Sinc Function

Compute the inverse Hilbert transform of the sinc function, which is equal to sin(πt)/
πt. Express the result as a function of s.

syms H(t) f(s);
H(t) = sinc(t);
f(s) = ihtrans(H,s)

f(s) =
cos π s

s − 1
s

π

Plot the sinc function and its inverse Hilbert transform.

fplot(H(t),[0 6],'b')
hold on
fplot(f(s),[0 6],'r')
legend('sinc(t)','f(s)')

 ihtrans

4-953

Apply Phase Shifts

Create a sine wave with a positive frequency in real space.

syms A x t u;
assume([x t],'real')
H = A*sin(2*pi*10*t + 5*x)

H = A sin 5 x + 20 π t

4 Functions — Alphabetical List

4-954

Apply a 90-degree phase shift to the positive frequency component using the inverse
Hilbert transform. Specify the independent variable as x and the transformation variable
as u, respectively.

f = ihtrans(H,x,u)

f = A cos 5 u + 20 π t

Now create a complex signal with negative frequency. Apply a –90-degree phase shift to
the negative frequency component using the inverse Hilbert transform.

Z = A*exp(-1i*10*t)

Z = A e−10 t i

f = ihtrans(Z)

f = −A e−10 u i i

Calculate Instantaneous Frequency

Create a real-valued signal f (s) with two frequency components, 60 Hz and 90 Hz.

syms s f(x) F(t)
f(s) = sin(2*pi*60*s) + sin(2*pi*90*s)

f(s) = sin 120 π s + sin 180 π s

Calculate the corresponding analytic signal F(t) using the inverse Hilbert transform.

F(t) = ihtrans(f(s),t) + 1i*f(t)

F(t) = cos 120 π t + cos 180 π t + sin 120 π t i + sin 180 π t i

Calculate the instantaneous frequency of F(t) using

f instant(t) = 1
2π

dϕ(t)
dt ,

where ϕ t = arg F(t) is the instantaneous phase of the analytic signal.

 ihtrans

4-955

InstantFreq(t) = diff(angle(F(t)),t)/(2*pi);
assume(t,'real')
simplify(InstantFreq(t))

ans = 75

Input Arguments
H — Input
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic expression, symbolic function, symbolic vector, or symbolic
matrix.

var — Independent variable
x (default) | symbolic variable | symbolic vector | symbolic matrix

Independent variable, specified as a symbolic variable, symbolic vector, or symbolic
matrix. This variable is usually in the time domain. If you do not specify the variable, then
ihtrans uses x by default. If H does not contain x, then ihtrans uses the function
symvar to determine the independent variable.

transVar — Transformation variable
t (default) | u | symbolic variable | symbolic vector | symbolic matrix

Transformation variable, specified as a symbolic variable, symbolic vector, or symbolic
matrix. This variable is in the same domain as var. If you do not specify the variable, then
ihtrans uses t by default. If t is the independent variable of H, then ihtrans uses the
transformation variable u.

Output Arguments
f — Inverse Hilbert transform of H
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Inverse Hilbert transform of the input function H. The output f is a function of the
variable specified by transVar.

4 Functions — Alphabetical List

4-956

When ihtrans cannot transform the input function, it returns an unevaluated call. To
return the original expression, apply the Hilbert transform to the output by using
htrans.

Definitions

Inverse Hilbert Transform
The inverse Hilbert transform f = f(t) of the expression H = H(x) with respect to the
variable x at point t is

f t = 1
πp.v. ∫

−∞

∞
H x
x− tdx .

Here, p.v. represents the Cauchy principal value of the integral. The function H(x) can be
complex, but x and t must be real.

Tips
• To compute the Hilbert transform, use htrans. The inverse Hilbert transform of a

function is equal to the negative of its Hilbert transform.
• For a signal in the time domain, the inverse Hilbert transform applies a 90-degree

phase shift to negative frequencies of the corresponding Fourier components. It also
applies a –90-degree phase shift to positive frequencies.

• A real-valued signal b is the harmonic conjugate of its inverse Hilbert transform a =
ihtrans(b). The inverse Hilbert transform a = real(z) and the signal b =
imag(z) form the analytic signal z = a + 1i*b.

See Also
fourier | htrans | ifourier | ilaplace | laplace

Introduced in R2019a

 ihtrans

4-957

ilaplace
Inverse Laplace transform

Syntax
ilaplace(F)
ilaplace(F,transVar)
ilaplace(F,var,transVar)

Description
ilaplace(F) returns the “Inverse Laplace Transform” on page 4-962 of F. By default,
the independent variable is s and the transformation variable is t. If F does not contain s,
ilaplace uses the function symvar.

ilaplace(F,transVar) uses the transformation variable transVar instead of t.

ilaplace(F,var,transVar) uses the independent variable var and transformation
variable transVar instead of s and t, respectively.

Examples

Inverse Laplace Transform of Symbolic Expression

Compute the inverse Laplace transform of 1/s^2. By default, the inverse transform is in
terms of t.

syms s
F = 1/s^2;
ilaplace(F)

ans =
t

4 Functions — Alphabetical List

4-958

Default Independent Variable and Transformation Variable

Compute the inverse Laplace transform of 1/(s-a)^2. By default, the independent and
transformation variables are s and t, respectively.

syms a s
F = 1/(s-a)^2;
ilaplace(F)

ans =
t*exp(a*t)

Specify the transformation variable as x. If you specify only one variable, that variable is
the transformation variable. The independent variable is still s.

syms x
ilaplace(F,x)

ans =
x*exp(a*x)

Specify both the independent and transformation variables as a and x in the second and
third arguments, respectively.

ilaplace(F,a,x)

ans =
x*exp(s*x)

Inverse Laplace Transforms Involving Dirac and Heaviside Functions

Compute the following inverse Laplace transforms that involve the Dirac and Heaviside
functions:

syms s t
ilaplace(1,s,t)

ans =
dirac(t)

F = exp(-2*s)/(s^2+1);
ilaplace(F,s,t)

 ilaplace

4-959

ans =
heaviside(t - 2)*sin(t - 2)

Inverse Laplace Transform of Array Inputs

Find the inverse Laplace transform of the matrix M. Specify the independent and
transformation variables for each matrix entry by using matrices of the same size. When
the arguments are nonscalars, ilaplace acts on them element-wise.

syms a b c d w x y z
M = [exp(x) 1; sin(y) i*z];
vars = [w x; y z];
transVars = [a b; c d];
ilaplace(M,vars,transVars)

ans =
[exp(x)*dirac(a), dirac(b)]
[ilaplace(sin(y), y, c), dirac(1, d)*1i]

If ilaplace is called with both scalar and nonscalar arguments, then it expands the
scalars to match the nonscalars by using scalar expansion. Nonscalar arguments must be
the same size.

syms w x y z a b c d
ilaplace(x,vars,transVars)

ans =
[x*dirac(a), dirac(1, b)]
[x*dirac(c), x*dirac(d)]

If Inverse Laplace Transform Cannot Be Found

If ilaplace cannot compute the inverse transform, then it returns an unevaluated call to
ilaplace.

syms F(s) t
F(s) = exp(s);
f = ilaplace(F,s,t)

f =
ilaplace(exp(s), s, t)

4 Functions — Alphabetical List

4-960

Return the original expression by using laplace.

laplace(f,t,s)

ans =
exp(s)

Inverse Laplace Transform of Symbolic Function

Compute the Inverse Laplace transform of symbolic functions. When the first argument
contains symbolic functions, then the second argument must be a scalar.

syms f1(x) f2(x) a b
f1(x) = exp(x);
f2(x) = x;
ilaplace([f1 f2],x,[a b])

ans =
[ilaplace(exp(x), x, a), dirac(1, b)]

Input Arguments
F — Input
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic expression, function, vector, or matrix.

var — Independent variable
s (default) | symbolic variable | symbolic expression | symbolic vector | symbolic matrix

Independent variable, specified as a symbolic variable, expression, vector, or matrix. This
variable is often called the "complex frequency variable." If you do not specify the
variable, then ilaplace uses s. If F does not contain s, then ilaplace uses the function
symvar to determine the independent variable.

transVar — Transformation variable
t (default) | x | symbolic variable | symbolic expression | symbolic vector | symbolic
matrix

 ilaplace

4-961

Transformation variable, specified as a symbolic variable, expression, vector, or matrix. It
is often called the "time variable" or "space variable." By default, ilaplace uses t. If t is
the independent variable of F, then ilaplace uses x.

Definitions

Inverse Laplace Transform
The inverse Laplace transform f = f(t) of F = F(s) is:

f t = 1
2πi ∫

c− i∞

c + i∞
F s estds .

Here, c is a suitable complex number.

Tips
• If any argument is an array, then ilaplace acts element-wise on all elements of the

array.
• If the first argument contains a symbolic function, then the second argument must be

a scalar.
• To compute the direct Laplace transform, use laplace.

See Also
fourier | ifourier | iztrans | laplace | ztrans

Topics
“Solve Differential Equations Using Laplace Transform” on page 2-235

Introduced before R2006a

4 Functions — Alphabetical List

4-962

imag
Imaginary part of complex number

Syntax
imag(z)

Description
imag(z) returns the imaginary part of z. If z is a matrix, imag acts elementwise on z.

Examples

Compute Imaginary Part of Numeric Inputs
Find the imaginary parts of these numbers. Because these numbers are not symbolic
objects, you get floating-point results.

[imag(2 + 3/2*i), imag(sin(5*i)), imag(2*exp(1 + i))]

ans =
 1.5000 74.2032 4.5747

Compute Imaginary Part of Symbolic Inputs
Compute the imaginary parts of the numbers converted to symbolic objects:

[imag(sym(2) + 3/2*i), imag(4/(sym(1) + 3*i)), imag(sin(sym(5)*i))]

ans =
[3/2, -6/5, sinh(5)]

Compute the imaginary part of this symbolic expression:

imag(2*exp(1 + sym(i)))

 imag

4-963

ans =
2*exp(1)*sin(1)

Compute Imaginary Part of Symbolic Expressions
In general, imag cannot extract the entire imaginary parts from symbolic expressions
containing variables. However, imag can rewrite and sometimes simplify the input
expression:

syms a x y
imag(a + 2)
imag(x + y*i)

ans =
imag(a)

ans =
imag(x) + real(y)

If you assign numeric values to these variables or if you specify that these variables are
real, imag can extract the imaginary part of the expression:

syms a
 a = 5 + 3*i;
imag(a + 2)

ans =
 3

syms x y real
imag(x + y*i)

ans =
y

Clear the assumption that x and y are real by recreating them using syms:

syms x y

Compute Imaginary Part for Matrix Input
Find the imaginary parts of the elements of matrix A:

4 Functions — Alphabetical List

4-964

syms x
A = [-1 + sym(i), sinh(x); exp(10 + sym(7)*i), exp(sym(pi)*i)];
imag(A)

ans =
[1, imag(sinh(x))]
[exp(10)*sin(7), 0]

Input Arguments
z — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Tips
• Calling imag for a number that is not a symbolic object invokes the MATLAB imag

function.

Alternatives
You can compute the imaginary part of z via the conjugate: imag(z)= (z -
conj(z))/2i.

See Also
conj | in | real | sign | signIm

Introduced before R2006a

 imag

4-965

in
Numeric type of symbolic input

Syntax
in(x,type)

Description
in(x,type) expresses the logical condition that x is of the specified type.

Examples

Express Condition on Symbolic Variable or Expression
The syntax in(x,type) expresses the condition that x is of the specified type. Express
the condition that x is of type Real.

syms x
cond = in(x,'real')

cond =
in(x, 'real')

Evaluate the condition using isAlways. Because isAlways cannot determine the
condition, it issues a warning and returns logical 0 (false).

isAlways(cond)

Warning: Unable to prove 'in(x, 'real')'.

ans =
 logical
 0

4 Functions — Alphabetical List

4-966

Assume the condition cond is true using assume, and evaluate the condition again. The
isAlways function returns logical 1 (true) indicating that the condition is true.

assume(cond)
isAlways(cond)

ans =
 logical
 1

To use x in further computations, clear its assumption recreating it using syms.

syms x

Express Conditions in Output
Functions such as solve use in in output to express conditions.

Solve the equation sin(x) == 0 using solve. Set the option ReturnConditions to
true to return conditions on the solution. The solve function uses in to express the
conditions.

syms x
[solx, params, conds] = solve(sin(x) == 0,'ReturnConditions',true)

solx =
pi*k

params =
k

conds =
in(k, 'integer')

The solution is pi*k with parameter k under the condition in(k,'integer'). You can
use this condition to set an assumption for further computations. Under the assumption,
solve returns only integer values of k.

assume(conds)
k = solve(solx > 0, solx < 5*pi, params)

k =
 1
 2

 in

4-967

 3
 4

To find the solutions corresponding to these values of k, use subs to substitute
for k in solx.

subs(solx,k)

ans =
 pi
 2*pi
 3*pi
 4*pi

Clear the assumption on k to use it in further computations.

assume(params, 'clear')

Test if Elements of Symbolic Matrix Are Rational
Create symbolic matrix M.

syms x y z
M = sym([1.22 i x; sin(y) 3*x 0; Inf sqrt(3) sym(22/7)])

M =
[61/50, 1i, x]
[sin(y), 3*x, 0]
[Inf, 3^(1/2), 22/7]

Use isAlways to test if the elements of M are rational numbers. The in function acts on M
element-by-element. Note that isAlways returns logical 0 (false) for statements that
cannot be decided and issues a warning for those statements.

in(M,'rational')

ans =
[in(61/50, 'rational'), in(1i, 'rational'), in(x, 'rational')]
[in(sin(y), 'rational'), in(3*x, 'rational'), in(0, 'rational')]
[in(Inf, 'rational'), in(3^(1/2), 'rational'), in(22/7, 'rational')]

isAlways(in(M,'rational'))

Warning: Unable to prove 'in(sin(y), 'rational')'.
Warning: Unable to prove 'in(3*x, 'rational')'.

4 Functions — Alphabetical List

4-968

Warning: Unable to prove 'in(x, 'rational')'.
ans =
 3×3 logical array
 1 0 0
 0 0 1
 0 0 1

Input Arguments
x — Input
symbolic number | symbolic vector | symbolic matrix | symbolic multidimensional array |
symbolic expression | symbolic function

Input, specified as a symbolic number, vector, matrix, multidimensional array, expression,
or function.

type — Type of input
'real' | 'positive' | 'integer' | 'rational'

Type of input, specified as 'real', 'positive', 'integer', or 'rational'.

See Also
assume | assumeAlso | false | imag | isalways | isequal | isequaln | isfinite |
isinf | piecewise | real | true

Introduced in R2014b

 in

4-969

incidenceMatrix
Find incidence matrix of system of equations

Syntax
A = incidenceMatrix(eqs,vars)

Description
A = incidenceMatrix(eqs,vars) for m equations eqs and n variables vars returns
an m-by-n matrix A. Here, A(i,j) = 1 if eqs(i) contains vars(j) or any derivative of
vars(j). All other elements of A are 0s.

Examples

Incidence Matrix
Find the incidence matrix of a system of five equations in five variables.

Create the following symbolic vector eqs containing five symbolic differential equations.

syms y1(t) y2(t) y3(t) y4(t) y5(t) c1 c3
eqs = [diff(y1(t),t) == y2(t),...
 diff(y2(t),t) == c1*y1(t) + c3*y3(t),...
 diff(y3(t),t) == y2(t) + y4(t),...
 diff(y4(t),t) == y3(t) + y5(t),...
 diff(y5(t),t) == y4(t)];

Create the vector of variables. Here, c1 and c3 are symbolic parameters (not variables) of
the system.

vars = [y1(t), y2(t), y3(t), y4(t), y5(t)];

Find the incidence matrix A for the equations eqs and with respect to the variables vars.

4 Functions — Alphabetical List

4-970

A = incidenceMatrix(eqs, vars)

A =
 1 1 0 0 0
 1 1 1 0 0
 0 1 1 1 0
 0 0 1 1 1
 0 0 0 1 1

Input Arguments
eqs — Equations
vector of symbolic equations | vector of symbolic expressions

Equations, specified as a vector of symbolic equations or expressions.

vars — Variables
vector of symbolic variables | vector of symbolic functions | vector of symbolic function
calls

Variables, specified as a vector of symbolic variables, symbolic functions, or function calls,
such as x(t).

Output Arguments
A — Incidence matrix
matrix of double-precision values

Incidence matrix, returned as a matrix of double-precision values.

See Also
daeFunction | decic | findDecoupledBlocks | isLowIndexDAE | massMatrixForm
| odeFunction | reduceDAEIndex | reduceDAEToODE | reduceDifferentialOrder |
reduceRedundancies | spy

Introduced in R2014b

 incidenceMatrix

4-971

int
Definite and indefinite integrals

Syntax
int(expr,var)
int(expr,var,a,b)
int(___ ,Name,Value)

Description
int(expr,var) computes the indefinite integral of expr with respect to the symbolic
scalar variable var. Specifying the variable var is optional. If you do not specify it, int
uses the default variable determined by symvar. If expr is a constant, then the default
variable is x.

int(expr,var,a,b) computes the definite integral of expr with respect to var from a
to b. If you do not specify it, int uses the default variable determined by symvar. If expr
is a constant, then the default variable is x.

int(expr,var,[a b]) is equivalent to int(expr,var,a,b).

int(___ ,Name,Value) specifies additional options using one or more Name,Value
pair arguments. For example, 'IgnoreAnalyticConstraints',true specifies that
int applies additional simplifications to the integrand.

Examples

Indefinite Integral of Univariate Expression

Find an indefinite integral of this univariate expression.

4 Functions — Alphabetical List

4-972

syms x
f = -2*x/(1+x^2)^2;
int(f)

ans =
1/(x^2 + 1)

Indefinite Integrals of Multivariate Expression

Find indefinite integrals of this multivariate expression with respect to the variables x
and z.

syms x z
f = x/(1+z^2);
int(f,x)
int(f,z)

ans =
x^2/(2*(z^2 + 1))

ans =
x*atan(z)

If you do not specify the integration variable, int uses the variable returned by symvar.
For this expression, symvar returns x.

symvar(f, 1)

ans =
x

Definite Integrals of Symbolic Expressions

Integrate an expression from 0 to 1.

syms x
f = x*log(1+x);
int(f,[0 1])

ans =
1/4

 int

4-973

Integrate an expression from sin(t) to 1.

syms t
int(2*x, [sin(t) 1])

ans =
cos(t)^2

When int cannot compute a definite integral, numerically approximate the integral by
using vpa.

syms x
f = cos(x)/sqrt(1 + x^2);
fInt = int(f,x,[0 10]);
fVpa = vpa(fInt)

fVpa =
0.37570628299079723478493405557162

To approximate integrals directly, use vpaintegral instead of vpa. The vpaintegral
function is faster and provides control over integration tolerances.

fVpa = vpaintegral(f,x,[0 10])

fVpa =
0.375706

Integrals of Matrix Elements

Find indefinite integrals for the expressions listed as the elements of a matrix.

syms a x t z
M = [exp(t) exp(a*t); sin(t) cos(t)];
int(M)

ans =
[exp(t), exp(a*t)/a]
[-cos(t), sin(t)]

4 Functions — Alphabetical List

4-974

Apply IgnoreAnalyticConstraints

Compute this indefinite integral. By default, int uses strict mathematical rules. These
rules do not let int rewrite asin(sin(x)) and acos(cos(x)) as x.

syms x
f = acos(sin(x));
int(f,x)

ans =
x*acos(sin(x)) + x^2/(2*sign(cos(x)))

If you want a simple practical solution, try IgnoreAnalyticConstraints.

int(f, x, 'IgnoreAnalyticConstraints', true)

ans =
-(x*(x - pi))/2

Ignore Special Cases

Compute this integral with respect to the variable x. By default, int returns the integral
as a piecewise object where every branch corresponds to a particular value (or a range of
values) of the symbolic parameter t.

syms x t
int(x^t, x)

ans =
piecewise(t == -1, log(x), t ~= -1, x^(t + 1)/(t + 1))

To ignore special cases of parameter values, use IgnoreSpecialCases. With this option,
int ignores the special case t=-1 and returns only the branch where t<>–1.

int(x^t, x, 'IgnoreSpecialCases', true)

ans =
x^(t + 1)/(t + 1)

 int

4-975

Find Cauchy Principal Value

Compute this definite integral, where the integrand has a pole in the interior of the
interval of integration. Mathematically, this integral is not defined.

syms x
f = 1/(x-1);
int(f,x,0,2)

ans =
NaN

However, the Cauchy principal value of the integral exists. Use PrincipalValue to
compute the Cauchy principal value of the integral.

int(f,x,0,2,'PrincipalValue',true)

ans =
0

Approximate Indefinite Integrals

If int cannot compute a closed form of an integral, it returns an unresolved integral.

syms x
f = sin(sinh(x));
int(f,x)

ans =
int(sin(sinh(x)), x)

If int cannot compute a closed form of an indefinite integral, try to approximate the
expression around some point using taylor, and then compute the integral. For example,
approximate the expression around x = 0.

fApprox = taylor(f, x, 'ExpansionPoint', 0, 'Order', 10);
int(fApprox,x)

4 Functions — Alphabetical List

4-976

ans =
x^10/56700 - x^8/720 - x^6/90 + x^2/2

Input Arguments
expr — Integrand
symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic
number

Integrand, specified as a symbolic expression or function, a constant, or a vector or
matrix of symbolic expressions, functions, or constants.

var — Integration variable
symbolic variable

Integration variable, specified as a symbolic variable. If you do not specify this variable,
int uses the default variable determined by symvar(expr,1). If expr is a constant,
then the default variable is x.

a — Lower bound
number | symbolic number | symbolic variable | symbolic expression | symbolic function

Lower bound, specified as a number, symbolic number, variable, expression, or function
(including expressions and functions with infinities).

b — Upper bound
number | symbolic number | symbolic variable | symbolic expression | symbolic function

Upper bound, specified as a number, symbolic number, variable, expression, or function
(including expressions and functions with infinities).

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'IgnoreAnalyticConstraints',true specifies that int applies purely
algebraic simplifications to the integrand.

 int

4-977

IgnoreAnalyticConstraints — Indicator for applying purely algebraic
simplifications to integrand
false (default) | true

Indicator for applying purely algebraic simplifications to integrand, specified as true or
false. If the value is true, apply purely algebraic simplifications to the integrand. This
option can provide simpler results for expressions, for which the direct use of the
integrator returns complicated results. Sometimes, it also enables int to compute
integrals that cannot be computed otherwise.

Using this option can lead to wrong or incomplete results.

IgnoreSpecialCases — Indicator for ignoring special cases
false (default) | true

Indicator for ignoring special cases, specified as true or false. This ignores cases that
require one or more parameters to be elements of a comparatively small set, such as a
fixed finite set or a set of integers.

PrincipalValue — Indicator for returning principal value
false (default) | true

Indicator for returning principal value, specified as true or false. If the value is true,
compute the Cauchy principal value of the integral.

Tips
• In contrast to differentiation, symbolic integration is a more complicated task. If int

cannot compute an integral of an expression, check for these reasons:

• The antiderivative does not exist in a closed form.
• The antiderivative exists, but int cannot find it.

If int cannot compute a closed form of an integral, it returns an unresolved integral.

Try approximating such integrals by using one of these methods:

• For indefinite integrals, use series expansions. Use this method to approximate an
integral around a particular value of the variable.

• For definite integrals, use numeric approximations.

4 Functions — Alphabetical List

4-978

• Results returned by int do not include integration constants.
• For indefinite integrals, int implicitly assumes that the integration variable var is

real. For definite integrals, int restricts the integration variable var to the specified
integration interval. If one or both integration bounds a and b are not numeric, int
assumes that a <= b unless you explicitly specify otherwise.

Algorithms
When you use IgnoreAnalyticConstraints, int applies these rules:

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the following equality
is valid for all values of a, b, and c:

 (a·b)c = ac·bc.
• log(ab) = b·log(a) for all values of a and b. In particular, the following equality is valid

for all values of a, b, and c:

 (ab)c = ab·c.
• If f and g are standard mathematical functions and f(g(x)) = x for all small positive

numbers, then f(g(x)) = x is assumed to be valid for all complex values x. In particular:

• log(ex) = x
• asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x
• asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x
• lambertWk(x·ex) = x for all values of k

See Also
diff | functionalDerivative | symprod | symsum | symvar | vpaintegral

Topics
“Integration” on page 2-64

Introduced before R2006a

 int

4-979

inv
Inverse of symbolic matrix

Syntax
inv(A)

Description
inv(A) returns the inverse of the symbolic matrix A.

Examples

Compute Inverse of Symbolic Matrix

Compute the inverse of the following matrix of symbolic numbers.

A = sym([2 -1 0; -1 2 -1; 0 -1 2]);
inv(A)

ans =
[3/4, 1/2, 1/4]
[1/2, 1, 1/2]
[1/4, 1/2, 3/4]

Compute the inverse of the following symbolic matrix.

syms a b c d
A = [a b; c d];
inv(A)

4 Functions — Alphabetical List

4-980

ans =
[d/(a*d - b*c), -b/(a*d - b*c)]
[-c/(a*d - b*c), a/(a*d - b*c)]

Compute Inverse of Symbolic Hilbert Matrix

Compute the inverse of the symbolic Hilbert matrix.

inv(sym(hilb(4)))

ans =
[16, -120, 240, -140]
[-120, 1200, -2700, 1680]
[240, -2700, 6480, -4200]
[-140, 1680, -4200, 2800]

Input Arguments
A — Matrix
symbolic matrix

Matrix, specified as a symbolic matrix.

Limitations
Matrix computations involving many symbolic variables can be slow. To increase the
computational speed, reduce the number of symbolic variables by substituting the given
values for some variables.

See Also
det | eig | rank

Introduced before R2006a

 inv

4-981

isAlways
Check whether equation or inequality holds for all values of its variables

Note isAlways issues a warning when returning false for undecidable inputs. To
suppress the warning, set the Unknown option to false as
isAlways(cond,'Unknown','false'). For details, see “Handle Output for
Undecidable Conditions”.

Syntax
isAlways(cond)
isAlways(cond,Name,Value)

Description
isAlways(cond) checks if the condition cond is valid for all possible values of the
symbolic variables in cond. When verifying cond, the isAlways function considers all
assumptions on the variables in cond. If the condition holds, isAlways returns logical 1
(true). Otherwise it returns logical 0 (false).

isAlways(cond,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Examples

Test Conditions
Check if this inequality is valid for all values of x.

syms x
isAlways(abs(x) >= 0)

4 Functions — Alphabetical List

4-982

ans =
 logical
 1

isAlways returns logical 1 (true) indicating that the inequality abs(x) >= 0 is valid
for all values of x.

Check if this equation is valid for all values of x.

isAlways(sin(x)^2 + cos(x)^2 == 1)

ans =
 logical
 1

isAlways returns logical 1 (true) indicating that the inequality is valid for all values of
x.

Test if One of Several Conditions Is Valid
Check if at least one of these two conditions is valid. To check if at least one of several
conditions is valid, combine them using the logical operator or or its shortcut |.

syms x
isAlways(sin(x)^2 + cos(x)^2 == 1 | x^2 > 0)

ans =
 logical
 1

Check if both conditions are valid. To check if several conditions are valid, combine them
using the logical operator and or its shortcut &.

isAlways(sin(x)^2 + cos(x)^2 == 1 & abs(x) > 2*abs(x))

ans =
 logical
 0

Handle Output for Undecidable Conditions
Test this condition. When isAlways cannot determine if the condition is valid, it returns
logical 0 (false) and issues a warning by default.

 isAlways

4-983

syms x
isAlways(2*x >= x)

Warning: Unable to prove 'x <= 2*x'.
ans =
 logical
 0

To change this default behavior, use Unknown. For example, specify Unknown as false to
suppress the warning and make isAlways return logical 0 (false) if it cannot determine
the validity of the condition.

isAlways(2*x >= x,'Unknown','false')

ans =
 logical
 0

Instead of false, you can also specify error to return an error, and true to return
logical 1 (true).

Test Conditions with Assumptions
Check this inequality under the assumption that x is negative. When isAlways tests an
equation or inequality, it takes into account assumptions on variables in that equation or
inequality.

syms x
assume(x < 0)
isAlways(2*x < x)

ans =
 logical
 1

For further computations, clear the assumption on x by recreating it using syms.

syms x

4 Functions — Alphabetical List

4-984

Input Arguments
cond — Condition to check
symbolic condition | vector of symbolic conditions | matrix of symbolic conditions |
multidimensional array of symbolic conditions

Condition to check, specified as a symbolic condition, or a vector, matrix, or
multidimensional array of symbolic conditions.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: isAlways(cond,'Unknown',true) makes isAlways return logical 1 (true)
when the specified condition cannot be decided.

Unknown — Return value for undecidable condition
falseWithWarning (default) | false | true | error

Return value for an undecidable condition, specified as the comma-separated pair of
'Unknown' and one of these values.

falseWithWarning (default) On undecidable inputs, return logical 0
(false) and a warning that the condition
cannot be proven.

false On undecidable inputs, return logical 0
(false).

true On undecidable inputs, return logical 1
(true).

error On undecidable inputs, return an error.

See Also
assume | assumeAlso | assumptions | in | isequal | isequaln | isfinite | isinf |
isnan | piecewise | sym | syms

 isAlways

4-985

Topics
“Use Assumptions on Symbolic Variables” on page 1-29
“Clear Assumptions and Reset the Symbolic Engine” on page 3-70

Introduced in R2012a

4 Functions — Alphabetical List

4-986

isequal
Test equality of symbolic inputs

Syntax
isequal(a,b)
isequal(a1,a2,...,aN)

Description
isequal(a,b) returns logical 1 (true) if A and B are the same size and their contents
are of equal value. Otherwise, isequal returns logical 0 (false). isequal does not
consider NaN (not a number) values equal. isequal recursively compares the contents of
symbolic data structures and the properties of objects. If all contents in the respective
locations are equal, isequal returns logical 1 (true).

isequal(a1,a2,...,aN) returns logical 1 (true) if all the inputs a1,a2,...,aN are
equal.

Examples
Test Numbers for Equality
Test numeric or symbolic inputs for equality using isequal. If you compare numeric
inputs against symbolic inputs, isequal returns 0 (false) because double and symbolic
are distinct data types.

Test if 2 and 5 are equal. Because you are comparing doubles, the MATLAB isequal
function is called. isequal returns 0 (false) as expected.

isequal(2,5)

ans =
 logical
 0

 isequal

4-987

Test if the solution of the equation cos(x) == -1 is pi. The isequal function returns 1
(true) meaning the solution is equal to pi.

syms x
sol = solve(cos(x) == -1, x);
isequal(sol,sym(pi))

ans =
 logical
 1

Compare the double and symbolic representations of 1. isequal returns 0 (false)
because double and symbolic are distinct data types. To return 1 (true) in this case, use
logical instead.

usingIsEqual = isequal(pi,sym(pi))
usingLogical = logical(pi == sym(pi))

usingIsEqual =
 logical
 0
usingLogical =
 logical
 1

Test Symbolic Expressions for Equality
Test if rewrite correctly rewrites tan(x) as sin(x)/cos(x). The isequal function
returns 1 (true) meaning the rewritten result equals the test expression.

syms x
f = rewrite(tan(x),'sincos');
testf = sin(x)/cos(x);
isequal(f,testf)

ans =
 logical
 1

Test Symbolic Vectors and Matrices for Equality
Test vectors and matrices for equality using isequal.

4 Functions — Alphabetical List

4-988

Test if solutions of the quadratic equation found by solve are equal to the expected
solutions. isequal function returns 1 (true) meaning the inputs are equal.

syms a b c x
eqn = a*x^2 + b*x + c;
Sol = solve(eqn, x);
testSol = [-(b+(b^2-4*a*c)^(1/2))/(2*a); -(b-(b^2-4*a*c)^(1/2))/(2*a)];
isequal(Sol,testSol)

ans =
 logical
 1

The Hilbert matrix is a special matrix that is difficult to invert accurately. If the inverse is
accurately computed, then multiplying the inverse by the original Hilbert matrix returns
the identity matrix.

Use this condition to symbolically test if the inverse of hilb(20) is correctly calculated.
isequal returns 1 (true) meaning that the product of the inverse and the original
Hilbert matrix is equal to the identity matrix.

H = sym(hilb(20));
prod = H*inv(H);
eye20 = sym(eye(20));
isequal(prod,eye20)

ans =
 logical
 1

Compare Inputs Containing NaN
Compare three vectors containing NaN (not a number). isequal returns logical 0
(false) because isequal does not treat NaN values as equal to each other.

syms x
A1 = [x NaN NaN];
A2 = [x NaN NaN];
A3 = [x NaN NaN];
isequal(A1, A2, A3)

ans =
 logical
 0

 isequal

4-989

Input Arguments
a,b — Inputs to compare
numbers | vectors | matrices | multidimensional arrays | symbolic numbers | symbolic
variables | symbolic vectors | symbolic matrices | symbolic multidimensional arrays |
symbolic functions | symbolic expressions

Inputs to compare, specified as numbers, vectors, matrices, or multidimensional arrays or
symbolic numbers, variables, vectors, matrices, multidimensional arrays, functions, or
expressions.

a1,a2,...,aN — Several inputs to compare
numbers | vectors | matrices | multidimensional arrays | symbolic numbers | symbolic
variables | symbolic vectors | symbolic matrices | symbolic multidimensional arrays |
symbolic functions | symbolic expressions

Several inputs to compare, specified as numbers, vectors, matrices, or multidimensional
arrays or symbolic numbers, variables, vectors, matrices, multidimensional arrays,
functions, or expressions.

Tips
• When your inputs are not symbolic objects, the MATLAB isequal function is called. If

one of the arguments is symbolic, then all other arguments are converted to symbolic
objects before comparison, and the symbolic isequal function is called.

See Also
in | isAlways | isequaln | isfinite | isinf | isnan | logical

Introduced before R2006a

4 Functions — Alphabetical List

4-990

isequaln
Test symbolic objects for equality, treating NaN values as equal

Syntax
isequaln(A,B)
isequaln(A1,A2,...,An)

Description
isequaln(A,B) returns logical 1 (true) if A and B are the same size and their contents
are of equal value. Otherwise, isequaln returns logical 0 (false). All NaN (not a number)
values are considered to be equal to each other. isequaln recursively compares the
contents of symbolic data structures and the properties of objects. If all contents in the
respective locations are equal, isequaln returns logical 1 (true).

isequaln(A1,A2,...,An) returns logical 1 (true) if all the inputs are equal.

Examples

Compare Two Expressions
Use isequaln to compare these two expressions:

syms x
isequaln(abs(x), x)

ans =
 logical
 0

For positive x, these expressions are identical:

assume(x > 0)
isequaln(abs(x), x)

 isequaln

4-991

ans =
 logical
 1

For further computations, remove the assumption on x by recreating it using syms:

syms x

Compare Two Matrices
Use isequaln to compare these two matrices:

A = hilb(3);
B = sym(A);
isequaln(A, B)

ans =
 logical
 0

Compare Vectors Containing NaN Values
Use isequaln to compare these vectors:

syms x
A1 = [x NaN NaN];
A2 = [x NaN NaN];
A3 = [x NaN NaN];
isequaln(A1, A2, A3)

ans =
 logical
 1

Input Arguments
A,B — Inputs to compare
symbolic numbers | symbolic variables | symbolic expressions | symbolic functions |
symbolic vectors | symbolic matrices

4 Functions — Alphabetical List

4-992

Inputs to compare, specified as symbolic numbers, variables, expressions, functions,
vectors, or matrices. If one of the arguments is a symbolic object and the other one is
numeric, the toolbox converts the numeric object to symbolic before comparing them.

A1,A2,...,An — Series of inputs to compare
symbolic numbers | symbolic variables | symbolic expressions | symbolic functions |
symbolic vectors | symbolic matrices

Series of inputs to compare, specified as symbolic numbers, variables, expressions,
functions, vectors, or matrices. If at least one of the arguments is a symbolic object, the
toolbox converts all other arguments to symbolic objects before comparing them.

Tips
• Calling isequaln for arguments that are not symbolic objects invokes the MATLAB

isequaln function. If one of the arguments is symbolic, then all other arguments are
converted to symbolic objects before comparison.

See Also
in | isAlways | isequal | isequaln | isfinite | isinf | isnan

Introduced in R2013a

 isequaln

4-993

isfinite
Check whether symbolic array elements are finite

Syntax
isfinite(A)

Description
isfinite(A) returns an array of the same size as A containing logical 1s (true) where
the elements of A are finite, and logical 0s (false) where they are not. For a complex
number, isfinite returns 1 if both the real and imaginary parts of that number are
finite. Otherwise, it returns 0.

Examples

Determine Which Elements of Symbolic Array Are Finite
Values
Using isfinite, determine which elements of this symbolic matrix are finite values:

isfinite(sym([pi NaN Inf; 1 + i Inf + i NaN + i]))

ans =
 2×3 logical array
 1 0 0
 1 0 0

Determine if Exact and Approximated Values Are Finite
Approximate these symbolic values with the 50-digit accuracy:

V = sym([pi, 2*pi, 3*pi, 4*pi]);
V_approx = vpa(V, 50);

4 Functions — Alphabetical List

4-994

The cotangents of the exact values are not finite:

cot(V)
isfinite(cot(V))

ans =
[Inf, Inf, Inf, Inf]

ans =
 1×4 logical array
 0 0 0 0

Nevertheless, the cotangents of the approximated values are finite due to the round-off
errors:

isfinite(cot(V_approx))

ans =
 1×4 logical array
 1 1 1 1

Input Arguments
A — Input value
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
array | symbolic vector | symbolic matrix

Input value, specified as a symbolic number, variable, expression, or function, or as an
array, vector, or matrix of symbolic numbers, variables, expressions, functions.

Tips
• For any A, exactly one of the three quantities isfinite(A), isinf(A), or isnan(A)

is 1 for each element.
• Elements of A are recognized as finite if they are

• Not symbolic NaN
• Not symbolic Inf or -Inf
• Not sums or products containing symbolic infinities Inf or -Inf

 isfinite

4-995

See Also
in | isAlways | isequal | isequaln | isinf | isnan

Introduced in R2013b

4 Functions — Alphabetical List

4-996

isinf
Check whether symbolic array elements are infinite

Syntax
isinf(A)

Description
isinf(A) returns an array of the same size as A containing logical 1s (true) where the
elements of A are infinite, and logical 0s (false) where they are not. For a complex
number, isinf returns 1 if the real or imaginary part of that number is infinite or both
real and imaginary parts are infinite. Otherwise, it returns 0.

Examples
Determine Which Elements of Symbolic Array Are Infinite
Using isinf, determine which elements of this symbolic matrix are infinities:

isinf(sym([pi NaN Inf; 1 + i Inf + i NaN + i]))

ans =
 2×3 logical array
 0 0 1
 0 1 0

Determine if Exact and Approximated Values Are Infinite
Approximate these symbolic values with the 50-digit accuracy:

V = sym([pi, 2*pi, 3*pi, 4*pi]);
V_approx = vpa(V, 50);

The cotangents of the exact values are infinite:

 isinf

4-997

cot(V)
isinf(cot(V))

ans =
[Inf, Inf, Inf, Inf]

ans =
 1×4 logical array
 1 1 1 1

Nevertheless, the cotangents of the approximated values are not infinite due to the round-
off errors:

isinf(cot(V_approx))

ans =
 1×4 logical array
 0 0 0 0

Input Arguments
A — Input value
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
array | symbolic vector | symbolic matrix

Input value, specified as a symbolic number, variable, expression, or function, or as an
array, vector, or matrix of symbolic numbers, variables, expressions, functions.

Tips
• For any A, exactly one of the three quantities isfinite(A), isinf(A), or isnan(A)

is 1 for each element.
• The elements of A are recognized as infinite if they are

• Symbolic Inf or -Inf
• Sums or products containing symbolic Inf or -Inf and not containing the value

NaN.

4 Functions — Alphabetical List

4-998

See Also
in | isAlways | isequal | isequaln | isfinite | isnan

Introduced in R2013b

 isinf

4-999

isLowIndexDAE
Check if differential index of system of equations is lower than 2

Syntax
isLowIndexDAE(eqs,vars)

Description
isLowIndexDAE(eqs,vars) checks if the system eqs of first-order semilinear
differential algebraic equations (DAEs) has a low differential index. If the differential
index of the system is 0 or 1, then isLowIndexDAE returns logical 1 (true). If the
differential index of eqs is higher than 1, then isLowIndexDAE returns logical 0 (false).

The number of equations eqs must match the number of variables vars.

Examples
Check Differential Index of DAE System
Check if a system of first-order semilinear DAEs has a low differential index (0 or 1).

Create the following system of two differential algebraic equations. Here, x(t) and y(t)
are the state variables of the system. Specify the equations and variables as two symbolic
vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic
function calls.

syms x(t) y(t)
eqs = [diff(x(t),t) == x(t) + y(t), x(t)^2 + y(t)^2 == 1];
vars = [x(t), y(t)];

Use isLowIndexDAE to check the differential order of the system. The differential order
of this system is 1. For systems of index 0 and 1, isLowIndexDAE returns 1 (true).

isLowIndexDAE(eqs, vars)

4 Functions — Alphabetical List

4-1000

ans =
 logical
 1

Reduce Differential Index of DAE System
Check if the following DAE system has a low or high differential index. If the index is
higher than 1, then use reduceDAEIndex to reduce it.

Create the following system of two differential algebraic equations. Here, x(t), y(t),
and z(t) are the state variables of the system. Specify the equations and variables as two
symbolic vectors: equations as a vector of symbolic equations, and variables as a vector of
symbolic function calls.

syms x(t) y(t) z(t) f(t)
eqs = [diff(x(t),t) == x(t) + z(t),...
 diff(y(t),t) == f(t), x(t) == y(t)];
vars = [x(t), y(t), z(t)];

Use isLowIndexDAE to check the differential index of the system. For this system
isLowIndexDAE returns 0 (false). This means that the differential index of the system
is 2 or higher.

isLowIndexDAE(eqs, vars)

ans =
 logical
 0

Use reduceDAEIndex to rewrite the system so that the differential index is 1. Calling
this function with four output arguments also shows the differential index of the original
system. The new system has one additional state variable, Dyt(t).

[newEqs, newVars, ~, oldIndex] = reduceDAEIndex(eqs, vars)

newEqs =
 diff(x(t), t) - z(t) - x(t)
 Dyt(t) - f(t)
 x(t) - y(t)
 diff(x(t), t) - Dyt(t)

newVars =
 x(t)
 y(t)

 isLowIndexDAE

4-1001

 z(t)
 Dyt(t)

oldIndex =
 2

Check if the differential order of the new system is lower than 2.

isLowIndexDAE(newEqs, newVars)

ans =
 logical
 1

Input Arguments
eqs — System of first-order semilinear differential algebraic equations
vector of symbolic equations | vector of symbolic expressions

System of first-order semilinear differential algebraic equations, specified as a vector of
symbolic equations or expressions.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as x(t).
Example: [x(t),y(t)]

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix |
massMatrixForm | odeFunction | reduceDAEIndex | reduceDAEToODE |
reduceDifferentialOrder | reduceRedundancies

Topics
“Solve Differential Algebraic Equations (DAEs)” on page 2-203

Introduced in R2014b

4 Functions — Alphabetical List

4-1002

isnan
Check whether symbolic array elements are NaNs

Syntax
isnan(A)

Description
isnan(A) returns an array of the same size as A containing logical 1s (true) where the
elements of A are symbolic NaNs, and logical 0s (false) where they are not.

Examples

Determine Which Elements of Symbolic Array Are NaNs
Using isnan, determine which elements of this symbolic matrix are NaNs:

isnan(sym([pi NaN Inf; 1 + i Inf + i NaN + i]))

ans =
 2×3 logical array
 0 1 0
 0 0 1

Input Arguments
A — Input value
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
array | symbolic vector | symbolic matrix

Input value, specified as a symbolic number, variable, expression, or function, or as an
array, vector, or matrix of symbolic numbers, variables, expressions, functions.

 isnan

4-1003

Tips
• For any A, exactly one of the three quantities isfinite(A), isinf(A), or isnan(A)

is 1 for each element.
• Symbolic expressions and functions containing NaN evaluate to NaN. For example,

sym(NaN + i) returns symbolic NaN.

See Also
isAlways | isequal | isequaln | isfinite | isinf

Introduced in R2013b

4 Functions — Alphabetical List

4-1004

isolate
Isolate variable or expression in equation

Syntax
isolate(eqn,expr)

Description
isolate(eqn,expr) rearranges the equation eqn so that the expression expr appears
on the left side. The result is similar to solving eqn for expr. If isolate cannot isolate
expr, it moves all terms containing expr to the left side. The output of isolate lets you
eliminate expr from eqn by using subs.

Examples
Isolate Variable in Equation
Isolate x in the equation a*x^2 + b*x + c == 0.

syms x a b c
eqn = a*x^2 + b*x + c == 0;
xSol = isolate(eqn, x)

xSol =
x == -(b + (b^2 - 4*a*c)^(1/2))/(2*a)

You can use the output of isolate to eliminate the variable from the equation using
subs.

Eliminate x from eqn by substituting lhs(xSol) for rhs(xSol).

eqn2 = subs(eqn, lhs(xSol), rhs(xSol))

eqn2 =
c + (b + (b^2 - 4*a*c)^(1/2))^2/(4*a) - (b*(b + (b^2 - 4*a*c)^(1/2)))/(2*a) == 0

 isolate

4-1005

Isolate Expression in Equation
Isolate y(t) in the following equation.

syms y(t)
eqn = a*y(t)^2 + b*c == 0;
isolate(eqn, y(t))

ans =
y(t) == ((-b)^(1/2)*c^(1/2))/a^(1/2)

Isolate a*y(t) in the same equation.

isolate(eqn, a*y(t))

ans =
a*y(t) == -(b*c)/y(t)

isolate Returns Simplest Solution
For equations with multiple solutions, isolate returns the simplest solution.

Demonstrate this behavior by isolating x in sin(x) == 0, which has multiple solutions
at 0, pi, 3*pi/2, and so on.

isolate(sin(x) == 0, x)

ans =
x == 0

isolate does not consider special cases when returning the solution. Instead, isolate
returns a general solution that is not guaranteed to hold for all values of the variables in
the equation.

Isolate x in the equation a*x^2/(x-a) == 1. The returned value of x does not hold in
the special case a = 0.

syms a x
isolate(a*x^2/(x-a) == 1, x)

ans =
x == ((-(2*a - 1)*(2*a + 1))^(1/2) + 1)/(2*a)

4 Functions — Alphabetical List

4-1006

isolate Follows Assumptions on Variables
isolate returns only results that are consistent with the assumptions on the variables in
the equation.

First, assume x is negative, and then isolate x in the equation x^4 == 1.

syms x
assume(x < 0)
eqn = x^4 == 1;
isolate(x^4 == 1, x)

ans =
x == -1

Remove the assumption. isolate chooses a different solution to return.

assume(x, 'clear')
isolate(x^4 == 1, x)

ans =
x == 1

Tips
• If eqn has no solution, isolate errors. isolate also ignores special cases. If the

only solutions to eqn are special cases, then isolate ignores those special cases and
errors.

• The returned solution is not guaranteed to hold for all values of the variables in the
solution.

• expr cannot be a mathematical constant such as pi.

Input Arguments
eqn — Input equation
symbolic equation

Input equation, specified as a symbolic equation.
Example: a*x^2 + b*x + c == 0

 isolate

4-1007

expr — Variable or expression to isolate
symbolic variable | symbolic expression

Variable or expression to isolate, specified as a symbolic variable or expression.

See Also
lhs | linsolve | rhs | solve | subs

Topics
“Solve Algebraic Equation” on page 2-152
“Solve System of Algebraic Equations” on page 2-163
“Solve Equations Numerically” on page 2-182
“Solve System of Linear Equations” on page 2-179

Introduced in R2017a

4 Functions — Alphabetical List

4-1008

isSymType
Determine whether symbolic object is specific type

Syntax
TF = isSymType(symObj,type)
TF = isSymType(symObj,funType,vars)

Description
TF = isSymType(symObj,type) returns logical 1 (true) if the symbolic object
symObj is of type type, and logical 0 (false) otherwise. The input type must be a case-
sensitive string scalar or character vector, and it can include a logical expression. For
example, isSymType(sym('3'),'real & integer') returns logical 1.

If symObj is a symbolic expression with a topmost operator of type type, then
isSymType(symObj,type) also returns logical 1.

TF = isSymType(symObj,funType,vars) checks whether symObj is an unassigned
symbolic function that depends on the symbolic variables vars.

You can set the function type funType to 'symfunOf' or 'symfunDependingOn'. For
example, syms f(x); isSymType(f,'symfunOf',x) returns logical 1.

Examples

Symbolic Number and Constant

Create a symbolic number. Check whether the symbolic number is of type 'rational'.

a = sym('1/2');
TF = isSymType(a,'rational')

 isSymType

4-1009

TF = logical
 1

Now construct a symbolic array by including symbolic numbers or constants in the array
elements.

N = [sym('1/2'), vpa(0.5), pi, vpa(pi), 1i]

N =
1
2 0.5 π 3.1415926535897932384626433832795 i

Check whether each array element is of type 'real'.

TF = isSymType(N,'real')

TF = 1x5 logical array

 1 1 0 1 0

Check whether each array element is of type 'integer | real'.

TF = isSymType(N,'integer | real')

TF = 1x5 logical array

 1 1 0 1 0

Check whether each array element is of type 'number'.

TF = isSymType(N,'number')

TF = 1x5 logical array

 1 1 0 1 1

Check whether each array element is of type 'constant'.

TF = isSymType(N,'constant')

TF = 1x5 logical array

4 Functions — Alphabetical List

4-1010

 1 1 1 1 1

Topmost Operator of Symbolic Expression

Determine whether the topmost operator of a symbolic expression is of a specific type,
such as 'plus' or 'power'.

Create a symbolic expression.

syms x
expr = x^2 + 2*x - 1

expr = x2 + 2 x− 1

Check whether the topmost operator of expr is of type 'plus'.

TF = isSymType(expr,'plus')

TF = logical
 1

Check whether the topmost operator of expr is of type 'power'.

TF = isSymType(expr,'power')

TF = logical
 0

Now perform a symbolic square root operation in the expression.

expr = sqrt(x^2 + 2*x - 1)

expr = x2 + 2 x− 1

Check whether the topmost operator of expr is of type 'power'.

TF = isSymType(expr,'power')

 isSymType

4-1011

TF = logical
 1

Select Specific Equations

Select specific equations that are constant on the right side.

Create an array of three symbolic equations.

syms r(t) x(t) y(t)
eq1 = [x(t) == r(t)*cos(t), y(t) == r(t)*sin(t), r(t) == 5]

eq1 = x t = cos t r t y t = r t sin t r t = 5

Select the right side of each equation using the rhs function. Check whether the right
side of each equation is of type 'constant'.

TF = isSymType(rhs(eq1),'constant')

TF = 1x3 logical array

 0 0 1

Return the reduced equation that is constant on the right side.

eq2 = eq1(TF)

eq2 = r t = 5

Symbolic Function of Multiple Variables

Create a symbolic function of multiple variables f(x,y) using syms. Check whether the
unassigned symbolic function f is of type 'symfun'.

syms f(x,y)
TF = isSymType(f,'symfun')

4 Functions — Alphabetical List

4-1012

TF = logical
 1

Check whether f depends on the exact variable x.

TF = isSymType(f,'symfunOf',x)

TF = logical
 0

Check whether f depends on the exact sequence of variables [x y].

TF = isSymType(f,'symfunOf',[x y])

TF = logical
 1

Check whether f depends on the variable x.

TF = isSymType(f,'symfunDependingOn',x)

TF = logical
 1

Input Arguments
symObj — Symbolic objects
symbolic expressions | symbolic functions | symbolic variables | symbolic numbers |
symbolic units

Symbolic objects, specified as symbolic expressions, symbolic functions, symbolic
variables, symbolic numbers, or symbolic units.

type — Symbolic types
scalar string | character vector

Symbolic types, specified as a case-sensitive scalar string or character vector. The input
type can contain a logical expression. The value options follow.

 isSymType

4-1013

Symbolic
Type
Category

String Values Examples Returning
Logical 1

numbers • 'integer' — integer numbers
• 'rational' — rational numbers
• 'vpareal' — variable-precision
floating-point real numbers

• 'complex' — complex numbers
• 'real' — real numbers, including

'integer', 'rational', and
'vpareal'

• 'number' — numbers, including
'integer', 'rational', 'vpareal',
'complex', and 'real'

• isSymType(sym(2),'i
nteger')

• isSymType(sym(1/2),
'rational')

• isSymType(vpa(0.5),
'vpareal')

• isSymType(vpa(1i),'
complex')

• isSymType([sym(1/2)
vpa(0.5)],'real')

• isSymType([vpa(1i)
sym(1/2)],'number')

constants 'constant' — symbolic constants,
including 'number'

isSymType([vpa(1i)
sym(pi)],'constant')

symbolic math
functions

'vpa', 'sin', 'exp', and so on — topmost
symbolic math functions in symbolic
expressions

isSymType(vpa(sym(pi))
,'vpa')

unassigned
symbolic
functions

• 'F', 'g', and so on — function name of
an unassigned symbolic function

• 'symfun' — unassigned symbolic
functions

• syms F(x);
isSymType(F(x
+2),'F')

• syms g(x);
isSymType(g(x),'sym
fun')

arithmetic
operators

• 'plus' — addition operator + and
subtraction operator -

• 'times' — multiplication operator *
and division operator /

• 'power' — power or exponentiation
operator ^ and square root operator
sqrt

• syms x y;
isSymType(2*x +
y,'plus')

• syms x y;
isSymType(x*y,'time
s')

• syms x y;
isSymType(x^(y
+2),'power')

4 Functions — Alphabetical List

4-1014

Symbolic
Type
Category

String Values Examples Returning
Logical 1

variables 'variable' — symbolic variables isSymType(sym('x'),'va
riable')

units 'units' — symbolic units isSymType(symunit('m')
,'units')

expressions 'expression' — symbolic expressions,
including all of the preceding symbolic
types

isSymType(sym('x')
+1,'expression')

logical
expressions

• 'or' — logical OR operator |
• 'and' — logical AND operator &
• 'not' — logical NOT operator ~
• 'xor' — logical exclusive-OR operator

xor
• 'logicalexpression' — logical

expressions, including 'or', 'and',
'not', and 'xor'

• syms x y;
isSymType(x|y,'or')

• syms x y;
isSymType(x&y,'and'
)

• syms x;
isSymType(~x,'not')

• syms x y;
isSymType(xor(x,y),
'xor')

• syms x y;
isSymType(~x|
y,'logicalexpressio
n')

 isSymType

4-1015

Symbolic
Type
Category

String Values Examples Returning
Logical 1

equations and
inequalities

• 'eq' — equality operator ==
• 'ne' — inequality operator ~=
• 'lt' — less-than operator < or greater-

than operator >
• 'le' — less-than-or-equal-to operator

<= or greater-than-or-equal-to operator
>=

• 'equation' — symbolic equations and
inequalities, including 'eq', 'ne',
'lt', and 'le'

• syms x;
isSymType(x==2,'eq'
)

• syms x;
isSymType(x~=1,'ne'
)

• syms x;
isSymType(x>0,'lt')

• syms x;
isSymType(x<=2,'le'
)

• syms x;
isSymType([x>0
x~=1],'equation')

unsupported
symbolic
types

'unsupported' — unsupported symbolic
types

funType — Function type
'symfunOf' | 'symfunDependingOn'

Function type, specified as 'symfunOf' or 'symfunDependingOn'.

• 'symfunOf' checks whether symObj is an unassigned symbolic function that depends
on the exact sequence of variables specified by the array vars. For example, syms
f(x,y); isSymType(f,'symfunOf',[x y]) returns logical 1.

• 'symfunDependingOn' checks whether symObj is an unassigned symbolic function
that depends on the variables specified by the array vars. For example, syms
f(x,y); isSymType(f,'symfunDependingOn',x) returns logical 1.

vars — Input variables
symbolic variables | symbolic array

Input variables, specified as symbolic variables or a symbolic array.

4 Functions — Alphabetical List

4-1016

See Also
hasSymType | sym | symFunType | symType | syms

Introduced in R2019a

 isSymType

4-1017

isUnit
Determine if input is a symbolic unit

Syntax
tf = isUnit(expr)

Description
tf = isUnit(expr) returns logical 1 (true) if expr is a unit, or a product of powers of
units, and logical 0 (false) if it is not.

Examples

Determine if Input is a Unit
Determine if an expression is a symbolic unit by using isUnit.

Test if 3*u.m is a symbolic unit, where u = symunit. The isUnit function returns
logical 0 (false) because 3*u.m contains the symbolic number 3.

u = symunit;
isUnit(3*u.m)

ans =
 logical
 0

Check if u.m, u.mW, and x*u.Hz are units, where u = symunit. The isUnit function
returns the array [1 1 0], meaning that the first two expressions are units but the third
expression is not.

syms x
units = [u.m u.mW x*u.Hz];
isUnit(units)

4 Functions — Alphabetical List

4-1018

ans =
 1×3 logical array
 1 1 0

Input Arguments
expr — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Tips
• 1 represents a dimensionless unit. Hence, isUnit(sym(1)) returns logical 1 (true).

See Also
checkUnits | findUnits | newUnit | separateUnits | str2symunit | symunit |
symunit2str | unitConversionFactor

Topics
“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

External Websites
The International System of Units (SI)

Introduced in R2017a

 isUnit

4-1019

https://www.bipm.org/en/publications/si-brochure/

iztrans
Inverse Z-transform

Syntax
iztrans(F)
iztrans(F,transVar)
iztrans(F,var,transVar)

Description
iztrans(F) returns the “Inverse Z-Transform” on page 4-1024 of F. By default, the
independent variable is z and the transformation variable is n. If F does not contain z,
iztrans uses the function symvar.

iztrans(F,transVar) uses the transformation variable transVar instead of n.

iztrans(F,var,transVar) uses the independent variable var and transformation
variable transVar instead of z and n respectively.

Examples

Inverse Z-Transform of Symbolic Expression
Compute the inverse Z-transform of 2*z/(z-2)^2. By default, the inverse transform is in
terms of n.

syms z
F = 2*z/(z-2)^2;
iztrans(F)

ans =
2^n + 2^n*(n - 1)

4 Functions — Alphabetical List

4-1020

Specify Independent Variable and Transformation Variable
Compute the inverse Z-transform of 1/(a*z). By default, the independent and
transformation variables are z and n, respectively.

syms z a
F = 1/(a*z);
iztrans(F)

ans =
kroneckerDelta(n - 1, 0)/a

Specify the transformation variable as m. If you specify only one variable, that variable is
the transformation variable. The independent variable is still z.

syms m
iztrans(F,m)

ans =
kroneckerDelta(m - 1, 0)/a

Specify both the independent and transformation variables as a and m in the second and
third arguments, respectively.

iztrans(F,a,m)

ans =
kroneckerDelta(m - 1, 0)/z

Inverse Z-Transforms Involving Kronecker Delta Function
Compute the inverse Z-transforms of these expressions. The results involve the Kronecker
Delta function.

syms n z
iztrans(1/z,z,n)

ans =
kroneckerDelta(n - 1, 0)

f = (z^3 + 3*z^2)/z^5;
iztrans(f,z,n)

ans =
kroneckerDelta(n - 2, 0) + 3*kroneckerDelta(n - 3, 0)

 iztrans

4-1021

Inverse Z-Transform of Array Inputs
Find the inverse Z-transform of the matrix M. Specify the independent and transformation
variables for each matrix entry by using matrices of the same size. When the arguments
are nonscalars, iztrans acts on them element-wise.

syms a b c d w x y z
M = [exp(x) 1; sin(y) i*z];
vars = [w x; y z];
transVars = [a b; c d];
iztrans(M,vars,transVars)

ans =
[exp(x)*kroneckerDelta(a, 0), kroneckerDelta(b, 0)]
[iztrans(sin(y), y, c), iztrans(z, z, d)*1i]

If iztrans is called with both scalar and nonscalar arguments, then it expands the
scalars to match the nonscalars by using scalar expansion. Nonscalar arguments must be
the same size.

syms w x y z a b c d
iztrans(x,vars,transVars)

ans =
[x*kroneckerDelta(a, 0), iztrans(x, x, b)]
[x*kroneckerDelta(c, 0), x*kroneckerDelta(d, 0)]

Inverse Z-Transform of Symbolic Function
Compute the Inverse Z-transform of symbolic functions. When the first argument contains
symbolic functions, then the second argument must be a scalar.

syms f1(x) f2(x) a b
f1(x) = exp(x);
f2(x) = x;
iztrans([f1, f2],x,[a, b])

ans =
[iztrans(exp(x), x, a), iztrans(x, x, b)]

If Inverse Z-Transform Cannot Be Found
If iztrans cannot compute the inverse transform, it returns an unevaluated call.

4 Functions — Alphabetical List

4-1022

syms F(z) n
F(z) = exp(z);
f = iztrans(F,z,n)

f =
iztrans(exp(z), z, n)

Return the original expression by using ztrans.

ztrans(f,n,z)

ans =
exp(z)

Input Arguments
F — Input
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic expression, function, vector, or matrix.

var — Independent variable
x (default) | symbolic variable | symbolic expression | symbolic vector | symbolic matrix

Independent variable, specified as a symbolic variable, expression, vector, or matrix. This
variable is often called the "complex frequency variable." If you do not specify the
variable, then iztrans uses z. If F does not contain z, then iztrans uses the function
symvar.

transVar — Transformation variable
x (default) | t | symbolic variable | symbolic expression | symbolic vector | symbolic
matrix

Transformation variable, specified as a symbolic variable, expression, vector, or matrix. It
is often called the"time variable" or "space variable." By default, iztrans uses n. If n is
the independent variable of F, then iztrans uses k.

 iztrans

4-1023

Definitions

Inverse Z-Transform
Where R is a positive number, such that the function F = F(z) is analytic on and outside
the circle |z| = R, the inverse Z-transform is

f n = 1
2πi ∮

z = R
F z zn− 1dz, n = 0, 1, 2...

Tips
• If any argument is an array, then iztrans acts element-wise on all elements of the

array.
• If the first argument contains a symbolic function, then the second argument must be

a scalar.
• To compute the direct Z-transform, use ztrans.

See Also
fourier | ifourier | ilaplace | kroneckerDelta | laplace | ztrans

Topics
“Solve Difference Equations Using Z-Transform” on page 2-243

Introduced before R2006a

4 Functions — Alphabetical List

4-1024

jacobiAM
Jacobi amplitude function

Syntax
jacobiAM(u,m)

Description
jacobiAM(u,m) returns the “Jacobi Amplitude Function” on page 4-1029 of u and m. If u
or m is an array, then jacobiAM acts element-wise.

Examples

Calculate Jacobi Amplitude Function for Numeric Inputs

jacobiAM(2,1)

ans =
 1.3018

Call jacobiAM on array inputs. jacobiAM acts element-wise when u or m is an array.

jacobiAM([2 1 -3],[1 2 3])

ans =
 1.3018 0.7370 0.6155

Calculate Jacobi Amplitude Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Jacobi amplitude
function. For symbolic input where u = 0 or m = 0 or 1, jacobiAM returns exact
symbolic output.

 jacobiAM

4-1025

jacobiAM(sym(2),sym(1))

ans =
2*atan(exp(2)) - pi/2

Show that for other values of u or m, jacobiAM returns an unevaluated function call.

jacobiAM(sym(2),sym(3))

ans =
jacobiAM(2, 3)

Find Jacobi Amplitude Function for Symbolic Variables or Expressions

For symbolic variables or expressions, jacobiAM returns the unevaluated function call.

syms x y
f = jacobiAM(x,y)

f =
jacobiAM(x, y)

Substitute values for the variables by using subs, and convert values to double by using
double.

f = subs(f, [x y], [3 5])

f =
jacobiAM(3, 5)

fVal = double(f)

fVal =
 0.0311

Calculate f to higher precision using vpa.

fVal = vpa(f)

4 Functions — Alphabetical List

4-1026

fVal =
0.031149815412430844987208470634926

Plot Jacobi Amplitude Function

Plot the Jacobi amplitude function using fcontour. Set u on the x-axis and m on the y-axis
by using the symbolic function f with the variable order (u,m). Fill plot contours by
setting Fill to on.

syms f(u,m)
f(u,m) = jacobiAM(u,m);
fcontour(f,'Fill','on')
title('Jacobi Amplitude Function')
xlabel('u')
ylabel('m')

 jacobiAM

4-1027

Input Arguments
u — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

4 Functions — Alphabetical List

4-1028

m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Definitions

Jacobi Amplitude Function
The Jacobi amplitude function am(u,m) is defined by am(u,m) = φ where F(φ,m) = u and F
represents the incomplete elliptic integral of the first kind. F is implemented as
ellipticF.

See Also
ellipticF | jacobiCD | jacobiCN | jacobiCS | jacobiDC | jacobiDN | jacobiDS |
jacobiNC | jacobiND | jacobiNS | jacobiSC | jacobiSD | jacobiSN | jacobiZeta

Introduced in R2017b

 jacobiAM

4-1029

jacobian
Jacobian matrix

Syntax
jacobian(f,v)

Description
jacobian(f,v) computes the Jacobian matrix on page 4-1032 of f with respect to v.
The (i,j) element of the result is ∂ f i

∂v j .

Examples

Jacobian of Vector Function
The Jacobian of a vector function is a matrix of the partial derivatives of that function.

Compute the Jacobian matrix of [x*y*z, y^2, x + z] with respect to [x, y, z].

syms x y z
jacobian([x*y*z, y^2, x + z], [x, y, z])

ans =
[y*z, x*z, x*y]
[0, 2*y, 0]
[1, 0, 1]

Now, compute the Jacobian of [x*y*z, y^2, x + z] with respect to [x; y; z].

jacobian([x*y*z, y^2, x + z], [x; y; z])

ans =

4 Functions — Alphabetical List

4-1030

[y*z, x*z, x*y]
[0, 2*y, 0]
[1, 0, 1]

The Jacobian matrix is invariant to the orientation of the vector in the second input
position.

Jacobian of Scalar Function
The Jacobian of a scalar function is the transpose of its gradient.

Compute the Jacobian of 2*x + 3*y + 4*z with respect to [x, y, z].

syms x y z
jacobian(2*x + 3*y + 4*z, [x, y, z])

ans =
[2, 3, 4]

Now, compute the gradient of the same expression.

gradient(2*x + 3*y + 4*z, [x, y, z])

ans =
 2
 3
 4

Jacobian with Respect to Scalar
The Jacobian of a function with respect to a scalar is the first derivative of that function.
For a vector function, the Jacobian with respect to a scalar is a vector of the first
derivatives.

Compute the Jacobian of [x^2*y, x*sin(y)] with respect to x.

syms x y
jacobian([x^2*y, x*sin(y)], x)

ans =
 2*x*y
 sin(y)

Now, compute the derivatives.

 jacobian

4-1031

diff([x^2*y, x*sin(y)], x)

ans =
[2*x*y, sin(y)]

Input Arguments
f — Scalar or vector function
symbolic expression | symbolic function | symbolic vector

Scalar or vector function, specified as a symbolic expression, function, or vector. If f is a
scalar, then the Jacobian matrix of f is the transposed gradient of f.

v — Vector of variables with respect to which you compute Jacobian
symbolic variable | symbolic vector

Vector of variables with respect to which you compute Jacobian, specified as a symbolic
variable or vector of symbolic variables. If v is a scalar, then the result is equal to the
transpose of diff(f,v). If v is an empty symbolic object, such as sym([]), then
jacobian returns an empty symbolic object.

Definitions

Jacobian Matrix
The Jacobian matrix of the vector function f = (f1(x1,...,xn),...,fn(x1,...,xn)) is the matrix of
the derivatives of f:

J x1, …xn =

∂ f1
∂x1

⋯ ∂ f1
∂xn

⋮ ⋱ ⋮
∂ fn
∂x1

⋯ ∂ fn
∂xn

4 Functions — Alphabetical List

4-1032

See Also
curl | diff | divergence | gradient | hessian | laplacian | potential |
vectorPotential

Introduced before R2006a

 jacobian

4-1033

jacobiCD
Jacobi CD elliptic function

Syntax
jacobiCD(u,m)

Description
jacobiCD(u,m) returns the “Jacobi CD Elliptic Function” on page 4-1038 of u and m. If u
or m is an array, then jacobiCD acts element-wise.

Examples

Calculate Jacobi CD Elliptic Function for Numeric Inputs
jacobiCD(2,1)

ans =
 1

Call jacobiCD on array inputs. jacobiCD acts element-wise when u or m is an array.

jacobiCD([2 1 -3],[1 2 3])

ans =
 1.0000 2.3829 -178.6290

Calculate Jacobi CD Elliptic Function for Symbolic Numbers
Convert numeric input to symbolic form using sym, and find the Jacobi CD elliptic
function. For symbolic input where u = 0 or m = 0 or 1, jacobiCD returns exact
symbolic output.

jacobiCD(sym(2),sym(1))

4 Functions — Alphabetical List

4-1034

ans =
1

Show that for other values of u or m, jacobiCD returns an unevaluated function call.

jacobiCD(sym(2),sym(3))

ans =
jacobiCD(2, 3)

Find Jacobi CD Elliptic Function for Symbolic Variables or
Expressions
For symbolic variables or expressions, jacobiCD returns the unevaluated function call.

syms x y
f = jacobiCD(x,y)

f =
jacobiCD(x, y)

Substitute values for the variables by using subs, and convert values to double by using
double.

f = subs(f, [x y], [3 5])

f =
jacobiCD(3, 5)

fVal = double(f)

fVal =
 1.0019

Calculate f to higher precision using vpa.

fVal = vpa(f)

 jacobiCD

4-1035

fVal =
1.0019475527333315357888731083364

Plot Jacobi CD Elliptic Function
Plot the Jacobi CD elliptic function using fcontour. Set u on the x-axis and m on the y-
axis by using the symbolic function f with the variable order (u,m). Fill plot contours by
setting Fill to on.

syms f(u,m)
f(u,m) = jacobiCD(u,m);
fcontour(f,'Fill','on')
title('Jacobi CD Elliptic Function')
xlabel('u')
ylabel('m')

4 Functions — Alphabetical List

4-1036

Input Arguments
u — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

 jacobiCD

4-1037

m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Definitions

Jacobi CD Elliptic Function
The Jacobi CD elliptic function is

cd(u,m) = cn(u,m)/dn(u,m)

where cn and dn are the respective Jacobi elliptic functions.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument
with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind,
implemented as ellipticK.

See Also
ellipticK | jacobiAM | jacobiCN | jacobiCS | jacobiDC | jacobiDN | jacobiDS |
jacobiNC | jacobiND | jacobiNS | jacobiSC | jacobiSD | jacobiSN | jacobiZeta

Introduced in R2017b

4 Functions — Alphabetical List

4-1038

jacobiCN
Jacobi CN elliptic function

Syntax
jacobiCN(u,m)

Description
jacobiCN(u,m) returns the “Jacobi CN Elliptic Function” on page 4-1043 of u and m. If u
or m is an array, then jacobiCN acts element-wise.

Examples

Calculate Jacobi CN Elliptic Function for Numeric Inputs
jacobiCN(2,1)

ans =
 0.2658

Call jacobiCN on array inputs. jacobiCN acts element-wise when u or m is an array.

jacobiCN([2 1 -3],[1 2 3])

ans =
 0.2658 0.7405 0.8165

Calculate Jacobi CN Elliptic Function for Symbolic Numbers
Convert numeric input to symbolic form using sym, and find the Jacobi CN elliptic
function. For symbolic input where u = 0 or m = 0 or 1, jacobiCN returns exact
symbolic output.

jacobiCN(sym(2),sym(1))

 jacobiCN

4-1039

ans =
1/cosh(2)

Show that for other values of u or m, jacobiCN returns an unevaluated function call.

jacobiCN(sym(2),sym(3))

ans =
jacobiCN(2, 3)

Find Jacobi CN Elliptic Function for Symbolic Variables or
Expressions
For symbolic variables or expressions, jacobiCN returns the unevaluated function call.

syms x y
f = jacobiCN(x,y)

f =
jacobiCN(x, y)

Substitute values for the variables by using subs, and convert values to double by using
double.

f = subs(f, [x y], [3 5])

f =
jacobiCN(3, 5)

fVal = double(f)

fVal =
 0.9995

Calculate f to higher precision using vpa.

fVal = vpa(f)

4 Functions — Alphabetical List

4-1040

fVal =
0.9995148837279268257000709197021

Plot Jacobi CN Elliptic Function
Plot the Jacobi CN elliptic function using fcontour. Set u on the x-axis and m on the y-
axis by using the symbolic function f with the variable order (u,m). Fill plot contours by
setting Fill to on.

syms f(u,m)
f(u,m) = jacobiCN(u,m);
fcontour(f,'Fill','on')
title('Jacobi CN Elliptic Function')
xlabel('u')
ylabel('m')

 jacobiCN

4-1041

Input Arguments
u — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

4 Functions — Alphabetical List

4-1042

m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Definitions

Jacobi CN Elliptic Function
The Jacobi CN elliptic function is cn(u,m) = cos(am(u,m)) where am is the Jacobi
amplitude function.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument
with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind,
implemented as ellipticK.

See Also
ellipticK | jacobiAM | jacobiCD | jacobiCS | jacobiDC | jacobiDN | jacobiDS |
jacobiNC | jacobiND | jacobiNS | jacobiSC | jacobiSD | jacobiSN | jacobiZeta

Introduced in R2017b

 jacobiCN

4-1043

jacobiCS
Jacobi CS elliptic function

Syntax
jacobiCS(u,m)

Description
jacobiCS(u,m) returns the “Jacobi CS Elliptic Function” on page 4-1048 of u and m. If u
or m is an array, then jacobiCS acts element-wise.

Examples

Calculate Jacobi CS Elliptic Function for Numeric Inputs
jacobiCS(2,1)

ans =
 0.2757

Call jacobiCS on array inputs. jacobiCS acts element-wise when u or m is an array.

jacobiCS([2 1 -3],[1 2 3])

ans =
 0.2757 1.1017 1.4142

Calculate Jacobi CS Elliptic Function for Symbolic Numbers
Convert numeric input to symbolic form using sym, and find the Jacobi CS elliptic
function. For symbolic input where u = 0 or m = 0 or 1, jacobiCS returns exact
symbolic output.

jacobiCS(sym(2),sym(1))

4 Functions — Alphabetical List

4-1044

ans =
1/sinh(2)

Show that for other values of u or m, jacobiCS returns an unevaluated function call.

jacobiCS(sym(2),sym(3))

ans =
jacobiCS(2, 3)

Find Jacobi CS Elliptic Function for Symbolic Variables or
Expressions
For symbolic variables or expressions, jacobiCS returns the unevaluated function call.

syms x y
f = jacobiCS(x,y)

f =
jacobiCS(x, y)

Substitute values for the variables by using subs, and convert values to double by using
double.

f = subs(f, [x y], [3 5])

f =
jacobiCS(3, 5)

fVal = double(f)

fVal =
 32.0925

Calculate f to higher precision using vpa.

fVal = vpa(f)

 jacobiCS

4-1045

fVal =
32.092535022751828816106562829547

Plot Jacobi CS Elliptic Function
Plot the Jacobi CS elliptic function using fcontour. Set u on the x-axis and m on the y-
axis by using the symbolic function f with the variable order (u,m). Fill plot contours by
setting Fill to on.

syms f(u,m)
f(u,m) = jacobiCS(u,m);
fcontour(f,'Fill','on')
title('Jacobi CS Elliptic Function')
xlabel('u')
ylabel('m')

4 Functions — Alphabetical List

4-1046

Input Arguments
u — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

 jacobiCS

4-1047

m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Definitions

Jacobi CS Elliptic Function
The Jacobi CS elliptic function is

cs(u,m) = cn(u,m)/sn(u,m)

where cn and sn are the respective Jacobi elliptic functions.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument
with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind,
implemented as ellipticK.

See Also
ellipticK | jacobiAM | jacobiCD | jacobiCN | jacobiDC | jacobiDN | jacobiDS |
jacobiNC | jacobiND | jacobiNS | jacobiSC | jacobiSD | jacobiSN | jacobiZeta

Introduced in R2017b

4 Functions — Alphabetical List

4-1048

jacobiDC
Jacobi DC elliptic function

Syntax
jacobiDC(u,m)

Description
jacobiDC(u,m) returns the “Jacobi DC Elliptic Function” on page 4-1053 of u and m. If u
or m is an array, then jacobiDC acts element-wise.

Examples

Calculate Jacobi DC Elliptic Function for Numeric Inputs
jacobiDC(2,1)

ans =
 1

Call jacobiDC on array inputs. jacobiDC acts element-wise when u or m is an array.

jacobiDC([2 1 -3],[1 2 3])

ans =
 1.0000 0.4197 -0.0056

Calculate Jacobi DC Elliptic Function for Symbolic Numbers
Convert numeric input to symbolic form using sym, and find the Jacobi DC elliptic
function. For symbolic input where u = 0 or m = 0 or 1,jacobiDC returns exact
symbolic output.

jacobiDC(sym(2),sym(1))

 jacobiDC

4-1049

ans =
1

Show that for other values of u or m, jacobiDC returns an unevaluated function call.

jacobiDC(sym(2),sym(3))

ans =
jacobiDC(2, 3)

Find Jacobi DC Elliptic Function for Symbolic Variables or
Expressions
For symbolic variables or expressions, jacobiDC returns the unevaluated function call.

syms x y
f = jacobiDC(x,y)

f =
jacobiDC(x, y)

Substitute values for the variables by using subs, and convert values to double by using
double.

f = subs(f, [x y], [3 5])

f =
jacobiDC(3, 5)

fVal = double(f)

fVal =
 0.9981

Calculate f to higher precision using vpa.

fVal = vpa(f)

4 Functions — Alphabetical List

4-1050

fVal =
0.99805623285568333815968501058428

Plot Jacobi DC Elliptic Function
Plot the Jacobi DC elliptic function using fcontour. Set u on the x-axis and m on the y-
axis by using the symbolic function f with the variable order (u,m). Fill plot contours by
setting Fill to on.

syms f(u,m)
f(u,m) = jacobiDC(u,m);
fcontour(f,'Fill','on')
title('Jacobi DC Elliptic Function')
xlabel('u')
ylabel('m')

 jacobiDC

4-1051

Input Arguments
u — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

4 Functions — Alphabetical List

4-1052

m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Definitions

Jacobi DC Elliptic Function
The Jacobi DC elliptic function is

dc(u,m) = dn(u,m)/cn(u,m)

where dn and cn are the respective Jacobi elliptic functions.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument
with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind,
implemented as ellipticK.

See Also
ellipticK | jacobiAM | jacobiCD | jacobiCN | jacobiCS | jacobiDN | jacobiDS |
jacobiNC | jacobiND | jacobiNS | jacobiSC | jacobiSD | jacobiSN | jacobiZeta

Introduced in R2017b

 jacobiDC

4-1053

jacobiDN
Jacobi DN elliptic function

Syntax
jacobiDN(u,m)

Description
jacobiDN(u,m) returns the “Jacobi DN Elliptic Function” on page 4-1058 of u and m. If u
or m is an array, then jacobiDN acts element-wise.

Examples

Calculate Jacobi DN Elliptic Function for Numeric Inputs
jacobiDN(2,1)

ans =
 0.2658

Call jacobiDN on array inputs. jacobiDN acts element-wise when u or m is an array.

jacobiDN([2 1 -3],[1 2 3])

ans =
 0.2658 0.3107 -0.0046

Calculate Jacobi DN Elliptic Function for Symbolic Numbers
Convert numeric input to symbolic form using sym, and find the Jacobi DN elliptic
function. For symbolic input where u = 0 or m = 0 or 1, jacobiDN returns exact
symbolic output.

jacobiDN(sym(2),sym(1))

4 Functions — Alphabetical List

4-1054

ans =
1/cosh(2)

Show that for other values of u or m, jacobiDN returns an unevaluated function call.

jacobiDN(sym(2),sym(3))

ans =
jacobiDN(2, 3)

Find Jacobi DN Elliptic Function for Symbolic Variables or
Expressions
For symbolic variables or expressions, jacobiDN returns the unevaluated function call.

syms x y
f = jacobiDN(x,y)

f =
jacobiDN(x, y)

Substitute values for the variables by using subs, and convert values to double by using
double.

f = subs(f, [x y], [3 5])

f =
jacobiDN(3, 5)

fVal = double(f)

fVal =
 0.9976

Calculate f to higher precision using vpa.

fVal = vpa(f)

 jacobiDN

4-1055

fVal =
0.99757205953668099307853539907267

Plot Jacobi DN Elliptic Function
Plot the Jacobi DN elliptic function using fcontour. Set u on the x-axis and m on the y-
axis by using the symbolic function f with the variable order (u,m). Fill plot contours by
setting Fill to on.

syms f(u,m)
f(u,m) = jacobiDN(u,m);
fcontour(f,'Fill','on')
title('Jacobi DN Elliptic Function')
xlabel('u')
ylabel('m')

4 Functions — Alphabetical List

4-1056

Input Arguments
u — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

 jacobiDN

4-1057

m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Definitions

Jacobi DN Elliptic Function
The Jacobi DN elliptic function is

dn u, m = 1−msin(ϕ)2

where ϕ is such that F(ϕ,m) = u and F represents the incomplete elliptic integral of the
first kind. F is implemented as ellipticF.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument
with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind,
implemented as ellipticK.

See Also
ellipticK | jacobiAM | jacobiCD | jacobiCN | jacobiCS | jacobiDC | jacobiDS |
jacobiNC | jacobiND | jacobiNS | jacobiSC | jacobiSD | jacobiSN | jacobiZeta

Introduced in R2017b

4 Functions — Alphabetical List

4-1058

jacobiDS
Jacobi DS elliptic function

Syntax
jacobiDS(u,m)

Description
jacobiDS(u,m) returns the “Jacobi DS Elliptic Function” on page 4-1063 of u and m. If u
or m is an array, then jacobiDS acts element-wise.

Examples

Calculate Jacobi DS Elliptic Function for Numeric Inputs
jacobiDS(2,1)

ans =
 0.2757

Call jacobiDS on array inputs. jacobiDS acts element-wise when u or m is an array.

jacobiDS([2 1 -3],[1 2 3])

ans =
 0.2757 0.4623 -0.0079

Calculate Jacobi DS Elliptic Function for Symbolic Numbers
Convert numeric input to symbolic form using sym, and find the Jacobi DS elliptic
function. For symbolic input where u = 0 or m = 0 or 1, jacobiDS returns exact
symbolic output.

jacobiDS(sym(2),sym(1))

 jacobiDS

4-1059

ans =
1/sinh(2)

Show that for other values of u or m, jacobiDS returns an unevaluated function call.

jacobiDS(sym(2),sym(3))

ans =
jacobiDS(2, 3)

Find Jacobi DS Elliptic Function for Symbolic Variables or
Expressions
For symbolic variables or expressions, jacobiDS returns the unevaluated function call.

syms x y
f = jacobiDS(x,y)

f =
jacobiDS(x, y)

Substitute values for the variables by using subs, and convert values to double by using
double.

f = subs(f, [x y], [3 5])

f =
jacobiDS(3, 5)

fVal = double(f)

fVal =
 32.0302

Calculate f to higher precision using vpa.

fVal = vpa(f)

4 Functions — Alphabetical List

4-1060

fVal =
32.030154607596772037587224629884

Plot Jacobi DS Elliptic Function
Plot the Jacobi DS elliptic function using fcontour. Set u on the x-axis and m on the y-
axis by using the symbolic function f with the variable order (u,m). Fill plot contours by
setting Fill to on.

syms f(u,m)
f(u,m) = jacobiDS(u,m);
fcontour(f,'Fill','on')
title('Jacobi DS Elliptic Function')
xlabel('u')
ylabel('m')

 jacobiDS

4-1061

Input Arguments
u — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

4 Functions — Alphabetical List

4-1062

m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Definitions

Jacobi DS Elliptic Function
The Jacobi DS elliptic function is

ds(u,m) = dn(u,m)/sn(u,m)

where dn and sn are the respective Jacobi elliptic functions.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument
with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind,
implemented as ellipticK.

See Also
ellipticK | jacobiAM | jacobiCD | jacobiCN | jacobiCS | jacobiDC | jacobiDN |
jacobiNC | jacobiND | jacobiNS | jacobiSC | jacobiSD | jacobiSN | jacobiZeta

Introduced in R2017b

 jacobiDS

4-1063

jacobiNC
Jacobi NC elliptic function

Syntax
jacobiNC(u,m)

Description
jacobiNC(u,m) returns the “Jacobi NC Elliptic Function” on page 4-1068 of u and m. If u
or m is an array, then jacobiNC acts element-wise.

Examples

Calculate Jacobi NC Elliptic Function for Numeric Inputs
jacobiNC(2,1)

ans =
 3.7622

Call jacobiNC on array inputs. jacobiNC acts element-wise when u or m is an array.

jacobiNC([2 1 -3],[1 2 3])

ans =
 3.7622 1.3505 1.2247

Calculate Jacobi NC Elliptic Function for Symbolic Numbers
Convert numeric input to symbolic form using sym, and find the Jacobi NC elliptic
function. For symbolic input where u = 0 or m = 0 or 1, jacobiNC returns exact
symbolic output.

jacobiNC(sym(2),sym(1))

4 Functions — Alphabetical List

4-1064

ans =
cosh(2)

Show that for other values of u or m, jacobiNC returns an unevaluated function call.

jacobiNC(sym(2),sym(3))

ans =
jacobiNC(2, 3)

Find Jacobi NC Elliptic Function for Symbolic Variables or
Expressions
For symbolic variables or expressions, jacobiNC returns the unevaluated function call.

syms x y
f = jacobiNC(x,y)

f =
jacobiNC(x, y)

Substitute values for the variables by using subs, and convert values to double by using
double.

f = subs(f, [x y], [3 5])

f =
jacobiNC(3, 5)

fVal = double(f)

fVal =
 1.0005

Calculate f to higher precision using vpa.

fVal = vpa(f)

 jacobiNC

4-1065

fVal =
1.0004853517240922102007985618873

Plot Jacobi NC Elliptic Function
Plot the Jacobi NC elliptic function using fcontour. Set u on the x-axis and m on the y-
axis by using the symbolic function f with the variable order (u,m). Fill plot contours by
setting Fill to on.

syms f(u,m)
f(u,m) = jacobiNC(u,m);
fcontour(f,'Fill','on')
title('Jacobi NC Elliptic Function')
xlabel('u')
ylabel('m')

4 Functions — Alphabetical List

4-1066

Input Arguments
u — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

 jacobiNC

4-1067

m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Definitions

Jacobi NC Elliptic Function
The Jacobi NC elliptic function is

nc(u,m) = 1/cn(u,m)

where cn is the respective Jacobi elliptic function.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument
with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind,
implemented as ellipticK.

See Also
ellipticK | jacobiAM | jacobiCD | jacobiCN | jacobiCS | jacobiDC | jacobiDN |
jacobiDS | jacobiND | jacobiNS | jacobiSC | jacobiSD | jacobiSN | jacobiZeta

Introduced in R2017b

4 Functions — Alphabetical List

4-1068

jacobiND
Jacobi ND elliptic function

Syntax
jacobiND(u,m)

Description
jacobiND(u,m) returns the “Jacobi ND Elliptic Function” on page 4-1073 of u and m. If u
or m is an array, then jacobiND acts element-wise.

Examples

Calculate Jacobi ND Elliptic Function for Numeric Inputs
jacobiND(2,1)

ans =
 3.7622

Call jacobiND on array inputs. jacobiND acts element-wise when u or m is an array.

jacobiND([2 1 -3],[1 2 3])

ans =
 3.7622 3.2181 -218.7739

Calculate Jacobi ND Elliptic Function for Symbolic Numbers
Convert numeric input to symbolic form using sym, and find the Jacobi ND elliptic
function. For symbolic input where u = 0 or m = 0 or 1, jacobiND returns exact
symbolic output.

jacobiND(sym(2),sym(1))

 jacobiND

4-1069

ans =
cosh(2)

Show that for other values of u or m, jacobiND returns an unevaluated function call.

jacobiND(sym(2),sym(3))

ans =
jacobiND(2, 3)

Find Jacobi ND Elliptic Function for Symbolic Variables or
Expressions
For symbolic variables or expressions, jacobiND returns the unevaluated function call.

syms x y
f = jacobiND(x,y)

f =
jacobiND(x, y)

Substitute values for the variables by using subs, and convert values to double by using
double.

f = subs(f, [x y], [3 5])

f =
jacobiND(3, 5)

fVal = double(f)

fVal =
 1.0024

Calculate f to higher precision using vpa.

fVal = vpa(f)

4 Functions — Alphabetical List

4-1070

fVal =
1.0024338497055006289470589737758

Plot Jacobi ND Elliptic Function
Plot the Jacobi ND elliptic function using fcontour. Set u on the x-axis and m on the y-
axis by using the symbolic function f with the variable order (u,m). Fill plot contours by
setting Fill to on.

syms f(u,m)
f(u,m) = jacobiND(u,m);
fcontour(f,'Fill','on')
title('Jacobi ND Elliptic Function')
xlabel('u')
ylabel('m')

 jacobiND

4-1071

Input Arguments
u — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

4 Functions — Alphabetical List

4-1072

m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Definitions

Jacobi ND Elliptic Function
The Jacobi ND elliptic function is

nd(u,m) = 1/dn(u,m)

where dn is the respective Jacobi elliptic function.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument
with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind,
implemented as ellipticK.

See Also
ellipticK | jacobiAM | jacobiCD | jacobiCN | jacobiCS | jacobiDC | jacobiDN |
jacobiDS | jacobiNC | jacobiNS | jacobiSC | jacobiSD | jacobiSN | jacobiZeta

Introduced in R2017b

 jacobiND

4-1073

jacobiNS
Jacobi NS elliptic function

Syntax
jacobiNS(u,m)

Description
jacobiNS(u,m) returns the “Jacobi NS Elliptic Function” on page 4-1078 of u and m. If u
or m is an array, then jacobiNS acts element-wise.

Examples

Calculate Jacobi NS Elliptic Function for Numeric Inputs
jacobiNS(2,1)

ans =
 1.0373

Call jacobiNS on array inputs. jacobiNS acts element-wise when u or m is an array.

jacobiNS([2 1 -3],[1 2 3])

ans =
 1.0373 1.4879 1.7321

Calculate Jacobi NS Elliptic Function for Symbolic Numbers
Convert numeric input to symbolic form using sym, and find the Jacobi NS elliptic
function. For symbolic input where u = 0 or m = 0 or 1, jacobiNS returns exact
symbolic output.

jacobiNS(sym(2),sym(1))

4 Functions — Alphabetical List

4-1074

ans =
coth(2)

Show that for other values of u or m, jacobiNS returns an unevaluated function call.

jacobiNS(sym(2),sym(3))

ans =
jacobiNS(2, 3)

Find Jacobi NS Elliptic Function for Symbolic Variables or
Expressions
For symbolic variables or expressions, jacobiNS returns the unevaluated function call.

syms x y
f = jacobiNS(x,y)

f =
jacobiNS(x, y)

Substitute values for the variables by using subs, and convert values to double by using
double.

f = subs(f, [x y], [3 5])

f =
jacobiNS(3, 5)

fVal = double(f)

fVal =
 32.1081

Calculate f to higher precision using vpa.

fVal = vpa(f)

 jacobiNS

4-1075

fVal =
32.108111189955611054545195854805

Plot Jacobi NS Elliptic Function
Plot the Jacobi NS elliptic function using fcontour. Set u on the x-axis and m on the y-
axis by using the symbolic function f with the variable order (u,m). Fill plot contours by
setting Fill to on.

syms f(u,m)
f(u,m) = jacobiNS(u,m);
fcontour(f,'Fill','on')
title('Jacobi NS Elliptic Function')
xlabel('u')
ylabel('m')

4 Functions — Alphabetical List

4-1076

Input Arguments
u — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

 jacobiNS

4-1077

m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Definitions

Jacobi NS Elliptic Function
The Jacobi NS elliptic function is

ns(u,m) = 1/ds(u,m)

where ds is the respective Jacobi elliptic function.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument
with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind,
implemented as ellipticK.

See Also
ellipticK | jacobiAM | jacobiCD | jacobiCN | jacobiCS | jacobiDC | jacobiDN |
jacobiDS | jacobiNC | jacobiND | jacobiSC | jacobiSD | jacobiSN | jacobiZeta

Introduced in R2017b

4 Functions — Alphabetical List

4-1078

jacobiP
Jacobi polynomials

Syntax
jacobiP(n,a,b,x)

Description
jacobiP(n,a,b,x) returns the nth degree Jacobi polynomial on page 4-1084 with
parameters a and b at x.

Examples

Find Jacobi Polynomials for Numeric and Symbolic Inputs
Find the Jacobi polynomial of degree 2 for numeric inputs.

jacobiP(2,0.5,-3,6)

ans =
 7.3438

Find the Jacobi polynomial for symbolic inputs.

syms n a b x
jacobiP(n,a,b,x)

ans =
jacobiP(n, a, b, x)

If the degree of the Jacobi polynomial is not specified, jacobiP cannot find the
polynomial and returns the function call.

Specify the degree of the Jacobi polynomial as 1 to return the form of the polynomial.

 jacobiP

4-1079

J = jacobiP(1,a,b,x)

J =
a/2 - b/2 + x*(a/2 + b/2 + 1)

To find the numeric value of a Jacobi polynomial, call jacobiP with the numeric values
directly. Do not substitute into the symbolic polynomial because the result can be
inaccurate due to round-off. Test this by using subs to substitute into the symbolic
polynomial, and compare the result with a numeric call.

J = jacobiP(300, -1/2, -1/2, x);
subs(J,x,vpa(1/2))
jacobiP(300, -1/2, -1/2, vpa(1/2))

ans =
101573673381249394050.64541318209
ans =
0.032559931334979678350422392588404

When subs is used to substitute into the symbolic polynomial, the numeric result is
subject to round-off error. The direct numerical call to jacobiP is accurate.

Find Jacobi Polynomial with Vector and Matrix Inputs
Find the Jacobi polynomials of degrees 1 and 2 by setting n = [1 2] for a = 3 and b =
1.

syms x
jacobiP([1 2],3,1,x)

ans =
[3*x + 1, 7*x^2 + (7*x)/2 - 1/2]

jacobiP acts on n element-wise to return a vector with two entries.

If multiple inputs are specified as a vector, matrix, or multidimensional array, these inputs
must be the same size. Find the Jacobi polynomials for a = [1 2;3 1], b = [2 2;1
3], n = 1 and x.

a = [1 2;3 1];
b = [2 2;1 3];
J = jacobiP(1,a,b,x)

4 Functions — Alphabetical List

4-1080

J =
[(5*x)/2 - 1/2, 3*x]
[3*x + 1, 3*x - 1]

jacobiP acts element-wise on a and b to return a matrix of the same size as a and b.

Visualize Zeros of Jacobi Polynomials
Plot Jacobi polynomials of degree 1, 2, and 3 for a = 3, b = 3, and -1<x<1. To better
view the plot, set axis limits by using axis.

syms x
fplot(jacobiP(1:3,3,3,x))
axis([-1 1 -2 2])
grid on

ylabel('P_n^{(\alpha,\beta)}(x)')
title('Zeros of Jacobi polynomials of degree=1,2,3 with a=3 and b=3');
legend('1','2','3','Location','best')

 jacobiP

4-1081

Prove Orthogonality of Jacobi Polynomials with Respect to
Weight Function
The Jacobi polynomials P(n,a,b,x) are orthogonal with respect to the weight function
1− x a 1− x b on the interval [-1,1].

Prove P(3,a,b,x) and P(5,a,b,x) are orthogonal with respect to the weight function
1− x a 1− x b by integrating their product over the interval [-1,1], where a = 3.5

and b = 7.2.

4 Functions — Alphabetical List

4-1082

syms x
a = 3.5;
b = 7.2;
P3 = jacobiP(3, a, b, x);
P5 = jacobiP(5, a, b, x);
w = (1-x)^a*(1+x)^b;
int(P3*P5*w, x, -1, 1)

ans =
0

Input Arguments
n — Degree of Jacobi polynomial
nonnegative integer | vector of nonnegative integers | matrix of nonnegative integers |
multidimensional array of nonnegative integers | symbolic nonnegative integer | symbolic
variable | symbolic vector | symbolic matrix | symbolic function | symbolic expression |
symbolic multidimensional array

Degree of Jacobi polynomial, specified as a nonnegative integer, or a vector, matrix, or
multidimensional array of nonnegative integers, or a symbolic nonnegative integer,
variable, vector, matrix, function, expression, or multidimensional array.

a — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic vector |
symbolic matrix | symbolic function | symbolic expression | symbolic multidimensional
array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic
number, vector, matrix, function, expression, or multidimensional array.

b — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic vector |
symbolic matrix | symbolic function | symbolic expression | symbolic multidimensional
array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic
number, vector, matrix, function, expression, or multidimensional array.

 jacobiP

4-1083

x — Evaluation point
number | vector | matrix | multidimensional array | symbolic number | symbolic vector |
symbolic matrix | symbolic function | symbolic expression | symbolic multidimensional
array

Evaluation point, specified as a number, vector, matrix, multidimensional array, or a
symbolic number, vector, matrix, function, expression, or multidimensional array.

Definitions

Jacobi Polynomials
The Jacobi polynomials are given by the recursion formula

2ncnc2n− 2P n, a, b, x = c2n− 1 c2n− 2c2nx + a2− b2 P n− 1, a, b, x

−2 n− 1 + a n− 1 + b c2nP n− 2, a, b, x ,
where
cn = n + a + b
P 0, a, b, x = 1

P 1, a, b, x = a− b
2 + 1 + a + b

2 x .

For fixed real a > -1 and b > -1, the Jacobi polynomials are orthogonal on the interval
[-1,1] with respect to the weight function w x = 1− x a 1 + x b.

For a = 0 and b = 0, the Jacobi polynomials P(n,0,0,x) reduce to the Legendre polynomials
P(n, x).

The relation between Jacobi polynomials P(n,a,b,x) and Chebyshev polynomials of the first
kind T(n,x) is

T n, x = 22n n! 2

2n ! P n, − 1
2, − 1

2, x .

The relation between Jacobi polynomials P(n,a,b,x) and Chebyshev polynomials of the
second kind U(n,x) is

4 Functions — Alphabetical List

4-1084

U n, x = 22nn! n + 1 !
2n + 1 ! P n, 1

2, 1
2, x .

The relation between Jacobi polynomials P(n,a,b,x) and Gegenbauer polynomials G(n,a,x)
is

G n, a, x =
Γ a + 1

2 Γ n + 2a

Γ 2a Γ n + a + 1
2

P n, a− 1
2, a− 1

2, x .

See Also
chebyshevT | chebyshevU | gegenbauerC | hermiteH | hypergeom | laguerreL |
legendreP

Introduced in R2014b

 jacobiP

4-1085

jacobiSC
Jacobi SC elliptic function

Syntax
jacobiSC(u,m)

Description
jacobiSC(u,m) returns the “Jacobi SC Elliptic Function” on page 4-1090 of u and m. If u
or m is an array, then jacobiSC acts element-wise.

Examples

Calculate Jacobi SC Elliptic Function for Numeric Inputs
jacobiSC(2,1)

ans =
 3.6269

Call jacobiSC on array inputs. jacobiSC acts element-wise when u or m is an array.

jacobiSC([2 1 -3],[1 2 3])

ans =
 3.6269 0.9077 0.7071

Calculate Jacobi SC Elliptic Function for Symbolic Numbers
Convert numeric input to symbolic form using sym, and find the Jacobi SC elliptic
function. For symbolic input where u = 0 or m = 0 or 1, jacobiSC returns exact
symbolic output.

jacobiSC(sym(2),sym(1))

4 Functions — Alphabetical List

4-1086

ans =
sinh(2)

Show that for other values of u or m, jacobiSC returns an unevaluated function call.

jacobiSC(sym(2),sym(3))

ans =
jacobiSC(2, 3)

Find Jacobi SC Elliptic Function for Symbolic Variables or
Expressions
For symbolic variables or expressions, jacobiSC returns the unevaluated function call.

syms x y
f = jacobiSC(x,y)

f =
jacobiSC(x, y)

Substitute values for the variables by using subs, and convert values to double by using
double.

f = subs(f, [x y], [3 5])

f =
jacobiSC(3, 5)

fVal = double(f)

fVal =
 0.0312

Calculate f to higher precision using vpa.

fVal = vpa(f)

 jacobiSC

4-1087

fVal =
0.031159894327171581127518352857409

Plot Jacobi SC Elliptic Function
Plot the Jacobi SC elliptic function using fcontour. Set u on the x-axis and m on the y-
axis by using the symbolic function f with the variable order (u,m). Fill plot contours by
setting Fill to on.

syms f(u,m)
f(u,m) = jacobiSC(u,m);
fcontour(f,'Fill','on')
title('Jacobi SC Elliptic Function')
xlabel('u')
ylabel('m')

4 Functions — Alphabetical List

4-1088

Input Arguments
u — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

 jacobiSC

4-1089

m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Definitions

Jacobi SC Elliptic Function
The Jacobi SC elliptic function is

sc(u,m) = sn(u,m)/cn(u,m)

where sn and cn are the respective Jacobi elliptic functions.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument
with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind,
implemented as ellipticK.

See Also
ellipticK | jacobiAM | jacobiCD | jacobiCN | jacobiCS | jacobiDC | jacobiDN |
jacobiDS | jacobiNC | jacobiND | jacobiNS | jacobiSD | jacobiSN | jacobiZeta

Introduced in R2017b

4 Functions — Alphabetical List

4-1090

jacobiSD
Jacobi SD elliptic function

Syntax
jacobiSD(u,m)

Description
jacobiSD(u,m) returns the “Jacobi SD Elliptic Function” on page 4-1095 of u and m. If u
or m is an array, then jacobiSD acts element-wise.

Examples

Calculate Jacobi SD Elliptic Function for Numeric Inputs
jacobiSD(2,1)

ans =
 3.6269

Call jacobiSD on array inputs. jacobiSD acts element-wise when u or m is an array.

jacobiSD([2 1 -3],[1 2 3])

ans =
 3.6269 2.1629 -126.3078

Calculate Jacobi SD Elliptic Function for Symbolic Numbers
Convert numeric input to symbolic form using sym, and find the Jacobi SD elliptic
function. For symbolic input where u = 0 or m = 0 or 1, jacobiSD returns exact
symbolic output.

jacobiSD(sym(2),sym(1))

 jacobiSD

4-1091

ans =
sinh(2)

Show that for other values of u or m, jacobiSD returns an unevaluated function call.

jacobiSD(sym(2),sym(3))

ans =
jacobiSD(2, 3)

Find Jacobi SD Elliptic Function for Symbolic Variables or
Expressions
For symbolic variables or expressions, jacobiSD returns the unevaluated function call.

syms x y
f = jacobiSD(x,y)

f =
jacobiSD(x, y)

Substitute values for the variables by using subs, and convert values to double by using
double.

f = subs(f, [x y], [3 5])

f =
jacobiSD(3, 5)

fVal = double(f)

fVal =
 0.0312

Calculate f to higher precision using vpa.

fVal = vpa(f)

4 Functions — Alphabetical List

4-1092

fVal =
0.031220579864538785956650143970485

Plot Jacobi SD Elliptic Function
Plot the Jacobi SD elliptic function using fcontour. Set u on the x-axis and m on the y-
axis by using the symbolic function f with the variable order (u,m). Fill plot contours by
setting Fill to on.

syms f(u,m)
f(u,m) = jacobiSD(u,m);
fcontour(f,'Fill','on')
title('Jacobi SD Elliptic Function')
xlabel('u')
ylabel('m')

 jacobiSD

4-1093

Input Arguments
u — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

4 Functions — Alphabetical List

4-1094

m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Definitions

Jacobi SD Elliptic Function
The Jacobi SD elliptic function is

sd(u,m) = sn(u,m)/dn(u,m)

where sn and dn are the respective Jacobi elliptic functions.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument
with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind,
implemented as ellipticK.

See Also
ellipticK | jacobiAM | jacobiCD | jacobiCN | jacobiCS | jacobiDC | jacobiDN |
jacobiDS | jacobiNC | jacobiND | jacobiNS | jacobiSC | jacobiSN | jacobiZeta

Introduced in R2017b

 jacobiSD

4-1095

jacobiSN
Jacobi SN elliptic function

Syntax
jacobiSN(u,m)

Description
jacobiSN(u,m) returns the “Jacobi SN Elliptic Function” on page 4-1100 of u and m. If u
or m is an array, then jacobiSN acts element-wise.

Examples

Calculate Jacobi SN Elliptic Function for Numeric Inputs
jacobiSN(2,1)

ans =
 0.9640

Call jacobiSN on array inputs. jacobiSN acts element-wise when u or m is an array.

jacobiSN([2 1 -3],[1 2 3])

ans =
 0.9640 0.6721 0.5773

Calculate Jacobi SN Elliptic Function for Symbolic Numbers
Convert numeric input to symbolic form using sym, and find the Jacobi SN elliptic
function. For symbolic input where u = 0 or m = 0 or 1, jacobiSN returns exact
symbolic output.

jacobiSN(sym(2),sym(1))

4 Functions — Alphabetical List

4-1096

ans =
tanh(2)

Show that for other values of u or m, jacobiSN returns an unevaluated function call.

jacobiSN(sym(2),sym(3))

ans =
jacobiSN(2, 3)

Find Jacobi SN Elliptic Function for Symbolic Variables or
Expressions
For symbolic variables or expressions, jacobiSN returns the unevaluated function call.

syms x y
f = jacobiSN(x,y)

f =
jacobiSN(x, y)

Substitute values for the variables by using subs, and convert values to double by using
double.

f = subs(f, [x y], [3 5])

f =
jacobiSN(3, 5)

fVal = double(f)

fVal =
 0.0311

Calculate f to higher precision using vpa.

fVal = vpa(f)

 jacobiSN

4-1097

fVal =
0.031144778155397389598324170696454

Plot Jacobi SN Elliptic Function
Plot the Jacobi SN elliptic function using fcontour. Set u on the x-axis and m on the y-
axis by using the symbolic function f with the variable order (u,m). Fill plot contours by
setting Fill to on.

syms f(u,m)
f(u,m) = jacobiSN(u,m);
fcontour(f,'Fill','on')
title('Jacobi SN Elliptic Function')
xlabel('u')
ylabel('m')

4 Functions — Alphabetical List

4-1098

Input Arguments
u — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

 jacobiSN

4-1099

m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Definitions

Jacobi SN Elliptic Function
The Jacobi SN elliptic function is sn(u,m) = sin(am(u,m)) where am is the Jacobi
amplitude function.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument
with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind,
implemented as ellipticK.

See Also
ellipticK | jacobiAM | jacobiCD | jacobiCN | jacobiCS | jacobiDC | jacobiDN |
jacobiDS | jacobiNC | jacobiND | jacobiNS | jacobiSC | jacobiSD | jacobiZeta

Introduced in R2017b

4 Functions — Alphabetical List

4-1100

jacobiZeta
Jacobi zeta function

Syntax
jacobiZeta(u,m)

Description
jacobiZeta(u,m) returns the “Jacobi Zeta Function” on page 4-1105 of u and m. If u or
m is an array, then jacobiZeta acts element-wise.

Examples

Calculate Jacobi Zeta Function for Numeric Inputs

jacobiZeta(2,1)

ans =
 0.9640

Call jacobiZeta on array inputs. jacobiZeta acts element-wise when u or m is an
array.

jacobiZeta([2 1 -3],[1 2 3])

ans =
 0.9640 + 0.0000i 0.5890 - 0.4569i -2.3239 + 1.9847i

Calculate Jacobi Zeta Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Jacobi zeta function. For
symbolic input where u = 0 or m = 0 or 1, jacobiZeta returns exact symbolic output.

 jacobiZeta

4-1101

jacobiZeta(sym(2),sym(1))

ans =
tanh(2)

Show that for other values of u or m, jacobiZeta returns an unevaluated function call.

jacobiZeta(sym(2),sym(3))

ans =
jacobiZeta(2, 3)

Find Jacobi Zeta Function for Symbolic Variables or Expressions

For symbolic variables or expressions, jacobiZeta returns the unevaluated function call.

syms x y
f = jacobiZeta(x,y)

f =
jacobiZeta(x, y)

Substitute values for the variables by using subs, and convert values to double by using
double.

f = subs(f, [x y], [3 5])

f =
jacobiZeta(3, 5)

fVal = double(f)

fVal =
 4.0986 - 3.0018i

Calculate f to arbitrary precision using vpa.

fVal = vpa(f)

fVal =
4.0986033838332279126523721581432 - 3.0017792319714320747021938869936i

4 Functions — Alphabetical List

4-1102

Plot Jacobi Zeta Function

Plot real and imaginary values of the Jacobi zeta function using fcontour. Set u on the x-
axis and m on the y-axis by using the symbolic function f with the variable order (u,m).
Fill plot contours by setting Fill to on.

syms f(u,m)
f(u,m) = jacobiZeta(u,m);

subplot(2,2,1)
fcontour(real(f),'Fill','on')
title('Real Values of Jacobi Zeta')
xlabel('u')
ylabel('m')

subplot(2,2,2)
fcontour(imag(f),'Fill','on')
title('Imaginary Values of Jacobi Zeta')
xlabel('u')
ylabel('m')

 jacobiZeta

4-1103

Input Arguments
u — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

4 Functions — Alphabetical List

4-1104

m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Definitions

Jacobi Zeta Function
The Jacobi zeta function Z(u,m) is defined as

Z u, m = 2π
K(m) ∑i = 1

∞ q(m)i

1− q(m)2isin 2π
K(m) iu .

K(m) is the complete elliptic integral of the first kind, implemented as ellipticK. q(m) is
the elliptic nome, implemented as ellipticNome.

See Also
jacobiAM | jacobiCD | jacobiCN | jacobiCS | jacobiDC | jacobiDN | jacobiDS |
jacobiNC | jacobiND | jacobiNS | jacobiSC | jacobiSD | jacobiSN

Introduced in R2017b

 jacobiZeta

4-1105

jordan
Jordan normal form (Jordan canonical form)

Syntax
J = jordan(A)
[V,J] = jordan(A)

Description
J = jordan(A) computes the Jordan normal form of the matrix A. Because the Jordan
form of a numeric matrix is sensitive to numerical errors, prefer converting numeric input
to exact symbolic form.

[V,J] = jordan(A) computes the Jordan form J and the similarity transform V. The
matrix V contains the generalized eigenvectors of A as columns, such that V\A*V = J.

Examples

Compute Jordan Form and Similarity Transform

Compute the Jordan form and the similarity transform for a matrix. Because the Jordan
form of a numeric matrix is sensitive to numerical errors, first convert the matrix to
symbolic form by using sym.

A = [1 -3 -2;
 -1 1 -1;
 2 4 5];
A = sym(A);
[V,J] = jordan(A)

V =
[-1, 1, -1]

4 Functions — Alphabetical List

4-1106

[-1, 0, 0]
[2, 0, 1]

J =
[2, 1, 0]
[0, 2, 0]
[0, 0, 3]

Verify that V satisfies the condition V\A*V = J by using isAlways.

cond = J == V\A*V;
isAlways(cond)

ans =
 3×3 logical array
 1 1 1
 1 1 1
 1 1 1

See Also
charpoly | eig | hermiteForm | inv | smithForm

Introduced before R2006a

 jordan

4-1107

kroneckerDelta
Kronecker delta function

Syntax
kroneckerDelta(m)
kroneckerDelta(m,n)

Description
kroneckerDelta(m) returns 1 if m == 0 and 0 if m ~= 0.

kroneckerDelta(m,n) returns 1 if m == n and 0 if m ~= n.

Examples

Compare Two Symbolic Variables

Note For kroneckerDelta with numeric inputs, use the eq function instead.

Set symbolic variable m equal to symbolic variable n and test their equality using
kroneckerDelta.

syms m n
m = n;
kroneckerDelta(m,n)

ans =
1

kroneckerDelta returns 1 indicating that the inputs are equal.

Compare symbolic variables p and q.

4 Functions — Alphabetical List

4-1108

syms p q
kroneckerDelta(p,q)

ans =
kroneckerDelta(p - q, 0)

kroneckerDelta cannot decide if p == q and returns the function call with the
undecidable input. Note that kroneckerDelta(p, q) is equal to kroneckerDelta(p
- q, 0).

To force a logical result for undecidable inputs, use isAlways. The isAlways function
issues a warning and returns logical 0 (false) for undecidable inputs. Set the Unknown
option to false to suppress the warning.

isAlways(kroneckerDelta(p, q), 'Unknown', 'false')

ans =
 logical
 0

Compare Symbolic Variable with Zero
Set symbolic variable m to 0 and test m for equality with 0. The kroneckerDelta function
errors because it does not accept numeric inputs of type double.

m = 0;
kroneckerDelta(m)

Undefined function 'kroneckerDelta' for input arguments of type 'double'.

Use sym to convert 0 to a symbolic object before assigning it to m. This is because
kroneckerDelta only accepts symbolic inputs.

syms m
m = sym(0);
kroneckerDelta(m)

ans =
 1

kroneckerDelta returns 1 indicating that m is equal to 0. Note that
kroneckerDelta(m) is equal to kroneckerDelta(m, 0).

 kroneckerDelta

4-1109

Compare Vector of Numbers with Symbolic Variable
Compare a vector of numbers [1 2 3 4] with symbolic variable m. Set m to 3.

V = 1:4
syms m
m = sym(3)
sol = kroneckerDelta(V,m)

V =
 1 2 3 4
m =
3
sol =
[0, 0, 1, 0]

kroneckerDelta acts on V element-wise to return a vector, sol, which is the same size
as V. The third element of sol is 1 indicating that the third element of V equals m.

Compare Two Matrices
Compare matrices A and B.

Declare matrices A and B.

syms m
A = [m m+1 m+2;m-2 m-1 m]
B = [m m+3 m+2;m-1 m-1 m+1]

A =
[m, m + 1, m + 2]
[m - 2, m - 1, m]
B =
[m, m + 3, m + 2]
[m - 1, m - 1, m + 1]

Compare A and B using kroneckerDelta.

sol = kroneckerDelta(A,B)

sol =
[1, 0, 1]
[0, 1, 0]

4 Functions — Alphabetical List

4-1110

kroneckerDelta acts on A and B element-wise to return the matrix sol which is the
same size as A and B. The elements of sol that are 1 indicate that the corresponding
elements of A and B are equal. The elements of sol that are 0 indicate that the
corresponding elements of A and B are not equal.

Use kroneckerDelta in Inputs to Other Functions
kroneckerDelta appears in the output of iztrans.

syms z n
sol = iztrans(1/(z-1), z, n)

sol =
1 - kroneckerDelta(n, 0)

Use this output as input to ztrans to return the initial input expression.

ztrans(sol, n, z)

ans =
z/(z - 1) - 1

Filter Response to Kronecker Delta Input
Use filter to find the response of a filter when the input is the Kronecker Delta
function. Convert k to a symbolic vector using sym because kroneckerDelta only
accepts symbolic inputs, and convert it back to double using double. Provide arbitrary
filter coefficients a and b for simplicity.

b = [0 1 1];
a = [1 -0.5 0.3];
k = -20:20;
x = double(kroneckerDelta(sym(k)));
y = filter(b,a,x);
plot(k,y)

 kroneckerDelta

4-1111

Input Arguments
m — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic vector |
symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic
number, vector, matrix, function, or multidimensional array. At least one of the inputs, m
or n, must be symbolic.

4 Functions — Alphabetical List

4-1112

n — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic vector |
symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic
number, vector, matrix, function, or multidimensional array. At least one of the inputs, m
or n, must be symbolic.

Definitions

Kronecker Delta Function
The Kronecker delta function is defined as

δ m, n =
0 if m ≠ n
1 if m = n

Tips
• When m or n is NaN, the kroneckerDelta function returns NaN.

See Also
iztrans | ztrans

Introduced in R2014b

 kroneckerDelta

4-1113

kummerU
Confluent hypergeometric Kummer U function

Syntax
kummerU(a,b,z)

Description
kummerU(a,b,z) computes the value of confluent hypergeometric function, U(a,b,z).
If the real parts of z and a are positive values, then the integral representations of the
Kummer U function is as follows:

U a, b, z = 1
Γ a ∫

0

∞
e−ztta− 1 1 + t b− a− 1dt

Examples

Equation Returning the Kummer U Function as Its Solution
dsolve can return solutions of second-order ordinary differential equations in terms of
the Kummer U function.

Solve this equation. The solver returns the results in terms of the Kummer U function and
another hypergeometric function.

syms t z y(z)
dsolve(z^3*diff(y,2) + (z^2 + t)*diff(y) + z*y)

ans =
(C4*hypergeom(1i/2, 1 + 1i, t/(2*z^2)))/z^1i +...
(C3*kummerU(1i/2, 1 + 1i, t/(2*z^2)))/z^1i

4 Functions — Alphabetical List

4-1114

Kummer U Function for Numeric and Symbolic Arguments
Depending on its arguments, kummerU can return floating-point or exact symbolic results.

Compute the Kummer U function for these numbers. Because these numbers are not
symbolic objects, you get floating-point results.

A = [kummerU(-1/3, 2.5, 2)
kummerU(1/3, 2, pi)
kummerU(1/2, 1/3, 3*i)]

A =
 0.8234 + 0.0000i
 0.7284 + 0.0000i
 0.4434 - 0.3204i

Compute the Kummer U function for the numbers converted to symbolic objects. For most
symbolic (exact) numbers, kummerU returns unresolved symbolic calls.

symA = [kummerU(-1/3, 2.5, sym(2))
kummerU(1/3, 2, sym(pi))
kummerU(1/2, sym(1/3), 3*i)]

symA =
 kummerU(-1/3, 5/2, 2)
 kummerU(1/3, 2, pi)
 kummerU(1/2, 1/3, 3i)

Use vpa to approximate symbolic results with the required number of digits.

vpa(symA,10)

ans =
 0.8233667846
 0.7284037305
 0.4434362538 - 0.3204327531i

Some Special Values of Kummer U
The Kummer U function has special values for some parameters.

If a is a negative integer, the Kummer U function reduces to a polynomial.

syms a b z
[kummerU(-1, b, z)

 kummerU

4-1115

kummerU(-2, b, z)
kummerU(-3, b, z)]

ans =
 z - b
 b - 2*z*(b + 1) + b^2 + z^2
 6*z*(b^2/2 + (3*b)/2 + 1) - 2*b - 6*z^2*(b/2 + 1) - 3*b^2 - b^3 + z^3

If b = 2*a, the Kummer U function reduces to an expression involving the modified
Bessel function of the second kind.

kummerU(a, 2*a, z)

ans =
(z^(1/2 - a)*exp(z/2)*besselk(a - 1/2, z/2))/pi^(1/2)

If a = 1 or a = b, the Kummer U function reduces to an expression involving the
incomplete gamma function.

kummerU(1, b, z)

ans =
z^(1 - b)*exp(z)*igamma(b - 1, z)

kummerU(a, a, z)

ans =
exp(z)*igamma(1 - a, z)

If a = 0, the Kummer U function is 1.

kummerU(0, a, z)

ans =
1

Handle Expressions Containing the Kummer U Function
Many functions, such as diff, int, and limit, can handle expressions containing
kummerU.

Find the first derivative of the Kummer U function with respect to z.

syms a b z
diff(kummerU(a, b, z), z)

4 Functions — Alphabetical List

4-1116

ans =
(a*kummerU(a + 1, b, z)*(a - b + 1))/z - (a*kummerU(a, b, z))/z

Find the indefinite integral of the Kummer U function with respect to z.

int(kummerU(a, b, z), z)

ans =
((b - 2)/(a - 1) - 1)*kummerU(a, b, z) +...
(kummerU(a + 1, b, z)*(a - a*b + a^2))/(a - 1) -...
(z*kummerU(a, b, z))/(a - 1)

Find the limit of this Kummer U function.

limit(kummerU(1/2, -1, z), z, 0)

ans =
4/(3*pi^(1/2))

Input Arguments
a — Parameter of Kummer U function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector

Parameter of Kummer U function, specified as a number, variable, symbolic expression,
symbolic function, or vector.

b — Parameter of Kummer U function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector

Parameter of Kummer U function, specified as a number, variable, symbolic expression,
symbolic function, or vector.

z — Argument of Kummer U function
number | vector | symbolic number | symbolic variable | symbolic expression | symbolic
function | symbolic vector

Argument of Kummer U function, specified as a number, variable, symbolic expression,
symbolic function, or vector. If z is a vector, kummerU(a,b,z) is evaluated element-wise.

 kummerU

4-1117

Definitions

Confluent Hypergeometric Function (Kummer U Function)
The confluent hypergeometric function (Kummer U function) is one of the solutions of the
differential equation

z ∂
2

∂z2 y + b− z ∂
∂z y − ay = 0

The other solution is the hypergeometric function 1F1(a,b,z).

The Whittaker W function can be expressed in terms of the Kummer U function:

Wa, b z = e−z/2 zb + 1/2 U b− a + 1
2, 2b + 1, z

Tips
• kummerU returns floating-point results for numeric arguments that are not symbolic

objects.
• kummerU acts element-wise on nonscalar inputs.
• All nonscalar arguments must have the same size. If one or two input arguments are

nonscalar, then kummerU expands the scalars into vectors or matrices of the same size
as the nonscalar arguments, with all elements equal to the corresponding scalar.

References
[1] Slater, L. J. “Confluent Hypergeometric Functions.” Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

See Also
hypergeom | whittakerM | whittakerW

4 Functions — Alphabetical List

4-1118

Introduced in R2014b

 kummerU

4-1119

laguerreL
Generalized Laguerre Function and Laguerre Polynomials

Syntax
laguerreL(n,x)
laguerreL(n,a,x)

Description
laguerreL(n,x) returns the Laguerre polynomial of degree n if n is a nonnegative
integer. When n is not a nonnegative integer, laguerreL returns the Laguerre function.
For details, see “Generalized Laguerre Function” on page 4-1125.

laguerreL(n,a,x) returns the generalized Laguerre polynomial of degree n if n is a
nonnegative integer. When n is not a nonnegative integer, laguerreL returns the
generalized Laguerre function.

Examples

Find Laguerre Polynomials for Numeric and Symbolic Inputs
Find the Laguerre polynomial of degree 3 for input 4.3.

laguerreL(3,4.3)

ans =
 2.5838

Find the Laguerre polynomial for symbolic inputs. Specify degree n as 3 to return the
explicit form of the polynomial.

syms x
laguerreL(3,x)

4 Functions — Alphabetical List

4-1120

ans =
- x^3/6 + (3*x^2)/2 - 3*x + 1

If the degree of the Laguerre polynomial n is not specified, laguerreL cannot find the
polynomial. When laguerreL cannot find the polynomial, it returns the function call.

syms n x
laguerreL(n,x)

ans =
laguerreL(n, x)

Find Generalized Laguerre Polynomial
Find the explicit form of the generalized Laguerre polynomial L(n,a,x) of degree n =
2.

syms a x
laguerreL(2,a,x)

ans =
(3*a)/2 - x*(a + 2) + a^2/2 + x^2/2 + 1

Return Generalized Laguerre Function
When n is not a nonnegative integer, laguerreL(n,a,x) returns the generalized
Laguerre function.

laguerreL(-2.7,3,2)

ans =
 0.2488

laguerreL is not defined for certain inputs and returns an error.

syms x
laguerreL(-5/2, -3/2, x)

Error using symengine
Function 'laguerreL' not supported for parameter values '-5/2' and '-3/2'.

 laguerreL

4-1121

Find Laguerre Polynomial with Vector and Matrix Inputs
Find the Laguerre polynomials of degrees 1 and 2 by setting n = [1 2].

syms x
laguerreL([1 2],x)

ans =
[1 - x, x^2/2 - 2*x + 1]

laguerreL acts element-wise on n to return a vector with two elements.

If multiple inputs are specified as a vector, matrix, or multidimensional array, the inputs
must be the same size. Find the generalized Laguerre polynomials where input arguments
n and x are matrices.

syms a
n = [2 3; 1 2];
xM = [x^2 11/7; -3.2 -x];
laguerreL(n,a,xM)

ans =
[a^2/2 - a*x^2 + (3*a)/2 + x^4/2 - 2*x^2 + 1,...
 a^3/6 + (3*a^2)/14 - (253*a)/294 - 676/1029]
[a + 21/5,...
 a^2/2 + a*x + (3*a)/2 + x^2/2 + 2*x + 1]

laguerreL acts element-wise on n and x to return a matrix of the same size as n and x.

Differentiate and Find Limits of Laguerre Polynomials
Use limit to find the limit of a generalized Laguerre polynomial of degree 3 as x tends
to ∞.

syms x
expr = laguerreL(3,2,x);
limit(expr,x,Inf)

ans =
-Inf

Use diff to find the third derivative of the generalized Laguerre polynomial
laguerreL(n,a,x).

4 Functions — Alphabetical List

4-1122

syms n a
expr = laguerreL(n,a,x);
diff(expr,x,3)

ans =
-laguerreL(n - 3, a + 3, x)

Find Taylor Series Expansion of Laguerre Polynomials
Use taylor to find the Taylor series expansion of the generalized Laguerre polynomial of
degree 2 at x = 0.

syms a x
expr = laguerreL(2,a,x);
taylor(expr,x)

ans =
(3*a)/2 - x*(a + 2) + a^2/2 + x^2/2 + 1

Plot Laguerre Polynomials
Plot the Laguerre polynomials of orders 1 through 4.

syms x
fplot(laguerreL(1:4,x))
axis([-2 10 -10 10])
grid on

ylabel('L_n(x)')
title('Laguerre polynomials of orders 1 through 4')
legend('1','2','3','4','Location','best')

 laguerreL

4-1123

Input Arguments
n — Degree of polynomial
number | vector | matrix | multidimensional array | symbolic number | symbolic vector |
symbolic matrix | symbolic function | symbolic multidimensional array

Degree of polynomial, specified as a number, vector, matrix, multidimensional array, or a
symbolic number, vector, matrix, function, or multidimensional array.

4 Functions — Alphabetical List

4-1124

x — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic vector |
symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic
number, vector, matrix, function, or multidimensional array.

a — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic vector |
symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic
number, vector, matrix, function, or multidimensional array.

Definitions

Generalized Laguerre Function
The generalized Laguerre function is defined in terms of the hypergeometric function as

laguerreL n, a, x =
n + a

a
F1 1 −n; a + 1; x .

For nonnegative integer values of n, the function returns the generalized Laguerre
polynomials that are orthogonal with respect to the scalar product

f1, f2 = ∫
0

∞
e−xxaf1 x f2 x dx .

In particular,

laguerreL n, a, x , laguerreL m, a, x =
0 if n ≠ m

Γ a + n + 1
n! if n = m .

 laguerreL

4-1125

Algorithms
• The generalized Laguerre function is not defined for all values of parameters n and a

because certain restrictions on the parameters exist in the definition of the
hypergeometric functions. If the generalized Laguerre function is not defined for a
particular pair of n and a, the laguerreL function returns an error message. See
“Return Generalized Laguerre Function” on page 4-1121.

• The calls laguerreL(n,x) and laguerreL(n,0,x) are equivalent.
• If n is a nonnegative integer, the laguerreL function returns the explicit form of the

corresponding Laguerre polynomial.
•

The special values laguerreL n, a, 0 =
n + a

a
 are implemented for arbitrary values of

n and a.
• If n is a negative integer and a is a numerical noninteger value satisfying a ≥ -n, then

laguerreL returns 0.
• If n is a negative integer and a is an integer satisfying a < -n, the function returns an

explicit expression defined by the reflection rule

laguerreL n, a, x = −1 aexlaguerreL −n− a− 1, a, − x
• If all arguments are numerical and at least one argument is a floating-point number,

then laguerreL(x) returns a floating-point number. For all other arguments,
laguerreL(n,a,x) returns a symbolic function call.

See Also
chebyshevT | chebyshevU | gegenbauerC | hermiteH | hypergeom | jacobiP |
legendreP

Introduced in R2014b

4 Functions — Alphabetical List

4-1126

lambertw
Lambert W function

Syntax
lambertw(x)
lambertw(k,x)

Description
lambertw(x) returns the principal branch of the Lambert W function on page 4-1135.
This syntax is equivalent to lambertw(0,x).

lambertw(k,x) is the kth branch of the Lambert W function. This syntax returns real
values only if k = 0 or k = -1.

Examples

Return Equation with Lambert W Function as Its Solution

The Lambert W function W(x) is a set of solutions of the equation x = W(x)eW(x).

Solve this equation. The solution is the Lambert W function.

syms x W
eqn = x == W*exp(W);
solve(eqn,W)

ans =
lambertw(0, x)

Verify that branches of the Lambert W function are valid solutions of the equation x =
W*eW:

 lambertw

4-1127

k = -2:2;
eqn = subs(eqn,W,lambertw(k,x));
isAlways(eqn)

ans =
 1×5 logical array
 1 1 1 1 1

Lambert W Function for Numeric and Symbolic Arguments

Depending on its arguments, lambertw can return floating-point or exact symbolic
results.

Compute the Lambert W functions for these numbers. Because the numbers are not
symbolic objects, you get floating-point results.

A = [0 -1/exp(1); pi i];
lambertw(A)

ans =
 0.0000 + 0.0000i -1.0000 + 0.0000i
 1.0737 + 0.0000i 0.3747 + 0.5764i

lambertw(-1,A)

ans =
 -Inf + 0.0000i -1.0000 + 0.0000i
 -0.3910 - 4.6281i -1.0896 - 2.7664i

Compute the Lambert W functions for the numbers converted to symbolic objects. For
most symbolic (exact) numbers, lambertw returns unresolved symbolic calls.

A = [0 -1/exp(sym(1)); pi i];
W0 = lambertw(A)

W0 =
[0, -1]
[lambertw(0, pi), lambertw(0, 1i)]

Wmin1 = lambertw(-1,A)

Wmin1 =

4 Functions — Alphabetical List

4-1128

[-Inf, -1]
[lambertw(-1, pi), lambertw(-1, 1i)]

Convert symbolic results to double by using double.

double(W0)

ans =
 0.0000 + 0.0000i -1.0000 + 0.0000i
 1.0737 + 0.0000i 0.3747 + 0.5764i

Plot Two Main Branches of Lambert W Function

Plot the two main branches, W0(x) and W−1(x), of the Lambert W function.

syms x
fplot(lambertw(x))
hold on
fplot(lambertw(-1,x))
hold off
axis([-0.5 4 -4 2])
title('Lambert W function, two main branches')
legend('k=0','k=1','Location','best')

 lambertw

4-1129

Lambert W Function Plot on Complex Plane

Plot the principal branch of the Lambert W function on the complex plane.

Plot the real value of the Lambert W function by using fmesh. Simultaneously plot the
contours by setting 'ShowContours' to 'On'.

syms x y
f = lambertw(x + 1i*y);
interval = [-100 100 -100 100];
fmesh(real(f),interval,'ShowContours','On')

4 Functions — Alphabetical List

4-1130

Plot the imaginary value of the Lambert W function. The plot has a branch cut along the
negative real axis. Plot the contours separately.

fmesh(imag(f),interval)

 lambertw

4-1131

fcontour(imag(f),interval,'Fill','on')

4 Functions — Alphabetical List

4-1132

Plot the absolute value of the Lambert W function.

fmesh(abs(f),interval,'ShowContours','On')

 lambertw

4-1133

Input Arguments
x — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

At least one input argument must be a scalar, or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other is a vector or

4 Functions — Alphabetical List

4-1134

matrix, lambertw expands the scalar into a vector or matrix of the same size as the other
argument with all elements equal to that scalar.

k — Branch of Lambert W function
integer | vector or matrix of integers | symbolic integer | symbolic vector or matrix of
integers

Branch of Lambert W function, specified as an integer, a vector or matrix of integers, a
symbolic integer, or a symbolic vector or matrix of integers.

At least one input argument must be a scalar, or both arguments must be vectors or
matrices of the same size. If one input argument is a scalar and the other is a vector or
matrix, lambertw expands the scalar into a vector or matrix of the same size as the other
argument with all elements equal to that scalar.

Definitions

Lambert W Function

The Lambert W function W(x) represents the solutions y of the equation yey = x for any
complex number x.

• For complex x, the equation has an infinite number of solutions y = lambertW(k,x)
where k ranges over all integers.

• For all real x ≥ 0, the equation has exactly one real solution y = lambertW(x) =
lambertW(0,x).

• For real x where −e−1 < x < 0, the equation has exactly two real solutions. The larger
solution is represented by y = lambertW(x) and the smaller solution by y = lambertW(–
1,x).

• For x = − e−1, the equation has exactly one real solution y = –1 = lambertW(0, –exp(–
1)) = lambertW(–1, -exp(–1)).

References
[1] Corless, R.M., G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth. "On the Lambert

W Function." Advances in Computational Mathematics, Vol. 5, pp. 329–359, 1996.

 lambertw

4-1135

See Also
Functions
wrightOmega

Introduced before R2006a

4 Functions — Alphabetical List

4-1136

laplace
Laplace transform

Syntax
laplace(f)
laplace(f,transVar)
laplace(f,var,transVar)

Description
laplace(f) returns the “Laplace Transform” on page 4-1141 of f. By default, the
independent variable is t and transformation variable is s.

laplace(f,transVar) uses the transformation variable transVar instead of s.

laplace(f,var,transVar) uses the independent variable var and the transformation
variable transVar instead of t and s, respectively.

Examples

Laplace Transform of Symbolic Expression

Compute the Laplace transform of 1/sqrt(x). By default, the transform is in terms of s.

syms x y
f = 1/sqrt(x);
laplace(f)

ans =
pi^(1/2)/s^(1/2)

 laplace

4-1137

Specify Independent Variable and Transformation Variable

Compute the Laplace transform of exp(-a*t). By default, the independent variable is t,
and the transformation variable is s.

syms a t
f = exp(-a*t);
laplace(f)

ans =
1/(a + s)

Specify the transformation variable as y. If you specify only one variable, that variable is
the transformation variable. The independent variable is still t.

laplace(f,y)

ans =
1/(a + y)

Specify both the independent and transformation variables as a and y in the second and
third arguments, respectively.

laplace(f,a,y)

ans =
1/(t + y)

Laplace Transforms of Dirac and Heaviside Functions

Compute the Laplace transforms the Dirac and Heaviside functions.

syms t s
laplace(dirac(t-3),t,s)

ans =
exp(-3*s)

laplace(heaviside(t-pi),t,s)

ans =
exp(-pi*s)/s

4 Functions — Alphabetical List

4-1138

Relation Between Laplace Transform of Function and it's Derivative

Show that the Laplace transform of the derivative of a function is expressed in terms of
the Laplace transform of the function itself.

syms f(t) s
Df = diff(f(t),t);
laplace(Df,t,s)

ans =
s*laplace(f(t), t, s) - f(0)

Laplace Transform of Array Inputs

Find the Laplace transform of the matrix M. Specify the independent and transformation
variables for each matrix entry by using matrices of the same size. When the arguments
are nonscalars, laplace acts on them element-wise.

syms a b c d w x y z
M = [exp(x) 1; sin(y) i*z];
vars = [w x; y z];
transVars = [a b; c d];
laplace(M,vars,transVars)

ans =
[exp(x)/a, 1/b]
[1/(c^2 + 1), 1i/d^2]

If laplace is called with both scalar and nonscalar arguments, then it expands the
scalars to match the nonscalars by using scalar expansion. Nonscalar arguments must be
the same size.

laplace(x,vars,transVars)

ans =
[x/a, 1/b^2]
[x/c, x/d]

 laplace

4-1139

Laplace Transform of Symbolic Function

Compute the Laplace transform of symbolic functions. When the first argument contains
symbolic functions, then the second argument must be a scalar.

syms f1(x) f2(x) a b
f1(x) = exp(x);
f2(x) = x;
laplace([f1 f2],x,[a b])

ans =
[1/(a - 1), 1/b^2]

If Laplace Transform Cannot Be Found

If laplace cannot transform the input then it returns an unevaluated call.

syms f(t) s
f(t) = 1/t;
F = laplace(f,t,s)

F =
laplace(1/t, t, s)

Return the original expression by using ilaplace.

ilaplace(F,s,t)

ans =
1/t

Input Arguments
f — Input
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic expression, function, vector, or matrix.

var — Independent variable
t (default) | symbolic variable

4 Functions — Alphabetical List

4-1140

Independent variable, specified as a symbolic variable. This variable is often called the
"time variable" or the "space variable." If you do not specify the variable then, by default,
laplace uses t. If f does not contain t, then laplace uses the function symvar to
determine the independent variable.

transVar — Transformation variable
s (default) | z | symbolic variable | symbolic expression | symbolic vector | symbolic
matrix

Transformation variable, specified as a symbolic variable, expression, vector, or matrix.
This variable is often called the "complex frequency variable." If you do not specify the
variable then, by default, laplace uses s. If s is the independent variable of f, then
laplace uses z.

Definitions

Laplace Transform
The Laplace transform F = F(s) of the expression f = f(t) with respect to the variable t at
the point s is

F s = ∫
0

∞
f t e−stdt .

Tips
• If any argument is an array, then laplace acts element-wise on all elements of the

array.
• If the first argument contains a symbolic function, then the second argument must be

a scalar.
• To compute the inverse Laplace transform, use ilaplace.

See Also
fourier | ifourier | ilaplace | iztrans | ztrans

 laplace

4-1141

Topics
“Solve Differential Equations Using Laplace Transform” on page 2-235

Introduced before R2006a

4 Functions — Alphabetical List

4-1142

laplacian
Laplacian of scalar function

Syntax
laplacian(f,x)
laplacian(f)

Description
laplacian(f,x) computes the Laplacian of the scalar function or functional expression
f with respect to the vector x in Cartesian coordinates.

laplacian(f) computes the Laplacian of the scalar function or functional expression f
with respect to a vector constructed from all symbolic variables found in f. The order of
variables in this vector is defined by symvar.

Examples

Compute Laplacian of Symbolic Expression
Compute the Laplacian of this symbolic expression. By default, laplacian computes the
Laplacian of an expression with respect to a vector of all variables found in that
expression. The order of variables is defined by symvar.

syms x y t
laplacian(1/x^3 + y^2 - log(t))

ans =
1/t^2 + 12/x^5 + 2

Compute Laplacian of Symbolic Function
Create this symbolic function:

 laplacian

4-1143

syms x y z
f(x, y, z) = 1/x + y^2 + z^3;

Compute the Laplacian of this function with respect to the vector [x, y, z]:

L = laplacian(f, [x y z])

L(x, y, z) =
6*z + 2/x^3 + 2

Input Arguments
f — Input
symbolic expression | symbolic function

Input, specified as a symbolic expression or function.

x — Input
vector of symbolic variables

Input, specified as a vector of symbolic variables. The Laplacian is computed with respect
to these symbolic variables.

Definitions

Laplacian of Scalar Function
The Laplacian of the scalar function or functional expression f with respect to the vector
X = (X1,...,Xn) is the sum of the second derivatives of f with respect to X1,...,Xn:

Δf = ∑
i = 1

n ∂2 f
∂xi

2

Tips
• If x is a scalar, laplacian(f, x) = diff(f, 2, x).

4 Functions — Alphabetical List

4-1144

Alternatives
The Laplacian of a scalar function or functional expression is the divergence of the
gradient of that function or expression:

Δf = ∇ ⋅ ∇ f

Therefore, you can compute the Laplacian using the divergence and gradient
functions:

syms f(x, y)
divergence(gradient(f(x, y)), [x y])

See Also
curl | diff | divergence | gradient | hessian | jacobian | potential |
vectorPotential

Introduced in R2012a

 laplacian

4-1145

latex
LaTeX form of symbolic expression

Syntax
chr = latex(S)

Description
chr = latex(S) returns the LaTeX form of the symbolic expression S.

Examples

LaTeX Form of Symbolic Expression

Find the LaTeX form of the symbolic expressions x^2 + 1/x and sin(pi*x) + alpha.

syms x phi
chr = latex(x^2 + 1/x)
chr = latex(sin(pi*x) + phi)

chr =
 '\frac{1}{x}+x^2'

chr =
 '\phi +\sin\left(\pi \,x\right)'

LaTeX Form of Symbolic Matrix

Find the LaTeX form of the symbolic matrix M.

syms x
M = [sym(1)/3 x; exp(x) x^2]
chrM = latex(M)

4 Functions — Alphabetical List

4-1146

M =
[1/3, x]
[exp(x), x^2]

chrM =
 '\left(\begin{array}{cc} \frac{1}{3} & x\\ {\mathrm{e}}^x & x^2 \end{array}\right)'

Modify Generated LaTeX with Symbolic Preferences

Modify generated LaTeX by setting symbolic preferences using the sympref function.

Generate the LaTeX form of the expression π with the default symbolic preference.

sympref('default');
chr = latex(sym('pi'))

chr =
 '\pi '

Set the 'FloatingPointOutput' preference to true to return symbolic output in
floating-point format. Generate the LaTeX form of π in floating-point format.

sympref('FloatingPointOutput',true);
chr = latex(sym('pi'))

chr =
 '3.1416'

Now change the output order of a symbolic polynomial. Create a symbolic polynomial and
set 'PolynomialDisplayStyle' preference to 'ascend'. Generate LaTeX form of the
polynomial sorted in ascending order.

syms x;
poly = x^2 - 2*x + 1;
sympref('PolynomialDisplayStyle','ascend');
chr = latex(poly)

chr =
 '1-2\,x+x^2'

 latex

4-1147

Use LaTeX to Format Title, Axis Labels, and Ticks

For x and y from −2π to 2π, plot the 3-D surface ysin(x)− xcos(y). Store the axes handle
in a by using gca. Display the axes box by using a.Box and set the tick label interpreter
to latex.

Create the x-axis ticks by spanning the x-axis limits at intervals of pi/2. Convert the axis
limits to precise multiples of pi/2 using round and get the symbolic tick values in S.
Display the ticks by setting the XTick property of a to S. Create the LaTeX labels for the
x-axis by using arrayfun to apply latex to S and then concatenating $. Display the
labels by assigning them to the XTickLabel property of a.

Repeat these steps for the y-axis. Set the x- and y-axes labels and the title using the
latex interpreter.

syms x y
f = y.*sin(x)-x.*cos(y);
fsurf(f,[-2*pi 2*pi])
a = gca;
a.TickLabelInterpreter = 'latex';
a.Box = 'on';
a.BoxStyle = 'full';

S = sym(a.XLim(1):pi/2:a.XLim(2));
S = sym(round(vpa(S/pi*2))*pi/2);
a.XTick = double(S);
a.XTickLabel = strcat('$',arrayfun(@latex, S, 'UniformOutput', false),'$');

S = sym(a.YLim(1):pi/2:a.YLim(2));
S = sym(round(vpa(S/pi*2))*pi/2);
a.YTick = double(S);
a.YTickLabel = strcat('$',arrayfun(@latex, S, 'UniformOutput', false),'$');

xlabel('x','Interpreter','latex');
ylabel('y','Interpreter','latex');
zlabel('z','Interpreter','latex');
title(['$' latex(f) '$ for x and y in $[-2\pi,2\pi]$'],'Interpreter','latex')

4 Functions — Alphabetical List

4-1148

Input Arguments
S — Input
symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic
multidimensional array | symbolic function | symbolic expression

Input, specified as a symbolic number, variable, vector, matrix, multidimensional array,
function, or expression.

 latex

4-1149

See Also
ccode | fortran | mathml | sympref | texlabel

Introduced before R2006a

4 Functions — Alphabetical List

4-1150

lcm
Least common multiple

Syntax
lcm(A)
lcm(A,B)

Description
lcm(A) finds the least common multiple of all elements of A.

lcm(A,B) finds the least common multiple of A and B.

Examples

Least Common Multiple of Four Integers
To find the least common multiple of three or more values, specify those values as a
symbolic vector or matrix.

Find the least common multiple of these four integers, specified as elements of a symbolic
vector.

A = sym([4420, -128, 8984, -488])
lcm(A)

A =
[4420, -128, 8984, -488]

ans =
9689064320

Alternatively, specify these values as elements of a symbolic matrix.

 lcm

4-1151

A = sym([4420, -128; 8984, -488])
lcm(A)

A =
[4420, -128]
[8984, -488]

ans =
9689064320

Least Common Multiple of Rational Numbers
lcm lets you find the least common multiple of symbolic rational numbers.

Find the least common multiple of these rational numbers, specified as elements of a
symbolic vector.

lcm(sym([3/4, 7/3, 11/2, 12/3, 33/4]))

ans =
924

Least Common Multiple of Complex Numbers
lcm lets you find the least common multiple of symbolic complex numbers.

Find the least common multiple of these complex numbers, specified as elements of a
symbolic vector.

lcm(sym([10 - 5*i, 20 - 10*i, 30 - 15*i]))

ans =
- 60 + 30i

Least Common Multiple of Elements of Matrices
For vectors and matrices, lcm finds the least common multiples element-wise. Nonscalar
arguments must be the same size.

Find the least common multiples for the elements of these two matrices.

4 Functions — Alphabetical List

4-1152

A = sym([309, 186; 486, 224]);
B = sym([558, 444; 1024, 1984]);
lcm(A,B)

ans =
[57474, 13764]
[248832, 13888]

Find the least common multiples for the elements of matrix A and the value 99. Here, lcm
expands 99 into the 2-by-2 matrix with all elements equal to 99.

lcm(A,99)

ans =
[10197, 6138]
[5346, 22176]

Least Common Multiple of Polynomials
Find the least common multiple of univariate and multivariate polynomials.

Find the least common multiple of these univariate polynomials.

syms x
lcm(x^3 - 3*x^2 + 3*x - 1, x^2 - 5*x + 4)

ans =
(x - 4)*(x^3 - 3*x^2 + 3*x - 1)

Find the least common multiple of these multivariate polynomials. Because there are
more than two polynomials, specify them as elements of a symbolic vector.

syms x y
lcm([x^2*y + x^3, (x + y)^2, x^2 + x*y^2 + x*y + x + y^3 + y])

ans =
(x^3 + y*x^2)*(x^2 + x*y^2 + x*y + x + y^3 + y)

Input Arguments
A — Input value
number | symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

 lcm

4-1153

Input value, specified as a number, symbolic number, variable, expression, function, or a
vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

B — Input value
number | symbolic number | symbolic variable | symbolic expression | symbolic function |
symbolic vector | symbolic matrix

Input value, specified as a number, symbolic number, variable, expression, function, or a
vector or matrix of numbers, symbolic numbers, variables, expressions, or functions.

Tips
• Calling lcm for numbers that are not symbolic objects invokes the MATLAB lcm

function.
• The MATLAB lcm function does not accept rational or complex arguments. To find the

least common multiple of rational or complex numbers, convert these numbers to
symbolic objects by using sym, and then use lcm.

• Nonscalar arguments must have the same size. If one input arguments is nonscalar,
then lcm expands the scalar into a vector or matrix of the same size as the nonscalar
argument, with all elements equal to the corresponding scalar.

See Also
gcd

Introduced in R2014b

4 Functions — Alphabetical List

4-1154

ldivide, .\
Symbolic array left division

Syntax
B.\A
ldivide(B,A)

Description
B.\A divides A by B.

ldivide(B,A) is equivalent to B.\A.

Examples

Divide Scalar by Matrix
Create a 2-by-3 matrix.

B = sym('b', [2 3])

B =
[b1_1, b1_2, b1_3]
[b2_1, b2_2, b2_3]

Divide the symbolic expression sin(a) by each element of the matrix B.

syms a
B.\sin(a)

ans =
[sin(a)/b1_1, sin(a)/b1_2, sin(a)/b1_3]
[sin(a)/b2_1, sin(a)/b2_2, sin(a)/b2_3]

 ldivide, .\

4-1155

Divide Matrix by Matrix
Create a 3-by-3 symbolic Hilbert matrix and a 3-by-3 diagonal matrix.

H = sym(hilb(3))
d = diag(sym([1 2 3]))

H =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

d =
[1, 0, 0]
[0, 2, 0]
[0, 0, 3]

Divide d by H by using the elementwise left division operator .\. This operator divides
each element of the first matrix by the corresponding element of the second matrix. The
dimensions of the matrices must be the same.

H.\d

ans =
[1, 0, 0]
[0, 6, 0]
[0, 0, 15]

Divide Expression by Symbolic Function
Divide a symbolic expression by a symbolic function. The result is a symbolic function.

syms f(x)
f(x) = x^2;
f1 = f.\(x^2 + 5*x + 6)

f1(x) =
(x^2 + 5*x + 6)/x^2

4 Functions — Alphabetical List

4-1156

Input Arguments
A — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array |
symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or
expression. Inputs A and B must be the same size unless one is a scalar. A scalar value
expands into an array of the same size as the other input.

B — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array |
symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or
expression. Inputs A and B must be the same size unless one is a scalar. A scalar value
expands into an array of the same size as the other input.

See Also
ctranspose | minus | mldivide | mpower | mrdivide | mtimes | plus | power |
rdivide | times | transpose

Introduced before R2006a

 ldivide, .\

4-1157

le
Define less than or equal to condition

Syntax
A <= B
le(A,B)

Description
A <= B defines the condition less than or equal to.

le(A,B) is equivalent to A <= B.

Examples

Set and Use Assumption Using Less Than or Equal To

Set the assumption that x is less than or equal to 3 by using assume.

syms x
cond = x <= 3;
assume(cond)

Solve an equation for x. The solver only returns solutions that are valid under the
assumption on x.

eqn = (x-1)*(x-2)*(x-3)*(x-4) == 0;
solve(eqn,x)

ans =
 1

4 Functions — Alphabetical List

4-1158

 2
 3

Find Values that Satisfy Condition

Set the condition abs(sin(x)) <= 1/2.

syms x
cond = abs(sin(x)) <= 1/2;

Find multiples of π/24 that satisfy the condition by using a for loop from 0 to π.

for i = 0:sym(pi/12):sym(pi)
 if subs(cond, x, i)
 disp(i)
 end
end

0
pi/12
pi/6
(5*pi)/6
(11*pi)/12
pi

Input Arguments
A — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

B — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

 le

4-1159

Tips
• Calling <= or le for non-symbolic A and B invokes the MATLAB le function. This

function returns a logical array with elements set to logical 1 (true) where A is less
than or equal to B; otherwise, it returns logical 0 (false).

• If both A and B are arrays, then these arrays must have the same dimensions. A <= B
returns an array of relations A(i,j,...) <= B(i,j,...).

• If one input is scalar and the other an array, then the scalar input is expanded into an
array of the same dimensions as the other array.

• The field of complex numbers is not an ordered field. MATLAB projects complex
numbers in relations to the real axis. For example, x <= i becomes x <= 0, and x
<= 3 + 2*i becomes x <= 3.

See Also
eq | ge | gt | isAlways | lt | ne

Topics
“Set Assumptions” on page 1-29

Introduced in R2012a

4 Functions — Alphabetical List

4-1160

legendreP
Legendre polynomials

Syntax
legendreP(n,x)

Description
legendreP(n,x) returns the nth degree Legendre polynomial on page 4-1165 at x.

Examples

Find Legendre Polynomials for Numeric and Symbolic Inputs
Find the Legendre polynomial of degree 3 at 5.6.

legendreP(3,5.6)

ans =
 430.6400

Find the Legendre polynomial of degree 2 at x.

syms x
legendreP(2,x)

ans =
(3*x^2)/2 - 1/2

If you do not specify a numerical value for the degree n, the legendreP function cannot
find the explicit form of the polynomial and returns the function call.

syms n
legendreP(n,x)

 legendreP

4-1161

ans =
legendreP(n, x)

Find Legendre Polynomial with Vector and Matrix Inputs
Find the Legendre polynomials of degrees 1 and 2 by setting n = [1 2].

syms x
legendreP([1 2],x)

ans =
[x, (3*x^2)/2 - 1/2]

legendreP acts element-wise on n to return a vector with two elements.

If multiple inputs are specified as a vector, matrix, or multidimensional array, the inputs
must be the same size. Find the Legendre polynomials where input arguments n and x
are matrices.

n = [2 3; 1 2];
xM = [x^2 11/7; -3.2 -x];
legendreP(n,xM)

ans =
[(3*x^4)/2 - 1/2, 2519/343]
[-16/5, (3*x^2)/2 - 1/2]

legendreP acts element-wise on n and x to return a matrix of the same size as n and x.

Differentiate and Find Limits of Legendre Polynomials
Use limit to find the limit of a Legendre polynomial of degree 3 as x tends to -∞.

syms x
expr = legendreP(4,x);
limit(expr,x,-Inf)

ans =
Inf

Use diff to find the third derivative of the Legendre polynomial of degree 5.

4 Functions — Alphabetical List

4-1162

syms n
expr = legendreP(5,x);
diff(expr,x,3)

ans =
(945*x^2)/2 - 105/2

Find Taylor Series Expansion of Legendre Polynomial
Use taylor to find the Taylor series expansion of the Legendre polynomial of degree 2 at
x = 0.

syms x
expr = legendreP(2,x);
taylor(expr,x)

ans =
(3*x^2)/2 - 1/2

Plot Legendre Polynomials
Plot Legendre polynomials of orders 1 through 4.

syms x y
fplot(legendreP(1:4, x))
axis([-1.5 1.5 -1 1])
grid on

ylabel('P_n(x)')
title('Legendre polynomials of degrees 1 through 4')
legend('1','2','3','4','Location','best')

 legendreP

4-1163

Find Roots of Legendre Polynomial
Use vpasolve to find the roots of the Legendre polynomial of degree 7.

syms x
roots = vpasolve(legendreP(7,x) == 0)

roots =
 -0.94910791234275852452618968404785
 -0.74153118559939443986386477328079
 -0.40584515137739716690660641207696
 0
 0.40584515137739716690660641207696

4 Functions — Alphabetical List

4-1164

 0.74153118559939443986386477328079
 0.94910791234275852452618968404785

Input Arguments
n — Degree of polynomial
nonnegative number | vector | matrix | multidimensional array | symbolic number |
symbolic vector | symbolic matrix | symbolic function | symbolic multidimensional array

Degree of polynomial, specified as a nonnegative number, vector, matrix,
multidimensional array, or a symbolic number, vector, matrix, function, or
multidimensional array. All elements of nonscalar inputs should be nonnegative integers
or symbols.

x — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic vector |
symbolic matrix | symbolic function | symbolic multidimensional array

Input, specified as a number, vector, matrix, multidimensional array, or a symbolic
number, vector, matrix, function, or multidimensional array.

Definitions

Legendre Polynomial
The Legendre polynomials are defined as

P n, x = 1
2nn!

dn

dxn x2− 1 n .

They satisfy the recursion formula

P n, x = 2n− 1
n xP n− 1, x − n− 1

n P n− 2, x ,

where
P 0, x = 1
P 1, x = x .

 legendreP

4-1165

The Legendre polynomials are orthogonal on the interval [-1,1] with respect to the weight
function w(x) = 1.

The relation with Gegenbauer polynomials G(n,a,x) is

P n, x = G n, 1
2, x .

The relation with Jacobi polynomials P(n,a,b,x) is

P n, x = P n, 0, 0, x .

See Also
chebyshevT | chebyshevU | gegenbauerC | hermiteH | hypergeom | jacobiP |
laguerreL

Introduced in R2014b

4 Functions — Alphabetical List

4-1166

lhs
Left side (LHS) of equation

Syntax
lhs(eqn)

Description
lhs(eqn) returns the left side of the symbolic equation eqn. The value of eqn also can
be a symbolic condition, such as x > 0. If eqn is an array, then lhs returns an array of
the left sides of the equations in eqn.

Examples

Find Left Side of Equation
Find the left side of the equation 2*y == x^2 by using lhs.

First, declare the equation.

syms x y
eqn = 2*y == x^2

eqn =
2*y == x^2

Find the left side of eqn by using lhs.

lhsEqn = lhs(eqn)

lhsEqn =
2*y

 lhs

4-1167

Find Left Side of Condition
Find the left side of the condition x + y < 1 by using lhs.

First, declare the condition.

syms x y
cond = x + y < 1

cond =
 x + y < 1

Find the left side of cond by using lhs.

lhsCond = lhs(cond)

lhsCond =
 x + y

Note Conditions that use the > operator are internally rewritten using the < operator.
Therefore, lhs returns the original right side. For example, lhs(x > a) returns a.

Find Left Side of Equations in Array
For an array that contains equations and conditions, lhs returns an array of the left sides
of those equations or conditions. The output array is the same size as the input array.

Find the left side of the equations and conditions in the vector V.

syms x y
V = [y^2 == x^2, x ~= 0, x*y >= 1]

V =
[y^2 == x^2, x ~= 0, 1 <= x*y]

lhsV = lhs(V)

lhsV =
[y^2, x, 1]

Because any condition using the >= operator is internally rewritten using the <= operator,
the sides of the last condition in V are exchanged.

4 Functions — Alphabetical List

4-1168

Input Arguments
eqn — Equation or condition
symbolic equation | symbolic condition | vector of symbolic equations or conditions |
matrix of symbolic equations or conditions | multidimensional array of symbolic equations
or conditions

Equation or condition, specified as a symbolic equation or condition, or a vector, matrix,
or multidimensional array of symbolic equations or conditions.

See Also
assume | children | rhs | subs

Introduced in R2017a

 lhs

4-1169

limit
Limit of symbolic expression

Syntax
limit(f,var,a)
limit(f,a)
limit(f)

limit(f,var,a,'left')

limit(f,var,a,'right')

Description
limit(f,var,a) returns the “Bidirectional Limit” on page 4-1172 of the symbolic
expression f when var approaches a.

limit(f,a) uses the default variable found by symvar.

limit(f) returns the limit at 0.

limit(f,var,a,'left') returns the “Left Side Limit” on page 4-1172 of f as var
approaches a.

limit(f,var,a,'right') returns the “Right Side Limit” on page 4-1172 of f as var
approaches a.

Examples

Limit of Symbolic Expression

Calculate the bidirectional limit of this symbolic expression as x approaches 0.

4 Functions — Alphabetical List

4-1170

syms x h
f = sin(x)/x;
limit(f,x,0)

ans =
1

Calculate the limit of this expression as h approaches 0.

f = (sin(x+h)-sin(x))/h;
limit(f,h,0)

ans =
cos(x)

Right and Left Limits of Symbolic Expression

Calculate the right and left limits of symbolic expressions.

syms x
f = 1/x;
limit(f,x,0,'right')

ans =
Inf

limit(f,x,0,'left')

ans =
-Inf

Limit of Expressions in Symbolic Vector

Calculate the limit of expressions in a symbolic vector. limit acts element-wise on the
vector.

syms x a
V = [(1+a/x)^x exp(-x)];
limit(V,x,Inf)

 limit

4-1171

ans =
[exp(a), 0]

Input Arguments
f — Input
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic expression, function, vector, or matrix.

var — Independent variable
x (default) | symbolic variable

Independent variable, specified as a symbolic variable. If you do not specify var, then
symvar determines the independent variable.

a — Limit point
number | symbolic number | symbolic variable | symbolic expression

Limit point, specified as a number or a symbolic number, variable, or expression.

Definitions

Bidirectional Limit
L = lim

x a
f x , x− a ∈ ℝ\ 0 .

Left Side Limit
L = lim

x a−
f x , x− a < 0.

Right Side Limit
L = lim

x a+
f x , x− a > 0.

4 Functions — Alphabetical List

4-1172

See Also
diff | poles | taylor

Introduced before R2006a

 limit

4-1173

linsolve
Solve linear equations in matrix form

Syntax
X = linsolve(A,B)
[X,R] = linsolve(A,B)

Description
X = linsolve(A,B) solves the matrix equation AX = B, where B is a column vector.

[X,R] = linsolve(A,B) also returns the reciprocal of the condition number of A if A is
a square matrix. Otherwise, linsolve returns the rank of A.

Examples

Solve Linear Equations in Matrix Form

Solve this system of linear equations in matrix form by using linsolve.

2 1 1
−1 1 −1
1 2 3

x
y
z

=
2
3
−10

A = [2 1 1;
 -1 1 -1;
 1 2 3];
B = [2; 3; -10];
X = linsolve(A,B)

X =
 3

4 Functions — Alphabetical List

4-1174

 1
 -5

From X, x = 3, y = 1 and z = –5.

Compute Condition Number of Square Matrix

Compute the reciprocal of the condition number of the square coefficient matrix by using
two output arguments.

syms a x y z
A = [a 0 0; 0 a 0; 0 0 1];
B = [x; y; z];
[X, R] = linsolve(A, B)

X =
 x/a
 y/a
 z

R =
1/(max(abs(a), 1)*max(1/abs(a), 1))

Compute Rank of Nonsquare Matrix

If the coefficient matrix is rectangular, linsolve returns the rank of the coefficient
matrix as the second output argument. Show this behavior.

syms a b x y
A = [a 0 1; 1 b 0];
B = [x; y];
[X, R] = linsolve(A, B)

Warning: Solution is not unique because the system is rank-deficient.
 In sym.linsolve at 67
X =
 x/a
 -(x - a*y)/(a*b)
 0

 linsolve

4-1175

R =
2

Input Arguments
A — Coefficient matrix
symbolic matrix

Coefficient matrix, specified as a symbolic matrix.

B — Right side of equations
symbolic vector | symbolic matrix

Right side of equations, specified as a symbolic vector or matrix.

Output Arguments
X — Solution
symbolic vector | symbolic matrix

Solution, returned as a symbolic vector or matrix.

R — Reciprocal condition number or rank
symbolic number | symbolic expression

Reciprocal condition number or rank, returned as a symbolic number of expression. If A is
a square matrix, linsolve returns the condition number of A. Otherwise, linsolve
returns the rank of A.

Definitions

Matrix Representation of System of Linear Equations
A system of linear equations is as follows.

4 Functions — Alphabetical List

4-1176

a11x1 + a12x2 + … + a1nxn = b1
a21x1 + a22x2 + … + a2nxn = b2

⋯
am1x1 + am2x2 + … + amnxn = bm

This system can be represented as the matrix equation A ⋅ x = b , where A is the
coefficient matrix.

A =
a11 … a1n

⋮ ⋱ ⋮
am1 ⋯ amn

b is the vector containing the right sides of equations.

b =
b1

⋮
bm

Tips
• If the solution is not unique, linsolve issues a warning, chooses one solution, and

returns it.
• If the system does not have a solution, linsolve issues a warning and returns X with

all elements set to Inf.
• Calling linsolve for numeric matrices that are not symbolic objects invokes the

MATLAB linsolve function. This function accepts real arguments only. If your system
of equations uses complex numbers, use sym to convert at least one matrix to a
symbolic matrix, and then call linsolve.

See Also
cond | dsolve | equationsToMatrix | inv | norm | odeToVectorField | rank |
solve | symvar | vpasolve

 linsolve

4-1177

Topics
“Solve System of Algebraic Equations” on page 2-163

Introduced in R2012b

4 Functions — Alphabetical List

4-1178

log
Natural logarithm of entries of symbolic matrix

Syntax
Y = log(X)

Description
Y = log(X) returns the natural logarithm of X.

Examples

Compute Natural Logarithm
Compute the natural logarithm of each entry of this symbolic matrix:

syms x
M = x*hilb(2);
log(M)

ans =
[log(x), log(x/2)]
[log(x/2), log(x/3)]

Differentiate Symbolic Expression
Differentiate this symbolic expression:

syms x
diff(log(x^3), x)

ans =
3/x

 log

4-1179

Input Arguments
X — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

See Also
log10 | log2

Introduced before R2006a

4 Functions — Alphabetical List

4-1180

log10
Log base 10 of symbolic input

Syntax
log10(x)

Description
log10(x) returns the logarithm to the base 10 of x. If x is an array, log10 acts element-
wise on x.

Examples

Log Base 10 of Numeric and Symbolic Input

Compute the log base 10 of numeric input.

log10(20)

ans =
 1.3010

Compute the log base 10 of symbolic input. The result is in terms of log.

syms x
f = x^2;
fLog10 = log10(f)

fLog10 =
log(x^2)/log(10)

Convert symbolic output to double by substituting for x with a number using subs, and
then using double.

 log10

4-1181

fLog10 = subs(fLog10,x,5); % x is 5
fLog10 = double(fLog10)

fLog10 =
 1.3979

Input Arguments
x — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

See Also
log | log2

Introduced before R2006a

4 Functions — Alphabetical List

4-1182

log2
Log base 2 of symbolic input

Syntax
log2(x)

Description
log2(x) returns the logarithm to the base 2 of x. If x is an array, log2 acts element-wise
on x.

Examples

Log Base 2 of Numeric and Symbolic Input

Compute the log base 2 of numeric input.

log2(20)

ans =
 4.3219

Compute the log base 2 of symbolic input. The result is in terms of log.

syms x
f = x^2;
fLog2 = log2(f)

fLog2 =
log(x^2)/log(2)

Convert symbolic output to double by substituting for x with a number by using subs,
and then using double.

 log2

4-1183

fLog2 = subs(fLog2,x,5); % x is 5
fLog2 = double(fLog2)

fLog2 =
 4.6439

Input Arguments
x — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

See Also
log | log10

Introduced before R2006a

4 Functions — Alphabetical List

4-1184

logical
Check validity of equation or inequality

Syntax
logical(cond)

Description
logical(cond) checks whether the condition cond is valid. To test conditions that
require assumptions or simplifications, use isAlways instead of logical.

Examples

Test Condition Using logical
Use logical to check if 3/5 is less than 2/3:

logical(sym(3)/5 < sym(2)/3)

ans =
 logical
 1

Test Equation Using logical
Check the validity of this equation using logical. Without an additional assumption that
x is nonnegative, this equation is invalid.

syms x
logical(x == sqrt(x^2))ans =
 logical
 0

 logical

4-1185

Use assume to set an assumption that x is nonnegative. Now the expression sqrt(x^2)
evaluates to x, and logical returns 1:

assume(x >= 0)
logical(x == sqrt(x^2))

ans =
 logical
 1

Note that logical typically ignores assumptions on variables.

syms x
assume(x == 5)
logical(x == 5)

ans =
 logical
 0

To compare expressions taking into account assumptions on their variables, use
isAlways:

isAlways(x == 5)

ans =
 logical
 1

For further computations, clear the assumption on x by recreating it using syms:

syms x

Test Multiple Conditions Using logical
Check if the following two conditions are both valid. To check if several conditions are
valid at the same time, combine these conditions by using the logical operator and or its
shortcut &.

syms x
logical(1 < 2 & x == x)

ans =
 logical
 1

4 Functions — Alphabetical List

4-1186

Test Inequality Using logical
Check this inequality. Note that logical evaluates the left side of the inequality.

logical(sym(11)/4 - sym(1)/2 > 2)

ans =
 logical
 1

logical also evaluates more complicated symbolic expressions on both sides of
equations and inequalities. For example, it evaluates the integral on the left side of this
equation:

syms x
logical(int(x, x, 0, 2) - 1 == 1)

ans =
 logical
 1

Compare logical and isAlways
Do not use logical to check equations and inequalities that require simplification or
mathematical transformations. For such equations and inequalities, logical might
return unexpected results. For example, logical does not recognize mathematical
equivalence of these expressions:

syms x
logical(sin(x)/cos(x) == tan(x))

ans =
 logical
 0

logical also does not realize that this inequality is invalid:

logical(sin(x)/cos(x) ~= tan(x))

ans =
 logical
 1

 logical

4-1187

To test the validity of equations and inequalities that require simplification or
mathematical transformations, use isAlways:

isAlways(sin(x)/cos(x) == tan(x))

ans =
 logical
 1

isAlways(sin(x)/cos(x) ~= tan(x))

Warning: Unable to prove 'sin(x)/cos(x) ~= tan(x)'.
ans =
 logical
 0

Input Arguments
cond — Input
symbolic equation | symbolic inequality | symbolic array of equations or inequalities

Input, specified as a symbolic equation, inequality, or a symbolic array of equations or
inequalities. You also can combine several conditions by using the logical operators and,
or, xor, not, or their shortcuts.

Tips
• For symbolic equations, logical returns logical 1 (true) only if the left and right

sides are identical. Otherwise, it returns logical 0 (false).
• For symbolic inequalities constructed with ~=, logical returns logical 0 (false) only

if the left and right sides are identical. Otherwise, it returns logical 1 (true).
• For all other inequalities (constructed with <, <=, >, or >=), logical returns logical 1

if it can prove that the inequality is valid and logical 0 if it can prove that the
inequality is invalid. If logical cannot determine whether such inequality is valid or
not, it throws an error.

• logical evaluates expressions on both sides of an equation or inequality, but does not
simplify or mathematically transform them. To compare two expressions applying
mathematical transformations and simplifications, use isAlways.

4 Functions — Alphabetical List

4-1188

• logical typically ignores assumptions on variables.

See Also
assume | assumeAlso | assumptions | in | isAlways | isequal | isequaln |
isfinite | isinf | isnan | sym | syms

Topics
“Use Assumptions on Symbolic Variables” on page 1-29
“Clear Assumptions and Reset the Symbolic Engine” on page 3-70

Introduced in R2012a

 logical

4-1189

logint
Logarithmic integral function

Syntax
A = logint(x)

Description
A = logint(x) evaluates the logarithmic integral function on page 4-1193 (integral
logarithm).

Examples

Integral Logarithm for Numeric and Symbolic Arguments
logint returns floating-point or exact symbolic results depending on the arguments you
use.

Compute integral logarithms for these numbers. Because these numbers are not symbolic
objects, logint returns floating-point results.

A = logint([-1, 0, 1/4, 1/2, 1, 2, 10])

A =
 0.0737 + 3.4227i 0.0000 + 0.0000i -0.1187 + 0.0000i -0.3787 + 0.0000i...
 -Inf + 0.0000i 1.0452 + 0.0000i 6.1656 + 0.0000i

Compute integral logarithms for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, logint returns unresolved symbolic calls.

symA = logint(sym([-1, 0, 1/4, 1/2, 1, 2, 10]))

symA =
[logint(-1), 0, logint(1/4), logint(1/2), -Inf, logint(2), logint(10)]

4 Functions — Alphabetical List

4-1190

Use vpa to approximate symbolic results with floating-point numbers:

A = vpa(symA)

A =
[0.07366791204642548599010096523015...
 + 3.4227333787773627895923750617977i,...
0,...
-0.11866205644712310530509570647204,...
-0.37867104306108797672720718463656,...
-Inf,...
1.0451637801174927848445888891946,...
6.1655995047872979375229817526695]

Plot Integral Logarithm
Plot the integral logarithm function on the interval from 0 to 10.

syms x
fplot(logint(x),[0 10])
grid on

 logint

4-1191

Handle Expressions Containing Integral Logarithm
Many functions, such as diff and limit, can handle expressions containing logint.

Find the first and second derivatives of the integral logarithm:

syms x
dA = diff(logint(x), x)
dA = diff(logint(x), x, x)

dA =
1/log(x)

4 Functions — Alphabetical List

4-1192

dA =
-1/(x*log(x)^2)

Find the right and left limits of this expression involving logint:

A_r = limit(exp(1/x)/logint(x + 1), x, 0, 'right')

A_r =
Inf

A_l = limit(exp(1/x)/logint(x + 1), x, 0, 'left')

A_l =
0

Input Arguments
x — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Logarithmic Integral Function
The logarithmic integral function, also called the integral logarithm, is defined as follows:

logint x = li x = ∫
0

x
1

ln t dt

Tips
• logint(sym(0)) returns 1.

 logint

4-1193

• logint(sym(1)) returns -Inf.
• logint(z) = ei(log(z)) for all complex z.

References
[1] Gautschi, W., and W. F. Cahill. “Exponential Integral and Related Functions.”

Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
coshint | cosint | ei | expint | int | log | sinhint | sinint | ssinint

Introduced in R2014a

4 Functions — Alphabetical List

4-1194

logm
Matrix logarithm

Syntax
R = logm(A)

Description
R = logm(A) computes the matrix logarithm of the square matrix A.

Examples

Matrix Logarithm
Compute the matrix logarithm for the 2-by-2 matrix.

syms x
A = [x 1; 0 -x];
logm(A)

ans =
[log(x), log(x)/(2*x) - log(-x)/(2*x)]
[0, log(-x)]

Input Arguments
A — Input matrix
square matrix

Input matrix, specified as a square symbolic matrix.

 logm

4-1195

Output Arguments
R — Resulting matrix
symbolic matrix

Resulting function, returned as a symbolic matrix.

See Also
eig | expm | funm | jordan | sqrtm

Introduced in R2014b

4 Functions — Alphabetical List

4-1196

lt
Define less than relation

Syntax
A < B
lt(A,B)

Description
A < B creates a less than relation.

lt(A,B) is equivalent to A < B.

Examples
Set and Use Assumption Using Less
Use assume and the relational operator < to set the assumption that x is less than 3:

syms x
assume(x < 3)

Solve this equation. The solver takes into account the assumption on variable x, and
therefore returns these two solutions.

solve((x - 1)*(x - 2)*(x - 3)*(x - 4) == 0, x)

ans =
 1
 2

Find Values that Satisfy Condition
Use the relational operator < to set this condition on variable x:

 lt

4-1197

syms x
cond = abs(sin(x)) + abs(cos(x)) < 6/5;

Use the for loop with step π/24 to find angles from 0 to π that satisfy that condition:

for i = 0:sym(pi/24):sym(pi)
 if subs(cond, x, i)
 disp(i)
 end
end

0
pi/24
(11*pi)/24
pi/2
(13*pi)/24
(23*pi)/24
pi

Input Arguments
A — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

B — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Tips
• Calling < or lt for non-symbolic A and B invokes the MATLAB lt function. This

function returns a logical array with elements set to logical 1 (true) where A is less
than B; otherwise, it returns logical 0 (false).

4 Functions — Alphabetical List

4-1198

• If both A and B are arrays, then these arrays must have the same dimensions. A < B
returns an array of relations A(i,j,...) < B(i,j,...)

• If one input is scalar and the other an array, then the scalar input is expanded into an
array of the same dimensions as the other array. In other words, if A is a variable (for
example, x), and B is an m-by-n matrix, then A is expanded into m-by-n matrix of
elements, each set to x.

• The field of complex numbers is not an ordered field. MATLAB projects complex
numbers in relations to a real axis. For example, x < i becomes x < 0, and x < 3 +
2*i becomes x < 3.

See Also
eq | ge | gt | isAlways | le | ne

Topics
“Set Assumptions” on page 1-29

Introduced in R2012a

 lt

4-1199

lu
LU factorization

Syntax
[L,U] = lu(A)
[L,U,P] = lu(A)
[L,U,p] = lu(A,'vector')
[L,U,p,q] = lu(A,'vector')
[L,U,P,Q,R] = lu(A)
[L,U,p,q,R] = lu(A,'vector')
lu(A)

Description
[L,U] = lu(A) returns an upper triangular matrix U and a matrix L, such that A =
L*U. Here, L is a product of the inverse of the permutation matrix and a lower triangular
matrix.

[L,U,P] = lu(A) returns an upper triangular matrix U, a lower triangular matrix L, and
a permutation matrix P, such that P*A = L*U. The syntax lu(A,'matrix') is identical.

[L,U,p] = lu(A,'vector') returns the permutation information as a vector p, such
that A(p,:) = L*U.

[L,U,p,q] = lu(A,'vector') returns the permutation information as two row
vectors p and q, such that A(p,q) = L*U.

[L,U,P,Q,R] = lu(A) returns an upper triangular matrix U, a lower triangular matrix
L, permutation matrices P and Q, and a scaling matrix R, such that P*(R\A)*Q = L*U.
The syntax lu(A,'matrix') is identical.

[L,U,p,q,R] = lu(A,'vector') returns the permutation information in two row
vectors p and q, such that R(:,p)\A(:,q) = L*U.

lu(A) returns the matrix that contains the strictly lower triangular matrix L (the matrix
without its unit diagonal) and the upper triangular matrix U as submatrices. Thus, lu(A)

4 Functions — Alphabetical List

4-1200

returns the matrix U + L - eye(size(A)), where L and U are defined as [L,U,P] =
lu(A). The matrix A must be square.

Examples

Compute LU Factorization of Matrix

Compute the LU factorization of this matrix. Because the numbers are not symbolic
objects, you get floating-point results.

M = [2 -3 -1; 1/2 1 -1; 0 1 -1];
[L, U] = lu(M)

L =
 1.0000 0 0
 0.2500 1.0000 0
 0 0.5714 1.0000

U =
 2.0000 -3.0000 -1.0000
 0 1.7500 -0.7500
 0 0 -0.5714

Now convert this matrix to a symbolic object, and compute the LU factorization.

M = sym(M);
[L, U] = lu(M)

L =
[1, 0, 0]
[1/4, 1, 0]
[0, 4/7, 1]

U =
[2, -3, -1]
[0, 7/4, -3/4]
[0, 0, -4/7]

 lu

4-1201

Compute Lower Triangular, Upper Triangular, and Permutation Matrices

Return the lower and upper triangular matrices and the permutation matrix by providing
three output arguments.

syms a
[L, U, P] = lu(sym([0 0 a; a 2 3; 0 a 2]))

L =
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]
U =
[a, 2, 3]
[0, a, 2]
[0, 0, a]
P =
 0 1 0
 0 0 1
 1 0 0

Return Permutation as Vector

Return the permutation information as a vector by using the 'vector' flag.

syms a
A = [0 0 a; a 2 3; 0 a 2];
[L, U, p] = lu(A, 'vector')

L =
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]
U =
[a, 2, 3]
[0, a, 2]
[0, 0, a]
p =
 2 3 1

Check that A(p,:) = L*U by using isAlways.

isAlways(A(p,:) == L*U)

4 Functions — Alphabetical List

4-1202

ans =
 3×3 logical array
 1 1 1
 1 1 1
 1 1 1

Restore the permutation matrix P from the vector p.

P = zeros(3, 3);
for i = 1:3
 P(i, p(i)) = 1;
end
P

P =
 0 1 0
 0 0 1
 1 0 0

Return Permutation as Two Vectors

Return the permutation information as two vectors p and q.

syms a
A = [a, 2, 3*a; 2*a, 3, 4*a; 4*a, 5, 6*a];
[L, U, p, q] = lu(A, 'vector')

L =
[1, 0, 0]
[2, 1, 0]
[4, 3, 1]
U =
[a, 2, 3*a]
[0, -1, -2*a]
[0, 0, 0]
p =
 1 2 3
q =
 1 2 3

Check that A(p, q) = L*U by using isAlways.

isAlways(A(p, q) == L*U)

 lu

4-1203

ans =
 3×3 logical array
 1 1 1
 1 1 1
 1 1 1

Compute Scaling Matrix with Other Matrices

Return the lower and upper triangular matrices, permutation matrices, and scaling
matrix.

syms a
A = [0, a; 1/a, 0; 0, 1/5; 0,-1];
[L, U, P, Q, R] = lu(A)

L =
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 1/(5*a), 1, 0]
[0, -1/a, 0, 1]
U =
[1/a, 0]
[0, a]
[0, 0]
[0, 0]
P =
 0 1 0 0
 1 0 0 0
 0 0 1 0
 0 0 0 1
Q =
 1 0
 0 1
R =
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]

Check that P*(R\A)*Q = L*U by using isAlways.

isAlways(P*(R\A)*Q == L*U)

4 Functions — Alphabetical List

4-1204

ans =
 4×2 logical array
 1 1
 1 1
 1 1
 1 1

Return Permutation a Two Vectors with Scaling Matrix

Return the permutation information as vectors p and q by using the 'vector' flag. Also,
compute the scaling matrix R.

syms a
A = [0, a; 1/a, 0; 0, 1/5; 0,-1];
[L, U, p, q, R] = lu(A,'vector')

L =
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 1/(5*a), 1, 0]
[0, -1/a, 0, 1]
U =
[1/a, 0]
[0, a]
[0, 0]
[0, 0]
p =
 2 1 3 4
q =
 1 2
R =
[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 1, 0]
[0, 0, 0, 1]

Check that R(:,p)\A(:,q) = L*U by using isAlways.

isAlways(R(:,p)\A(:,q) == L*U)

ans =
 4×2 logical array
 1 1

 lu

4-1205

 1 1
 1 1
 1 1

Return Triangular Matrices as Submatrices

Return triangular matrices as submatrices by specifying one or no output arguments.

syms a
A = [0 0 a; a 2 3; 0 a 2];
lu(A)

ans =
[a, 2, 3]
[0, a, 2]
[0, 0, a]

Verify that the resulting matrix is equal to U + L - eye(size(A)), where L and U are
defined as [L,U,P] = lu(A).

[L,U,P] = lu(A);
U + L - eye(size(A))

ans =
[a, 2, 3]
[0, a, 2]
[0, 0, a]

Input Arguments
A — Input
numeric matrix | symbolic matrix

Input, specified as a numeric or symbolic matrix.

4 Functions — Alphabetical List

4-1206

Definitions

LU Factorization of a Matrix
LU factorization expresses an m-by-n matrix A as P* A = L *U. Here, L is an m-by-m lower
triangular matrix, U is an m-by-n upper triangular matrix, and P is a permutation matrix.

Permutation Vector
The permutation vector p contains numbers corresponding to row exchanges in the
matrix A. For an m-by-m matrix, p represents the following permutation matrix with
indices i and j ranging from 1 to m.

Pi j = δpi, j =
1 if j = pi
0 if j ≠ pi

Tips
• Calling lu for numeric arguments that are not symbolic objects invokes the MATLAB

lu function.
• The thresh option supported by the MATLAB lu function does not affect symbolic

inputs.
• If you use 'matrix' instead of 'vector', then lu returns permutation matrices, as it

does by default.
• L and U are nonsingular if and only if A is nonsingular. lu also can compute the LU

factorization of a singular matrix A. In this case, L or U is a singular matrix.
• Most algorithms for computing LU factorization are variants of Gaussian elimination.

See Also
chol | eig | isAlways | lu | qr | svd | vpa

Introduced in R2013a

 lu

4-1207

mapSymType
Apply function to symbolic subobjects of specific type

Syntax
X = mapSymType(symObj,type,func)
X = mapSymType(symObj,funType,vars,func)

Description
X = mapSymType(symObj,type,func) applies the function func to the symbolic
subobjects of type type in the symbolic object symObj. The input type must be a case-
sensitive string scalar or character vector, and it can include a logical expression.

• func must be a function handle or a symbolic function of type 'symfun'.
• func must return a scalar that can be converted to a symbolic object using the sym or

str2sym function.

If symObj contains several subexpressions of type type, then mapSymType applies the
function func to the largest subexpression.

X = mapSymType(symObj,funType,vars,func) applies the function func to the
unassigned symbolic functions that depend on the variables vars in the symbolic object
symObj.

You can set the function type funType to 'symfunOf' or 'symfunDependingOn'. For
example, syms f(x); mapSymType(f,'symfunOf',x,@(u)cos(u)) returns
cos(f(x)).

Examples

Apply Function to Symbolic Numbers in Expression

Create a symbolic expression that contains symbolic numbers using sym.

4 Functions — Alphabetical List

4-1208

expr = sym('2') + 1i*pi

expr = 2 + π i

Construct a function handle that computes the square of a number.

sq = @(y) y^2;

Apply the function sq to the symbolic subobject of type 'integer' in the expression
expr.

X = mapSymType(expr,'integer',sq)

X = 4 + π i

You can also apply an existing MATLAB® function, such as exp. Apply the exp function to
the symbolic subobject of type 'complex' in the expression expr.

X = mapSymType(expr,'complex',@exp)

X = π ei + 2

Apply Symbolic Function to Symbolic Subobjects in Equation

Apply a symbolic function to specific subobjects in a symbolic equation.

Create a symbolic equation.

syms x t
eq = 0.5*x + sin(x) == t/4

eq =
x
2 + sin x = t

4

Construct a symbolic function that multiplies an input by 2.

syms f(u)
f(u) = 2*u;

Apply the symbolic function f to the symbolic subobjects of type 'variable' in the
equation eq.

 mapSymType

4-1209

X = mapSymType(eq,'variable',f)

X =

x + sin 2 x = t
2

The symbolic variables x and t in the equation are multiplied by 2.

You can also apply the same symbolic function that is created using symfun.

X = mapSymType(eq,'variable',symfun(2*u,u))

X =

x + sin 2 x = t
2

Now create an unassigned symbolic function. Apply the unassigned function to the
symbolic subobjects of type 'sin' in the equation eq.

syms g(u)
X = mapSymType(eq,'sin',g)

X =
x
2 + g sin x = t

4

Apply Function to Largest Subexpression of Specific Type

Convert the largest symbolic subexpression of specific type in an expression.

Create a symbolic expression.

syms f(x) y
expr = sin(x) + f(x) - 2*y

expr = f x − 2 y + sin x

Apply the log function to the symbolic subobject of type 'expression' in the
expression expr.

X = mapSymType(expr,'expression',@log)

X = log f x − 2 y + sin x

4 Functions — Alphabetical List

4-1210

When there are several subexpressions of type 'expression', mapSymType applies the
log function to the largest subexpression.

Symbolic Functions of Specific Variables

Convert unassigned symbolic functions with specific variable dependencies in an
expression.

Create a symbolic expression.

syms f(x) g(t) h(x,t)
expr = f(x) + 2*g(t) + h(x,t)*sin(x)

expr = 2 g t + f x + sin x h x, t

Construct a function handle that converts an input to a symbolic variable with name 'z'.

func = @(obj) sym('z');

Apply the conversion function func to the unassigned symbolic functions in the
expression expr.

Convert the functions that depend on the exact sequence of variables [x t] using
'symfunOf'.

X = mapSymType(expr,'symfunOf',[x t],func)

X = 2 g t + f x + z sin x

Convert the functions that have a dependency on the variable t using
'symfunDependingOn'.

X = mapSymType(expr,'symfunDependingOn',x,func)

X = z + 2 g t + z sin x

Remove Variable Dependency of Symbolic Functions

Remove variable dependency of unassigned symbolic functions in a symbolic array.

 mapSymType

4-1211

Create a symbolic array consisting of multiple equations.

syms f1(t) f2(t) g1(t) g2(t)
eq = [f1(t) + f2(t) == 0, f1(t) == 2*g1(t), g1(t) == diff(g2(t))]

eq =

f1 t + f2 t = 0 f1 t = 2 g1 t g1 t = ∂
∂t g2 t

Apply the symFunType function to replace an unassigned symbolic function with a
variable of the same name.

Find all functions that have a dependency on the variable t using 'symfunOf' and
convert them using symFunType.

X = mapSymType(eq,'symfunOf',t,@symFunType)

X = f1 + f2 = 0 f1 = 2 g1 g1 = 0

Input Arguments
symObj — Symbolic objects
symbolic expressions | symbolic functions | symbolic variables | symbolic numbers |
symbolic units

Symbolic objects, specified as symbolic expressions, symbolic functions, symbolic
variables, symbolic numbers, or symbolic units.

type — Symbolic types
scalar string | character vector

Symbolic types, specified as a case-sensitive scalar string or character vector. The input
type can contain a logical expression. The value options follow.

4 Functions — Alphabetical List

4-1212

Symbolic Type
Category

String Values

numbers • 'integer' — integer numbers
• 'rational' — rational numbers
• 'vpareal' — variable-precision floating-point real numbers
• 'complex' — complex numbers
• 'real' — real numbers, including 'integer', 'rational',

and 'vpareal'
• 'number' — numbers, including 'integer', 'rational',

'vpareal', 'complex', and 'real'
constants 'constant' — symbolic constants, including 'number'
symbolic math
functions

'vpa', 'sin', 'exp', and so on — symbolic math functions in
symbolic expressions

unassigned symbolic
functions

• 'F', 'g', and so on — function name of an unassigned
symbolic function

• 'symfun' — unassigned symbolic functions
arithmetic operators • 'plus' — addition operator + and subtraction operator -

• 'times' — multiplication operator * and division operator /
• 'power' — power or exponentiation operator ^ and square

root operator sqrt
variables 'variable' — symbolic variables
units 'units' — symbolic units
expressions 'expression' — symbolic expressions, including all of the

preceding symbolic types
logical expressions • 'or' — logical OR operator |

• 'and' — logical AND operator &
• 'not' — logical NOT operator ~
• 'xor' — logical exclusive-OR operator xor
• 'logicalexpression' — logical expressions, including

'or', 'and', 'not', and 'xor'

 mapSymType

4-1213

Symbolic Type
Category

String Values

equations and
inequalities

• 'eq' — equality operator ==
• 'ne' — inequality operator ~=
• 'lt' — less-than operator < or greater-than operator >
• 'le' — less-than-or-equal-to operator <= or greater-than-or-

equal-to operator >=
• 'equation' — symbolic equations and inequalities, including

'eq', 'ne', 'lt', and 'le'
unsupported
symbolic types

'unsupported' — unsupported symbolic types

func — Input function
function handle | symbolic function

Input function, specified as a function handle or symbolic function. For more information
about function handles and symbolic function, see “Create Function Handle” (MATLAB)
and symfun, respectively.

If symObj contains several subexpressions of type type, then mapSymType applies the
function func to the largest subexpression (topmost matching node in a tree data
structure).

funType — Function type
'symfunOf' | 'symfunDependingOn'

Function type, specified as 'symfunOf' or 'symfunDependingOn'.

• 'symfunOf' applies func to the unassigned symbolic functions that depend on the
exact sequence of variables specified by the array vars. For example, syms f(x,y);
mapSymType(f,'symfunOf',[x y],@(g)g^2) returns f(x,y)^2.

• 'symfunDependingOn' applies func to the unassigned symbolic functions that have
a dependency on the variables specified by the array vars. For example, syms
f(x,y); mapSymType(f,'symfunDependingOn',x,@(g)g/2) returns f(x,y)/2.

vars — Input variables
symbolic variables | symbolic array

Input variables, specified as symbolic variables or a symbolic array.

4 Functions — Alphabetical List

4-1214

See Also
findSymType | hasSymType | isSymType | str2sym | sym | symFunType | symType |
symfun | syms

Introduced in R2019a

 mapSymType

4-1215

massMatrixForm
Extract mass matrix and right side of semilinear system of differential algebraic equations

Syntax
[M,F] = massMatrixForm(eqs,vars)

Description
[M,F] = massMatrixForm(eqs,vars) returns the mass matrix M and the right side of
equations F of a semilinear system of first-order differential algebraic equations (DAEs).
Algebraic equations in eqs that do not contain any derivatives of the variables in vars
correspond to empty rows of the mass matrix M.

The mass matrix M and the right side of equations F refer to this form.

M t, x t ẋ t = F t, x t .

Examples

Convert DAE System to Mass Matrix Form
Convert a semilinear system of differential algebraic equations to mass matrix form.

Create the following system of differential algebraic equations. Here, the functions x1(t)
and x2(t) represent state variables of the system. The system also contains symbolic
parameters r and m, and the function f(t, x1, x2). Specify the equations and
variables as two symbolic vectors: equations as a vector of symbolic equations, and
variables as a vector of symbolic function calls.

syms x1(t) x2(t) f(t, x1, x2) r m;
eqs = [m*x2(t)*diff(x1(t), t) + m*t*diff(x2(t), t) == f(t,x1(t),x2(t)),...
 x1(t)^2 + x2(t)^2 == r^2];
vars = [x1(t) x2(t)];

4 Functions — Alphabetical List

4-1216

Find the mass matrix form of this system.

[M,F] = massMatrixForm(eqs, vars)

M =
[m*x2(t), m*t]
[0, 0]

F =
 f(t, x1(t), x2(t))
 r^2 - x2(t)^2 - x1(t)^2

Solve this system using the numerical solver ode15s. Before you use ode15s, assign the
following values to symbolic parameters of the system: m = 100, r = 1, f(t, x1, x2)
= t + x1*x2. Also, replace the state variables x1(t), x2(t) by variables Y1, Y2
acceptable by matlabFunction.

syms Y1 Y2;
M = subs(M, [vars,m,r,f], [Y1,Y2,100,1,@(t,x1,x2) t+x1*x2]);
F = subs(F, [vars,m,r,f], [Y1,Y2,100,1,@(t,x1,x2) t+x1*x2]);

Create the following function handles MM and FF. You can use these function handles as
input arguments for odeset and ode15s. These functions require state variables to be
specified as column vectors.

MM = matlabFunction(M,'vars',{t,[Y1;Y2]});
FF = matlabFunction(F,'vars',{t,[Y1;Y2]});

Solve the system using ode15s.

opt = odeset('Mass', MM, 'InitialSlope', [0.005;0]);
ode15s(FF, [0,1], [0.5; 0.5*sqrt(3)], opt)

 massMatrixForm

4-1217

Input Arguments
eqs — System of semilinear first-order DAEs
vector of symbolic equations | vector of symbolic expressions

System of semilinear first-order DAEs, specified as a vector of symbolic equations or
expressions.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as x(t).

4 Functions — Alphabetical List

4-1218

Example: [x(t),y(t)] or [x(t);y(t)]

Output Arguments
M — Mass matrix
symbolic matrix

Mass matrix of the system, returned as a symbolic matrix. The number of rows is the
number of equations in eqs, and the number of columns is the number of variables in
vars.

F — Right sides of equations
symbolic column vector of symbolic expressions

Right sides of equations, returned as a column vector of symbolic expressions. The
number of elements in this vector is equal to the number of equations in eqs.

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix |
isLowIndexDAE | matlabFunction | ode15s | odeFunction | odeset |
reduceDAEIndex | reduceDAEToODE | reduceDifferentialOrder |
reduceRedundancies

Topics
“Solve DAEs Using Mass Matrix Solvers” on page 2-223

Introduced in R2014b

 massMatrixForm

4-1219

mathml
Generate MathML from symbolic expression

Syntax
chr = mathml(f)
chr = mathml(f,Name,Value)

Description
chr = mathml(f) returns the generated MathML from the symbolic expression f.

chr = mathml(f,Name,Value) uses additional options specified by one or more name-
value pair arguments. For example, generate MathML for inline display by specifying
DisplayInline as true.

Examples

MathML from Symbolic Expression

Generate MathML from a symbolic expression.

syms x
f = 1/exp(x^2);
chr = mathml(f)

chr =
 '<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'>
 <msup>
 <mo>ⅇ</mo>
 <mrow>
 <mo>-</mo>
 <msup>
 <mi>x</mi>
 <mn>2</mn>

4 Functions — Alphabetical List

4-1220

 </msup>
 </mrow>
 </msup>
 </math>
 '

Inline Display of MathML

Generate MathML for inline display by specifying DisplayInline as true.

syms x
f = 1/exp(x^2);
chr = mathml(f,'DisplayInline',true)

chr =
 '<math xmlns='http://www.w3.org/1998/Math/MathML'>
 <msup>
 <mo>ⅇ</mo>
 <mrow>
 <mo>-</mo>
 <msup>
 <mi>x</mi>
 <mn>2</mn>
 </msup>
 </mrow>
 </msup>
 </math>
 '

Add Tooltips for Symbols to Generated MathML

Use MathML tooltips for units and some special functions to provide more information.
Generate tooltips by specifying Tooltips as true.

syms nu x
f = besselj(nu,x);
chr = mathml(f,'Tooltips',true)

chr =
 '<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'>
 <mrow>
 <msub>
 <maction actiontype='tooltip'>

 mathml

4-1221

 <mo>J</mo>
 <mtext>besselj</mtext>
 </maction>
 <mi>ν</mi>
 </msub>
 <mrow>
 <mo form='prefix'>(</mo>
 <mi>x</mi>
 <mo form='postfix'>)</mo>
 </mrow>
 </mrow>
 </math>
 '

When you use MathML in a web page, then pausing on J displays a tooltip containing
besselj.

Modify Generated MathML with Symbolic Preferences

Modify generated MathML by setting symbolic preferences using the sympref function.

Generate the MathML form of the expression π with the default symbolic preference.

sympref('default');
chr = mathml(sym('pi'))

chr =
 '<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'>
 <mi>π</mi>
 </math>
 '

Set the 'FloatingPointOutput' preference to true to return symbolic output in
floating-point format. Generate the MathML form of π in floating-point format.

sympref('FloatingPointOutput',true);
chr = mathml(sym('pi'))

4 Functions — Alphabetical List

4-1222

chr =
 '<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'>
 <mn>3.1416</mn>
 </math>
 '

Now change the output order of a symbolic polynomial. Create a symbolic polynomial and
set 'PolynomialDisplayStyle' preference to 'ascend'. Generate MathML form of
the polynomial sorted in ascending order.

syms x;
poly = x^2 - 2*x + 1;
sympref('PolynomialDisplayStyle','ascend');
chr = mathml(poly)

chr =
 '<math xmlns='http://www.w3.org/1998/Math/MathML' display='block'>
 <mrow>
 <mn>1</mn>
 <mo>-</mo>
 <mrow>
 <mn>2</mn>
 <mo form='infix'>⁢</mo>
 <mi>x</mi>
 </mrow>
 <mo>+</mo>
 <msup>
 <mi>x</mi>
 <mn>2</mn>
 </msup>
 </mrow>
 </math>
 '

Input Arguments
f — Input
symbolic number | symbolic variable | symbolic array | symbolic function | symbolic
expression

Input, specified as a symbolic number, variable, array, function, or expression.

 mathml

4-1223

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: mathml(f,'Tooltips',true)

DisplayInline — Inline MathML display
false (default) | true

Inline MathML display, specified as the comma-separated pair consisting of
'DisplayInline' and either true or false (default).

Tooltips — tooltips
false (default) | true

Tooltips in MathML output, specified as the comma-separated pair consisting of
'Tooltips' and either true or false (default). mathml adds tooltips for units and
some special functions.

See Also
ccode | fortran | latex | sympref | texlabel

Introduced in R2018b

4 Functions — Alphabetical List

4-1224

matlabFunction
Convert symbolic expression to function handle or file

Syntax
g = matlabFunction(f)
g = matlabFunction(f1,...,fN)
g = matlabFunction(___ ,Name,Value)

Description
g = matlabFunction(f) converts the symbolic expression or function f to a MATLAB
function with handle g. The function can be used without Symbolic Math Toolbox.

g = matlabFunction(f1,...,fN) converts f1,...,fN to a MATLAB function with N
outputs. The function handle is g. Each element of f1,...,fN can be a symbolic
expression, function, or a vector of symbolic expressions or functions.

g = matlabFunction(___ ,Name,Value) converts symbolic expressions, functions, or
vectors of symbolic expressions or functions to a MATLAB function using additional
options specified by one or more Name,Value pair arguments. You can specify
Name,Value after the input arguments used in the previous syntaxes.

Examples

Convert Symbolic Expression to Anonymous Function

Convert the symbolic expression r to a MATLAB function with the handle ht. The
function can be used without Symbolic Math Toolbox.

syms x y
r = sqrt(x^2 + y^2);
ht = matlabFunction(r)

 matlabFunction

4-1225

ht =
 function_handle with value:
 @(x,y)sqrt(x.^2+y.^2)

Convert multiple symbolic expressions using comma-separated input.

ht = matlabFunction(r, r^2)

ht =
 function_handle with value:
 @(x,y)deal(sqrt(x.^2+y.^2),x.^2+y.^2)

Convert Symbolic Function to Anonymous Function

Create a symbolic function and convert it to a MATLAB function with the handle ht.

syms x y
f(x,y) = x^3 + y^3;
ht = matlabFunction(f)

ht =
 function_handle with value:
 @(x,y)x.^3+y.^3

Write MATLAB Function to File with Comments

Write the generated MATLAB function to a file by specifying the File option. Existing
files are overwritten. When writing to a file, matlabFunction optimizes the code using
intermediate variables named t0, t1, …. Include comments in the file by using the
Comments option.

Write the MATLAB function generated from f to the file myfile.

syms x
f = x^2 + log(x^2);
matlabFunction(f,'File','myfile');

function f = myfile(x)
%MYFILE
% F = MYFILE(X)

4 Functions — Alphabetical List

4-1226

% This function was generated by the Symbolic Math Toolbox version 7.3.
% 01-Jan-2017 00:00:00

t2 = x.^2;
f = t2+log(t2);

Include the comment Version: 1.1 in the file.

matlabFunction(f,'File','myfile','Comments','Version: 1.1')

function f = myfile(x)
...
%Version: 1.1
t2 = x.^2;
...

Disable Code Optimization

When you convert a symbolic expression to a MATLAB function and write the resulting
function to a file, matlabFunction optimizes the code by default. This approach can
help simplify and speed up further computations that use the file. However, generating
the optimized code from some symbolic expressions and functions can be very time
consuming. Use Optimize to disable code optimization.

Create a symbolic expression.

syms x
r = x^2*(x^2 + 1);

Convert r to a MATLAB function and write the function to the file myfile. By default,
matlabFunction creates a file containing the optimized code.

f = matlabFunction(r,'File','myfile');

function r = myfile(x)
%MYFILE
% R = MYFILE(X)
t2 = x.^2;
r = t2.*(t2+1.0);

Disable the code optimization by setting the value of Optimize to false.

f = matlabFunction(r,'File','myfile','Optimize',false);

 matlabFunction

4-1227

function r = myfile(x)
%MYFILE
% R = MYFILE(X)
r = x.^2.*(x.^2+1.0);

Generate Sparse Matrices

When you convert a symbolic matrix to a MATLAB function, matlabFunction represents
it by a dense matrix by default. If most of the elements of the input symbolic matrix are
zeros, the more efficient approach is to represent it by a sparse matrix.

Create a 3-by-3 symbolic diagonal matrix:

syms x
A = diag(x*ones(1,3))

A =
[x, 0, 0]
[0, x, 0]
[0, 0, x]

Convert A to a MATLAB function representing a numeric matrix, and write the result to
the file myfile1. By default, the generated MATLAB function creates the dense numeric
matrix specifying each element of the matrix, including all zero elements.

f1 = matlabFunction(A,'File','myfile1');

function A = myfile1(x)
%MYFILE1
% A = MYFILE1(X)
A = reshape([x,0.0,0.0,0.0,x,0.0,0.0,0.0,x],[3,3]);

Convert A to a MATLAB function setting Sparse to true. Now, the generated MATLAB
function creates the sparse numeric matrix specifying only nonzero elements and
assuming that all other elements are zeros.

f2 = matlabFunction(A,'File','myfile2','Sparse',true);

function A = myfile2(x)
%MYFILE2
% A = MYFILE2(X)
A = sparse([1,2,3],[1,2,3],[x,x,x],3,3);

4 Functions — Alphabetical List

4-1228

Specify Input Arguments for Generated Function

When converting an expression to a MATLAB function, you can specify the order of the
input arguments of the resulting function. You also can specify that some input arguments
are vectors instead of single variables.

Create a symbolic expression.

syms x y z
r = x + y/2 + z/3;

Convert r to a MATLAB function and write this function to the file myfile. By default,
matlabFunction uses alphabetical order of input arguments when converting symbolic
expressions.

matlabFunction(r,'File','myfile');

function r = myfile(x,y,z)
%MYFILE
% R = MYFILE(X,Y,Z)
r = x+y.*(1.0./2.0)+z.*(1.0./3.0);

Use the Vars argument to specify the order of input arguments for the generated
MATLAB function.

matlabFunction(r,'File','myfile','Vars',[y z x]);

function r = myfile(y,z,x)
%MYFILE
% R = MYFILE(Y,Z,X)
r = x+y.*(1.0./2.0)+z.*(1.0./3.0);

Now, convert an expression r to a MATLAB function whose second input argument is a
vector.

syms x y z t
r = (x + y/2 + z/3)*exp(-t);
matlabFunction(r,'File','myfile','Vars',{t,[x y z]});

function r = myfile(t,in2)
%MYFILE
% R = MYFILE(T,IN2)
x = in2(:,1);
y = in2(:,2);

 matlabFunction

4-1229

z = in2(:,3);
r = exp(-t).*(x+y.*(1.0./2.0)+z.*(1.0./3.0));

Specify Output Variables

When converting a symbolic expression to a MATLAB function, you can specify the names
of the output variables. Note that matlabFunction without the File argument (or with
a file path specified by an empty character vector) creates a function handle and ignores
the Outputs flag.

Create symbolic expressions r and q.

syms x y z
r = x^2 + y^2 + z^2;
q = x^2 - y^2 - z^2;

Convert r and q to a MATLAB function and write the resulting function to a file myfile,
which returns a vector of two elements, name1 and name2.

f = matlabFunction(r,q,'File','myfile',...
 'Outputs',{'name1','name2'});

function [name1,name2] = myfile(x,y,z)
%MYFILE
% [NAME1,NAME2] = MYFILE(X,Y,Z)
t2 = x.^2;
t3 = y.^2;
t4 = z.^2;
name1 = t2+t3+t4;
if nargout > 1
 name2 = t2-t3-t4;
end

Input Arguments
f — Symbolic input to be converted to MATLAB function
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Symbolic input to be converted to a MATLAB function, specified as a symbolic expression,
function, vector, or matrix. When converting sparse symbolic vectors or matrices, use the
name-value pair argument 'Sparse',true.

4 Functions — Alphabetical List

4-1230

f1,...,fN — Symbolic input to be converted to MATLAB function with N outputs
several symbolic expressions | several symbolic functions | several symbolic vectors |
several symbolic matrices

Symbolic input to be converted to MATLAB function with N outputs, specified as several
symbolic expressions, functions, vectors, or matrices, separated by comma.

matlabFunction does not create a separate output argument for each element of a
symbolic vector or matrix. For example, g = matlabFunction([x + 1, y + 1])
creates a MATLAB function with one output argument, while g = matlabFunction(x +
1, y + 1) creates a MATLAB function with two output arguments.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: matlabFunction(f,'File','myfile','Optimize',false)

Comments — Comments to include in file header
character vector | cell array of character vectors | string vector

Comments to include in the file header, specified as a character vector, cell array of
character vectors, or string vector.

File — Path to file containing generated MATLAB function
character vector

Path to the file containing the generated MATLAB function, specified as a character
vector. The generated function accepts arguments of type double, and can be used
without Symbolic Math Toolbox. If File is empty, matlabFunction generates an
anonymous function. If File does not end in .m, the function appends .m.

When writing to a file, matlabFunction optimizes the code using intermediate variables
named t0, t1, To disable code optimization, use the Optimize argument.

See “Write MATLAB Function to File with Comments” on page 4-1226.

Optimize — Flag preventing optimization of code written to function file
true (default) | false

 matlabFunction

4-1231

Flag preventing optimization of code written to a function file, specified as false or
true.

When writing to a file, ccode optimizes the code using intermediate variables named t0,
t1,

matlabFunction without the File argument (or with a file path specified by an empty
character vector) creates a function handle. In this case, the code is not optimized. If you
try to enforce code optimization by setting Optimize to true, then matlabFunction
throws an error.

See “Disable Code Optimization” on page 4-1227.

Sparse — Flag that switches between sparse and dense matrix generation
false (default) | true

Flag that switches between sparse and dense matrix generation, specified as true or
false. When you specify 'Sparse',true, the generated MATLAB function represents
symbolic matrices by sparse numeric matrices. Use 'Sparse',true when you convert
symbolic matrices containing many zero elements. Often, operations on sparse matrices
are more efficient than the same operations on dense matrices.

See “Generate Sparse Matrices” on page 4-1228.

Vars — Order of input variables or vectors in generated MATLAB function
character vector | vector of symbolic variables | one-dimensional cell array of character
vectors | one-dimensional cell array of symbolic variables | one-dimensional cell array of
vectors of symbolic variables

Order of input variables or vectors in a generated MATLAB function, specified as a
character vector, a vector of symbolic variables, or a one-dimensional cell array of
character vectors, symbolic variables, or vectors of symbolic variables.

The number of specified input variables must equal or exceed the number of free
variables in f. Do not use the same names for the input variables specified by Vars and
the output variables specified by Outputs.

By default, when you convert symbolic expressions, the order is alphabetical. When you
convert symbolic functions, their input arguments appear in front of other variables, and
all other variables are sorted alphabetically.

See “Specify Input Arguments for Generated Function” on page 4-1228.

4 Functions — Alphabetical List

4-1232

Outputs — Names of output variables
one-dimensional cell array of character vectors

Names of output variables, specified as a one-dimensional cell array of character vectors.

If you do not specify the output variable names, then they coincide with the names you
use when calling matlabFunction. If you call matlabFunction using an expression
instead of individual variables, the default names of output variables consist of the word
out followed by a number, for example, out3.

Do not use the same names for the input variables specified by Vars and the output
variables specified by Outputs.

matlabFunction without the File argument (or with a file path specified by an empty
character vector) creates a function handle. In this case, matlabFunction ignores the
Outputs flag.

See “Specify Output Variables” on page 4-1230.

Output Arguments
g — Function handle that can serve as input argument to numerical functions
MATLAB function handle

Function handle that can serve as an input argument to numerical functions, returned as
a MATLAB function handle.

Tips
• When you use the File argument, use rehash to make the generated function

available immediately. rehash updates the MATLAB list of known files for directories
on the search path.

• If the File option is empty, then an anonymous function is returned.

See Also
ccode | daeFunction | fortran | matlabFunctionBlock | odeFunction | rehash |
simscapeEquation | subs | sym2poly

 matlabFunction

4-1233

Topics
“Generate MATLAB Functions from Symbolic Expressions” on page 2-264
“Create MATLAB Functions from MuPAD Expressions” on page 3-75

Introduced in R2008b

4 Functions — Alphabetical List

4-1234

matlabFunctionBlock
Convert symbolic expression to MATLAB function block

Syntax
matlabFunctionBlock(block,f)
matlabFunctionBlock(block,f1,...,fN)
matlabFunctionBlock(___ ,Name,Value)

Description
matlabFunctionBlock(block,f) converts f to a MATLAB function block that you can
use in Simulink models. Here, f can be a symbolic expression, function, or a vector of
symbolic expressions or functions.

block specifies the name of the block that you create or modify.

matlabFunctionBlock(block,f1,...,fN) converts symbolic expressions or
functions f1,...,fN to a MATLAB function block with N outputs. Each element of
f1,...,fN can be a symbolic expression, function, or a vector of symbolic expressions or
functions.

matlabFunctionBlock(___ ,Name,Value) converts a symbolic expression, function,
or a vector of symbolic expressions or functions to a MATLAB function block using
additional options specified by one or more Name,Value pair arguments. You can specify
Name,Value after the input arguments used in the previous syntaxes.

Examples

Convert Symbolic Expression to MATLAB Function Block

Create a new model and convert a symbolic expression to a MATLAB function block.
Include comments in the block by specifying the Comments option.

 matlabFunctionBlock

4-1235

Create a new model and open it.

new_system('my_system')
open_system('my_system')

Create a symbolic expression.

syms x y z
f = x^2 + y^2 + z^2;

Use matlabFunctionBlock to create the block my_block containing the symbolic
expression. matlabFunctionBlock overwrites existing blocks. Double-click the
generated block to open and edit the function defining the block.

matlabFunctionBlock('my_system/my_block',f)

function f = my_block(x,y,z)
%#codegen

% This function was generated by the Symbolic Math Toolbox version 7.3.
% 01-Jan-2017 00:00:00

f = x.^2+y.^2+z.^2;

Include the comment Version 1.1 in the block.

matlabFunctionBlock('my_system/my_block',f,'Comments','Version: 1.1')

function f = my_block(x,y,z)
...
%Version: 1.1
f = x.^2+y.^2+z.^2;

Save and close my_system.

save_system('my_system')
close_system('my_system')

Convert Symbolic Function MATLAB Function Block

Create a new model and convert a symbolic function to a MATLAB function block.

Create a new empty model and open it.

4 Functions — Alphabetical List

4-1236

new_system('my_system')
open_system('my_system')

Create a symbolic function.

syms x y z
f(x, y, z) = x^2 + y^2 + z^2;

Convert f to a MATLAB function block. Double-click the block to see the function.

matlabFunctionBlock('my_system/my_block',f)

function f = my_block(x,y,z)
%#codegen
f = x.^2+y.^2+z.^2;

Create Blocks with Multiple Outputs

Convert several symbolic expressions to a MATLAB function block with multiple output
ports.

Create a new empty model and open it.

new_system('my_system')
open_system('my_system')

Create three symbolic expressions.

syms x y z
f = x^2;
g = y^2;
h = z^2;

Convert them to a MATLAB function block. matlabFunctionBlock creates a block with
three output ports. Double-click the block to see the function.

matlabFunctionBlock('my_system/my_block',f,g,h)

function [f,g,h] = my_block(x,y,z)
%#codegen
f = x.^2;
if nargout > 1
 g = y.^2;

 matlabFunctionBlock

4-1237

end
if nargout > 2
 h = z.^2;
end

Specify Function Name for Generated Function

Specifying the name of the function defining the generated MATLAB function block.

Create a new empty model and open it.

new_system('my_system')
open_system('my_system')

Create a symbolic expression.

syms x y z
f = x^2 + y^2 + z^2;

Generate a block and set the function name to my_function. Double-click the block to
see the function.

matlabFunctionBlock('my_system/my_block',f,...
 'FunctionName', 'my_function')

function f = my_function(x,y,z)
%#codegen
f = x.^2+y.^2+z.^2;

Disable Code Optimization

When you convert a symbolic expression to a MATLAB function block,
matlabFunctionBlock optimizes the code by default. This approach can help simplify
and speed up further computations that use the file. Nevertheless, generating the
optimized code from some symbolic expressions and functions can be very time-
consuming. Use Optimize to disable code optimization.

Create a new empty model and open it.

new_system('my_system')
open_system('my_system')

4 Functions — Alphabetical List

4-1238

Create a symbolic expression.

syms x
r = x^2*(x^2 + 1);

Use matlabFunctionBlock to create the block my_block containing the symbolic
expression. Double-click the block to see the function defining the block. By default,
matlabFunctionBlock creates a file containing the optimized code.

matlabFunctionBlock('my_system/my_block',r)

function r = my_block(x)
%#codegen
t2 = x.^2;
r = t2.*(t2+1.0);

Disable the code optimization by setting the value of Optimize to false.

matlabFunctionBlock('my_system/my_block',r,...
 'Optimize',false)

function r = my_block(x)
%#codegen
r = x.^2.*(x.^2+1.0);

Specify Input Ports for Generated Block

Specify the order of the input variables that form the input ports in a generated block.

Create a new empty model and open it.

new_system('my_system')
open_system('my_system')

Create a symbolic expression.

syms x y z
f = x^2 + y^2 + z^2;

Convert the expression to a MATLAB function block. By default, matlabFunctionBlock
uses alphabetical order of input arguments when converting symbolic expressions.

matlabFunctionBlock('my_system/my_block',f)

 matlabFunctionBlock

4-1239

function f = my_block(x,y,z)
%#codegen
f = x.^2+y.^2+z.^2;

Use the Vars argument to specify the order of the input ports.

matlabFunctionBlock('my_system/my_block',f,...
 'Vars', [y z x])

function f = my_block(y,z,x)
%#codegen
f = x.^2+y.^2+z.^2;

Specify Output Ports

When generating a block, rename the output variables and the corresponding ports.

Create a new empty model and open it.

new_system('my_system')
open_system('my_system')

Create a symbolic expression.

syms x y z
f = x^2 + y^2 + z^2;

Convert the expression to a MATLAB function block and specify the names of the output
variables and ports. Double-click the block to see the function defining the block.

matlabFunctionBlock('my_system/my_block',f,f + 1,f + 2,...
 'Outputs', {'name1','name2','name3'})

function [name1,name2,name3] = my_block(x,y,z)
%#codegen
t2 = x.^2;
t3 = y.^2;
t4 = z.^2;
name1 = t2+t3+t4;
if nargout > 1
 name2 = t2+t3+t4+1.0;
end
if nargout > 2

4 Functions — Alphabetical List

4-1240

 name3 = t2+t3+t4+2.0;
end

Specify Function Name, Input and Output Ports

Call matlabFunctionBlock using several name-value pair arguments simultaneously.

Create a new empty model and open it.

new_system('my_system')
open_system('my_system')

Create a symbolic expression.

syms x y z
f = x^2 + y^2 + z^2;

Call matlabFunctionBlock using the name-value pair arguments to specify the function
name, the order of the input ports, and the names of the output ports. Double-click the
block to see the function defining the block.

matlabFunctionBlock('my_system/my_block',f,f + 1,f + 2,...
 'FunctionName', 'my_function','Vars',[y z x],...
 'Outputs',{'name1','name2','name3'})

function [name1,name2,name3] = my_function(y,z,x)
%#codegen
t2 = x.^2;
t3 = y.^2;
t4 = z.^2;
name1 = t2+t3+t4;
if nargout > 1
 name2 = t2+t3+t4+1.0;
end
if nargout > 2
 name3 = t2+t3+t4+2.0;
end

Input Arguments
block — Block to create of modify
character vector

 matlabFunctionBlock

4-1241

Block to create of modify, specified as a character vector.

f — Symbolic input to be converted to MATLAB function block
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Symbolic input to be converted to MATLAB function block, specified as a symbolic
expression, function, vector, or matrix

f1,...,fN — Symbolic input to be converted to MATLAB function block with N
outputs
several symbolic expressions | several symbolic functions | several symbolic vectors |
several symbolic matrices

Symbolic input to be converted to MATLAB function block with N outputs, specified as
several symbolic expressions, functions, vectors, or matrices, separated by comma.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: matlabFunctionBlock('my_system/
my_block',f,'FunctionName','myfun')

Comments — Comments to include in file header
character vector | cell array of character vectors | string vector

Comments to include in the file header, specified as a character vector, cell array of
character vectors, or string vector.

FunctionName — Name of function
coincides with the input argument block (default) | character vector

Name of the function, specified as a character vector. By default,
matlabFunction(block,…) uses block as the function name.

See “Specify Function Name for Generated Function” on page 4-1238.

Optimize — Flag preventing code optimization
true (default) | false

4 Functions — Alphabetical List

4-1242

Flag preventing code optimization, specified as false or true.

When writing to a file, matlabFunctionBlock optimizes the code using intermediate
variables named t0, t1,

See “Disable Code Optimization” on page 4-1238.

Vars — Order of input variables and corresponding input ports of generated
block
character vector | one-dimensional cell array of character vectors | one-dimensional cell
array of symbolic variables | one-dimensional cell array of vectors of symbolic variables |
vector of symbolic variables

Order of input variables and corresponding input ports of generated block, specified as a
character vector, a vector of symbolic variables, or a one-dimensional cell array of
character vectors, symbolic variables, or vectors of symbolic variables.

The number of specified input ports must equal or exceed the number of free variables in
f. Do not use the same names for the input ports specified by Vars and the output ports
specified by Outputs.

By default, when you convert symbolic expressions, the order is alphabetical. When you
convert symbolic functions, their input arguments appear in front of other variables, and
all other variables are sorted alphabetically.

See “Specify Input Ports for Generated Block” on page 4-1239.

Outputs — Names of output ports
out followed by output port numbers (default) | one-dimensional cell array of character
vectors

Names of output ports, specified as a one-dimensional cell array of character vectors. If
you do not specify the output port names, matlabFunctionBlock uses names that
consist of the word out followed by output port numbers, for example, out3.

Do not use the same names for the input ports specified by Vars and the output ports
specified by Outputs. See “Specify Output Ports” on page 4-1240.

See Also
ccode | fortran | matlabFunction | simscapeEquation | subs | sym2poly

 matlabFunctionBlock

4-1243

Topics
“Generate MATLAB Function Blocks from Symbolic Expressions” on page 2-268
“Create MATLAB Function Blocks from MuPAD Expressions” on page 3-79

Introduced in R2009a

4 Functions — Alphabetical List

4-1244

meijerG
Meijer G-function

Syntax
meijerG(a,b,c,d,z)

Description
meijerG(a,b,c,d,z) returns the “Meijer G-Function” on page 4-1250. meijerG is
element-wise in z. The input parameters a, b, c, and d are vectors that can be empty, as
in meijerG([], [], 3.2, [], 1).

Examples

Calculate Meijer G-Function for Numeric Inputs

syms x
meijerG(3, [], [], 2, 5)

ans =
 25

Call meijerG when z is an array. meijerG acts element-wise.

a = 2;
z = [1 2 3];
meijerG(a, [], [], [], z)

ans =
 0.3679 1.2131 2.1496

 meijerG

4-1245

Calculate Meijer G-Function for Symbolic Numbers

Convert numeric input to symbolic form using sym, and find the Meijer G-function. For
certain symbolic inputs, meijerG returns exact symbolic output using other functions.

meijerG(sym(2), [], [], [], sym(3))

ans =
3*exp(-1/3)

meijerG(sym(2/5), [], sym(1/2), [], sym(3))

ans =
(2^(4/5)*3^(1/2)*gamma(1/10))/80

Find Meijer G-Function for Symbolic Variables or Expressions

For symbolic variables or expressions, meijerG returns an output in terms of simple or
special functions.

syms a b c d z
f = meijerG(a,b,c,d,z)

f =
(gamma(c - a + 1)*(1/z)^(1 - a)*hypergeom([c - a + 1, d - a + 1],...
 b - a + 1, 1/z))/(gamma(b - a + 1)*gamma(a - d))

Substitute values for the variables by using subs, and convert values to double by using
double.

fVal = subs(f, [a b c d z], [1.2 3 5 7 9])

fVal =
(266*9^(1/5)*hypergeom([24/5, 34/5], 14/5, 1/9))/(25*gamma(-29/5))

double(fVal)

ans =
 5.7586e+03

Calculate fVal to higher precision using vpa.

vpa(fVal)

4 Functions — Alphabetical List

4-1246

ans =
5758.5946416377834597597497022199

Differentiate Meijer G-Function

Differentiate the Meijer G-function by using diff.

syms a b c d z
mG = meijerG(a, b, c, d, z);
diffmG = diff(mG)

diffmG =
(gamma(c - a + 1)*(a - 1)*hypergeom([c - a + 1, d - a + 1],...
 b - a + 1, 1/z))/(z^2*gamma(b - a + 1)*gamma(a - d)*(1/z)^a)...
 - (gamma(c - a + 1)*(1/z)^(1 - a)*(c - a + 1)*(d - a + 1)...
*hypergeom([c - a + 2, d - a + 2], b - a + 2, 1/z))...
/(z^2*gamma(b - a + 1)*gamma(a - d)*(b - a + 1))

Relations Between Meijer G-Function and Other Functions

Show relations between meijerG and simpler functions for given parameter values.

Show that when a, b, and d are empty, and c = 0, then meijerG reduces to exp(-z).

syms z
meijerG([], [], 0, [], z)

ans =
exp(-z)

Show that when a, b, and d are empty, and c = [1/2 -1/2], then meijerG reduces to
2Kv(1,2z1/2).

meijerG([], [], [1/2 -1/2], [], z)

ans =
2*besselk(1, 2*z^(1/2))

Plot Meijer G-Function

Plot the real and imaginary values of the Meijer G-function for values of b and z, where a
= [-2 2] and c and d are empty. Fill the contours by setting Fill to on.

syms b z
f = meijerG([-2 2], b, [], [], z);

 meijerG

4-1247

subplot(2,2,1)
fcontour(real(f),'Fill','on')
title('Real Values of Meijer G')
xlabel('b')
ylabel('z')

subplot(2,2,2)
fcontour(imag(f),'Fill','on')
title('Imag. Values of Meijer G')
xlabel('b')
ylabel('z')

4 Functions — Alphabetical List

4-1248

Input Arguments
a — Input
number | vector | symbolic number | symbolic variable | symbolic vector | symbolic
function | symbolic expression

Input, specified as a number or vector, or a symbolic number, variable, vector, function, or
expression.

b — Input
number | vector | symbolic number | symbolic variable | symbolic vector | symbolic
function | symbolic expression

 meijerG

4-1249

Input, specified as a number or vector, or a symbolic number, variable, vector, function, or
expression.

c — Input
number | vector | symbolic number | symbolic variable | symbolic vector | symbolic
function | symbolic expression

Input, specified as a number or vector, or a symbolic number, variable, vector, function, or
expression.

d — Input
number | vector | symbolic number | symbolic variable | symbolic vector | symbolic
function | symbolic expression

Input, specified as a number or vector, or a symbolic number, variable, vector, function, or
expression.

z — Input
number | vector | symbolic number | symbolic variable | symbolic vector | symbolic matrix
| symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number or vector, or a symbolic number, variable, vector, function, or
expression.

Definitions

Meijer G-Function
The Meijer G-function meijerG([a1,…,an],[an+1,…,ap],[b1,…,bm],[bm+1,…,bq],z) is a general
function that includes other special functions as particular cases, and is defined as

Gp, q
m, n a1, …, ap

b1, …, bq
z = 1

2πi∫
∏ j = 1

m

Γ b j− s ∏ j = 1

n

Γ 1− a j + s

∏ j = m + 1

q

Γ 1− b j + s ∏ j = n + 1

p

Γ a j− s

zsds .

4 Functions — Alphabetical List

4-1250

Algorithms
For the Meijer G-function meijerG([a1,…,an],[an+1,…,ap],[b1,…,bm],[bm+1,…,bq],z), for ai∊(a1,
…,an) and bj∊(b1,…,bm), no difference ai − bj should be a positive integer.

The Meijer G-function involves a complex contour integral with one of the following types
of integration paths:

• The contour goes from - i ∞ to i ∞ so that all poles of Γ b j− s , j = 1, …, m lie to the
right of the path, and all poles of Γ 1− ak + s , k = 1, …, n lie to the left of the path.

The integral converges if c m n
p q

= + -
+

>

2
0 , |arg(z)| < c π. If |arg(z)| = c π, c ≥ 0,

the integral converges absolutely when p = q and ℜ(ψ) < - 1, where

Ψ = ∑
j = 1

q

b j − ∑
i = 1

p

ai . When p ≠ q, the integral converges if you choose the contour

so that the contour points near i ∞ and - i ∞ have a real part σ satisfying
q− p σ > ℜ(ψ) + 1− q− p

2 .

• The contour is a loop beginning and ending at infinity and encircling all poles of
Γ b j− s , j = 1, …, m moving in the negative direction, but none of the poles of
Γ 1− ak + s , k = 1, …, n. The integral converges if q ≥ 1 and either p < q or p = q and
|z| < 1.

• The contour is a loop beginning and ending at - ∞ and encircling all poles of
Γ 1− ak + s , k = 1, …, n moving in the positive direction, but none of the poles of
Γ b j + s , j = 1, …, m. The integral converges if p ≥ 1 and either p > q or p = q and |z|
> 1.

The integral represents an inverse Laplace transform or, more specifically, a Mellin-
Barnes type of integral.

For a given set of parameters, the contour chosen in the definition of the Meijer G-
function is the one for which the integral converges. If the integral converges for several
contours, all contours lead to the same function.

The Meijer G-function satisfies a differential equation of order max(p, q) with respect to a
variable z:

 meijerG

4-1251

−1) m + n− pz∏
i = 1

p

z d
dz − ai− 1 − ∏

j = 1

q
z d

dz − b j Gp, q
m, n a1, …, ap

b1, …, bp
z = 0.

If p < q, this differential equation has a regular singularity at z = 0 and an irregular
singularity at z = ∞. If p = q, the points z = 0 and z = ∞ are regular singularities, and
there is an additional regular singularity at z = (−1)m + n - p.

The Meijer G-function represents an analytic continuation of the hypergeometric function
[1]. For particular choices of parameters, you can express the Meijer G-function through
the hypergeometric function. For example, if no two of the bh terms, h = 1, …, m, differ by
an integer or zero and all poles are simple, then

Gp, q
m, n a1, …, ap

b1, …, bp
z = ∑

h = 1

m ∏
j = 1…m, j ≠ h

Γ b j− bh ∏
j = 1

n
Γ 1 + bh− a j

∏
j = m + 1

q
Γ 1 + bh− b j ∏

j = n + 1

p
Γ a j− bh

zbhpFq− 1

Ah; Bh; −1 p−m− nz .

Here p < q or p = q and |z| < 1. Ah denotes

Ah = 1 + bh− a1, …, 1 + bh− ap .

Bh denotes

Bh = 1 + bh− b1, …, 1 + bh− b(h− 1), 1 + bh− bh + 1, …, 1 + bh− bq .

Meijer G-functions with different parameters can represent the same function.

• The Meijer G-function is symmetric with respect to the parameters. Changing the
order inside each of the following lists of vectors does not change the resulting Meijer
G-function: [a1, …, an], [an + 1, …, ap], [b1, …, bm], [bm + 1, …, bq].

• If z is not a negative real number and z ≠ 0, the function satisfies the following
identity:

4 Functions — Alphabetical List

4-1252

Gp, q
m, n a1, …, ap

b1, …, bq
z = Gq, p

n, m 1− b1, …, 1− bp
1− a1, …, 1− ap

1
z .

.
• If 0 < n < p and r = a1 - ap is an integer, the function satisfies the following identity:

Gp, q
m, n a1, a2, …, ap− 1, ap

b1, b2, …, bq− 1, bq
z = Gp, q

m, n ap, a2, …, ap− 1, a1
b1, b2, …, bq− 1, bq

z .

.
• If 0 < m < q and r = b1 - bq is an integer, the function satisfies the following identity:

Gp, q
m, n a1, a2, …, ap− 1, ap

b1, b2, …, bq− 1, bq
z = −1 γGp, q

m, n a1, a2, …, ap− 1, ap
bq, b2, …, bq− 1, b1

z .

.

According to these rules, the meijerG function call can return meijerG with modified
input parameters.

References
[1] Luke, Y. L., The Special Functions and Their Approximations. Vol. 1. New York:

Academic Press, 1969.

[2] Prudnikov, A. P., Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Vol 3: More
Special Functions. Gordon and Breach, 1990.

[3] Abramowitz, M., I. A. Stegun, Handbook of Mathematical Functions. 9th printing. New
York: Dover Publications, 1970.

See Also
hypergeom

Introduced in R2017b

 meijerG

4-1253

mfun
Numeric evaluation of special mathematical function

Note mfun will be removed in a future release. Instead, use the appropriate special
function syntax listed in mfunlist. For example, use bernoulli(n) instead of
mfun('bernoulli',n).

Syntax
mfun('function',par1,par2,par3,par4)

Description
mfun('function',par1,par2,par3,par4) numerically evaluates one of the special
mathematical functions listed in mfunlist. Each par argument is a numeric quantity
corresponding to a parameter for function. You can use up to four parameters. The last
parameter specified can be a matrix, usually corresponding to X. The dimensions of all
other parameters depend on the specifications for function. You can access parameter
information for mfun functions in mfunlist.

MuPAD software evaluates function using 16-digit accuracy. Each element of the result
is a MATLAB numeric quantity. Any singularity in function is returned as NaN.

See Also
mfunlist

Introduced before R2006a

4 Functions — Alphabetical List

4-1254

mfunlist
List special functions for use with mfun

Note mfun will be removed in a future release. Instead, use the appropriate special
function syntax listed below. For example, use bernoulli(n) instead of
mfun('bernoulli',n).

Syntax
mfunlist

Description
mfunlist lists the special mathematical functions for use with the mfun function. The
following tables describe these special functions.

The following conventions are used in the next table, unless otherwise indicated in the
Arguments column.

x, y real argument
z, z1, z2 complex argument
m, n integer argument

 mfunlist

4-1255

mfun Special Functions

Function
Name

Definition mfun Name Special
Function Syntax

Argument
s

Bernoulli
numbers and
polynomials

Generating functions:

ext

et − 1
= ∑

n = 0

∞
Bn(x) ⋅ tn− 1

n!

bernoulli(n)

bernoulli(n,t
)

bernoulli(n)

bernoulli(n,t
)

n ≥ 0

0 < t < 2π

Bessel
functions

BesselI, BesselJ—Bessel
functions of the first kind.
BesselK, BesselY—Bessel
functions of the second kind.

BesselJ(v,x)

BesselY(v,x)

BesselI(v,x)

BesselK(v,x)

besselj(v,x)

bessely(v,x)

besseli(v,x)

besselk(v,x)

v is real.

Beta function B(x, y) = Γ(x) ⋅ Γ(y)
Γ(x + y)

Beta(x,y) beta(x,y)

Binomial
coefficients

m
n = m!

n! m− n !

= Γ(m + 1)
Γ n + 1 Γ(m− n + 1)

binomial(m,n) nchoosek(m,n)

Complete
elliptic
integrals

Legendre's complete elliptic
integrals of the first, second,
and third kind. This definition
uses modulus k. The numerical
ellipke function and the
MuPAD functions for computing
elliptic integrals use the
parameter m = k2 = sin2α.

EllipticK(k)

EllipticE(k)

EllipticPi(a,
k)

ellipticK(k)

ellipticE(k)

ellipticPi(a,
k)

a is real, –
∞ < a < ∞.

k is real, 0
< k < 1.

4 Functions — Alphabetical List

4-1256

Function
Name

Definition mfun Name Special
Function Syntax

Argument
s

Complete
elliptic
integrals with
complementar
y modulus

Associated complete elliptic
integrals of the first, second,
and third kind using
complementary modulus. This
definition uses modulus k. The
numerical ellipke function
and the MuPAD functions for
computing elliptic integrals use
the parameter m = k2 = sin2α.

EllipticCK(k)

EllipticCE(k)

EllipticCPi(a
,k)

ellipticCK(k)

ellipticCE(k)

ellipticCPi(a
,k)

a is real, –
∞ < a < ∞.

k is real, 0
< k < 1.

Complementar
y error
function and
its iterated
integrals

erfc(z) = 2
π ⋅ ∫z

∞
e−t2dt = 1

− erf (z)

erfc(− 1, z) = 2
π ⋅ e

−z2

erfc(n, z) = ∫
z

∞
erfc(n− 1, t)dt

erfc(z)

erfc(n,z)

erfc(z)

erfc(n,z)

n > 0

Dawson's
integral F(x) = e−x2 ⋅ ∫

0

x
et2dt

dawson(x) dawson(x)

Digamma
function Ψ(x) = d

dx ln(Γ(x)) = Γ′(x)
Γ(x)

Psi(x) psi(x)

Dilogarithm
integral f (x) = ∫

1

x
ln(t)
1− tdt

dilog(x) dilog(x) x > 1

Error function
erf (z) = 2

π ∫0
z
e−t2dt

erf(z) erf(z)

 mfunlist

4-1257

Function
Name

Definition mfun Name Special
Function Syntax

Argument
s

Euler numbers
and
polynomials

Generating function for Euler
numbers:

1
cosh(t) = ∑

n = 0

∞
En

tn

n!

euler(n)

euler(n,z)

euler(n)

euler(n,z)

n ≥ 0

t < π
2

Exponential
integrals Ei(n, z) = ∫

1

∞
e−zt

tn dt

Ei(x) = PV − ∫
−∞

x
et

t

Ei(n,z)

Ei(x)

expint(n,x)

ei(x)

n ≥ 0

Real(z) > 0

Fresnel sine
and cosine
integrals

C(x) = ∫
0

x
cos π

2 t2 dt

S(x) = ∫
0

x
sin π

2 t2 dt

FresnelC(x)

FresnelS(x)

fresnelc(x)

fresnels(x)

Gamma
function Γ(z) = ∫

0

∞
tz − 1e−tdt

GAMMA(z) gamma(z)

Harmonic
function h(n) = ∑

k = 1

n 1
k = Ψ(n + 1) + γ

harmonic(n) harmonic(n) n > 0

Hyperbolic
sine and
cosine
integrals

Shi(z) = ∫
0

z
sinh(t)

t dt

Chi(z) = γ + ln(z)

+ ∫
0

z
cosh(t)− 1

t dt

Shi(z)

Chi(z)

sinhint(z)

coshint(z)

4 Functions — Alphabetical List

4-1258

Function
Name

Definition mfun Name Special
Function Syntax

Argument
s

(Generalized)
hypergeometri
c function F(n, d, z)

= ∑
k = 0

∞ ∏
i = 1

j Γ(ni + k)
Γ(ni)

⋅ zk

∏
i = 1

m Γ(di + k)
Γ(di)

⋅ k!

where j and m are the number
of terms in n and d,
respectively.

hypergeom(n,d
,x)

where

n =
[n1,n2,...]

d =
[d1,d2,...]

hypergeom(n,d
,x)

where

n =
[n1,n2,...]

d =
[d1,d2,...]

n1,n2,...
are real.

d1,d2,...
are real and
nonnegativ
e.

Incomplete
elliptic
integrals

Legendre's incomplete elliptic
integrals of the first, second,
and third kind. This definition
uses modulus k. The numerical
ellipke function and the
MuPAD functions for computing
elliptic integrals use the
parameter m = k2 = sin2α.

EllipticF(x,k
)

EllipticE(x,k
)

EllipticPi(x,
a,k)

ellipticF(x,k
)

ellipticF(x,k
)

ellipticPi(x,
a,k)

0 < x ≤ ∞.

a is real, –
∞ < a < ∞.

k is real, 0
< k < 1.

Incomplete
gamma
function

Γ(a, z) = ∫
z

∞
e−t ⋅ ta− 1dt

GAMMA(z1,z2)

z1 = a
z2 = z

igamma(z1,z2)

z1 = a
z2 = z

Logarithm of
the gamma
function

lnGAMMA(z) = ln(Γ(z)) lnGAMMA(z) gammaln(z)

Logarithmic
integral Li(x) = PV ∫

0

x
dt
lnt = Ei(lnx)

Li(x) logint(x) x > 1

 mfunlist

4-1259

Function
Name

Definition mfun Name Special
Function Syntax

Argument
s

Polygamma
function Ψ(n)(z) = dn

dzΨ(z)

where Ψ(z) is the Digamma
function.

Psi(n,z) psi(n,z) n ≥ 0

Shifted sine
integral Ssi(z) = Si(z)− π

2
Ssi(z) ssinint(z)

The following orthogonal polynomials are available using mfun. In all cases, n is a
nonnegative integer and x is real.

Polynomial mfun Name Special
Function Syntax

Arguments

Chebyshev of the first
and second kind

T(n,x)

U(n,x)

chebyshevT(n,
x)

chebyshevU(n,
x)

Gegenbauer G(n,a,x) gegenbauerC(n
,a,x)

a is a nonrational
algebraic expression or a
rational number greater
than -1/2.

Hermite H(n,x) hermiteH(n,x)
Jacobi P(n,a,b,x) jacobiP(n,a,b

,x)
a, b are nonrational
algebraic expressions or
rational numbers greater
than -1.

Laguerre L(n,x) laguerreL(n,x
)

Generalized Laguerre L(n,a,x) laguerreL(n,a
,x)

a is a nonrational
algebraic expression or a
rational number greater
than -1.

4 Functions — Alphabetical List

4-1260

Polynomial mfun Name Special
Function Syntax

Arguments

Legendre P(n,x) legendreP(n,x
)

Limitations
• In general, the accuracy of a function will be lower near its roots and when its

arguments are relatively large.
• Running time depends on the specific function and its parameters. In general,

calculations are slower than standard MATLAB calculations.

See Also
mfun

Introduced before R2006a

 mfunlist

4-1261

minpoly
Minimal polynomial of matrix

Syntax
minpoly(A)
minpoly(A,var)

Description
minpoly(A) returns a vector of the coefficients of the minimal polynomial on page 4-
1263 of A. If A is a symbolic matrix, minpoly returns a symbolic vector. Otherwise, it
returns a vector with elements of type double.

minpoly(A,var) returns the minimal polynomial of A in terms of var.

Examples

Compute Minimal Polynomial of Matrix
Compute the minimal polynomial of the matrix A in terms of the variable x:

syms x
A = sym([1 1 0; 0 1 0; 0 0 1]);
minpoly(A, x)

ans =
x^2 - 2*x + 1

Compute Coefficients of Minimal Polynomial
To find the coefficients of the minimal polynomial of A, call minpoly with one argument.
Since A is numeric, minpoly returns coefficients as double-precision values:

4 Functions — Alphabetical List

4-1262

A = sym([1 1 0; 0 1 0; 0 0 1]);
minpoly(A)

ans =
[1, -2, 1]

Find the coefficients of the minimal polynomial of the symbolic matrix A. For this matrix,
minpoly returns the symbolic vector of coefficients:

A = sym([0 2 0; 0 0 2; 2 0 0]);
P = minpoly(A)

P =
[1, 0, 0, -8]

Input Arguments
A — Input
numeric matrix | symbolic matrix

Input, specified as a numeric or symbolic matrix.

var — Input
symbolic variable

Input, specified as a symbolic variable. If you do not specify var, minpoly returns a
vector of coefficients of the minimal polynomial instead of returning the polynomial itself.

Definitions

Minimal Polynomial of a Matrix
The minimal polynomial of a square matrix A is the monic polynomial p(x) of the least
degree, such that p(A) = 0.

See Also
charpoly | eig | jordan | poly2sym | sym2poly

 minpoly

4-1263

Introduced in R2012b

4 Functions — Alphabetical List

4-1264

minus, -
Symbolic subtraction

Syntax
-A
A - B
minus(A,B)

Description
-A returns the negation of A.

A - B subtracts B from A and returns the result.

minus(A,B) is an alternate way to execute A - B.

Examples

Subtract Scalar from Array
Subtract 2 from array A.

syms x
A = [x 1;-2 sin(x)];
A - 2

ans =
[x - 2, -1]
[-4, sin(x) - 2]

minus subtracts 2 from each element of A.

Subtract the identity matrix from matrix M:

 minus, -

4-1265

syms x y z
M = [0 x; y z];
M - eye(2)

ans =
[-1, x]
[y, z - 1]

Subtract Numeric and Symbolic Arguments
Subtract one number from another. Because these are not symbolic objects, you receive
floating-point results.

11/6 - 5/4

ans =
 0.5833

Perform subtraction symbolically by converting the numbers to symbolic objects.

sym(11/6) - sym(5/4)

ans =
7/12

Alternatively, call minus to perform subtraction.

minus(sym(11/6),sym(5/4))

ans =
7/12

Subtract Matrices
Subtract matrices B and C from A.

A = sym([3 4; 2 1]);
B = sym([8 1; 5 2]);
C = sym([6 3; 4 9]);
Y = A - B - C

Y =
[-11, 0]
[-7, -10]

4 Functions — Alphabetical List

4-1266

Use syntax -Y to negate the elements of Y.

-Y

ans =
[11, 0]
[7, 10]

Subtract Functions
Subtract function g from function f.

syms f(x) g(x)
f = sin(x) + 2*x;
y = f - g

y(x) =
2*x - g(x) + sin(x)

Input Arguments
A — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array |
symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or
expression.

B — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array |
symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or
expression.

Tips
• All nonscalar arguments must have the same size. If one input argument is nonscalar,

then minus expands the scalar into an array of the same size as the nonscalar
argument, with all elements equal to the corresponding scalar.

 minus, -

4-1267

See Also
ctranspose | ldivide | mldivide | mpower | mrdivide | mtimes | plus | power |
rdivide | times | transpose

Introduced before R2006a

4 Functions — Alphabetical List

4-1268

mixedUnits
Split unit into sum of units

Syntax
mixedUnits(quantity,units)

Description
mixedUnits(quantity,units) splits the physical quantity quantity into a linear
combination of the units in units.

• Units in units must be in descending order of magnitude.
• Units in quantity and units must be compatible.
• quantity must not contain symbolic variables.

Examples

Split Quantity into Combination of Units

Split 8000 seconds into hours, minutes, and seconds by using mixedUnits. The result is
2 hours, 13 minutes, and 20 seconds.

u = symunit;
t = 8000*u.s;
tunits = [u.hour u.minute u.second];
tSplit = mixedUnits(t,tunits)

tSplit =
[2, 13, 20]

Customize the displayed output by using compose.

compose("%d hours + %d minutes + %.1f seconds", double(tSplit))

 mixedUnits

4-1269

ans =
 "2 hours + 13 minutes + 20.0 seconds"

Convert the geographic coordinate 15.352° into degrees (°), arcminutes ('), and
arcseconds (''). The result is 15° 21' 36/5''.

gCoord = 15.352*u.degree;
gUnits = [u.degree u.arcmin u.arcsec];
gCoordSplit = mixedUnits(gCoord,gUnits)

gCoordSplit =
[15, 21, 36/5]

Convert the result from symbolic to floating point by using double.

gCoordDbl = double(gCoordSplit)

gCoordDbl =
 15.0000 21.0000 7.2000

Reconstruct the original coordinate by summing the split units and rewriting the result to
degrees. mixedUnits returns an exact symbolic result instead of a numeric
approximation. For details, see “Choose Symbolic or Numeric Arithmetic” on page 2-121.

gOrig = sum(gCoordSplit.*gUnits);
gOrig = rewrite(gOrig,u.degree)

gOrig =
(1919/125)*[deg]

Input Arguments
quantity — Input
symbolic expression with units

Input, specified as a symbolic expression with units. quantity must not contain symbolic
variables. Units in quantity and units must be compatible.

units — Units for representing input
vector of symbolic units

Units to represent input as, specified as a vector of symbolic units. Units must be in
descending order of magnitude. Units in quantity and units must be compatible.

4 Functions — Alphabetical List

4-1270

See Also
symunit | unitConversionFactor

Topics
“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

Introduced in R2018a

 mixedUnits

4-1271

mldivide, \
Symbolic matrix left division

Syntax
X = A\B
X = mldivide(A,B)

Description
X = A\B solves the symbolic system of linear equations in matrix form, A*X = B for X.

If the solution does not exist or if it is not unique, the \ operator issues a warning.

A can be a rectangular matrix, but the equations must be consistent. The symbolic
operator \ does not compute least-squares solutions.

X = mldivide(A,B) is equivalent to x = A\B.

Examples

System of Equations in Matrix Form
Solve a system of linear equations specified by a square matrix of coefficients and a
vector of right sides of equations.

Create a matrix containing the coefficient of equation terms, and a vector containing the
right sides of equations.

A = sym(pascal(4))
b = sym([4; 3; 2; 1])

A =
[1, 1, 1, 1]
[1, 2, 3, 4]

4 Functions — Alphabetical List

4-1272

[1, 3, 6, 10]
[1, 4, 10, 20]

b =
 4
 3
 2
 1

Use the operator \ to solve this system.

X = A\b

X =
 5
 -1
 0
 0

Rank-Deficient System
Create a matrix containing the coefficients of equation terms, and a vector containing the
right sides of equations.

A = sym(magic(4))
b = sym([0; 1; 1; 0])

A =
[16, 2, 3, 13]
[5, 11, 10, 8]
[9, 7, 6, 12]
[4, 14, 15, 1]

b =
 0
 1
 1
 0

Find the rank of the system. This system contains four equations, but its rank is 3.
Therefore, the system is rank-deficient. This means that one variable of the system is not
independent and can be expressed in terms of other variables.

rank(horzcat(A,b))

 mldivide, \

4-1273

ans =
3

Try to solve this system using the symbolic \ operator. Because the system is rank-
deficient, the returned solution is not unique.

A\b

Warning: Solution is not unique because the system is rank-deficient.

ans =
 1/34
 19/34
 -9/17
 0

Inconsistent System
Create a matrix containing the coefficient of equation terms, and a vector containing the
right sides of equations.

A = sym(magic(4))
b = sym([0; 1; 2; 3])

A =
[16, 2, 3, 13]
[5, 11, 10, 8]
[9, 7, 6, 12]
[4, 14, 15, 1]

b =
 0
 1
 2
 3

Try to solve this system using the symbolic \ operator. The operator issues a warning and
returns a vector with all elements set to Inf because the system of equations is
inconsistent, and therefore, no solution exists. The number of elements in the resulting
vector equals the number of equations (rows in the coefficient matrix).

A\b

Warning: Solution does not exist because the system is inconsistent.

4 Functions — Alphabetical List

4-1274

ans =
 Inf
 Inf
 Inf
 Inf

Find the reduced row echelon form of this system. The last row shows that one of the
equations reduced to 0 = 1, which means that the system of equations is inconsistent.

rref(horzcat(A,b))

ans =
[1, 0, 0, 1, 0]
[0, 1, 0, 3, 0]
[0, 0, 1, -3, 0]
[0, 0, 0, 0, 1]

Input Arguments
A — Coefficient matrix
symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic
vector | symbolic matrix

Coefficient matrix, specified as a symbolic number, variable, expression, function, vector,
or matrix.

B — Right side
symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic
vector | symbolic matrix

Right side, specified as a symbolic number, variable, expression, function, vector, or
matrix.

Output Arguments
X — Solution
symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic
vector | symbolic matrix

Solution, returned as a symbolic number, variable, expression, function, vector, or matrix.

 mldivide, \

4-1275

Tips
• Matrix computations involving many symbolic variables can be slow. To increase the

computational speed, reduce the number of symbolic variables by substituting the
given values for some variables.

• When dividing by zero, mldivide considers the numerator’s sign and returns Inf or
-Inf accordingly.

syms x
[sym(0)\sym(1), sym(0)\sym(-1), sym(0)\x]

ans =
[Inf, -Inf, Inf*x]

See Also
ctranspose | ldivide | minus | mpower | mrdivide | mtimes | plus | power |
rdivide | times | transpose

Introduced before R2006a

4 Functions — Alphabetical List

4-1276

mod
Symbolic modulus after division

Syntax
mod(a,b)

Description
mod(a,b) finds the modulus on page 4-1279 after division. To find the remainder, use
rem.

If a is a polynomial expression, then mod(a,b) finds the modulus for each coefficient.

Examples
Divide Integers by Integers
Find the modulus after division in case both the dividend and divisor are integers.

Find the modulus after division for these numbers.

[mod(sym(27), 4), mod(sym(27), -4), mod(sym(-27), 4), mod(sym(-27), -4)]

ans =
[3, -1, 1, -3]

Divide Rationals by Integers
Find the modulus after division in case the dividend is a rational number, and divisor is an
integer.

Find the modulus after division for these numbers.

[mod(sym(22/3), 5), mod(sym(1/2), 7), mod(sym(27/6), -11)]

 mod

4-1277

ans =
[7/3, 1/2, -13/2]

Divide Polynomial Expressions by Integers
Find the modulus after division in case the dividend is a polynomial expression, and
divisor is an integer. If the dividend is a polynomial expression, then mod finds the
modulus for each coefficient.

Find the modulus after division for these polynomial expressions.

syms x
mod(x^3 - 2*x + 999, 10)

ans =
x^3 + 8*x + 9

mod(8*x^3 + 9*x^2 + 10*x + 11, 7)

ans =
x^3 + 2*x^2 + 3*x + 4

Divide Elements of Matrices
For vectors and matrices, mod finds the modulus after division element-wise. Nonscalar
arguments must be the same size.

Find the modulus after division for the elements of these two matrices.

A = sym([27, 28; 29, 30]);
B = sym([2, 3; 4, 5]);
mod(A,B)

ans =
[1, 1]
[1, 0]

Find the modulus after division for the elements of matrix A and the value 9. Here, mod
expands 9 into the 2-by-2 matrix with all elements equal to 9.

mod(A,9)

4 Functions — Alphabetical List

4-1278

ans =
[0, 1]
[2, 3]

Input Arguments
a — Dividend (numerator)
number | symbolic number | symbolic variable | polynomial expression | vector | matrix

Dividend (numerator), specified as a number, symbolic number, variable, polynomial
expression, or a vector or matrix of numbers, symbolic numbers, variables, or polynomial
expressions.

b — Divisor (denominator)
number | symbolic number | vector | matrix

Divisor (denominator), specified as a number, symbolic number, or a vector or matrix of
numbers or symbolic numbers.

Definitions

Modulus
The modulus of a and b is

mod a, b = a− b ∗ floor a
b ,

where floor rounds (a/b) towards negative infinity. For example, the modulus of -8 and
-3 is -2, but the modulus of -8 and 3 is 1.

If b = 0, then mod(a,0) = 0.

Tips
• Calling mod for numbers that are not symbolic objects invokes the MATLAB mod

function.

 mod

4-1279

• All nonscalar arguments must be the same size. If one input arguments is nonscalar,
then mod expands the scalar into a vector or matrix of the same size as the nonscalar
argument, with all elements equal to the corresponding scalar.

See Also
powermod | quorem | rem

Introduced before R2006a

4 Functions — Alphabetical List

4-1280

mpower, ^
Symbolic matrix power

Syntax
A^B
mpower(A,B)

Description
A^B computes A to the B power.

mpower(A,B) is equivalent to A^B.

Examples

Matrix Base and Scalar Exponent
Create a 2-by-2 matrix.

A = sym('a%d%d', [2 2])

A =
[a11, a12]
[a21, a22]

Find A^2.

A^2

ans =
[a11^2 + a12*a21, a11*a12 + a12*a22]
[a11*a21 + a21*a22, a22^2 + a12*a21]

 mpower, ^

4-1281

Scalar Base and Matrix Exponent
Create a 2-by-2 symbolic magic square.

A = sym(magic(2))

A =
[1, 3]
[4, 2]

Find πA.

sym(pi)^A

ans =
[(3*pi^7 + 4)/(7*pi^2), (3*(pi^7 - 1))/(7*pi^2)]
[(4*(pi^7 - 1))/(7*pi^2), (4*pi^7 + 3)/(7*pi^2)]

Input Arguments
A — Base
number | symbolic number | symbolic variable | symbolic function | symbolic expression |
square symbolic matrix

Base, specified as a number or a symbolic number, variable, expression, function, or
square matrix. A and B must be one of the following:

• Both are scalars.
• A is a square matrix, and B is a scalar.
• B is a square matrix, and A is a scalar.

B — Exponent
number | symbolic number | symbolic variable | symbolic function | symbolic expression |
symbolic square matrix

Exponent, specified as a number or a symbolic number, variable, expression, function, or
square matrix. A and B must be one of the following:

• Both are scalars.
• A is a square matrix, and B is a scalar.

4 Functions — Alphabetical List

4-1282

• B is a square matrix, and A is a scalar.

See Also
ctranspose | ldivide | minus | mldivide | mrdivide | mtimes | plus | power |
rdivide | times | transpose

Introduced before R2006a

 mpower, ^

4-1283

mrdivide, /
Symbolic matrix right division

Syntax
X = B/A
X = mrdivide(B,A)

Description
X = B/A solves the symbolic system of linear equations in matrix form, X*A = B for X.
The matrices A and B must contain the same number of columns. The right division of
matrices B/A is equivalent to (A'\B')'.

If the solution does not exist or if it is not unique, the / operator issues a warning.

A can be a rectangular matrix, but the equations must be consistent. The symbolic
operator / does not compute least-squares solutions.

X = mrdivide(B,A) is equivalent to x = B/A.

Examples

System of Equations in Matrix Form
Solve a system of linear equations specified by a square matrix of coefficients and a
vector of right sides of equations.

Create a matrix containing the coefficient of equation terms, and a vector containing the
right sides of equations.

A = sym(pascal(4))
b = sym([4 3 2 1])

4 Functions — Alphabetical List

4-1284

A =
[1, 1, 1, 1]
[1, 2, 3, 4]
[1, 3, 6, 10]
[1, 4, 10, 20]

b =
[4, 3, 2, 1]

Use the operator / to solve this system.

X = b/A

X =
[5, -1, 0, 0]

Rank-Deficient System
Create a matrix containing the coefficient of equation terms, and a vector containing the
right sides of equations.

A = sym(magic(4))'
b = sym([0 1 1 0])

A =
[16, 5, 9, 4]
[2, 11, 7, 14]
[3, 10, 6, 15]
[13, 8, 12, 1]

b =
[0, 1, 1, 0]

Find the rank of the system. This system contains four equations, but its rank is 3.
Therefore, the system is rank-deficient. This means that one variable of the system is not
independent and can be expressed in terms of other variables.

rank(vertcat(A,b))

ans =
3

Try to solve this system using the symbolic / operator. Because the system is rank-
deficient, the returned solution is not unique.

 mrdivide, /

4-1285

b/A

Warning: Solution is not unique because the system is rank-deficient.

ans =
[1/34, 19/34, -9/17, 0]

Inconsistent System
Create a matrix containing the coefficient of equation terms, and a vector containing the
right sides of equations.

A = sym(magic(4))'
b = sym([0 1 2 3])

A =
[16, 5, 9, 4]
[2, 11, 7, 14]
[3, 10, 6, 15]
[13, 8, 12, 1]

b =
[0, 1, 2, 3]

Try to solve this system using the symbolic / operator. The operator issues a warning and
returns a vector with all elements set to Inf because the system of equations is
inconsistent, and therefore, no solution exists. The number of elements equals the
number of equations (rows in the coefficient matrix).

b/A

Warning: Solution does not exist because the system is inconsistent.

ans =
[Inf, Inf, Inf, Inf]

Find the reduced row echelon form of this system. The last row shows that one of the
equations reduced to 0 = 1, which means that the system of equations is inconsistent.

rref(vertcat(A,b)')

ans =
[1, 0, 0, 1, 0]
[0, 1, 0, 3, 0]

4 Functions — Alphabetical List

4-1286

[0, 0, 1, -3, 0]
[0, 0, 0, 0, 1]

Input Arguments
A — Coefficient matrix
symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic
vector | symbolic matrix

Coefficient matrix, specified as a symbolic number, variable, expression, function, vector,
or matrix.

B — Right side
symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic
vector | symbolic matrix

Right side, specified as a symbolic number, variable, expression, function, vector, or
matrix.

Output Arguments
X — Solution
symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic
vector | symbolic matrix

Solution, returned as a symbolic number, variable, expression, function, vector, or matrix.

Tips
• Matrix computations involving many symbolic variables can be slow. To increase the

computational speed, reduce the number of symbolic variables by substituting the
given values for some variables.

• When dividing by zero, mrdivide considers the numerator’s sign and returns Inf or
-Inf accordingly.

syms x
[sym(1)/sym(0), sym(-1)/sym(0), x/sym(0)]

 mrdivide, /

4-1287

ans =
[Inf, -Inf, Inf*x]

See Also
ctranspose | ldivide | minus | mldivide | mpower | mtimes | plus | power |
rdivide | times | transpose

Introduced before R2006a

4 Functions — Alphabetical List

4-1288

mtimes, *
Symbolic matrix multiplication

Syntax
A*B
mtimes(A,B)

Description
A*B is the matrix product of A and B. If A is an m-by-p and B is a p-by-n matrix, then the
result is an m-by-n matrix C defined as

C i, j = ∑
k = 1

p
A i, k B k, j

For nonscalar A and B, the number of columns of A must equal the number of rows of B.
Matrix multiplication is not universally commutative for nonscalar inputs. That is,
typically A*B is not equal to B*A. If at least one input is scalar, then A*B is equivalent to
A.*B and is commutative.

mtimes(A,B) is equivalent to A*B.

Examples
Multiply Two Vectors
Create a 1-by-5 row vector and a 5-by-1 column vector.

syms x
A = [x, 2*x^2, 3*x^3, 4*x^4]
B = [1/x; 2/x^2; 3/x^3; 4/x^4]

A =
[x, 2*x^2, 3*x^3, 4*x^4]

 mtimes, *

4-1289

B =
 1/x
 2/x^2
 3/x^3
 4/x^4

Find the matrix product of these two vectors.

A*B

ans =
30

Multiply Two Matrices
Create a 4-by-3 matrix and a 3-by-2 matrix.

A = sym('a%d%d', [4 3])
B = sym('b%d%d', [3 2])

A =
[a11, a12, a13]
[a21, a22, a23]
[a31, a32, a33]
[a41, a42, a43]

B =
[b11, b12]
[b21, b22]
[b31, b32]

Multiply A by B.

A*B

ans =
[a11*b11 + a12*b21 + a13*b31, a11*b12 + a12*b22 + a13*b32]
[a21*b11 + a22*b21 + a23*b31, a21*b12 + a22*b22 + a23*b32]
[a31*b11 + a32*b21 + a33*b31, a31*b12 + a32*b22 + a33*b32]
[a41*b11 + a42*b21 + a43*b31, a41*b12 + a42*b22 + a43*b32]

4 Functions — Alphabetical List

4-1290

Multiply Matrix by Scalar
Create a 4-by-4 Hilbert matrix H.

H = sym(hilb(4))

H =
[1, 1/2, 1/3, 1/4]
[1/2, 1/3, 1/4, 1/5]
[1/3, 1/4, 1/5, 1/6]
[1/4, 1/5, 1/6, 1/7]

Multiply H by eπ.

C = H*exp(sym(pi))

C =
[exp(pi), exp(pi)/2, exp(pi)/3, exp(pi)/4]
[exp(pi)/2, exp(pi)/3, exp(pi)/4, exp(pi)/5]
[exp(pi)/3, exp(pi)/4, exp(pi)/5, exp(pi)/6]
[exp(pi)/4, exp(pi)/5, exp(pi)/6, exp(pi)/7]

Use vpa and digits to approximate symbolic results with the required number of digits.
For example, approximate it with five-digit accuracy.

old = digits(5);
vpa(C)
digits(old)

ans =
[23.141, 11.57, 7.7136, 5.7852]
[11.57, 7.7136, 5.7852, 4.6281]
[7.7136, 5.7852, 4.6281, 3.8568]
[5.7852, 4.6281, 3.8568, 3.3058]

Input Arguments
A — Input
symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic
vector | symbolic matrix

 mtimes, *

4-1291

Input, specified as a symbolic number, variable, expression, function, vector, or matrix.
Inputs A and B must be the same size unless one is a scalar. A scalar value expands into
an array of the same size as the other input.

B — Input
symbolic number | symbolic variable | symbolic function | symbolic expression | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, function, vector, or matrix.
Inputs A and B must be the same size unless one is a scalar. A scalar value expands into
an array of the same size as the other input.

See Also
ctranspose | ldivide | minus | mldivide | mpower | mrdivide | plus | power |
rdivide | times | transpose

Introduced before R2006a

4 Functions — Alphabetical List

4-1292

mupad
Start MuPAD notebook

Note

MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts”.

Syntax
mphandle = mupad
mphandle = mupad(file)

Description
mphandle = mupad creates a MuPAD notebook, and keeps a handle (pointer) to the
notebook in the variable mphandle. You can use any variable name you like instead of
mphandle.

mphandle = mupad(file) opens the MuPAD notebook named file and keeps a handle
(pointer) to the notebook in the variable mphandle. The file name must be a full path
unless the file is in the current folder. You also can use the argument
file#linktargetname to refer to the particular link target inside a notebook. In this
case, the mupad function opens the MuPAD notebook (file) and jumps to the beginning
of the link target linktargetname. If there are multiple link targets with the name
linktargetname, the mupad function uses the last linktargetname occurrence.

Examples

 mupad

4-1293

Start or Open MuPAD Notebook

To start a new notebook and define a handle mphandle to the notebook, enter:

mphandle = mupad;

To open an existing notebook named notebook1.mn located in the current folder, and
define a handle mphandle to the notebook, enter:

mphandle = mupad('notebook1.mn');

To open a notebook and jump to a particular location, create a link target at that location
inside a notebook and refer to it when opening a notebook. For example, if you have the
Conclusions section in notebook1.mn, create a link target named conclusions and
refer to it when opening the notebook. The mupad function opens notebook1.mn and
scroll it to display the Conclusions section:

mphandle = mupad('notebook1.mn#conclusions');

For information about creating link targets, see “Work with Links”.

See Also
getVar | mupadwelcome | openmn | openmu | setVar

Topics
“Create MuPAD Notebooks” on page 3-4
“Open MuPAD Notebooks” on page 3-7

Introduced in R2008b

4 Functions — Alphabetical List

4-1294

mupadNotebookTitle
Window title of MuPAD notebook

Note

MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts”.

Syntax
T = mupadNotebookTitle(nb)

Description
T = mupadNotebookTitle(nb) returns a cell array containing the window title of the
MuPAD notebook with the handle nb. If nb is a vector of handles to notebooks, then
mupadNotebookTitle(nb) returns a cell array of the same size as nb.

Examples

Find Titles of Particular Notebooks

Knowing the handles to notebooks, find the titles of these notebooks.

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and
myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively.
Also create a new notebook with the handle nb3:

 mupadNotebookTitle

4-1295

nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad

nb1 =
myFile1

nb2 =
myFile2

nb3 =
Notebook1

Find the titles of myFile1.mn and myFile2.mn:

mupadNotebookTitle([nb1; nb2])

ans =
 'myFile1'
 'myFile2'

List Titles of All Open Notebooks

Get a cell array containing titles of all currently open MuPAD notebooks.

Suppose that your current folder contains MuPAD notebooks named myFile1.mn and
myFile2.mn. Open them keeping their handles in variables nb1 and nb2, respectively.
Also create a new notebook with the handle nb3:

nb1 = mupad('myFile1.mn')
nb2 = mupad('myFile2.mn')
nb3 = mupad

nb1 =
myFile1

nb2 =
myFile2

nb3 =
Notebook1

Suppose that there are no other open notebooks. Use allMuPADNotebooks to get a
vector of handles to these notebooks:

4 Functions — Alphabetical List

4-1296

allNBs = allMuPADNotebooks

allNBs =
myFile1
myFile2
Notebook1

List the titles of all open notebooks. The result is a cell array of character vectors.

mupadNotebookTitle(allNBs)

ans =
 'myFile1'
 'myFile2'
 'Notebook1

Return Single Notebook Title as Character Vector

mupadNotebookTitle returns a cell array of titles even if there is only one element in
that cell array. If mupadNotebookTitle returns a cell array of one element, you can
quickly convert it to a character vector by using char.

Create a new notebook with the handle nb:

nb = mupad;

Find the title of that notebook and convert it to a character vector:

titleAsStr = char(mupadNotebookTitle(nb));

Use the title the same way as any character vector:

disp(['The current notebook title is: ' titleAsStr])

The current notebook title is: Notebook1

Input Arguments
nb — Pointer to MuPAD notebook
handle to notebook | vector of handles to notebooks

 mupadNotebookTitle

4-1297

Pointer to MuPAD notebook, specified as a MuPAD notebook handle or a vector of
handles. You create the notebook handle when opening a notebook with the mupad or
openmn function.

You can get the list of all open notebooks using the allMuPADNotebooks function.
mupadNotebookTitle accepts a vector of handles returned by allMuPADNotebooks.

Output Arguments
T — Window title of MuPAD notebook
cell array

Window title of MuPAD notebook, returned as a cell array. If nb is a vector of handles to
notebooks, then T is a cell array of the same size as nb.

See Also
allMuPADNotebooks | close | evaluateMuPADNotebook | getVar | mupad | openmn |
setVar

Topics
“Create MuPAD Notebooks” on page 3-4
“Open MuPAD Notebooks” on page 3-7
“Save MuPAD Notebooks” on page 3-13
“Evaluate MuPAD Notebooks from MATLAB” on page 3-14
“Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-55
“Close MuPAD Notebooks from MATLAB” on page 3-18

Introduced in R2013b

4 Functions — Alphabetical List

4-1298

mupadwelcome
Start MuPAD interfaces

Note

MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts”.

Syntax
mupadwelcome

Description
mupadwelcome opens a window that enables you to start various interfaces:

• MuPAD Notebook, for performing calculations
• MATLAB Editor, for writing programs and libraries
• Documentation in the First Steps pane, for information and examples

It also enables you to access recent MuPAD files or browse for files.

 mupadwelcome

4-1299

See Also
mupad

Topics
“Create MuPAD Notebooks” on page 3-4
“Open MuPAD Notebooks” on page 3-7

Introduced in R2008b

4 Functions — Alphabetical List

4-1300

nchoosek
Binomial coefficient

Syntax
b = nchoosek(n,k)
C = nchoosek(v,k)

Description
b = nchoosek(n,k) returns the binomial coefficient of n and k, defined as n!/(k!(n
- k)!). This is the number of combinations of n items taken k at a time.

C = nchoosek(v,k) returns a matrix containing all possible combinations of the
elements of vector v taken k at a time. Matrix C has k columns and n!/(k!(n - k)!)
rows, where n is length(v). In this syntax, k must be a nonnegative integer.

Examples
Binomial Coefficients for Numeric and Symbolic Arguments
Compute the binomial coefficients for these expressions.

syms n
[nchoosek(n, n), nchoosek(n, n + 1), nchoosek(n, n - 1)]

ans =
[1, 0, n]

If one or both parameters are negative numbers, convert these numbers to symbolic
objects.

[nchoosek(sym(-1), 3), nchoosek(sym(-7), 2), nchoosek(sym(-5), -5)]

ans =
[-1, 28, 1]

 nchoosek

4-1301

If one or both parameters are complex numbers, convert these numbers to symbolic
objects.

[nchoosek(sym(i), 3), nchoosek(sym(i), i), nchoosek(sym(i), i + 1)]

ans =
[1/2 + 1i/6, 1, 0]

Handle Expressions Containing Binomial Coefficients
Many functions, such as diff and expand, can handle expressions containing nchoosek.

Differentiate the binomial coefficient.

syms n k
diff(nchoosek(n, 2))

ans =
-(psi(n - 1) - psi(n + 1))*nchoosek(n, 2)

Expand the binomial coefficient.

expand(nchoosek(n, k))

ans =
-(n*gamma(n))/(k^2*gamma(k)*gamma(n - k) - k*n*gamma(k)*gamma(n - k))

Pascal Triangle
Use nchoosek to build the Pascal triangle.

m = 5;
for n = 0:m
 C = sym([]);
 for k = 0:n
 C = horzcat(C, nchoosek(n, k));
 end
 disp(C)
end

1
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]

4 Functions — Alphabetical List

4-1302

[1, 4, 6, 4, 1]
[1, 5, 10, 10, 5, 1]

All Combinations of Vector Elements
Find all combinations of elements of a 1-by-5 symbolic row vector taken three and four at
a time.

Create a 1-by-5 symbolic vector with the elements x1, x2, x3, x4, and x5.

v = sym('x', [1, 5])

v =
[x1, x2, x3, x4, x5]

Find all combinations of the elements of v taken three at a time.

C = nchoosek(v, 3)

C =
[x1, x2, x3]
[x1, x2, x4]
[x1, x3, x4]
[x2, x3, x4]
[x1, x2, x5]
[x1, x3, x5]
[x2, x3, x5]
[x1, x4, x5]
[x2, x4, x5]
[x3, x4, x5]

C = nchoosek(v, 4)

C =
[x1, x2, x3, x4]
[x1, x2, x3, x5]
[x1, x2, x4, x5]
[x1, x3, x4, x5]
[x2, x3, x4, x5]

 nchoosek

4-1303

Input Arguments
n — Number of possible choices
symbolic number | symbolic variable | symbolic expression | symbolic function

Number of possible choices, specified as a symbolic number, variable, expression, or
function.

k — Number of selected choices
symbolic number | symbolic variable | symbolic expression | symbolic function

Number of selected choices, specified as a symbolic number, variable, expression, or
function. If the first argument is a symbolic vector v, then k must be a nonnegative
integer.

v — Set of all choices
symbolic vector

Set of all choices, specified as a vector of symbolic numbers, variables, expressions, or
functions.

Output Arguments
b — Binomial coefficient
nonnegative scalar value

Binomial coefficient, returned as a nonnegative scalar value.

C — All combinations of v
matrix

All combinations of v, returned as a matrix of the same type as v.

Definitions

Binomial Coefficient
If n and k are integers and 0 ≤ k ≤ n, the binomial coefficient is defined as:

4 Functions — Alphabetical List

4-1304

n
k

= n!
k! n− k !

For complex numbers, the binomial coefficient is defined via the gamma function:

n
k

= Γ n + 1
Γ k + 1 Γ n− k + 1

Tips
• Calling nchoosek for numbers that are not symbolic objects invokes the MATLAB

nchoosek function.
• If one or both parameters are complex or negative numbers, convert these numbers to

symbolic objects using sym, and then call nchoosek for those symbolic objects.

Algorithms
If k < 0 or n – k < 0, nchoosek(n,k) returns 0.

If one or both arguments are complex, nchoosek uses the formula representing the
binomial coefficient via the gamma function.

See Also
beta | factorial | gamma | psi

Introduced in R2012a

 nchoosek

4-1305

ne
Define inequality

Syntax
A ~= B
ne(A,B)

Description
A ~= B creates a symbolic inequality.

ne(A,B) is equivalent to A ~= B.

Examples

Set and Use Assumption Using Not Equal
Use assume and the relational operator ~= to set the assumption that x does not equal to
5:

syms x
assume(x ~= 5)

Solve this equation. The solver takes into account the assumption on variable x, and
therefore returns only one solution.

solve((x - 5)*(x - 6) == 0, x)

ans =
6

4 Functions — Alphabetical List

4-1306

Input Arguments
A — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

B — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Tips
• Calling ~= or ne for non-symbolic A and B invokes the MATLAB ne function. This

function returns a logical array with elements set to logical 1 (true) where A is not
equal to B; otherwise, it returns logical 0 (false).

• If both A and B are arrays, then these arrays must have the same dimensions. A ~= B
returns an array of inequalities A(i,j,...) ~= B(i,j,...)

• If one input is scalar and the other an array, then the scalar input is expanded into an
array of the same dimensions as the other array. In other words, if A is a variable (for
example, x), and B is an m-by-n matrix, then A is expanded into m-by-n matrix of
elements, each set to x.

Alternatives
You can also define inequality using eq (or its shortcut ==) and the logical negation not
(or ~). Thus, A ~= B is equivalent to ~(A == B).

See Also
eq | ge | gt | isAlways | le | lt

 ne

4-1307

Topics
“Set Assumptions” on page 1-29

Introduced in R2012a

4 Functions — Alphabetical List

4-1308

newUnit
Define new unit

Syntax
newUnit(name,definition)

Description
newUnit(name,definition) defines the new unit name using the expression
definition. The definition must be in terms of existing symbolic units. You cannot
redefine a predefined unit or its alternate names.

Examples

Define New Unit and Rewrite Unit
Define the new unit speedOfLight as 3e8 meters per second.

u = symunit;
c = newUnit('speedOfLight',3e8*u.m/u.s)

c =
[speedOfLight]

Define the famous equation E = mc2 using the new unit.

syms mass
m = mass*u.kg;
E = m*c^2

E =
mass*[kg]*[speedOfLight]^2

Alternatively, you can specify the unit by using u.SpeedOfLight.

 newUnit

4-1309

Rewrite E in terms of meters per second.

E = rewrite(E,u.m/u.s)

E =
90000000000000000*mass*(([kg]*[m]^2)/[s]^2)

Since the standard unit of energy is the Joule, rewrite E in terms of Joule.

E = rewrite(E,u.J)

E =
90000000000000000*mass*[J]

Input Arguments
name — Name of new unit
character vector | string

Name of the new unit, specified as a character vector or string. You cannot redefine a
predefined unit or its aliases.

definition — Definition of new unit
symbolic expression of units

Definition of the new unit, specified as a symbolic expression of units. The new unit must
be defined in terms of existing symbolic units. For example,
newUnit('workday',8*u.hour) where u = symunit.

See Also
checkUnits | isUnit | removeUnit | separateUnits | str2symunit | symunit |
symunit2str | unitConversionFactor

Topics
“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

4 Functions — Alphabetical List

4-1310

External Websites
The International System of Units (SI)

Introduced in R2017a

 newUnit

4-1311

https://www.bipm.org/en/publications/si-brochure/

newUnitSystem
Define unit system

Syntax
newUnitSystem(name,baseUnits)
newUnitSystem(name,baseUnits,derivedUnits)

Description
newUnitSystem(name,baseUnits) defines a new “Unit System” on page 4-1314 with
the name name and the base units baseUnits. Now, you can convert units into the new
unit system by using rewrite. By default, available unit systems include SI, CGS, and
US. For all unit systems, see “Unit Systems List” on page 2-36.

newUnitSystem(name,baseUnits,derivedUnits) additionally specifies the derived
units derivedUnits.

Examples

Define New Unit System from Existing System

A unit system is a collection of units to express quantities. The easiest way to define a
new unit system is to modify a default unit system, such as SI, CGS, or US.

Modify SI to use kilometer for length and hour for time by getting the base units using
baseunits and modifying them by using subs.

u = symunit;
SIUnits = baseUnits('SI')

SIUnits =
[[kg], [s], [m], [A], [cd], [mol], [K]]

newUnits = subs(SIUnits,[u.m u.s],[u.km u.hr])

4 Functions — Alphabetical List

4-1312

newUnits =
[[kg], [h], [km], [A], [cd], [mol], [K]]

Note Do not define a variable called baseUnits because the variable will prevent access
to the baseUnits function.

Define the new unit system SI_km_hr using the new base units.

newUnitSystem('SI_km_hr',newUnits)

ans =
 "SI_km_hr"

Rewrite 5 meter/second to the SI_km_hr unit system. As expected, the result is in terms
of kilometers and hours.

rewrite(5*u.m/u.s,'SI_km_hr')

ans =
18*([km]/[h])

Specify Base and Derived Units Directly

Specify a new unit system by specifying the base and derived units directly. A unit system
has up to 7 base units. For details, see “Unit System” on page 4-1314.

Define a new unit system with these base units: gram, hour, meter, ampere, candela, mol,
and celsius. Specify these derived units: kilowatt, newton, and volt.

u = symunit;
sysName = 'myUnitSystem';
bunits = [u.g u.hr u.m u.A u.cd u.mol u.Celsius];
dunits = [u.kW u.N u.V];
newUnitSystem(sysName,bunits,dunits)

ans =
 "myUnitSystem"

Rewrite 2000 Watts to the new system. By default, rewrite uses base units, which can
be hard to read.

rewrite(2000*u.W,sysName)

 newUnitSystem

4-1313

ans =
93312000000000000*(([g]*[m]^2)/[h]^3)

Instead, for readability, rewrite 2000 Watts to derived units of myUnitSystem by
specifying 'Derived' as the third argument. Converting to the derived units of a unit
system attempts to select convenient units. The result uses the derived unit, kilowatt,
instead of base units. For more information, see “Unit Conversions and Unit Systems” on
page 2-39.

rewrite(2000*u.W,sysName,'Derived')

ans =
2*[kW]

Input Arguments
name — Name of unit system
string | character vector

Name of unit system, specified as a string or character vector.

baseUnits — Base units of unit system
vector of symbolic units

Base units of unit system, specified as a vector of symbolic units. The base units must be
independent in terms of the dimensions mass, time, length, electric current, luminous
intensity, amount of substance, and temperature. Thus, in a unit system, there are up to 7
base units.

derivedUnits — Derived units of unit system
vector of symbolic units

Derived units of unit system, specified as a vector of symbolic units. Derived units are
optional and added for convenience of representation.

Definitions
Unit System
A unit system is a collection of base units and derived units that follows these rules:

4 Functions — Alphabetical List

4-1314

• Base units must be independent in terms of the dimensions mass, time, length, electric
current, luminous intensity, amount of substance, and temperature. Therefore, a unit
system has up to 7 base units. As long as the independence is satisfied, any unit can be
a base unit, including units such as newton or watt.

• A unit system can have less than 7 base units. For example, mechanical systems need
base units only for the dimensions length, mass, and time.

• Derived units in a unit system must have a representation in terms of the products of
powers of the base units for that system. Unlike base units, derived units do not have
to be independent.

• Derived units are optional and added for convenience of representation. For example,
kg m/s2 is abbreviated by newton.

• An example of a unit system is the SI unit system, which has 7 base units: kilogram,
second, meter, ampere, candela, mol, and kelvin. There are 22 derived units found by
calling derivedUnits('SI').

See Also
baseUnits | derivedUnits | newUnit | removeUnitSystem | rewrite | symunit |
unitSystems

Topics
“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

External Websites
The International System of Units (SI)

Introduced in R2017b

 newUnitSystem

4-1315

https://www.bipm.org/en/publications/si-brochure/

nextprime
Next prime number

Syntax
nextprime(n)

Description
nextprime(n) returns the next prime number greater than or equal to n. If n is a vector
or matrix, then nextprime acts element-wise on n.

Examples
Find Next Prime Number
Find the next prime number greater than 100.

nextprime(100)

ans =
101

Find the next prime numbers greater than 1000, 10000, and 100000 by specifying the
input as a vector.

v = [1000 10000 100000];
nextprime(v)

ans =
 1009 10007 100003

Find Large Prime Number
When finding large prime numbers, return exact symbolic integers by using symbolic
input. Further, if your input has 15 or more digits, then use quotation marks and wrap the

4 Functions — Alphabetical List

4-1316

number in sym to represent the number accurately. For more information, see “Numeric
to Symbolic Conversion” on page 2-132.

Find a large prime number by using 10^sym(18).

nextprime(10^sym(18))

ans =
1000000000000000003

Find the next prime number to 823572345728582545 by using quotation marks.

nextprime(sym('823572345728582545'))

ans =
823572345728582623

Input Arguments
n — Input
number | vector | matrix | array | symbolic number | symbolic array

Input, specified as a number, vector, matrix, array, or a symbolic number or array.

See Also
isprime | nthprime | prevprime | primes

Introduced in R2016b

 nextprime

4-1317

norm
Norm of matrix or vector

Syntax
norm(A)
norm(A,p)
norm(V)
norm(V,P)

Description
norm(A) returns the 2-norm of matrix A. Because symbolic variables are assumed to be
complex by default, the norm can contain unresolved calls to conj and abs.

norm(A,p) returns the p-norm of matrix A.

norm(V) returns the 2-norm of vector V.

norm(V,P) returns the P-norm of vector V.

Examples

Compute 2-Norm of Matrix

Compute the 2-norm of the inverse of the 3-by-3 magic square A:

A = inv(sym(magic(3)))
norm2 = norm(A)

A =
[53/360, -13/90, 23/360]
[-11/180, 1/45, 19/180]
[-7/360, 17/90, -37/360]

4 Functions — Alphabetical List

4-1318

norm2 =
3^(1/2)/6

Use vpa to approximate the result with 20-digit accuracy:

vpa(norm2, 20)

ans =
0.28867513459481288225

Effect of Assumptions on Norm

Compute the norm of [x y] and simplify the result. Because symbolic variables are
assumed to be complex by default, the calls to abs do not simplify.

syms x y
simplify(norm([x y]))

ans =
(abs(x)^2 + abs(y)^2)^(1/2)

Assume x and y are real, and repeat the calculation. Now, the result is simplified.

assume([x y],'real')
simplify(norm([x y]))

ans =
(x^2 + y^2)^(1/2)

Remove assumptions on x for further calculations. For details, see “Use Assumptions on
Symbolic Variables” on page 1-29.

assume(x,'clear')

Compute Different Types of Norms of Matrix

Compute the 1-norm, Frobenius norm, and infinity norm of the inverse of the 3-by-3
magic square A:

A = inv(sym(magic(3)))
norm1 = norm(A, 1)
normf = norm(A, 'fro')
normi = norm(A, inf)

 norm

4-1319

A =
[53/360, -13/90, 23/360]
[-11/180, 1/45, 19/180]
[-7/360, 17/90, -37/360]

norm1 =
16/45

normf =
391^(1/2)/60

normi =
16/45

Use vpa to approximate these results to 20-digit accuracy:

vpa(norm1, 20)
vpa(normf, 20)
vpa(normi, 20)

ans =
0.35555555555555555556

ans =
0.32956199888808647519

ans =
0.35555555555555555556

Compute Different Types of Norms of Vector

Compute the 1-norm, 2-norm, and 3-norm of the column vector V = [Vx; Vy; Vz]:

syms Vx Vy Vz
V = [Vx; Vy; Vz];
norm1 = norm(V, 1)
norm2 = norm(V)
norm3 = norm(V, 3)

norm1 =
abs(Vx) + abs(Vy) + abs(Vz)

norm2 =

4 Functions — Alphabetical List

4-1320

(abs(Vx)^2 + abs(Vy)^2 + abs(Vz)^2)^(1/2)

norm3 =
(abs(Vx)^3 + abs(Vy)^3 + abs(Vz)^3)^(1/3)

Compute the infinity norm, negative infinity norm, and Frobenius norm of V:

normi = norm(V, inf)
normni = norm(V, -inf)
normf = norm(V, 'fro')

normi =
max(abs(Vx), abs(Vy), abs(Vz))

normni =
min(abs(Vx), abs(Vy), abs(Vz))

normf =
(abs(Vx)^2 + abs(Vy)^2 + abs(Vz)^2)^(1/2)

Input Arguments
A — Input
symbolic matrix

Input, specified as a symbolic matrix.

p — Input
2 (default) | 1 | inf | 'fro'

One of these values 1, 2, inf, or 'fro'.

• norm(A,1) returns the 1-norm of A.
• norm(A,2) or norm(A) returns the 2-norm of A.
• norm(A,inf) returns the infinity norm of A.
• norm(A,'fro') returns the Frobenius norm of A.

V — Input
symbolic vector

Input, specified as a symbolic vector.

 norm

4-1321

P — Input
2 (default) | 1 | inf | 'fro'

• norm(V,P) is computed as sum(abs(V).^P)^(1/P) for 1<=P<inf.
• norm(V) computes the 2-norm of V.
• norm(A,inf) is computed as max(abs(V)).
• norm(A,-inf) is computed as min(abs(V)).

Definitions

1-Norm of a Matrix
The 1-norm of an m-by-n matrix A is defined as follows:

A 1 = max
j
∑

i = 1

m
Ai j , where j = 1…n

2-Norm of a Matrix
The 2-norm of an m-by-n matrix A is defined as follows:

A 2 = max eigenvalue of AHA

The 2-norm is also called the spectral norm of a matrix.

Frobenius Norm of a Matrix
The Frobenius norm of an m-by-n matrix A is defined as follows:

A F = ∑
i = 1

m
∑

j = 1

n
Ai j

2

Infinity Norm of a Matrix
The infinity norm of an m-by-n matrix A is defined as follows:

4 Functions — Alphabetical List

4-1322

A ∞ = max ∑
j = 1

n
A1 j , ∑

j = 1

n
A2 j , …, ∑

j = 1

n
Am j

P-Norm of a Vector
The P-norm of a 1-by-n or n-by-1 vector V is defined as follows:

V P = ∑
i = 1

n
Vi

P
1 P

Here n must be an integer greater than 1.

Frobenius Norm of a Vector
The Frobenius norm of a 1-by-n or n-by-1 vector V is defined as follows:

V F = ∑
i = 1

n
Vi

2

The Frobenius norm of a vector coincides with its 2-norm.

Infinity and Negative Infinity Norm of a Vector
The infinity norm of a 1-by-n or n-by-1 vector V is defined as follows:

V ∞ = max Vi , where i = 1…n

The negative infinity norm of a 1-by-n or n-by-1 vector V is defined as follows:

V −∞ = min Vi , where i = 1…n

Tips
• Calling norm for a numeric matrix that is not a symbolic object invokes the MATLAB

norm function.

 norm

4-1323

See Also
cond | equationsToMatrix | inv | linsolve | rank

Introduced in R2012b

4 Functions — Alphabetical List

4-1324

not
Logical NOT for symbolic expressions

Syntax
~A
not(A)

Description
~A represents the logical NOT. ~A is true when A is false and false when A is true.

not(A) is equivalent to ~A.

Examples

Set Assumption Using NOT

Create a logical condition by using ~.

syms x y
cond = ~(x > y);

Set the assumption represented by the condition using assume.

assume(cond)

Verify that the assumption is set.

assumptions

 not

4-1325

ans =
~y < x

Evaluate Logical Expressions

Specify a range for x by creating a condition using the logical operators ~ and &.

syms x
range = abs(x) < 1 & ~(abs(x)<1/3);

Return the conditions at 0 and 2/3 by substituting for x using subs. The subs function
does not evaluate the conditions automatically.

x1 = subs(range,x,0)
x2 = subs(range,x,2/3)

x1 =
0 < 1 & ~0 < 1/3
x2 =
2/3 < 1 & ~2/3 < 1/3

Evaluate the inequalities to logical 1 or 0 by using isAlways.

isAlways(x1)
isAlways(x2)

ans =
 logical
 0

ans =
 logical
 1

Input Arguments
A — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

4 Functions — Alphabetical List

4-1326

Tips
• If you call simplify for a logical expression that contains symbolic subexpressions,

you can get the symbolic values TRUE and FALSE. These values are not the same as
logical 1 (true) and logical 0 (false). To convert symbolic TRUE and FALSE to logical
values, use isAlways.

See Also
all | and | any | isAlways | or | piecewise | xor

Introduced in R2012a

 not

4-1327

nthprime
nth prime number

Syntax
nthprime(n)

Description
nthprime(n) returns the nth prime number. nthprime acts element-wise on array
inputs.

Examples

Find Nth Prime Number

Find the 223rd prime number.

nthprime(223)

ans =
 1409

For large prime numbers, return exact symbolic integers by using symbolic input.

n = sym(223222222);
nthprime(n)

ans =
4738278383

Find the 10th, 100th, and 1000th prime numbers.

n = [10 100 1000];
nthprime(n)

4 Functions — Alphabetical List

4-1328

ans =
 29 541 7919

Generate Random Prime Number

Generate a random prime number between the 100,000th and 200,000th prime numbers.

rng default % for reproducibility
range = [100000 200000];
nthprime(randi(range))

ans =
 2476423

Input Arguments
n — Input
number | vector | matrix | array | symbolic number | symbolic array

Input, specified as a number, vector, matrix, array, or a symbolic number or array. n must
be a positive integer.

See Also
nextprime | prevprime

Introduced in R2018a

 nthprime

4-1329

nthroot
Nth root of symbolic numbers

Syntax
y = nthroot(x,n)

Description
y = nthroot(x,n) returns the nth root of x with the phase angle closest to the phase
of x. The output y has symbolic data type if any input argument is symbolic. The variables
satisfy y.^n = x.

Examples

Calculate Nth Roots

Calculate the nth root of a negative number.

x = sym(-27);
n = -3;
y = nthroot(x,n)

y =

−1
3

Check that the answer solves the equation yn = x.

y^n

ans = −27

Calculate the nth root of a complex number.

4 Functions — Alphabetical List

4-1330

x = sym(1 + 1i);
y = nthroot(x,4)

y = 1 + i 1/4

Find a numeric equivalent of the root.

vpa(y)

ans = 1.0695539323639858023756790408254 + 0.2127475047267430357507130792184 i

Check that the answer solves the equation yn = x.

y^4

ans = 1 + i

Calculate the nth roots of an array.

x = sym([-27,-8,-4
 27,64,-12])

x =
−27 −8 −4
27 64 −12

n = sym([3,3,4
 3,2,-2])

n =
3 3 4
3 2 −2

y = nthroot(x,n)

y =
−3 −2 −1 3/4 41/4

3 8 − 12 i
12

Check that the answer solves the equation yn = x.

y.^n

ans =

 nthroot

4-1331

−27 −8 −4
27 64 −12

Use nthroot in further symbolic calculations.

syms x
y = solve(nthroot(x,-3) == -3, x)

y =

− 1
27

syms x n
y = diff(nthroot(x,n),x)

y =
xn

n x

Input Arguments
x — Input array for taking root
symbolic array | numeric array

Input array for taking root, specified as a symbolic or numeric array. When taking the
root, the function acts element-wise.

If both x and n are nonscalar arrays, they must have the same size. If any element of x or
n is symbolic and some elements are numeric, nthroot converts numeric arguments to
symbolic before processing.
Example: [sym(-8),sym(8);sym(-27),sym(27)]

n — Input array for order of root
symbolic array | real array

Input array for order of root, specified as a symbolic array or real array.

• If an element of x is not real and positive, meaning it is either negative or has a
nonzero imaginary part, then the corresponding element of n must be a nonzero
integer.

4 Functions — Alphabetical List

4-1332

• If an element of x is real and positive, then the corresponding element of n can have
any nonzero real value.

If both x and n are nonscalar arrays, they must have the same size. If any element of x or
n are symbolic and some elements are numeric, nthroot converts numeric arguments to
symbolic before processing.
Example: sym(-3)

See Also
power

Introduced in R2018b

 nthroot

4-1333

null
Form basis for null space of matrix

Syntax
Z = null(A)

Description
Z = null(A) returns a list of vectors that form the basis for the null space of a matrix A.
The product A*Z is zero. size(Z, 2) is the nullity of A. If A has full rank, Z is empty.

Examples

Form Basis for Null Space of Matrix

Find the basis for the null space and the nullity of the magic square of symbolic numbers.
Verify that A*Z is zero.

A = sym(magic(4));
Z = null(A)
nullityOfA = size(Z, 2)
A*Z

Z =
 -1
 -3
 3
 1

nullityOfA =
 1

ans =
 0

4 Functions — Alphabetical List

4-1334

 0
 0
 0

Form Basis for Null Space of Matrix of Full Rank

Find the basis for the null space of the matrix B that has full rank.

B = sym(hilb(3))
Z = null(B)

B =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

Z =
Empty sym: 1-by-0

Input Arguments
A — Input
numeric matrix | symbolic matrix

Input, specified as a numeric or symbolic matrix.

See Also
rank | rref | svd

Introduced before R2006a

 null

4-1335

numden
Extract numerator and denominator

Syntax
[N,D] = numden(A)

Description
[N,D] = numden(A) converts A to a rational form where the numerator and
denominator are relatively prime polynomials with integer coefficients. The function
returns the numerator and denominator of the rational form of an expression.

If A is a symbolic or a numeric matrix, then N is the symbolic matrix of numerators, and D
is the symbolic matrix of denominators. Both N and D are matrices of the same size as A.

Examples

Numerators and Denominators of Symbolic Numbers
Find the numerator and denominator of a symbolic number.

[n, d] = numden(sym(4/5))

n =
4

d =
5

Numerators and Denominators of Symbolic Expressions
Find the numerator and denominator of the symbolic expression.

4 Functions — Alphabetical List

4-1336

syms x y
[n,d] = numden(x/y + y/x)

n =
x^2 + y^2

d =
x*y

Numerators and Denominators of Matrix Elements
Find the numerator and denominator of each element of a symbolic matrix.

syms a b
[n,d] = numden([a/b, 1/b; 1/a, 1/(a*b)])

n =
[a, 1]
[1, 1]

d =
[b, b]
[a, a*b]

Input Arguments
A — Input
symbolic number | symbolic expression | symbolic function | symbolic vector | symbolic
matrix

Input, specified as a symbolic number, expression, function, vector, or matrix.

Output Arguments
N — Numerator
symbolic number | symbolic expression | symbolic function | symbolic vector | symbolic
matrix

Numerator, returned as a symbolic number, expression, function, vector, or matrix.

 numden

4-1337

D — Denominator
symbolic number | symbolic expression | symbolic function | symbolic vector | symbolic
matrix

Denominator, returned as a symbolic number, expression, function, vector, or matrix.

See Also
divisors | partfrac | simplifyFraction

Topics
“Extract Numerators and Denominators of Rational Expressions” on page 2-112

Introduced before R2006a

4 Functions — Alphabetical List

4-1338

odeFunction
Convert symbolic expressions to function handle for ODE solvers

Syntax
f = odeFunction(expr,vars)
f = odeFunction(expr,vars,p1,...,pN)
f = odeFunction(___ ,Name,Value)

Description
f = odeFunction(expr,vars) converts a system of symbolic algebraic expressions to
a MATLAB function handle. This function handle can be used as input to the numerical
MATLAB ODE solvers, except for ode15i. The argument vars specifies the state
variables of the system.

f = odeFunction(expr,vars,p1,...,pN) specifies the symbolic parameters of the
system as p1,...,pN.

f = odeFunction(___ ,Name,Value) uses additional options specified by one or
more Name,Value pair arguments.

Examples

Create Function Handle for ODE Solvers and Solve DAEs

Convert a system of symbolic differential algebraic equations to a function handle suitable
for the MATLAB ODE solvers. Then solve the system by using the ode15s solver.

Create the following second-order differential algebraic equation.

syms y(t);
eqn = diff(y(t),t,2) == (1-y(t)^2)*diff(y(t),t) - y(t);

 odeFunction

4-1339

Use reduceDifferentialOrder to rewrite that equation as a system of two first-order
differential equations. Here, vars is a vector of state variables of the system. The new
variable Dy(t) represents the first derivative of y(t) with respect to t.

[eqs,vars] = reduceDifferentialOrder(eqn,y(t))

eqs =
 diff(Dyt(t), t) + y(t) + Dyt(t)*(y(t)^2 - 1)
 Dyt(t) - diff(y(t), t)

vars =
 y(t)
 Dyt(t)

Set initial conditions for y(t) and its derivative Dy(t) to 2 and 0 respectively.

initConditions = [2 0];

Find the mass matrix M of the system and the right sides of the equations F.

[M,F] = massMatrixForm(eqs,vars)

M =
[0, 1]
[-1, 0]

F =
 - y(t) - Dyt(t)*(y(t)^2 - 1)
 -Dyt(t)

M and F refer to the form M t, x t ẋ t = F t, x t .. To simplify further computations,
rewrite the system in the form ẋ t = f t, x t .

f = M\F

f =
 Dyt(t)
 - Dyt(t)*y(t)^2 - y(t) + Dyt(t)

Convert f to a MATLAB function handle by using odeFunction. The resulting function
handle is input to the MATLAB ODE solver ode15s.

odefun = odeFunction(f,vars);
ode15s(odefun, [0 10], initConditions)

4 Functions — Alphabetical List

4-1340

Function Handles for System Containing Symbolic Parameters

Convert a system of symbolic differential equations containing both state variables and
symbolic parameters to a function handle suitable for the MATLAB ODE solvers.

Create the system of differential algebraic equations. Here, the symbolic functions x1(t)
and x2(t) represent the state variables of the system. The system also contains constant
symbolic parameters a, b, and the parameter function r(t). These parameters do not
represent state variables. Specify the equations and state variables as two symbolic
vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic
function calls.

 odeFunction

4-1341

syms x1(t) x2(t) a b r(t)
eqs = [diff(x1(t),t) == a*x1(t) + b*x2(t)^2,...
 x1(t)^2 + x2(t)^2 == r(t)^2];
vars = [x1(t) x2(t)];

Find the mass matrix M and vector of the right side F for this system. M and F refer to the
form M t, x t ẋ t = F t, x t ..

[M,F] = massMatrixForm(eqs,vars)

M =
[1, 0]
[0, 0]

F =
 b*x2(t)^2 + a*x1(t)
 r(t)^2 - x1(t)^2 - x2(t)^2

Use odeFunction to generate MATLAB function handles from M and F. The function
handle F contains symbolic parameters.

M = odeFunction(M,vars)
F = odeFunction(F,vars,a,b,r(t))

M =
 function_handle with value:
 @(t,in2)reshape([1.0,0.0,0.0,0.0],[2,2])

F =
 function_handle with value:
 @(t,in2,param1,param2,param3)[param1.*in2(1,:)+...
 param2.*in2(2,:).^2;param3.^2-in2(1,:).^2-in2(2,:).^2]

Specify the parameter values.

a = -0.6;
b = -0.1;
r = @(t) cos(t)/(1+t^2);

Create the reduced function handle F.

F = @(t,Y) F(t,Y,a,b,r(t));

Specify consistent initial conditions for the DAE system.

4 Functions — Alphabetical List

4-1342

t0 = 0;
y0 = [-r(t0)*sin(0.1); r(t0)*cos(0.1)];
yp0 = [a*y0(1) + b*y0(2)^2; 1.234];

Create an option set that contains the mass matrix M of the system and vector yp0 of
initial conditions for the derivatives.

opt = odeset('mass',M,'InitialSlope',yp0);

Now, use ode15s to solve the system of equations.

ode15s(F, [t0, 1], y0, opt)

 odeFunction

4-1343

Write Function Handles to File with Comments

Write the generated function handles to files by using the File option. When writing to
files, odeFunction optimizes the code using intermediate variables named t0, t1, .…
Include comments the files by specifying the Comments option.

Define the system of differential equations. Find the mass matrix M and the right side F.

syms x(t) y(t)
eqs = [diff(x(t),t)+2*diff(y(t),t) == 0.1*y(t), ...
 x(t)-y(t) == cos(t)-0.2*t*sin(x(t))];
vars = [x(t) y(t)];
[M,F] = massMatrixForm(eqs,vars);

Write the MATLAB code for M and F to the files myfileM and myfileF. odeFunction
overwrites existing files. Include the comment Version: 1.1 in the files You can open
and edit the output files.

M = odeFunction(M,vars,'File','myfileM','Comments','Version: 1.1');

function expr = myfileM(t,in2)
%MYFILEM
% EXPR = MYFILEM(T,IN2)

% This function was generated by the Symbolic Math Toolbox version 7.3.
% 01-Jan-2017 00:00:00

%Version: 1.1
expr = reshape([1.0,0.0,2.0,0.0],[2, 2]);

F = odeFunction(F,vars,'File','myfileF','Comments','Version: 1.1');

function expr = myfileF(t,in2)
%MYFILEF
% EXPR = MYFILEF(T,IN2)

% This function was generated by the Symbolic Math Toolbox version 7.3.
% 01-Jan-2017 00:00:00

%Version: 1.1
x = in2(1,:);
y = in2(2,:);
expr = [y.*(1.0./1.0e1);-x+y+cos(t)-t.*sin(x).*(1.0./5.0)];

Specify consistent initial values for x(t) and y(t) and their first derivatives.

4 Functions — Alphabetical List

4-1344

xy0 = [2; 1]; % x(t) and y(t)
xyp0 = [0; 0.05*xy0(2)]; % derivatives of x(t) and y(t)

Create an option set that contains the mass matrix M, initial conditions xyp0, and
numerical tolerances for the numerical search.

opt = odeset('mass', M, 'RelTol', 10^(-6),...
 'AbsTol', 10^(-6), 'InitialSlope', xyp0);

Solve the system of equations by using ode15s.

ode15s(F, [0 7], xy0, opt)

 odeFunction

4-1345

Sparse Matrices

Use the name-value pair argument 'Sparse',true when converting sparse symbolic
matrices to MATLAB function handles.

Create the system of differential algebraic equations. Here, the symbolic functions x1(t)
and x2(t) represent the state variables of the system. Specify the equations and state
variables as two symbolic vectors: equations as a vector of symbolic equations, and
variables as a vector of symbolic function calls.

syms x1(t) x2(t)

a = -0.6;
b = -0.1;
r = @(t) cos(t)/(1 + t^2);

eqs = [diff(x1(t),t) == a*x1(t) + b*x2(t)^2,...
 x1(t)^2 + x2(t)^2 == r(t)^2];
vars = [x1(t) x2(t)];

Find the mass matrix M and vector of the right side F for this system. M and F refer to the
form M t, x t ẋ t = F t, x t ..

[M,F] = massMatrixForm(eqs,vars)

M =
[1, 0]
[0, 0]

F =
 - (3*x1(t))/5 - x2(t)^2/10
 cos(t)^2/(t^2 + 1)^2 - x1(t)^2 - x2(t)^2

Generate MATLAB function handles from M and F. Because most of the elements of the
mass matrix M are zeros, use the Sparse argument when converting M.

M = odeFunction(M,vars,'Sparse',true)
F = odeFunction(F,vars)

M =
 function_handle with value:
 @(t,in2)sparse([1],[1],[1.0],2,2)

F =
 function_handle with value:

4 Functions — Alphabetical List

4-1346

 @(t,in2)[in2(1,:).*(-3.0./5.0)-in2(2,:).^2./1.0e+1;...
 cos(t).^2.*1.0./(t.^2+1.0).^2-in2(1,:).^2-in2(2,:).^2]

Specify consistent initial conditions for the DAE system.

t0 = 0;
y0 = [-r(t0)*sin(0.1); r(t0)*cos(0.1)];
yp0= [a*y0(1) + b*y0(2)^2; 1.234];

Create an option set that contains the mass matrix M of the system and vector yp0 of
initial conditions for the derivatives.

opt = odeset('mass',M,'InitialSlope', yp0);

Solve the system of equations using ode15s.

ode15s(F, [t0, 1], y0, opt)

 odeFunction

4-1347

Input Arguments
expr — System of algebraic expressions
vector of symbolic expressions

System of algebraic expressions, specified as a vector of symbolic expressions.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as x(t).
Example: [x(t),y(t)] or [x(t);y(t)]

4 Functions — Alphabetical List

4-1348

p1,...,pN — Parameters of system
symbolic variables | symbolic functions | symbolic function calls | symbolic vector |
symbolic matrix

Parameters of the system, specified as symbolic variables, functions, or function calls,
such as f(t). You can also specify parameters of the system as a vector or matrix of
symbolic variables, functions, or function calls. If expr contains symbolic parameters
other than the variables specified in vars, you must specify these additional parameters
as p1,...,pN.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: odeFunction(expr,vars,'File','myfile')

Comments — Comments to include in file header
character vector | cell array of character vectors | string vector

Comments to include in the file header, specified as a character vector, cell array of
character vectors, or string vector.

File — Path to file containing generated code
character vector

Path to the file containing generated code, specified as a character vector. The generated
file accepts arguments of type double, and can be used without Symbolic Math Toolbox.
If the value is empty, odeFunction generates an anonymous function. If the character
vector does not end in .m, the function appends .m.

By default, odeFunction with the File argument generates a file containing optimized
code. Optimized means intermediate variables are automatically generated to simplify or
speed up the code. MATLAB generates intermediate variables as a lowercase letter t
followed by an automatically generated number, for example t32. To disable code
optimization, use the Optimize argument.

Optimize — Flag preventing optimization of code written to function file
true (default) | false

 odeFunction

4-1349

Flag preventing optimization of code written to a function file, specified as false or
true.

By default, odeFunction with the File argument generates a file containing optimized
code. Optimized means intermediate variables are automatically generated to simplify or
speed up the code. MATLAB generates intermediate variables as a lowercase letter t
followed by an automatically generated number, for example t32.

odeFunction without the File argument (or with a file path specified by an empty
character vector) creates a function handle. In this case, the code is not optimized. If you
try to enforce code optimization by setting Optimize to true, then odeFunction throws
an error.

Sparse — Flag that switches between sparse and dense matrix generation
false (default) | true

Flag that switches between sparse and dense matrix generation, specified as true or
false. When you specify 'Sparse',true, the generated function represents symbolic
matrices by sparse numeric matrices. Use 'Sparse',true when you convert symbolic
matrices containing many zero elements. Often, operations on sparse matrices are more
efficient than the same operations on dense matrices. See “Sparse Matrices” on page 4-
1345.

Output Arguments
f — Function handle that is input to numerical MATLAB ODE solvers, except
ode15i
MATLAB function handle

Function handle that can serve as input argument to all numerical MATLAB ODE solvers,
except for ode15i, returned as a MATLAB function handle.

odeFunction returns a function handle suitable for the ODE solvers such as ode45,
ode15s, ode23t, and others. The only ODE solver that does not accept this function
handle is the solver for fully implicit differential equations, ode15i. To convert the system
of equations to a function handle suitable for ode15i, use daeFunction.

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix |
isLowIndexDAE | massMatrixForm | matlabFunction | ode15i | ode15s | ode23t |

4 Functions — Alphabetical List

4-1350

ode45 | reduceDAEIndex | reduceDAEToODE | reduceDifferentialOrder |
reduceRedundancies

Topics
“Solve DAEs Using Mass Matrix Solvers” on page 2-223

Introduced in R2015a

 odeFunction

4-1351

odeToVectorField
Reduce order of differential equations to 1

Note Character vector inputs will be removed in a future release. Instead, use syms to
declare variables, and replace inputs such as odeToVectorField('D2y = x') with
syms y(x), odeToVectorField(diff(y,x,2) == x).

Syntax
V = odeToVectorField(eqn1,...,eqnN)
[V,S] = odeToVectorField(eqn1,...,eqnN)

Description
V = odeToVectorField(eqn1,...,eqnN) converts higher-order differential
equations eqn1,...,eqnN to a system of first-order differential equations, returned as a
symbolic vector.

[V,S] = odeToVectorField(eqn1,...,eqnN) converts eqn1,...,eqnN and
returns two symbolic vectors. The first vector V is the same as the output of the previous
syntax. The second vector S shows the substitutions made to obtain V.

Examples

Convert Higher-Order Equation to First-Order System
Convert this second-order differential equation to a system of first-order differential
equations.

d2y
dt2 + y2t = 3t .

4 Functions — Alphabetical List

4-1352

syms y(t)
eqn = diff(y,2) + y^2*t == 3*t;
V = odeToVectorField(eqn)

V =
 Y[2]
 3*t - t*Y[1]^2

The elements of V represent the system of differential equations because y = Y[1] and Y[i]
′ = V[i]. Here, this particular output represents these equations:

• diff(Y[1],t) = Y[2]
• diff(Y[2],t) = 3*t - t*Y[1]^2

For details on the relation between the input and output, see “Algorithms” on page 4-
1357.

Return Substitutions Made When Reducing Order
When reducing the order of differential equations, return the substitutions that
odeToVectorField makes by specifying a second output argument.

syms f(t) g(t)
eqn1 = diff(g) == g-f;
eqn2 = diff(f,2) == g+f;
eqns = [eqn1 eqn2];
[V,S] = odeToVectorField(eqns)

V =
 Y[2]
 Y[1] + Y[3]
 Y[3] - Y[1]

S =
 f
 Df
 g

From S, we have S[1] = Y[1] = f, S[2] = Y[2] = diff(f), and S[3] = Y[3] =
g.

 odeToVectorField

4-1353

Numerically Solve Higher-Order Differential Equation
Numerically solve a higher-order differential equation by reducing the order of the
equation, generating a MATLAB function handle, and then finding the numerical solution
using the ode45 function.

Convert this second-order differential equation to a system of first-order differential
equations.

dy2

dx2 = 1− y2 dy
dx − y .

syms y(t)
eqn = diff(y,2) == (1-y^2)*diff(y)-y;
V = odeToVectorField(eqn)

V =
 Y[2]
 - (Y[1]^2 - 1)*Y[2] - Y[1]

Generate a MATLAB function handle from V by using matlabFunction.

M = matlabFunction(V,'vars', {'t','Y'})

M =
 function_handle with value:
 @(t,Y)[Y(2);-(Y(1).^2-1.0).*Y(2)-Y(1)]

Solve this system over the interval [0 20] with initial conditions y’(0) = 2 and y’’(0) = 0
by using the ode45 function.

interval = [0 20];
y0 = [2 0];
ySol = ode45(M,interval,y0);

Generate values of t in the interval by using the linspace function. For these values,
evaluate the solution for y, which is the first index in ySol, by calling the deval function
with an index of 1. Plot the solution.

tValues = linspace(0,20,100);
yValues = deval(ySol,tValues,1);
plot(tValues,yValues)

4 Functions — Alphabetical List

4-1354

Convert Higher-Order System with Initial Condition
Convert the second-order differential equation y″(x) = x with the initial condition y(0) = a
to a first-order system.

syms y(x) a
eqn = diff(y,x,2) == x;
cond = y(0) == a;
V = odeToVectorField(eqn,cond)

V =
 Y[2]
 x

 odeToVectorField

4-1355

Input Arguments
eqn1,...,eqnN — Higher-order differential equations
symbolic differential equation | array of symbolic differential equations | comma-
separated list of symbolic differential equations

Higher-order differential equations, specified as a symbolic differential equation or an
array or comma-separated list of symbolic differential equations. Use the == operator to
create an equation. Use the diff function to indicate differentiation. For example,
represent d2y(t)/dt2 = t*y(t).

syms y(t)
eqn = diff(y,2) == t*y;

Output Arguments
V — First-order differential equations
symbolic expression | vector of symbolic expressions

First-order differential equations, returned as a symbolic expression or a vector of
symbolic expressions. Each element of this vector is the right side of the first-order
differential equation Y[i]′ = V[i].

S — Substitutions in first-order equations
vector of symbolic expressions

Substitutions in first-order equations, returned as a vector of symbolic expressions. The
elements of the vector represent the substitutions, such that S(1) = Y[1], S(2) =
Y[2],….

Tips
• To solve the resulting system of first-order differential equations, generate a MATLAB

function handle using matlabFunction with V as an input. Then, use the generated
MATLAB function handle as an input for the MATLAB numerical solver ode23 or
ode45.

• odeToVectorField can convert only quasi-linear differential equations. That is, the
highest-order derivatives must appear linearly. For example, odeToVectorField can

4 Functions — Alphabetical List

4-1356

convert y*y″(t) = –t2 because it can be rewritten as y″(t) = –t2/y. However, it cannot
convert y″(t)2 = –t2 or sin(y″(t)) = –t2.

Algorithms
To convert an nth-order differential equation

an(t)y(n) + an− 1(t)y(n− 1) + … + a1(t)y′ + a0(t)y + r(t) = 0

into a system of first-order differential equations, odetovectorfield makes these
substitutions.

Y1 = y
Y2 = y′
Y3 = y″
…
Yn− 1 = y(n− 2)

Yn = y(n− 1)

Using the new variables, it rewrites the equation as a system of n first-order differential
equations:

Y1′ = y′ = Y2
Y2′ = y″ = Y3
…
Yn− 1′ = y(n− 1) = Yn

Yn′ = −
an− 1 t

an t Yn−
an− 2 t

an t Yn− 1− ...−
a1 t
an t Y2−

a0 t
an t Y1 + r t

an t

odeToVectorField returns the right sides of these equations as the elements of vector
V and the substitutions made as the second output S.

See Also
dsolve | matlabFunction | ode23 | ode45

 odeToVectorField

4-1357

Introduced in R2012a

4 Functions — Alphabetical List

4-1358

openmn
Open MuPAD notebook

Note

MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts”.

Syntax
h = openmn(file)

Description
h = openmn(file) opens the MuPAD notebook file named file, and returns a handle
to the file in h. The file name must be a full path unless the file is in the current folder.
The command h = mupad(file) accomplishes the same task.

Examples

Open MuPAD notebook

To open a notebook named e-e-x.mn in the folder \Documents\Notes of drive H:,
enter:

 openmn

4-1359

h = openmn('H:\Documents\Notes\e-e-x.mn');

See Also
mupad | open | openmu | openxvc | openxvz

Topics
“Create MuPAD Notebooks” on page 3-4
“Open MuPAD Notebooks” on page 3-7

Introduced in R2008b

4 Functions — Alphabetical List

4-1360

openmu
Open MuPAD program file

Note

MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts”.

Syntax
openmu(file)

Description
openmu(file) opens the MuPAD program file named file in the MATLAB Editor. The
command open(file) accomplishes the same task.

Examples

Open MuPAD Program File

To open a program file named yyx.mu located in the folder \Documents\Notes on drive
H:, enter:

openmu('H:\Documents\Notes\yyx.mu')

 openmu

4-1361

This command opens yyx.mu in the MATLAB Editor.

See Also
mupad | open | openmn | openxvc | openxvz

Topics
“Open MuPAD Notebooks” on page 3-7

Introduced in R2008b

4 Functions — Alphabetical List

4-1362

openxvc
Open MuPAD uncompressed graphics file (XVC)

Note

MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts”.

Syntax
openxvc(file)

Description
openxvc(file) opens the MuPAD XVC graphics file named file. The file name must be
a full path unless the file is in the current folder.

Examples

Open MuPAD Uncompressed Graphics File (XVC)
To open a graphics file named image1.xvc in the folder \Documents\Notes of drive H:,
enter:

openxvc('H:\Documents\Notes\image1.xvc')

 openxvc

4-1363

Input Arguments
file — name of MuPAD file
character vector

Name of MuPAD file, specified as a character vector.

See Also
mupad | open | openmn | openmu | openxvz

Topics
“Open MuPAD Notebooks” on page 3-7

Introduced in R2008b

4 Functions — Alphabetical List

4-1364

openxvz
Open MuPAD compressed graphics file (XVZ)

Note

MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts”.

Syntax
openxvz(file)

Description
openxvz(file) opens the MuPAD XVZ graphics file named file. The file name must be
a full path unless the file is in the current folder.

Examples

Open MuPAD Compressed Graphics File (XVZ)
To open a graphics file named image1.xvz in the folder \Documents\Notes of drive H:,
enter:

openxvz('H:\Documents\Notes\image1.xvz')

 openxvz

4-1365

Input Arguments
file — name of MuPAD file
character vector

Name of MuPAD file, specified as a character vector.

See Also
mupad | open | openmn | openmu | openxvc

Topics
“Open MuPAD Notebooks” on page 3-7

Introduced in R2008b

4 Functions — Alphabetical List

4-1366

or
Logical OR for symbolic expressions

Syntax
A | B
or(A,B)

Description
A | B represents the logical OR. A | B is true when either A is true or when B or both
are true.

or(A,B) is equivalent to A | B.

Examples

Set Assumption Using OR

Combine these symbolic inequalities into a logical condition by using |.

syms x y
xy = x>=0 | y>=0;

Set the assumption represented by the condition using assume.

assume(xy)

Verify that the assumptions are set.

assumptions

 or

4-1367

ans =
0 <= x | 0 <= y

Set and Evaluate Condition

Combine two symbolic inequalities into a logical expression by using |.

range = x < -1 | x > 1;

Substitute x with 0 and 10. Although the inequalities have values, subs does not evaluate
them to logical 1 or 0.

x1 = subs(range, x, 10)
x2 = subs(range, x, 0)

x1 =
1 < 10 | 10 < -1
x2 =
0 < -1 | 1 < 0

Evaluate the inequalities by using isAlways.

isAlways(x1)

ans =
 logical
 1

isAlways(x2)

ans =
 logical
 0

Combine Multiple Conditions

Combine multiple conditions by applying or to the conditions using the fold function.

Set the condition that x equals an integer between 1 and 10.

syms x
cond = fold(@or, x == 1:10);
assume(cond)
assumptions

4 Functions — Alphabetical List

4-1368

ans =
x == 1 | x == 2 | x == 3 | x == 4 | x == 5 |...
 x == 6 | x == 7 | x == 8 | x == 9 | x == 10

Input Arguments
A — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

B — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Tips
• If you call simplify for a logical expression containing symbolic subexpressions, you

can get the symbolic values TRUE and FALSE. These values are not the same as logical
1 (true) and logical 0 (false). To convert symbolic TRUE and FALSE to logical values,
use isAlways.

See Also
all | and | any | isAlways | not | piecewise | xor

Introduced in R2012a

 or

4-1369

orth
Orthonormal basis for range of symbolic matrix

Syntax
orth(A)
orth(A,'real')
orth(A,'skipnormalization')
orth(A,'real','skipnormalization')

Description
orth(A) computes an orthonormal basis on page 4-1373 for the range of A.

orth(A,'real') computes an orthonormal basis using a real scalar product in the
orthogonalization process.

orth(A,'skipnormalization') computes a non-normalized orthogonal basis. In this
case, the vectors forming the columns of B do not necessarily have length 1.

orth(A,'real','skipnormalization') computes a non-normalized orthogonal basis
using a real scalar product in the orthogonalization process.

Examples
Compute Orthonormal Basis
Compute an orthonormal basis of the range of this matrix. Because these numbers are not
symbolic objects, you get floating-point results.

A = [2 -3 -1; 1 1 -1; 0 1 -1];
B = orth(A)

B =
 -0.9859 -0.1195 0.1168

4 Functions — Alphabetical List

4-1370

 0.0290 -0.8108 -0.5846
 0.1646 -0.5729 0.8029

Now, convert this matrix to a symbolic object, and compute an orthonormal basis:

A = sym([2 -3 -1; 1 1 -1; 0 1 -1]);
B = orth(A)

B =
[(2*5^(1/2))/5, -6^(1/2)/6, -(2^(1/2)*15^(1/2))/30]
[5^(1/2)/5, 6^(1/2)/3, (2^(1/2)*15^(1/2))/15]
[0, 6^(1/2)/6, -(2^(1/2)*15^(1/2))/6]

You can use double to convert this result to the double-precision numeric form. The
resulting matrix differs from the matrix returned by the MATLAB orth function because
these functions use different versions of the Gram-Schmidt orthogonalization algorithm:

double(B)

ans =
 0.8944 -0.4082 -0.1826
 0.4472 0.8165 0.3651
 0 0.4082 -0.9129

Verify that B'*B = I, where I is the identity matrix:

B'*B

ans =
[1, 0, 0]
[0, 1, 0]
[0, 0, 1]

Now, verify that the 2-norm of each column of B is 1:

norm(B(:, 1))
norm(B(:, 2))
norm(B(:, 3))

ans =
1

ans =
1

 orth

4-1371

ans =
1

Compute Real Orthonormal Basis
Compute an orthonormal basis of this matrix using 'real' to avoid complex conjugates:

syms a
A = [a 1; 1 a];
B = orth(A,'real')

B =
[a/(a^2 + 1)^(1/2), -(a^2 - 1)/((a^2 + 1)*((a^2 -...
 1)^2/(a^2 + 1)^2 + (a^2*(a^2 - 1)^2)/(a^2 + 1)^2)^(1/2))]
[1/(a^2 + 1)^(1/2), (a*(a^2 - 1))/((a^2 + 1)*((a^2 -...
 1)^2/(a^2 + 1)^2 + (a^2*(a^2 - 1)^2)/(a^2 + 1)^2)^(1/2))]

Compute Orthogonal Basis by Skipping Normalization
Compute an orthogonal basis of this matrix using 'skipnormalization'. The lengths of
the resulting vectors (the columns of matrix B) are not required to be 1

syms a
A = [a 1; 1 a];
B = orth(A,'skipnormalization')

B =
[a, -(a^2 - 1)/(a*conj(a) + 1)]
[1, -(conj(a) - a^2*conj(a))/(a*conj(a) + 1)]

Compute Real Orthogonal Basis
Compute an orthogonal basis of this matrix using 'skipnormalization' and 'real':

syms a
A = [a 1; 1 a];
B = orth(A,'skipnormalization','real')

B =
[a, -(a^2 - 1)/(a^2 + 1)]
[1, (a*(a^2 - 1))/(a^2 + 1)]

4 Functions — Alphabetical List

4-1372

Input Arguments
A — Input
symbolic matrix

Input, specified as a symbolic matrix.

Definitions
Orthonormal Basis
An orthonormal basis for the range of matrix A is matrix B, such that:

• B'*B = I, where I is the identity matrix.
• The columns of B span the same space as the columns of A.
• The number of columns of B is the rank of A.

Tips
• Calling orth for numeric arguments that are not symbolic objects invokes the

MATLAB orth function. Results returned by MATLAB orth can differ from results
returned by orth because these two functions use different algorithms to compute an
orthonormal basis. The Symbolic Math Toolbox orth function uses the classic Gram-
Schmidt orthogonalization algorithm. The MATLAB orth function uses the modified
Gram-Schmidt algorithm because the classic algorithm is numerically unstable.

• Using 'skipnormalization' to compute an orthogonal basis instead of an
orthonormal basis can speed up your computations.

Algorithms
orth uses the classic Gram-Schmidt orthogonalization algorithm.

See Also
norm | null | orth | rank | svd

 orth

4-1373

Introduced in R2013a

4 Functions — Alphabetical List

4-1374

pade
Pade approximant

Syntax
pade(f,var)
pade(f,var,a)
pade(___ ,Name,Value)

Description
pade(f,var) returns the third-order Padé approximant of the expression f at var = 0.
For details, see “Padé Approximant” on page 4-1381.

If you do not specify var, then pade uses the default variable determined by
symvar(f,1).

pade(f,var,a) returns the third-order Padé approximant of expression f at the point
var = a.

pade(___ ,Name,Value) uses additional options specified by one or more Name,Value
pair arguments. You can specify Name,Value after the input arguments in any of the
previous syntaxes.

Examples

Find Padé Approximant for Symbolic Expressions
Find the Padé approximant of sin(x). By default, pade returns a third-order Padé
approximant.

syms x
pade(sin(x))

 pade

4-1375

ans =
-(x*(7*x^2 - 60))/(3*(x^2 + 20))

Specify Expansion Variable
If you do not specify the expansion variable, symvar selects it. Find the Padé approximant
of sin(x) + cos(y). The symvar function chooses x as the expansion variable.

syms x y
pade(sin(x) + cos(y))

ans =
(- 7*x^3 + 3*cos(y)*x^2 + 60*x + 60*cos(y))/(3*(x^2 + 20))

Specify the expansion variable as y. The pade function returns the Padé approximant
with respect to y.

pade(sin(x) + cos(y),y)

ans =
(12*sin(x) + y^2*sin(x) - 5*y^2 + 12)/(y^2 + 12)

Approximate Value of Function at Particular Point
Find the value of tan(3*pi/4). Use pade to find the Padé approximant for tan(x) and
substitute into it using subs to find tan(3*pi/4).

syms x
f = tan(x);
P = pade(f);
y = subs(P,x,3*pi/4)

y =
(pi*((9*pi^2)/16 - 15))/(4*((9*pi^2)/8 - 5))

Use vpa to convert y into a numeric value.

vpa(y)

ans =
-1.2158518789569086447244881326842

4 Functions — Alphabetical List

4-1376

Increase Accuracy of Padé Approximant
You can increase the accuracy of the Padé approximant by increasing the order. If the
expansion point is a pole or a zero, the accuracy can also be increased by setting
OrderMode to relative. The OrderMode option has no effect if the expansion point is
not a pole or zero.

Find the Padé approximant of tan(x) using pade with an expansion point of 0 and
Order of [1 1]. Find the value of tan(1/5) by substituting into the Padé approximant
using subs, and use vpa to convert 1/5 into a numeric value.

syms x
p11 = pade(tan(x),x,0,'Order',[1 1])
p11 = subs(p11,x,vpa(1/5))

p11 =
x
p11 =
0.2

Find the approximation error by subtracting p11 from the actual value of tan(1/5).

y = tan(vpa(1/5));
error = y - p11

error =
0.0027100355086724833213582716475345

Increase the accuracy of the Padé approximant by increasing the order using Order. Set
Order to [2 2], and find the error.

p22 = pade(tan(x),x,0,'Order',[2 2])
p22 = subs(p22,x,vpa(1/5));
error = y - p22

p22 =
-(3*x)/(x^2 - 3)
error =
0.0000073328059697806186555689448317799

The accuracy increases with increasing order.

If the expansion point is a pole or zero, the accuracy of the Padé approximant decreases.
Setting the OrderMode option to relative compensates for the decreased accuracy. For

 pade

4-1377

details, see “Padé Approximant” on page 4-1381. Because the tan function has a zero at
0, setting OrderMode to relative increases accuracy. This option has no effect if the
expansion point is not a pole or zero.

p22Rel = pade(tan(x),x,0,'Order',[2 2],'OrderMode','relative')
p22Rel = subs(p22Rel,x,vpa(1/5));
error = y - p22Rel

p22Rel =
(x*(x^2 - 15))/(3*(2*x^2 - 5))
error =
0.0000000084084014806113311713765317725998

The accuracy increases if the expansion point is a pole or zero and OrderMode is set to
relative.

Plot Accuracy of Padé Approximant
Plot the difference between exp(x) and its Padé approximants of orders [1 1] through
[4 4]. Use axis to focus on the region of interest. The plot shows that accuracy
increases with increasing order of the Padé approximant.

syms x
expr = exp(x);

hold on
grid on

for i = 1:4
 fplot(expr - pade(expr,'Order',i))
end

axis([-4 4 -4 4])
legend('Order [1,1]','Order [2,2]','Order [3,3]','Order [4,4]',...
 'Location','Best')
title('Difference Between exp(x) and its Pade Approximant')
ylabel('Error')

4 Functions — Alphabetical List

4-1378

Input Arguments
f — Input to approximate
symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic
multidimensional array | symbolic function | symbolic expression

Input to approximate, specified as a symbolic number, variable, vector, matrix,
multidimensional array, function, or expression.

var — Expansion variable
symbolic variable

 pade

4-1379

Expansion variable, specified as a symbolic variable. If you do not specify var, then pade
uses the default variable determined by symvar(f,1).

a — Expansion point
number | symbolic number | symbolic variable | symbolic function | symbolic expression

Expansion point, specified as a number, or a symbolic number, variable, function, or
expression. The expansion point cannot depend on the expansion variable. You also can
specify the expansion point as a Name,Value pair argument. If you specify the expansion
point both ways, then the Name,Value pair argument takes precedence.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: pade(f,'Order',[2 2]) returns the Padé approximant of f of order m = 2
and n = 2.

ExpansionPoint — Expansion point
number | symbolic number | symbolic variable | symbolic function | symbolic expression

Expansion point, specified as a number, or a symbolic number, variable, function, or
expression. The expansion point cannot depend on the expansion variable. You can also
specify the expansion point using the input argument a. If you specify the expansion point
both ways, then the Name,Value pair argument takes precedence.

Order — Order of Padé approximant
integer | vector of two integers | symbolic integer | symbolic vector of two integers

Order of the Padé approximant, specified as an integer, a vector of two integers, or a
symbolic integer, or vector of two integers. If you specify a single integer, then the integer
specifies both the numerator order m and denominator order n producing a Padé
approximant with m = n. If you specify a vector of two integers, then the first integer
specifies m and the second integer specifies n. By default, pade returns a Padé
approximant with m = n = 3.

OrderMode — Flag that selects absolute or relative order for Padé approximant
'absolute' (default) | 'relative'

4 Functions — Alphabetical List

4-1380

Flag that selects absolute or relative order for Padé approximant, specified as
'absolute' or 'relative'. The default value of 'absolute' uses the standard
definition of the Padé approximant. If you set 'OrderMode' to 'relative', it only has
an effect when there is a pole or a zero at the expansion point a. In this case, to increase
accuracy, pade multiplies the numerator by (var - a)p where p is the multiplicity of the
zero or pole at the expansion point. For details, see “Padé Approximant” on page 4-1381.

Definitions

Padé Approximant
By default, pade approximates the function f(x) using the standard form of the Padé
approximant of order [m, n] around x = x0 which is

a0 + a1 x− x0 + ... + am x− x0
m

1 + b1 x− x0 + ... + bn x− x0
n .

When OrderMode is relative, and a pole or zero exists at the expansion point x = x0,
the pade function uses this form of the Padé approximant

x− x0
p a0 + a1 x− x0 + ... + am x− x0

m

1 + b1 x− x0 + ... + bn x− x0
n .

The parameters p and a0 are given by the leading order term f = a0 (x - x0)p + O((x - x0)p +
1) of the series expansion of f around x = x0. Thus, p is the multiplicity of the pole or zero
at x0.

Tips
• If you use both the third argument a and ExpansionPoint to specify the expansion

point, the value specified via ExpansionPoint prevails.

 pade

4-1381

Algorithms
• The parameters a1,…,bn are chosen such that the series expansion of the Padé

approximant coincides with the series expansion of f to the maximal possible order.
• The expansion points ±∞ and ±i∞ are not allowed.
• When pade cannot find the Padé approximant, it returns the function call.
• For pade to return the Padé approximant, a Taylor or Laurent series expansion of f

must exist at the expansion point.

See Also
series | taylor

Topics
“Padé Approximant” on page 2-77

Introduced in R2014b

4 Functions — Alphabetical List

4-1382

partfrac
Partial fraction decomposition

Syntax
partfrac(expr,var)
partfrac(expr,var,Name,Value)

Description
partfrac(expr,var) finds the partial fraction decomposition of expr with respect to
var. If you do not specify var, then partfrac uses the variable determined by symvar.

partfrac(expr,var,Name,Value) finds the partial fraction decomposition using
additional options specified by one or more Name,Value pair arguments.

Examples

Partial Fraction Decomposition of Symbolic Expressions
Find partial fraction decomposition of univariate and multivariate expressions.

First, find partial fraction decomposition of univariate expressions. For expressions with
one variable, you can omit specifying the variable.

syms x
partfrac(x^2/(x^3 - 3*x + 2))

ans =
5/(9*(x - 1)) + 1/(3*(x - 1)^2) + 4/(9*(x + 2))

Find partial fraction decomposition of a multivariate expression with respect to a
particular variable.

 partfrac

4-1383

syms a b
partfrac(a^2/(a^2 - b^2),a)

ans =
b/(2*(a - b)) - b/(2*(a + b)) + 1

partfrac(a^2/(a^2 - b^2),b)

ans =
a/(2*(a + b)) + a/(2*(a - b))

If you do not specify the variable, then partfrac computes partial fraction
decomposition with respect to a variable determined by symvar.

symvar(a^2/(a^2 - b^2),1)
partfrac(a^2/(a^2 - b^2))

ans =
b

ans =
a/(2*(a + b)) + a/(2*(a - b))

Factorization Modes
Choose a particular factorization mode by using the FactorMode input.

Find the partial fraction decomposition without specifying the factorization mode. By
default, partfrac uses factorization over rational numbers. In this mode, partfrac
keeps numbers in their exact symbolic form.

syms x
f = 1/(x^3 + 2);
partfrac(f,x)

ans =
1/(x^3 + 2)

Repeat the decomposition with numeric factorization over real numbers. In this mode,
partfrac factors the denominator into linear and quadratic irreducible polynomials with
real coefficients. This mode converts all numeric values to floating-point numbers.

partfrac(f,x,'FactorMode','real')

4 Functions — Alphabetical List

4-1384

ans =
0.2099868416491455274612017678797/(x + 1.2599210498948731647672106072782) -...
(0.2099868416491455274612017678797*x - 0.52913368398939982491723521309077)/(x^2 -...
1.2599210498948731647672106072782*x + 1.5874010519681994747517056392723)

Repeat the decomposition with factorization over complex numbers. In this mode,
partfrac reduces quadratic polynomials in the denominator to linear expressions with
complex coefficients. This mode converts all numbers to floating point.

partfrac(f,x,'FactorMode','complex')

ans =
0.2099868416491455274612017678797/(x + 1.2599210498948731647672106072782) +...
(- 0.10499342082457276373060088393985 - 0.18185393932862023392667876903163i)/...
(x - 0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i) +...
(- 0.10499342082457276373060088393985 + 0.18185393932862023392667876903163i)/...
(x - 0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i)

Find the partial fraction decomposition of this expression using the full factorization
mode. In this mode, partfrac factors the denominator into linear expressions, reducing
quadratic polynomials to linear expressions with complex coefficients. This mode keeps
numbers in their exact symbolic form.

pfFull = partfrac(f,x,'FactorMode','full')

pfFull =
2^(1/3)/(6*(x + 2^(1/3))) +...
(2^(1/3)*((3^(1/2)*1i)/2 - 1/2))/(6*(x + 2^(1/3)*((3^(1/2)*1i)/2 - 1/2))) -...
(2^(1/3)*((3^(1/2)*1i)/2 + 1/2))/(6*(x - 2^(1/3)*((3^(1/2)*1i)/2 + 1/2)))

Approximate the result with floating-point numbers by using vpa. Because the expression
does not contain any symbolic parameters besides the variable x, the result is the same as
in complex factorization mode.

vpa(pfFull)

ans =
0.2099868416491455274612017678797/(x + 1.2599210498948731647672106072782) +...
(- 0.10499342082457276373060088393985 - 0.18185393932862023392667876903163i)/...
(x - 0.62996052494743658238360530363911 - 1.0911236359717214035600726141898i) +...
(- 0.10499342082457276373060088393985 + 0.18185393932862023392667876903163i)/...
(x - 0.62996052494743658238360530363911 + 1.0911236359717214035600726141898i)

In the complex mode, partfrac factors only those expressions in the denominator whose
coefficients can be converted to floating-point numbers. Show this by replacing 2 in f
with a symbolic variable and find the partial fraction decomposition in complex mode.
partfrac returns the expression unchanged.

 partfrac

4-1385

syms a
f = subs(f,2,a);
partfrac(f,x,'FactorMode','complex')

ans =
1/(x^3 + a)

When you use the full factorization mode, partfrac factors expressions in the
denominator symbolically. Thus, partfrac in the full factorization mode factors the
expression.

partfrac(1/(x^3 + a), x, 'FactorMode', 'full')

ans =
1/(3*(-a)^(2/3)*(x - (-a)^(1/3))) -...
((3^(1/2)*1i)/2 + 1/2)/(3*(-a)^(2/3)*(x + (-a)^(1/3)*((3^(1/2)*1i)/2 + 1/2))) +...
((3^(1/2)*1i)/2 - 1/2)/(3*(-a)^(2/3)*(x - (-a)^(1/3)*((3^(1/2)*1i)/2 - 1/2)))

Full Factorization Mode Returns root
In full factorization mode, partfrac represents coefficients using root when it is not
mathematically possible to find the coefficients as exact symbolic numbers. Show this
behavior.

syms x
s = partfrac(1/(x^3 + x - 3), x, 'FactorMode','full')

s =
symsum(-((6*root(z^3 + z - 3, z, k)^2)/247 +...
 (27*root(z^3 + z - 3, z, k))/247 +...
 4/247)/(root(z^3 + z - 3, z, k) - x), k, 1, 3)

Approximate the result with floating-point numbers by using vpa.

vpa(s)

ans =
0.1846004942289254798185772017286/(x - 1.2134116627622296341321313773815) +...
(- 0.092300247114462739909288600864302 + 0.11581130283490645120989658654914i)/...
(x + 0.60670583138111481706606568869074 - 1.450612249188441526515442203395i) +...
(- 0.092300247114462739909288600864302 - 0.11581130283490645120989658654914i)/...
(x + 0.60670583138111481706606568869074 + 1.450612249188441526515442203395i)

4 Functions — Alphabetical List

4-1386

Numerators and Denominators of Partial Fraction
Decomposition
Return a vector of numerators and a vector of denominators of the partial fraction
decomposition.

First, find the partial fraction decomposition of the expression.

syms x
P = partfrac(x^2/(x^3 - 3*x + 2), x)

P =
5/(9*(x - 1)) + 1/(3*(x - 1)^2) + 4/(9*(x + 2))

Partial fraction decomposition is a sum of fractions. Use the children function to return
a vector containing the terms of that sum. Then, use numden to extract the numerators
and denominators of the terms.

[N,D] = numden(children(P))

N =
[5, 1, 4]

D =
[9*x - 9, 3*(x - 1)^2, 9*x + 18]

Reconstruct the partial fraction decomposition from the vectors of numerators and
denominators.

P1 = sum(N./D)

P1 =
1/(3*(x - 1)^2) + 5/(9*x - 9) + 4/(9*x + 18)

Verify that the reconstructed expression, P1, is equivalent to the original partial fraction
decomposition, P.

isAlways(P1 == P)

ans =
 logical
 1

 partfrac

4-1387

Input Arguments
expr — Rational expression
symbolic expression | symbolic function

Rational expression, specified as a symbolic expression or function.

var — Variable of interest
symbolic variable

Variable of interest, specified as a symbolic variable.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: partfrac(1/(x^3 - 2),x,'FactorMode','real')

FactorMode — Factorization mode
'rational' (default) | 'real' | 'complex' | 'full'

Factorization mode, specified as the comma-separated pair consisting of 'FactorMode'
and one of these character vectors.

'rational' Factorization over rational numbers.
'real' Factorization into linear and quadratic polynomials with real

coefficients. The coefficients of the input must be convertible to
real floating-point numbers.

'complex' Factorization into linear polynomials whose coefficients are
floating-point numbers. The coefficients of the input must be
convertible to floating-point numbers.

'full' Factorization into linear polynomials with exact symbolic
coefficients. If partfrac cannot calculate coefficients as exact
symbolic numbers, then partfrac represents coefficients by using
symsum ranging over a root.

4 Functions — Alphabetical List

4-1388

Definitions

Partial Fraction Decomposition
Partial fraction decomposition is an operation on rational expressions.

f x = g x + p x
q x ,

Where the denominator of the expression can be written as q x = q1 x q2 x …, the partial
fraction decomposition is an expression of this form.

f x = g x + ∑
j

p j x
q j x

Here, the denominators q j x are irreducible polynomials or powers of irreducible
polynomials. The numerators p j x are polynomials of smaller degrees than the
corresponding denominators q j x .

Partial fraction decomposition can simplify integration by integrating each term of the
returned expression separately.

See Also
children | coeffs | collect | combine | compose | divisors | expand | factor |
horner | numden | rewrite | simplify | simplifyFraction

Introduced in R2015a

 partfrac

4-1389

piecewise
Conditionally defined expression or function

Syntax
pw = piecewise(cond1,val1,cond2,val2,...)
pw = piecewise(cond1,val1,cond2,val2,...,otherwiseVal)

Description
pw = piecewise(cond1,val1,cond2,val2,...) returns the piecewise expression or
function pw whose value is val1 when condition cond1 is true, is val2 when cond2 is
true, and so on. If no condition is true, the value of pw is NaN.

pw = piecewise(cond1,val1,cond2,val2,...,otherwiseVal) returns the
piecewise expression or function pw that has the value otherwiseVal if no condition is
true.

Examples
Define and Evaluate Piecewise Expression
Define the following piecewise expression by using piecewise.

y =
−1 x < 0
1 x > 0

syms x
y = piecewise(x<0, -1, x>0, 1)

y =
piecewise(x < 0, -1, 0 < x, 1)

Evaluate y at -2, 0, and 2 by using subs to substitute for x. Because y is undefined at x
= 0, the value is NaN.

4 Functions — Alphabetical List

4-1390

subs(y, x, [-2 0 2])

ans =
[-1, NaN, 1]

Define Piecewise Function
Define the following function symbolically.

y x =
−1 x < 0
1 x > 0

syms y(x)
y(x) = piecewise(x<0, -1, x>0, 1)

y(x) =
piecewise(x < 0, -1, 0 < x, 1)

Because y(x) is a symbolic function, you can directly evaluate it for values of x. Evaluate
y(x) at -2, 0, and 2. Because y(x) is undefined at x = 0, the value is NaN. For details,
see “Create Symbolic Functions” on page 1-8.

y([-2 0 2])

ans =
[-1, NaN, 1]

Set Value When No Conditions Is True
Set the value of a piecewise function when no condition is true (called otherwise value) by
specifying an additional input argument. If an additional argument is not specified, the
default otherwise value of the function is NaN.

Define the piecewise function

y x =
−2 x < − 2
0 −2 < x < 0
1 otherwise

.

syms y(x)
y(x) = piecewise(x<-2, -2, -2<x<0, 0, 1)

 piecewise

4-1391

y(x) =
piecewise(x < -2, -2, x in Dom::Interval(-2, 0), 0, 1)

Evaluate y(x) between -3 and 1 by generating values of x using linspace. At -2 and 0,
y(x) evaluates to 1 because the other conditions are not true.

xvalues = linspace(-3,1,5)
yvalues = y(xvalues)

xvalues =
 -3 -2 -1 0 1
yvalues =
[-2, 1, 0, 1, 1]

Plot Piecewise Expression
Plot the following piecewise expression by using fplot.

y =
−2 x < − 2
x −2 < x < 2
2 x > 2

.

syms x
y = piecewise(x<-2, -2, -2<x<2, x, x>2, 2);
fplot(y)

4 Functions — Alphabetical List

4-1392

Assumptions and Piecewise Expressions
On creation, a piecewise expression applies existing assumptions. Apply assumptions set
after creating the piecewise expression by using simplify on the expression.

Assume x > 0. Then define a piecewise expression with the same condition x > 0.
piecewise automatically applies the assumption to simplify the condition.

syms x
assume(x > 0)
pw = piecewise(x<0, -1, x>0, 1)

 piecewise

4-1393

pw =
1

Clear the assumption on x for further computations.

assume(x,'clear')

Create a piecewise expression pw with the condition x > 0. Then set the assumption that
x > 0. Apply the assumption to pw by using simplify.

pw = piecewise(x<0, -1, x>0, 1);
assume(x > 0)
pw = simplify(pw)

pw =
1

Clear the assumption on x for further computations.

assume(x, 'clear')

Differentiate, Integrate, and Find Limits of Piecewise
Expression
Differentiate, integrate, and find limits of a piecewise expression by using diff, int, and
limit respectively.

Differentiate the following piecewise expression by using diff.

y =
1/x x < − 1

sin(x)/x x ≥ − 1

syms x
y = piecewise(x<-1, 1/x, x>=-1, sin(x)/x);
diffy = diff(y, x)

diffy =
piecewise(x < -1, -1/x^2, -1 < x, cos(x)/x - sin(x)/x^2)

Integrate y by using int.

inty = int(y, x)

4 Functions — Alphabetical List

4-1394

inty =
piecewise(x < -1, log(x), -1 <= x, sinint(x))

Find the limits of y at 0 and -1 by using limit. Because limit finds the double-sided
limit, the piecewise expression must be defined from both sides. Alternatively, you can
find the right- or left-sided limit. For details, see limit.

limit(y, x, 0)
limit(y, x, -1)

ans =
1
ans =
limit(piecewise(x < -1, 1/x, -1 < x, sin(x)/x), x, -1)

Because the two conditions meet at -1, the limits from both sides differ and limit
cannot find a double-sided limit.

Elementary Operations on Piecewise Expressions
Add, subtract, divide, and multiply two piecewise expressions. The resulting piecewise
expression is only defined where the initial piecewise expressions are defined.

syms x
pw1 = piecewise(x<-1, -1, x>=-1, 1);
pw2 = piecewise(x<0, -2, x>=0, 2);
add = pw1 + pw2
sub = pw1 - pw2
mul = pw1 * pw2
div = pw1 / pw2

add =
piecewise(x < -1, -3, x in Dom::Interval([-1], 0), -1, 0 <= x, 3)
sub =
piecewise(x < -1, 1, x in Dom::Interval([-1], 0), 3, 0 <= x, -1)
mul =
piecewise(x < -1, 2, x in Dom::Interval([-1], 0), -2, 0 <= x, 2)
div =
piecewise(x < -1, 1/2, x in Dom::Interval([-1], 0), -1/2, 0 <= x, 1/2)

Modify or Extend Piecewise Expression
Modify a piecewise expression by replacing part of the expression using subs. Extend a
piecewise expression by specifying the expression as the otherwise value of a new

 piecewise

4-1395

piecewise expression. This action combines the two piecewise expressions. piecewise
does not check for overlapping or conflicting conditions. Instead, like an if-else ladder,
piecewise returns the value for the first true condition.

Change the condition x<2 in a piecewise expression to x<0 by using subs.

syms x
pw = piecewise(x<2, -1, x>0, 1);
pw = subs(pw, x<2, x<0)

pw =
piecewise(x < 0, -1, 0 < x, 1)

Add the condition x>5 with the value 1/x to pw by creating a new piecewise expression
with pw as the otherwise value.

pw = piecewise(x>5, 1/x, pw)

pw =
piecewise(5 < x, 1/x, x < 0, -1, 0 < x, 1)

Input Arguments
cond — Condition
symbolic condition | symbolic variable

Condition, specified as a symbolic condition or variable. A symbolic variable represents an
unknown condition.
Example: x > 2

val — Value when condition is satisfied
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Value when condition is satisfied, specified as a number, vector, matrix, or
multidimensional array, or as a symbolic number, variable, vector, matrix,
multidimensional array, function, or expression.

4 Functions — Alphabetical List

4-1396

otherwiseVal — Value if no conditions are true
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Value if no conditions are true, specified as a number, vector, matrix, or multidimensional
array, or as a symbolic number, variable, vector, matrix, multidimensional array, function,
or expression. If otherwiseVal is not specified, its value is NaN.

Output Arguments
pw — Piecewise expression or function
symbolic expression | symbolic function

Piecewise expression or function, returned as a symbolic expression or function. The
value of pw is the value val of the first condition cond that is true. To find the value of
pw, use subs to substitute for variables in pw.

Tips
• piecewise does not check for overlapping or conflicting conditions. A piecewise

expression returns the value of the first true condition and disregards any following
true expressions. Thus, piecewise mimics an if-else ladder.

See Also
and | assume | assumeAlso | assumptions | if | in | isAlways | not | or

Introduced in R2016b

 piecewise

4-1397

pinv
Moore-Penrose inverse (pseudoinverse) of symbolic matrix

Syntax
X = pinv(A)

Description
X = pinv(A) returns the pseudoinverse of A. Pseudoinverse is also called the Moore-
Penrose inverse.

Examples
Compute Pseudoinverse of Matrix
Compute the pseudoinverse of this matrix. Because these numbers are not symbolic
objects, you get floating-point results.

A = [1 1i 3; 1 3 2];
X = pinv(A)

X =
 0.0729 + 0.0312i 0.0417 - 0.0312i
 -0.2187 - 0.0521i 0.3125 + 0.0729i
 0.2917 + 0.0625i 0.0104 - 0.0938i

Now, convert this matrix to a symbolic object, and compute the pseudoinverse.

A = sym([1 1i 3; 1 3 2]);
X = pinv(A)

X =
[7/96 + 1i/32, 1/24 - 1i/32]
[- 7/32 - 5i/96, 5/16 + 7i/96]
[7/24 + 1i/16, 1/96 - 3i/32]

4 Functions — Alphabetical List

4-1398

Check that A*X*A = A and X*A*X = X.

isAlways(A*X*A == A)

ans =
 2×3 logical array
 1 1 1
 1 1 1

isAlways(X*A*X == X)

ans =
 3×2 logical array
 1 1
 1 1
 1 1

Now, verify that A*X and X*A are Hermitian matrices.

isAlways(A*X == (A*X)')

ans =
 2×2 logical array
 1 1
 1 1

isAlways(X*A == (X*A)')

ans =
 3×3 logical array
 1 1 1
 1 1 1
 1 1 1

Compute Pseudoinverse of Matrix
Compute the pseudoinverse of this matrix.

syms a
A = [1 a; -a 1];
X = pinv(A)

X =
[(a*conj(a) + 1)/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1) -...
(conj(a)*(a - conj(a)))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1),

 pinv

4-1399

- (a - conj(a))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1) -...
(conj(a)*(a*conj(a) + 1))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1)]
[(a - conj(a))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1) +...
(conj(a)*(a*conj(a) + 1))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1),
(a*conj(a) + 1)/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1) -...
(conj(a)*(a - conj(a)))/(a^2*conj(a)^2 + a^2 + conj(a)^2 + 1)]

Now, compute the pseudoinverse of A assuming that a is real.

assume(a,'real')
A = [1 a; -a 1];
X = pinv(A)

X =
[1/(a^2 + 1), -a/(a^2 + 1)]
[a/(a^2 + 1), 1/(a^2 + 1)]

For further computations, remove the assumption on a by recreating it using syms.

syms a

Input Arguments
A — Input
symbolic matrix

Input, specified as a symbolic matrix.

Output Arguments
X — Pseudoinverse of matrix
symbolic matrix

Pseudoinverse of matrix, returned as a symbolic matrix, such that A*X*A = A and X*A*X
= X.

4 Functions — Alphabetical List

4-1400

Definitions

Moore-Penrose Pseudoinverse
The pseudoinverse of an m-by-n matrix A is an n-by-m matrix X, such that A*X*A = A and
X*A*X = X. The matrices A*X and X*A must be Hermitian.

Tips
• Calling pinv for numeric arguments that are not symbolic objects invokes the

MATLAB pinv function.
• For an invertible matrix A, the Moore-Penrose inverse X of A coincides with the inverse

of A.

See Also
inv | pinv | rank | svd

Introduced in R2013a

 pinv

4-1401

playAnimation
Play animation objects in a MATLAB figure window

Syntax
playAnimation
playAnimation(fig)
playAnimation(___ ,Name,Value)

Description
playAnimation plays animation objects in a MATLAB figure window. The animation
objects must be created using the fanimator function.

By default, the variable t = sym('t') is the time parameter of the animation objects.
playAnimation plays the animation with 10 frames per unit interval of t within the
range of t from 0 to 10.

playAnimation(fig) plays animation objects in the figure fig.

playAnimation(___ ,Name,Value) plays the animation objects with the specified
Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes.

Examples

Animate Moving Circle

First, create an animation object of a moving circle using fanimator.

Create two symbolic variables, t and x. The variable t defines the time parameter of the
animation. Use t to set the center of the circle at (t,1) and x to parameterize the
perimeter of the circle within the range [-pi pi]. Set the x-axis and y-axis to be equal
length.

4 Functions — Alphabetical List

4-1402

syms t x
fanimator(@fplot,cos(x)+t,sin(x)+1,[-pi pi])
axis equal

Next, enter the command playAnimation to play the animation.

 playAnimation

4-1403

By default, playAnimation plays an animation with 10 generated frames per unit time
within the range of t from 0 to 10.

Animate Moving Circle with Timer

Create two symbolic variables, t and x. The variable t defines the time parameter of the
animation.

syms t x

4 Functions — Alphabetical List

4-1404

Create a circle animation object using fanimator. Use t to set the center of the circle at
(t,1) and x to parameterize the perimeter of the circle within the range [-pi pi]. Set
the x-axis and y-axis to be equal length.

fanimator(@fplot,cos(x)+t,sin(x)+1,[-pi pi])
axis equal

Add a piece of text to count the elapsed time by using the text function. Use num2str to
convert the time parameter to a string.

hold on
fanimator(@(t) text(9,3,"Timer: "+num2str(t,2)))
hold off

 playAnimation

4-1405

By default, playAnimation plays the animation with 10 generated frames per unit time
within the range of t from 0 to 10. Change the range of the time parameter to [4 8]
using the 'AnimationRange' property. Change the frame rate per unit time to 4 using
the 'FrameRate' property. Play the animation in the current figure by entering the
following command.

playAnimation(gcf,'AnimationRange',[4 8],'FrameRate',4)

4 Functions — Alphabetical List

4-1406

Create Animation in UI Figure

Create a UI figure. Specify the UI axes of the figure.

fig = uifigure;
ax = uiaxes(fig);

Add an animation object to the UI axes using fanimator. Create two symbolic variables,
x and t. Plot a curve that grows exponentially as a function of time t within the interval
[0 3].

syms x t;
fanimator(ax,@fplot,exp(x),[0 t],'r','AnimationRange',[0 3])

 playAnimation

4-1407

Play the animation in the UI figure fig by entering the command playAnimation(fig).
Alternatively, you can also use the command playAnimation(ax.Parent).

Input Arguments
fig — Target figure
Figure object

Target figure, specified as a Figure object. For more information about Figure objects,
see figure.

4 Functions — Alphabetical List

4-1408

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Backwards',true,'FrameRate',25

AnimationRange — Range of animation time parameter
[0 10] (default) | two-element row vector

Range of the animation time parameter, specified as a two-element row vector. The two
elements must be real values that are increasing.
Example: [-2 4.5]

FrameRate — Frame rate
10 (default) | positive value

Frame rate, specified as a positive value. The frame rate defines the number of frames
per unit time when playing the animation objects.
Example: 30

Backwards — Backward option
logical 0 (false) (default) | logical value (boolean)

Backward option, specified as a logical value (boolean). If you specify the option true,
then the function plays the animation backwards.
Example: true

SpeedFactor — Speed factor
1 (default) | real nonzero value

Speed factor, specified as a real nonzero value. The speed factor sets the ratio of one unit
interval of the animation time parameter to one second of clock time.

• If you specify a negative value for 'SpeedFactor' and keep the default value 0
(false) for 'Backwards' option, then the function plays the animation backwards
with the specified speed factor. For example, playAnimation('SpeedFactor',-1)
launches the same animation as playAnimation('Backwards',true).

 playAnimation

4-1409

• If you specify a zero value for 'SpeedFactor', then
playAnimation('SpeedFactor',0) launches a still frame indefinitely and does not
play any animation.

Example: 2

Tips
• When you create a graph by using a plotting function, such as fplot, MATLAB

creates a series of graphics objects. You can then animate a specific property of the
graphics objects by using the fanimator and the playAnimation functions. Note
that some functions, such as title and xlabel, create text objects that cannot be
animated. Instead, use the text function to create text objects that can be animated.

See Also
animationToFrame | fanimator | rewindAnimation | writeAnimation

Introduced in R2019a

4 Functions — Alphabetical List

4-1410

plus, +
Symbolic addition

Syntax
A + B
plus(A,B)

Description
A + B adds A and B.

plus(A,B) is equivalent to A + B.

Examples
Add Scalar to Array
plus adds x to each element of the array.

syms x
A = [x sin(x) 3];
A + x

ans =

[2*x, x + sin(x), x + 3]

Add Two Matrices
Add the identity matrix to matrix M.

syms x
M = [x x^2;Inf 0];
M + eye(2)

 plus, +

4-1411

ans =
[x + 1, x^2]
[Inf, 1]

Alternatively, use plus(M,eye(2)).

plus(M,eye(2))

ans =
[x + 1, x^2]
[Inf, 1]

Add Symbolic Functions
syms f(x) g(x)
f(x) = x^2 + 5*x + 6;
g(x) = 3*x - 2;
h = f + g

h(x) =
x^2 + 8*x + 4

Add Expression to Symbolic Function
Add expression expr to function f.

syms f(x)
f(x) = x^2 + 3*x + 2;
expr = x^2 - 2;
f(x) = f(x) + expr

f(x) =
2*x^2 + 3*x

Input Arguments
A — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array |
symbolic function | symbolic expression

4 Functions — Alphabetical List

4-1412

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or
expression.

B — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array |
symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or
expression.

Tips
• All nonscalar arguments must be the same size. If one input argument is nonscalar,

then plus expands the scalar into an array of the same size as the nonscalar
argument, with all elements equal to the scalar.

See Also
ctranspose | ldivide | minus | mldivide | mpower | mrdivide | mtimes | power |
rdivide | times | transpose

Introduced before R2006a

 plus, +

4-1413

pochhammer
Pochhammer symbol

Syntax
pochhammer(x,n)

Description
pochhammer(x,n) returns the “Pochhammer Symbol” on page 4-1418 (x)n.

Examples

Find Pochhammer Symbol for Numeric and Symbolic Inputs
Find the Pochhammer symbol for the numeric inputs x = 3 at n = 2.

pochhammer(3,2)

ans =
 12

Find the Pochhammer symbol for the symbolic input x at n = 3. The pochhammer
function does not automatically return the expanded form of the expression. Use expand
to force pochhammer to return the form of the expanded expression.

syms x
P = pochhammer(x, 3)
P = expand(P)

P =
pochhammer(x, 3)
P =
x^3 + 3*x^2 + 2*x

4 Functions — Alphabetical List

4-1414

Rewrite and Factor Outputs of Pochhammer
If conditions are satisfied, expand rewrites the solution using gamma.

syms n x
assume(x>0)
assume(n>0)
P = pochhammer(x, n);
P = expand(P)

P =
gamma(n + x)/gamma(x)

To use the variables in further computations, clear their assumptions by recreating them
using syms.

syms n x

To convert expanded output of pochhammer into its factors, use factor.

P = expand(pochhammer(x, 4));
P = factor(P)

P =
[x, x + 3, x + 2, x + 1]

Differentiate Pochhammer Symbol
Differentiate pochhammer once with respect to x.

syms n x
diff(pochhammer(x,n),x)

ans =
pochhammer(x, n)*(psi(n + x) - psi(x))

Differentiate pochhammer twice with respect to n.

diff(pochhammer(x,n),n,2)

ans =
pochhammer(x, n)*psi(n + x)^2 + pochhammer(x, n)*psi(1, n + x)

 pochhammer

4-1415

Taylor Series Expansion of Pochhammer Symbol
Use taylor to find the Taylor series expansion of pochhammer with n = 3 around the
expansion point x = 2.

syms x
taylor(pochhammer(x,3),x,2)

ans =
26*x + 9*(x - 2)^2 + (x - 2)^3 - 28

Plot Pochhammer Symbol
Plot the Pochhammer symbol from n = 0 to n = 4 for x. Use axis to display the region
of interest.

syms x
fplot(pochhammer(x,0:4))
axis([-4 4 -4 4])

grid on
legend('n = 0','n = 1','n = 2','n = 3','n = 4','Location','Best')
title('Pochhammer symbol (x)_n for n=0 to n=4')

4 Functions — Alphabetical List

4-1416

Input Arguments
x — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

 pochhammer

4-1417

n — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Definitions

Pochhammer Symbol
Pochhammer’s symbol is defined as

x n = Γ x + n
Γ x ,

where Γ is the Gamma function.

If n is a positive integer, Pochhammer’s symbol is

x n = x x + 1 ... x + n− 1

Algorithms
• If x and n are numerical values, then an explicit numerical result is returned.

Otherwise, a symbolic function call is returned.
• If both x and x + n are nonpositive integers, then

x n = −1 n Γ 1− x
Γ 1− x− n .

• The following special cases are implemented.

4 Functions — Alphabetical List

4-1418

x 0 = 1
x 1 = x

x −1 = 1
x− 1

1 n = Γ n + 1
2 n = Γ n + 2

• If n is a positive integer, then expand(pochhammer(x,n)) returns the expanded
polynomial x x + 1 ... x + n− 1 .

• If n is not an integer, then expand(pochhammer(x,n)) returns a representation in
terms of gamma.

See Also
factorial | gamma

Introduced in R2014b

 pochhammer

4-1419

poles
Poles of expression or function

Syntax
P = poles(f,var)
P = poles(f,var,a,b)
[P,N] = poles(___)
[P,N,R] = poles(___)

Description
P = poles(f,var) finds the poles of f with respect to variable var.

P = poles(f,var,a,b) returns poles in the interval (a,b).

[P,N] = poles(___) returns the poles of f and their orders in N.

[P,N,R] = poles(___) returns the poles of f, their orders, and residues in R.

Examples

Find Poles of Symbolic Expressions

syms x
poles(1/(x-1i))

ans =
1i

poles(sin(x)/(x-1))

4 Functions — Alphabetical List

4-1420

ans =
1

Specify Independent Variable

Find the poles of this expression. If you do not specify a variable, poles uses the default
variable determined by symvar.

syms x a
f = 1/((x-1)*(a-2));
poles(f)

ans =
1

Find the poles with respect to a by specifying the second argument.

syms x a
poles(f,a)

ans =
2

Find Poles in Interval

Find the poles of the tangent function in the interval (-pi, pi).

syms x
poles(tan(x), x, -pi, pi)

ans =
 -pi/2
 pi/2

The tangent function has an infinite number of poles. If you do not specify the interval,
poles cannot find all of them. It issues a warning and returns an empty symbolic object.

syms x
poles(tan(x))

 poles

4-1421

Warning: Unable to determine poles.
ans =
Empty sym: 0-by-1

If poles can prove that the input does not have poles in the interval, it returns empty
without issuing a warning.

syms x
poles(tan(x), x, -1, 1)

ans =
Empty sym: 0-by-1

Return Order of Poles

Return orders along with poles by using two output arguments. Restrict the search
interval to (-pi, pi).

syms x
[Poles, Orders] = poles(tan(x)/(x-1)^3, x, -pi, pi)

Poles =
 -pi/2
 pi/2
 1

Orders =
 1
 1
 3

Return Order and Residue of Poles

Return the residues and orders along with the poles by specifying three output
arguments.

syms x a
[Poles, Orders, Residues] = poles(a/(x^2*(x-1)), x)

Poles =
 1

4 Functions — Alphabetical List

4-1422

 0
Orders =
 1
 2
Residues =
 a
 -a

Input Arguments
f — Input
symbolic expression | symbolic function.

Input, specified as a symbolic expression or function.

var — Independent variable
symbolic variable

Independent variable, specified as a symbolic variable.

a,b — Search interval for poles
vector of two real numbers | vector of two real symbolic numbers

Search interval for poles, specified as a vector of two real numeric or symbolic numbers
(including infinities).

Tips
• If poles cannot find all nonremovable singularities and cannot prove that they do not

exist, it issues a warning and returns an empty symbolic object.
• If poles can prove that the input does not have poles (in the specified interval or

complex plane), it returns empty without issuing a warning.
• a and b must be real numbers or infinities. If you provide complex numbers, poles

uses an empty interval and returns an empty symbolic object.

See Also
limit | solve | symvar | vpasolve

 poles

4-1423

Introduced in R2012b

4 Functions — Alphabetical List

4-1424

poly2sym
Create symbolic polynomial from vector of coefficients

Syntax
p = poly2sym(c)
p = poly2sym(c,var)

Description
p = poly2sym(c) creates the symbolic polynomial expression p from the vector of
coefficients c. The polynomial variable is x. If c = [c1,c2,...,cn], then p =
poly2sym(c) returns c1xn− 1 + c2xn− 2 + ... + cn.

This syntax does not create the symbolic variable x in the MATLAB Workspace.

p = poly2sym(c,var) uses var as a polynomial variable when creating the symbolic
polynomial expression p from the vector of coefficients c.

Examples
Create Polynomial Expression
Create a polynomial expression from a symbolic vector of coefficients. If you do not
specify a polynomial variable, poly2sym uses x.

syms a b c d
p = poly2sym([a, b, c, d])

p =
a*x^3 + b*x^2 + c*x + d

Create a polynomial expression from a symbolic vector of rational coefficients.

p = poly2sym(sym([1/2, -1/3, 1/4]))

 poly2sym

4-1425

p =
x^2/2 - x/3 + 1/4

Create a polynomial expression from a numeric vector of floating-point coefficients. The
toolbox converts floating-point coefficients to rational numbers before creating a
polynomial expression.

p = poly2sym([0.75, -0.5, 0.25])

p =
(3*x^2)/4 - x/2 + 1/4

Specify Polynomial Variable
Create a polynomial expression from a symbolic vector of coefficients. Use t as a
polynomial variable.

syms a b c d t
p = poly2sym([a, b, c, d], t)

p =
a*t^3 + b*t^2 + c*t + d

To use a symbolic expression, such as t^2 + 1 or exp(t), instead of a polynomial
variable, substitute the variable using subs.

p1 = subs(p, t, t^2 + 1)
p2 = subs(p, t, exp(t))

p1 =
d + a*(t^2 + 1)^3 + b*(t^2 + 1)^2 + c*(t^2 + 1)

p2 =
d + c*exp(t) + a*exp(3*t) + b*exp(2*t)

Input Arguments
c — Polynomial coefficients
numeric vector | symbolic vector

Polynomial coefficients, specified as a numeric or symbolic vector. Argument c can be a
column or row vector.

4 Functions — Alphabetical List

4-1426

var — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

Output Arguments
p — Polynomial
symbolic expression

Polynomial, returned as a symbolic expression.

Tips
• When you call poly2sym for a numeric vector c, the toolbox converts the numeric

vector to a vector of symbolic numbers using the default (rational) conversion mode of
sym.

See Also
coeffs | sym | sym2poly

Introduced before R2006a

 poly2sym

4-1427

polylog
Polylogarithm

Syntax
Li = polylog(n,x)

Description
Li = polylog(n,x) returns the polylogarithm of the order n and the argument x.

Examples
Polylogarithms of Numeric and Symbolic Arguments
polylog returns floating-point numbers or exact symbolic results depending on the
arguments you use.

Compute the polylogarithms of numeric input arguments. The polylog function returns
floating-point numbers.

Li = [polylog(3,-1/2), polylog(4,1/3), polylog(5,3/4)]

Li =
 -0.4726 0.3408 0.7697

Compute the polylogarithms of the same input arguments by converting them to symbolic
objects. For most symbolic (exact) numbers, polylog returns unresolved symbolic calls.

symA = [polylog(3,sym(-1/2)), polylog(sym(4),1/3), polylog(5,sym(3/4))]

symA =
[polylog(3, -1/2), polylog(4, 1/3), polylog(5, 3/4)]

Approximate the symbolic results with the default number of 32 significant digits by using
vpa.

4 Functions — Alphabetical List

4-1428

Li = vpa(symA)

Li =
[-0.47259784465889687461862319312655,...
0.3407911308562507524776409440122,...
0.76973541059975738097269173152535]

The polylog function also accepts noninteger values of the order n. Compute polylog
for complex arguments.

Li = polylog(-0.2i,2.5)

Li =
 -2.5030 + 0.3958i

Explicit Expressions for Polylogarithms
If the order of the polylogarithm is 0, 1, or a negative integer, then polylog returns an
explicit expression.

The polylogarithm of n = 1 is a logarithmic function.

syms x
Li = polylog(1,x)

Li =
-log(1 - x)

The polylogarithms of n < 1 are rational expressions.

Li = polylog(0,x)

Li =
-x/(x - 1)

Li = polylog(-1,x)

Li =
x/(x - 1)^2

Li = polylog(-2,x)

Li =
-(x^2 + x)/(x - 1)^3

Li = polylog(-3,x)

 polylog

4-1429

Li =
(x^3 + 4*x^2 + x)/(x - 1)^4

Li = polylog(-10,x)

Li =
-(x^10 + 1013*x^9 + 47840*x^8 + 455192*x^7 + ...
1310354*x^6 + 1310354*x^5 + 455192*x^4 +...
47840*x^3 + 1013*x^2 + x)/(x - 1)^11

Special Values
The polylog function has special values for some parameters.

If the second argument is 0, then the polylogarithm is equal to 0 for any integer value of
the first argument. If the second argument is 1, then the polylogarithm is the Riemann
zeta function of the first argument.

syms n
Li = [polylog(n,0), polylog(n,1)]

Li =
[0, zeta(n)]

If the second argument is -1, then the polylogarithm has a special value for any integer
value of the first argument except 1.

assume(n ~= 1)
Li = polylog(n,-1)

Li =
zeta(n)*(2^(1 - n) - 1)

To do other computations, clear the assumption on n by recreating it using syms.

syms n

Compute other special values of the polylogarithm function.

Li = [polylog(4,sym(1)), polylog(sym(5),-1), polylog(2,sym(i))]

Li =
[pi^4/90, -(15*zeta(5))/16, catalan*1i - pi^2/48]

4 Functions — Alphabetical List

4-1430

Plot Polylogarithms
Plot the polylogarithms of the integer orders n from -3 to 1 within the interval x = [-4
0.3].

syms x
for n = -3:1
 fplot(polylog(n,x),[-4 0.3])
 hold on
end
title('Polylogarithm')
legend('show','Location','best')
hold off

 polylog

4-1431

Handle Expressions Containing Polylogarithms
Many functions, such as diff and int, can handle expressions containing polylog.

Differentiate these expressions containing polylogarithms.

syms n x
dLi = diff(polylog(n, x), x)
dLi = diff(x*polylog(n, x), x)

dLi =
polylog(n - 1, x)/x

dLi =
polylog(n, x) + polylog(n - 1, x)

Compute the integrals of these expressions containing polylogarithms.

intLi = int(polylog(n, x)/x, x)
intLi = int(polylog(n, x) + polylog(n - 1, x), x)

intLi =
polylog(n + 1, x)

intLi =
x*polylog(n, x)

Input Arguments
n — Order of polylogarithm
number | array | symbolic number | symbolic variable | symbolic function | symbolic
expression | symbolic array

Order of the polylogarithm, specified as a number, array, symbolic number, symbolic
variable, symbolic function, symbolic expression, or symbolic array.
Data Types: single | double | sym | symfun

x — Argument of polylogarithm
number | array | symbolic number | symbolic variable | symbolic function | symbolic
expression | symbolic array

4 Functions — Alphabetical List

4-1432

Argument of the polylogarithm, specified as a number, array, symbolic number, symbolic
variable, symbolic function, symbolic expression, or symbolic array.
Data Types: single | double | sym | symfun

Definitions

Polylogarithm
For a complex number z of modulus |z| < 1, the polylogarithm of order n is defined as:

Lin z = ∑
k = 1

∞ zk

kn .

Analytic continuation extends this function the whole complex plane, with a branch cut
along the real interval [1, ∞) for n ≥ 1.

Tips
• polylog(2,x) is equivalent to dilog(1 - x).
• The logarithmic integral function (the integral logarithm) uses the same notation, li(x),

but without an index. The toolbox provides the logint function to compute the
logarithmic integral function.

• Floating-point evaluation of the polylogarithm function can be slow for complex
arguments or high-precision numbers. To increase the computational speed, you can
reduce the floating-point precision by using the vpa and digits functions. For more
information, see “Increase Speed by Reducing Precision” on page 2-130.

• The polylogarithm function is related to other special functions. For example, it can be
expressed in terms of the Hurwitz zeta function ζ(s,a) and the gamma function Γ(z):

Li
n n

n n
z

n
i n

z

i
i n() =

-()
()

- +
-()Ê

Ë
ÁÁ

ˆ

¯
˜̃ + -

-
- -G 1

2
1

1

2 2
1

1

1 1

p
z

p
z,

ln
,,

ln
.

1

2 2
-

-()Ê

Ë
ÁÁ

ˆ

¯
˜̃

È

Î
Í
Í

˘

˚
˙
˙

z

ip

Here, n ≠ 0, 1, 2,

 polylog

4-1433

References
[1] Olver, F. W. J., A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W.

Clark, B. R. Miller, and B. V. Saunders, eds., Chapter 25. Zeta and Related
Functions, NIST Digital Library of Mathematical Functions, Release 1.0.20, Sept.
15, 2018.

See Also
dilog | hurwitzZeta | log | logint | zeta

Introduced in R2014b

4 Functions — Alphabetical List

4-1434

https://dlmf.nist.gov/25
https://dlmf.nist.gov/25

polynomialDegree
Degree of polynomial

Syntax
polynomialDegree(p)
polynomialDegree(p,vars)

Description
polynomialDegree(p) returns the degree of polynomial p with respect to all variables
found in p by symvar.

polynomialDegree(p,vars) returns the degree of p with respect to the variables in
vars.

Examples

Degree of Polynomial

Find the degree of the polynomial x^3 + x + 1.

syms x
p = x^3 + x + 1;
deg = polynomialDegree(p)

deg =
 3

 polynomialDegree

4-1435

Degree of Multivariate Polynomial with Respect to Variable

Specify variables as the second argument of polynomialDegree. Find the degree of the
polynomial a^2*x^3 + b^6*x with the default independent variables found by symvar,
the variable x, and the variables [a x].

When using the default variables, the degree is 7 because, by default, a and b are
variables. So the total degree of b^6*x is 7.

syms a b x
p = a^2*x^3 + b^6*x;
deg = polynomialDegree(p) % uses symvar

deg =
 7

deg = polynomialDegree(p,x)

deg =
 3

vars = [a x];
deg = polynomialDegree(p,vars)

deg =
 5

Input Arguments
p — Polynomial
symbolic expression | symbolic function

Polynomial, specified as a symbolic expression or function.

vars — Polynomial variables
vector of symbolic variables

Polynomial variables, specified as a vector of symbolic variables.

See Also
coeffs | polynomialReduce

4 Functions — Alphabetical List

4-1436

Introduced in R2018a

 polynomialDegree

4-1437

polynomialReduce
Reduce polynomials by division

Syntax
r = polynomialReduce(p,d)
r = polynomialReduce(p,d,vars)
r = polynomialReduce(___ ,'MonomialOrder',MonomialOrder)

[r,q] = polynomialReduce(___)

Description
r = polynomialReduce(p,d) returns the “Polynomial Reduction” on page 4-1442 of p
by d with respect to all variables in p determined by symvar. The input d can be a vector
of polynomials.

r = polynomialReduce(p,d,vars) uses the polynomial variables in vars.

r = polynomialReduce(___ ,'MonomialOrder',MonomialOrder) also uses the
specified monomial order in addition to the input arguments in previous syntaxes. Options
are 'degreeInverseLexicographic', 'degreeLexicographic', or
'lexicographic'. By default, polynomialReduce uses
'degreeInverseLexicographic'.

[r,q] = polynomialReduce(___) also returns the quotient in q.

Examples

Divide Two Polynomials

Find the quotient and remainder when x^3 - x*y^2 + 1 is divided by x + y.

syms x y
p = x^3 - x*y^2 + 1;

4 Functions — Alphabetical List

4-1438

d = x + y;
[r,q] = polynomialReduce(p,d)

r =
1
q =
x^2 - y*x

Reconstruct the original polynomial from the quotient and remainder. Check that the
reconstructed polynomial equals p by using isAlways.

pOrig = expand(sum(q.*d) + r);
isAlways(p == pOrig)

ans =
 logical
 1

Specify Polynomial Variables

Specify the polynomial variables as the second argument of polynomialReduce.

Divide exp(a)*x^2 + 2*x*y + 1 by x - y with the polynomial variables [x y],
treating a as a symbolic parameter.

syms a x y
p = exp(a)*x^2 + 2*x*y + 1;
d = x - y;
vars = [x y];
r = polynomialReduce(p,d,vars)

r =
(exp(a) + 2)*y^2 + 1

Reduce Polynomial by Several Polynomials

Reduce x^5 - x*y^6 - x*y by x^2 + y and x^2 - y^3.

syms x y
p = x^5 - x*y^6 - x*y;
d = [x^2 + y, x^2 - y^3];
[r,q] = polynomialReduce(p,d)

 polynomialReduce

4-1439

r =
-x*y
q =
[x^3 - x*y^3, x*y^3 - x*y]

Reconstruct the original polynomial from the quotient and remainder. Check that the
reconstructed polynomial equals p by using isAlways.

pOrig = expand(q*d.' + r);
isAlways(p == pOrig)

ans =
 logical
 1

Specify Term Order of Polynomials

By default, polynomialReduce orders the terms in the polynomials with the term order
degreeInverseLexicographic. Change the term order to lexicographic or
degreeLexicographic by using the 'MonomialOrder' name-value pair argument.

Divide two polynomials by using the lexicographic term order.

syms x y
p = x^2 + y^3 + 1;
d = x - y^2;
r = polynomialReduce(p,d,'MonomialOrder','lexicographic')

r =
y^4 + y^3 + 1

Divide the same polynomials by using the degreeLexicographic term order.

r = polynomialReduce(p,d,'MonomialOrder','degreeLexicographic')

r =
x^2 + y*x + 1

Input Arguments
p — Polynomial to divide
symbolic expression | symbolic function

4 Functions — Alphabetical List

4-1440

Polynomial to divide, specified as a symbolic expression or function.

d — Polynomials to divide by
symbolic expression or function | vector of symbolic expressions or functions

Polynomials to divide by, specified as a symbolic expression or function or a vector of
symbolic expressions or functions.

vars — Polynomial variables
vector of symbolic variables

Polynomial variables, specified as a vector of symbolic variables.

MonomialOrder — Monomial order of divisors
'degreeInverseLexicographic' (default) | 'degreeLexicographic' |
'lexicographic'

Monomial order of divisors, specified as 'degreeInverseLexicographic',
'degreeLexicographic', or 'lexicographic'. If you specify vars, then
polynomialReduce sorts variables based on the order of variables in vars.

• lexicographic sorts the terms of a polynomial using lexicographic ordering.
• degreeLexicographic sorts the terms of a polynomial according to the total degree

of each term. If terms have equal total degrees, polynomialReduce sorts the terms
using lexicographic ordering.

• degreeInverseLexicographic sorts the terms of a polynomial according to the
total degree of each term. If terms have equal total degrees, polynomialReduce
sorts the terms using inverse lexicographic ordering.

Output Arguments
r — Remainder of polynomial division
symbolic polynomial

Remainder of polynomial division, returned as a symbolic polynomial.

q — Quotient of polynomial division
symbolic polynomial | vector of symbolic polynomials

 polynomialReduce

4-1441

Quotient of polynomial division, returned as a symbolic polynomial or a vector of symbolic
polynomials.

Definitions

Polynomial Reduction
Polynomial reduction is the division of the polynomial p by the divisor polynomials d1, d2,
…, dn . The terms of the divisor polynomials are ordered according to a certain term
order. The quotients q1, q2, …, qn and the remainder r satisfy this equation.

p = q1d1 + q2d2 + … + qndn + r .

No term in r can be divided by the leading terms of any of the divisors d1, d2, …, dn .

See Also
eliminate | gbasis | polynomialDegree

Introduced in R2018a

4 Functions — Alphabetical List

4-1442

potential
Potential of vector field

Syntax
potential(V,X)
potential(V,X,Y)

Description
potential(V,X) computes the potential of the vector field V with respect to the vector
X in Cartesian coordinates. The vector field V must be a gradient field.

potential(V,X,Y) computes the potential of vector field V with respect to X using Y as
base point for the integration.

Examples
Compute Potential of Vector Field
Compute the potential of this vector field with respect to the vector [x, y, z]:

syms x y z
P = potential([x, y, z*exp(z)], [x y z])

P =
x^2/2 + y^2/2 + exp(z)*(z - 1)

Use the gradient function to verify the result:

simplify(gradient(P, [x y z]))

ans =
 x
 y
 z*exp(z)

 potential

4-1443

Specify Integration Base Point
Compute the potential of this vector field specifying the integration base point as [0 0
0]:

syms x y z
P = potential([x, y, z*exp(z)], [x y z], [0 0 0])

P =
x^2/2 + y^2/2 + exp(z)*(z - 1) + 1

Verify that P([0 0 0]) = 0:

subs(P, [x y z], [0 0 0])

ans =
 0

Test Potential for Field Without Gradient
If a vector field is not gradient, potential returns NaN:

potential([x*y, y], [x y])

ans =
NaN

Input Arguments
V — Vector field
3-D symbolic vector of symbolic expressions or functions (default)

Vector field, specified as a 3-D vector of symbolic expressions or functions.

X — Input
vector of three symbolic variables

Input, specified as a vector of three symbolic variables with respect to which you compute
the potential.

Y — Input
symbolic vector

4 Functions — Alphabetical List

4-1444

Input, specified as a symbolic vector of variables, expressions, or numbers that you want
to use as a base point for the integration. If you use this argument, potential returns
P(X) such that P(Y) = 0. Otherwise, the potential is only defined up to some additive
constant.

Definitions

Scalar Potential of Gradient Vector Field
The potential of a gradient vector field V(X) = [v1(x1,x2,...),v2(x1,x2,...),...] is the scalar P(X)
such that V X = ∇P X .

The vector field is gradient if and only if the corresponding Jacobian is symmetrical:

∂vi
∂x j

=
∂v j
∂xi

The potential function represents the potential in its integral form:

P X = ∫
0

1
X − Y ⋅ V Y + λ X − Y dλ

Tips
• If potential cannot verify that V is a gradient field, it returns NaN.
• Returning NaN does not prove that V is not a gradient field. For performance reasons,

potential sometimes does not sufficiently simplify partial derivatives, and therefore,
it cannot verify that the field is gradient.

• If Y is a scalar, then potential expands it into a vector of the same length as X with
all elements equal to Y.

See Also
curl | diff | divergence | gradient | hessian | jacobian | laplacian |
vectorPotential

 potential

4-1445

Introduced in R2012a

4 Functions — Alphabetical List

4-1446

power, .^
Symbolic array power

Syntax
A.^B
power(A,B)

Description
A.^B computes A to the B power and is an elementwise operation.

power(A,B) is equivalent to A.^B.

Examples

Square Each Matrix Element
Create a 2-by-3 matrix.

A = sym('a', [2 3])

A =
[a1_1, a1_2, a1_3]
[a2_1, a2_2, a2_3]

Square each element of the matrix.

A.^2

ans =
[a1_1^2, a1_2^2, a1_3^2]
[a2_1^2, a2_2^2, a2_3^2]

 power, .^

4-1447

Use Matrices for Base and Exponent
Create a 3-by-3 symbolic Hilbert matrix and a 3-by-3 diagonal matrix.

H = sym(hilb(3))
d = diag(sym([1 2 3]))

H =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

d =
[1, 0, 0]
[0, 2, 0]
[0, 0, 3]

Raise the elements of the Hilbert matrix to the powers of the diagonal matrix. The base
and the exponent must be matrices of the same size.

H.^d

ans =
[1, 1, 1]
[1, 1/9, 1]
[1, 1, 1/125]

Input Arguments
A — Input
number | symbolic number | symbolic variable | symbolic vector | symbolic matrix |
symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number or a symbolic number, variable, vector, matrix,
multidimensional array, function, or expression. Inputs A and B must be the same size
unless one is a scalar. A scalar value expands into an array of the same size as the other
input.

B — Input
number | symbolic number | symbolic variable | symbolic vector | symbolic matrix |
symbolic multidimensional array | symbolic function | symbolic expression

4 Functions — Alphabetical List

4-1448

Input, specified as a number or a symbolic number, variable, vector, matrix,
multidimensional array, function, or expression. Inputs A and B must be the same size
unless one is a scalar. A scalar value expands into an array of the same size as the other
input.

See Also
ctranspose | ldivide | minus | mldivide | mpower | mrdivide | mtimes | nthroot |
plus | rdivide | times | transpose

Introduced before R2006a

 power, .^

4-1449

powermod
Modular power of number

Syntax
powermod(a,b,m)

Description
powermod(a,b,m) returns the modular power ab mod m. Use powermod to compute the
modular power without calculating ab.

Examples

Compute Modular Power

Compute the modular power ab mod m by using powermod. The powermod function is
efficient because it does not calculate the exponential ab.

Compute mod(3^5,7).

powermod(3,5,7)

ans =
 5

Prove Fermat's Little Theorem

Fermat's little theorem states that where p is prime and a is not divisible by p, a(p–1) mod p
is 1.

Test Fermat's little theorem for p = 5, a = 3. As expected, powermod returns 1.

4 Functions — Alphabetical List

4-1450

p = 5;
a = 3;
powermod(a,p-1,p)

ans =
1

Test the same case for all values of a less than p. The function powermod acts element-
wise to return a vector of ones.

p = 5;
a = 1:p-1;
powermod(a,p-1,p)

ans =
 1 1 1 1

Compute Fermat Primes Using Fermat Primality Test

Fermat's little theorem states that where p is prime and a is not divisible by p, a(p–1) mod p
is 1. Test numbers from 300 to 400 for primality by using Fermat's little theorem with
base 2. Find Fermat pseudoprimes by comparing results with isprime.

Test numbers from 300 to 400 for primality.

N = 300:400;
remainder = powermod(2,N-1,N);
primesFermat = N(remainder == 1)

primesFermat =
 307 311 313 317 331 337 341 347 349 353...
 359 367 373 379 383 389 397

Find Fermat pseudoprimes by comparing with isprime. 341 is a Fermat pseudoprime.

primeNumbers = N(isprime(N));
setdiff(primesFermat,primeNumbers)

 powermod

4-1451

ans =
 341

Input Arguments
a — Input
number | vector | matrix | array | symbolic number | symbolic array

Input, specified as a number, vector, matrix, array, or a symbolic number or array. a must
be an integer.

b — Input
number | vector | matrix | array | symbolic number | symbolic array

Input, specified as a number, vector, matrix, array, or a symbolic number or array. b must
be a nonnegative integer.

m — Input
number | vector | matrix | array | symbolic number | symbolic array

Input, specified as a number, vector, matrix, array, or a symbolic number or array. m must
be a nonnegative integer.

See Also
mod | nextprime | nthprime | prevprime

Introduced in R2018a

4 Functions — Alphabetical List

4-1452

pretty
Prettyprint symbolic expressions

Note pretty is not recommended. Use Live Scripts instead. Live Scripts provide full
math rendering while pretty uses plain-text formatting. See “What Is a Live Script or
Function?” (MATLAB)

Syntax
pretty(X)

Description
pretty(X) prints X in a plain-text format that resembles typeset mathematics. For true
typeset rendering, use Live Scripts instead. See “What Is a Live Script or Function?”
(MATLAB)

Examples

Pretty Print Symbolic Expressions

Pretty print symbolic expressions.

A = sym(pascal(2))
B = eig(A)
pretty(B)

A =
[1, 1]
[1, 2]

B =

 3/2 - 5^(1/2)/2

 pretty

4-1453

 5^(1/2)/2 + 3/2

/ 3 sqrt(5) \
| - - ------- |
| 2 2 |
| |
| sqrt(5) 3 |
| ------- + - |
\ 2 2 /

Pretty Print Long Expressions

Solve this equation, and then use pretty to represent the solutions in the format similar
to typeset mathematics. For better readability, pretty uses abbreviations when
representing long expressions.

syms x
s = solve(x^4 + 2*x + 1, x,'MaxDegree',3);
pretty(s)

/ -1 \
| |
| 2 1 |
| #2 - ---- + - |
| 9 #2 3 |
| |
| 1 #2 1 |
| ---- - #1 - -- + - |
| 9 #2 2 3 |
| |
| 1 #2 1 |
| #1 + ---- - -- + - |
\ 9 #2 2 3 /

where

 / 2 \
 sqrt(3) | ---- + #2 | 1i
 \ 9 #2 /
 #1 == ------------------------
 2

 / sqrt(11) sqrt(27) 17 \1/3

4 Functions — Alphabetical List

4-1454

 #2 == | ----------------- - -- |
 \ 27 27 /

Introduced before R2006a

 pretty

4-1455

prevprime
Previous prime number

Syntax
prevprime(n)

Description
prevprime(n) returns the largest prime number smaller than or equal to n. If n is a
vector or matrix, then prevprime acts element-wise on n.

Examples
Find Previous Prime Number
Find the largest prime number smaller than 100.

prevprime(100)

ans =
97

Find the largest prime numbers smaller than 1000, 10000, and 100000 by specifying the
input as a vector.

v = [1000 10000 100000];
prevprime(v)

ans =
 997 9973 99991

Find Large Prime Number
When finding large prime numbers, return exact symbolic integers by using symbolic
input. Further, if your input has 15 or more digits, then use quotation marks and wrap the

4 Functions — Alphabetical List

4-1456

number in sym to represent the number accurately. For more information, see “Numeric
to Symbolic Conversion” on page 2-132.

Find a large prime number by using 10^sym(18).

prevprime(10^sym(18))

ans =
999999999999999989

Find the prime number previous to 823572345728582545 by using quotation marks.

prevprime(sym('823572345728582545'))

ans =
823572345728582543

Input Arguments
n — Input
number | vector | matrix | array | symbolic number | symbolic array

Input, specified as a number, vector, matrix, array, or a symbolic number or array.

See Also
isprime | nextprime | nthprime | primes

Introduced in R2016b

 prevprime

4-1457

psi
Digamma function

Syntax
psi(x)
psi(k,x)

Description
psi(x) computes the digamma function on page 4-1461 of x.

psi(k,x) computes the polygamma function on page 4-1461 of x, which is the kth
derivative of the digamma function at x.

Examples

Compute Digamma and Polygamma for Numeric Inputs
Compute the digamma and polygamma functions for these numbers. Because these
numbers are not symbolic objects, you get the floating-point results.

[psi(1/2) psi(2, 1/2) psi(1.34) psi(1, sin(pi/3))]

ans =
 -1.9635 -16.8288 -0.1248 2.0372

Compute Digamma and Polygamma for Symbolic Inputs
Compute the digamma and polygamma functions for the numbers converted to symbolic
objects.

[psi(sym(1/2)), psi(1, sym(1/2)), psi(sym(1/4))]

4 Functions — Alphabetical List

4-1458

ans =
[- eulergamma - 2*log(2), pi^2/2, - eulergamma - pi/2 - 3*log(2)]

For some symbolic (exact) numbers, psi returns unresolved symbolic calls.

psi(sym(sqrt(2)))

ans =
psi(2^(1/2))

Compute Derivatives of Digamma and Polygamma Functions
Compute the derivatives of these expressions containing the digamma and polygamma
functions.

syms x
diff(psi(1, x^3 + 1), x)
diff(psi(sin(x)), x)

ans =
3*x^2*psi(2, x^3 + 1)

ans =
cos(x)*psi(1, sin(x))

Expand Digamma and Polygamma Functions
Expand the expressions containing the digamma functions.

syms x
expand(psi(2*x + 3))
expand(psi(x + 2)*psi(x))

ans =
psi(x + 1/2)/2 + log(2) + psi(x)/2 +...
1/(2*x + 1) + 1/(2*x + 2) + 1/(2*x)

ans =
psi(x)/x + psi(x)^2 + psi(x)/(x + 1)

Limit of Digamma and Polygamma Functions
Compute the limits for expressions containing the digamma and polygamma functions.

 psi

4-1459

syms x
limit(x*psi(x), x, 0)
limit(psi(3, x), x, inf)

ans =
-1

ans =
0

Compute Digamma for Matrix Input
Compute the digamma function for elements of matrix M and vector V.

M = sym([0 inf; 1/3 1/2]);
V = sym([1, inf]);
psi(M)
psi(V)

ans =
[Inf, Inf]
[- eulergamma - (3*log(3))/2 - (pi*3^(1/2))/6, - eulergamma - 2*log(2)]

ans =
[-eulergamma, Inf]

Compute Polygamma for Matrix Input
Compute the polygamma function for elements of matrix M and vector V. The psi function
acts elementwise on nonscalar inputs.

M = sym([0 inf; 1/3 1/2]);
polyGammaM = [1 3; 2 2];
V = sym([1, inf]);
polyGammaV = [6 6];
psi(polyGammaM,M)
psi(polyGammaV,V)

ans =
[Inf, 0]
[- 26*zeta(3) - (4*3^(1/2)*pi^3)/9, -14*zeta(3)]

ans =
[-720*zeta(7), 0]

4 Functions — Alphabetical List

4-1460

Because all elements of polyGammaV have the same value, you can replace polyGammaV
by a scalar of that value. psi expands the scalar into a nonscalar of the same size as V
and computes the result.

V = sym([1, inf]);
psi(6,V)

ans =
[-720*zeta(7), 0]

Input Arguments
x — Input
symbolic number | symbolic variable | symbolic expression | symbolic array

Input, specified as a symbolic number, variable, expression, or array, or expression.

k — Input
nonnegative integer | nonnegative integer or vector, matrix or multidimensional array of
nonnegative integers.

Input, specified as a nonnegative integer or vector, matrix or multidimensional array of
nonnegative integers. If x is nonscalar and k is scalar, then k is expanded into a nonscalar
of the same dimensions as x with each element being equal to k. If both x and k are
nonscalars, they must have the same dimensions.

Definitions
Digamma Function
The digamma function is the first derivative of the logarithm of the gamma function:

ψ x = d
dx lnΓ x = Γ′ x

Γ x

Polygamma Function
The polygamma function of the order k is the (k + 1)th derivative of the logarithm of the
gamma function:

 psi

4-1461

ψ k x = dk + 1

dxk + 1 lnΓ x = dk

dxkψ x

Tips
• Calling psi for a number that is not a symbolic object invokes the MATLAB psi

function. This function accepts real nonnegative arguments x. If you want to compute
the polygamma function for a complex number, use sym to convert that number to a
symbolic object, and then call psi for that symbolic object.

• psi(0, x) is equivalent to psi(x).

See Also
beta | factorial | gamma | nchoosek

Introduced in R2011b

4 Functions — Alphabetical List

4-1462

qr
QR factorization

Syntax
R = qr(A)
[Q,R] = qr(A)
[Q,R,P] = qr(A)

[C,R] = qr(A,B)
[C,R,P] = qr(A,B)

[Q,R,p] = qr(A,'vector')
[C,R,p] = qr(A,B,'vector')

___ = qr(___ ,'econ')
___ = qr(___ ,'real')

Description
R = qr(A) returns the R part of the QR decomposition on page 4-1474 A = Q*R. Here,
A is an m-by-n matrix, R is an m-by-n upper triangular matrix, and Q is an m-by-m unitary
matrix.

[Q,R] = qr(A) returns an upper triangular matrix R and a unitary matrix Q, such that A
= Q*R.

[Q,R,P] = qr(A) returns an upper triangular matrix R, a unitary matrix Q, and a
permutation matrix P, such that A*P = Q*R. If all elements of A can be approximated by
the floating-point numbers, then this syntax chooses the column permutation P so that
abs(diag(R)) is decreasing. Otherwise, it returns P = eye(n).

[C,R] = qr(A,B) returns an upper triangular matrix R and a matrix C, such that C =
Q'*B and A = Q*R. Here, A and B must have the same number of rows.

C and R represent the solution of the matrix equation A*X = B as X = R\C.

 qr

4-1463

[C,R,P] = qr(A,B) returns an upper triangular matrix R, a matrix C, such that C =
Q'*B, and a permutation matrix P, such that A*P = Q*R. If all elements of A can be
approximated by the floating-point numbers, then this syntax chooses the permutation
matrix P so that abs(diag(R)) is decreasing. Otherwise, it returns P = eye(n). Here,
A and B must have the same number of rows.

C, R, and P represent the solution of the matrix equation A*X = B as X = P*(R\C).

[Q,R,p] = qr(A,'vector') returns the permutation information as a vector p, such
that A(:,p) = Q*R.

[C,R,p] = qr(A,B,'vector') returns the permutation information as a vector p.

C, R, and p represent the solution of the matrix equation A*X = B as X(p,:) = R\C.

___ = qr(___ ,'econ') returns the "economy size" decomposition. If A is an m-by-n
matrix with m > n, then qr computes only the first n columns of Q and the first n rows of
R. For m <= n, the syntaxes with 'econ' are equivalent to the corresponding syntaxes
without 'econ'.

When you use 'econ', qr always returns the permutation information as a vector p.

You can use 0 instead of 'econ'. For example, [Q,R] = qr(A,0) is equivalent to [Q,R]
= qr(A,'econ').

___ = qr(___ ,'real') assumes that input arguments and intermediate results are
real, and therefore, suppresses calls to abs and conj. When you use this flag, qr
assumes that all symbolic variables represent real numbers. When using this flag, ensure
that all numeric arguments are real numbers.

Use 'real' to avoid complex conjugates in the result.

Examples

R part of QR Factorization
Compute the R part of the QR decomposition of the 4-by-4 Wilkinson's eigenvalue test
matrix.

Create the 4-by-4 Wilkinson's eigenvalue test matrix:

4 Functions — Alphabetical List

4-1464

A = sym(wilkinson(4))

A =
[3/2, 1, 0, 0]
[1, 1/2, 1, 0]
[0, 1, 1/2, 1]
[0, 0, 1, 3/2]

Use the syntax with one output argument to return the R part of the QR decomposition
without returning the Q part:

R = qr(A)

R =
[13^(1/2)/2, (4*13^(1/2))/13, (2*13^(1/2))/13, 0]
[0, (13^(1/2)*53^(1/2))/26, (10*13^(1/2)*53^(1/2))/689, (2*13^(1/2)*53^(1/2))/53]
[0, 0, (53^(1/2)*381^(1/2))/106, (172*53^(1/2)*381^(1/2))/20193]
[0, 0, 0, (35*381^(1/2))/762]

QR Factorization of Pascal Matrix
Compute the QR decomposition of the 3-by-3 Pascal matrix.

Create the 3-by-3 Pascal matrix:

A = sym(pascal(3))

A =
[1, 1, 1]
[1, 2, 3]
[1, 3, 6]

Find the Q and R matrices representing the QR decomposition of A:

[Q,R] = qr(A)

Q =
[3^(1/2)/3, -2^(1/2)/2, 6^(1/2)/6]
[3^(1/2)/3, 0, -6^(1/2)/3]
[3^(1/2)/3, 2^(1/2)/2, 6^(1/2)/6]

R =
[3^(1/2), 2*3^(1/2), (10*3^(1/2))/3]
[0, 2^(1/2), (5*2^(1/2))/2]
[0, 0, 6^(1/2)/6]

Verify that A = Q*R using isAlways:

 qr

4-1465

isAlways(A == Q*R)

ans =
 3×3 logical array
 1 1 1
 1 1 1
 1 1 1

Permutation Information
Using permutations helps increase numerical stability of the QR factorization for floating-
point matrices. The qr function returns permutation information either as a matrix or as a
vector.

Set the number of significant decimal digits, used for variable-precision arithmetic, to 10.
Approximate the 3-by-3 symbolic Hilbert matrix by floating-point numbers:

previoussetting = digits(10);
A = vpa(hilb(3))

A =
[1.0, 0.5, 0.3333333333]
[0.5, 0.3333333333, 0.25]
[0.3333333333, 0.25, 0.2]

First, compute the QR decomposition of A without permutations:

[Q,R] = qr(A)

Q =
[0.8571428571, -0.5016049166, 0.1170411472]
[0.4285714286, 0.5684855721, -0.7022468832]
[0.2857142857, 0.6520863915, 0.7022468832]

R =
[1.166666667, 0.6428571429, 0.45]
[0, 0.1017143303, 0.1053370325]
[0, 0, 0.003901371573]

Compute the difference between A and Q*R. The computed Q and R matrices do not
strictly satisfy the equality A*P = Q*R because of the round-off errors.

A - Q*R

4 Functions — Alphabetical List

4-1466

ans =
[-1.387778781e-16, -3.989863995e-16, -2.064320936e-16]
[-3.469446952e-18, -8.847089727e-17, -1.084202172e-16]
[-2.602085214e-18, -6.591949209e-17, -6.678685383e-17]

To increase numerical stability of the QR decomposition, use permutations by specifying
the syntax with three output arguments. For matrices that do not contain symbolic
variables, expressions, or functions, this syntax triggers pivoting, so that abs(diag(R))
in the returned matrix R is decreasing.

[Q,R,P] = qr(A)

Q =
[0.8571428571, -0.4969293466, -0.1355261854]
[0.4285714286, 0.5421047417, 0.7228063223]
[0.2857142857, 0.6776309272, -0.6776309272]
R =
[1.166666667, 0.45, 0.6428571429]
[0, 0.1054092553, 0.1016446391]
[0, 0, 0.003764616262]
P =
 1 0 0
 0 0 1
 0 1 0

Check the equality A*P = Q*R again. QR factorization with permutations results in
smaller round-off errors.

A*P - Q*R

ans =
[-3.469446952e-18, -4.33680869e-18, -6.938893904e-18]
[0, -8.67361738e-19, -1.734723476e-18]
[0, -4.33680869e-19, -1.734723476e-18]

Now, return the permutation information as a vector by using the 'vector' argument:

[Q,R,p] = qr(A,'vector')

Q =
[0.8571428571, -0.4969293466, -0.1355261854]
[0.4285714286, 0.5421047417, 0.7228063223]
[0.2857142857, 0.6776309272, -0.6776309272]
R =
[1.166666667, 0.45, 0.6428571429]

 qr

4-1467

[0, 0.1054092553, 0.1016446391]
[0, 0, 0.003764616262]
p =
 1 3 2

Verify that A(:,p) = Q*R:

A(:,p) - Q*R

ans =
[-3.469446952e-18, -4.33680869e-18, -6.938893904e-18]
[0, -8.67361738e-19, -1.734723476e-18]
[0, -4.33680869e-19, -1.734723476e-18]

Exact symbolic computations let you avoid roundoff errors:

A = sym(hilb(3));
[Q,R] = qr(A);
A - Q*R

ans =
[0, 0, 0]
[0, 0, 0]
[0, 0, 0]

Restore the number of significant decimal digits to its default setting:

digits(previoussetting)

Use QR Decomposition to Solve Matrix Equation
You can use qr to solve systems of equations in a matrix form.

Suppose you need to solve the system of equations A*X = b, where A and b are the
following matrix and vector:

A = sym(invhilb(5))
b = sym([1:5]')

A =
[25, -300, 1050, -1400, 630]
[-300, 4800, -18900, 26880, -12600]
[1050, -18900, 79380, -117600, 56700]
[-1400, 26880, -117600, 179200, -88200]
[630, -12600, 56700, -88200, 44100]

4 Functions — Alphabetical List

4-1468

b =

 1
 2
 3
 4
 5

Use qr to find matrices C and R, such that C = Q'*B and A = Q*R:

[C,R] = qr(A,b);

Compute the solution X:

X = R\C

X =
 5
 71/20
 197/70
 657/280
 1271/630

Verify that X is the solution of the system A*X = b using isAlways:

isAlways(A*X == b)

ans =
 5×1 logical array
 1
 1
 1
 1
 1

Use QR Decomposition with Permutation Information to Solve
Matrix Equation
When solving systems of equations that contain floating-point numbers, the QR
decomposition with the permutation matrix or vector.

Suppose you need to solve the system of equations A*X = b, where A and b are the
following matrix and vector:

 qr

4-1469

previoussetting = digits(10);
A = vpa([2 -3 -1; 1 1 -1; 0 1 -1]);
b = vpa([2; 0; -1]);

Use qr to find matrices C and R, such that C = Q'*B and A = Q*R:

[C,R,P] = qr(A,b)

C =
 -2.110579412
 -0.2132007164
 0.7071067812
R =
[3.31662479, 0.3015113446, -1.507556723]
[0, 1.705605731, -1.492405014]
[0, 0, 0.7071067812]
P =
 0 0 1
 1 0 0
 0 1 0

Compute the solution X:

X = P*(R\C)

X =
 1.0
 -0.25
 0.75

Alternatively, return the permutation information as a vector:

[C,R,p] = qr(A,b,'vector')

C =
 -2.110579412
 -0.2132007164
 0.7071067812
R =
[3.31662479, 0.3015113446, -1.507556723]
[0, 1.705605731, -1.492405014]
[0, 0, 0.7071067812]
p =
 2 3 1

In this case, compute the solution X as follows:

4 Functions — Alphabetical List

4-1470

X(p,:) = R\C

X =
 1.0
 -0.25
 0.75

Restore the number of significant decimal digits to its default setting:

digits(previoussetting)

"Economy Size" Decomposition
Use 'econ' to compute the “economy size” QR decomposition.

Create a matrix that consists of the first two columns of the 4-by-4 Pascal matrix:

A = sym(pascal(4));
A = A(:,1:2)

A =
[1, 1]
[1, 2]
[1, 3]
[1, 4]

Compute the QR decomposition for this matrix:

[Q,R] = qr(A)

Q =
[1/2, -(3*5^(1/2))/10, (3^(1/2)*10^(1/2))/10, 0]
[1/2, -5^(1/2)/10, -(2*3^(1/2)*10^(1/2))/15, 6^(1/2)/6]
[1/2, 5^(1/2)/10, -(3^(1/2)*10^(1/2))/30, -6^(1/2)/3]
[1/2, (3*5^(1/2))/10, (3^(1/2)*10^(1/2))/15, 6^(1/2)/6]

R =
[2, 5]
[0, 5^(1/2)]
[0, 0]
[0, 0]

Now, compute the “economy size” QR decomposition for this matrix. Because the number
of rows exceeds the number of columns, qr computes only the first 2 columns of Q and
the first 2 rows of R.

 qr

4-1471

[Q,R] = qr(A,'econ')

Q =
[1/2, -(3*5^(1/2))/10]
[1/2, -5^(1/2)/10]
[1/2, 5^(1/2)/10]
[1/2, (3*5^(1/2))/10]

R =
[2, 5]
[0, 5^(1/2)]

Avoid Complex Conjugates
Use the 'real' flag to avoid complex conjugates in the result.

Create a matrix, one of the elements of which is a variable:

syms x
A = [1 2; 3 x]

A =
[1, 2]
[3, x]

Compute the QR factorization of this matrix. By default, qr assumes that x represents a
complex number, and therefore, the result contains expressions with the abs function.

[Q,R] = qr(A)

Q =
[10^(1/2)/10, -((3*x)/10 - 9/5)/(abs(x/10 - 3/5)^2...
 + abs((3*x)/10 - 9/5)^2)^(1/2)]
[(3*10^(1/2))/10, (x/10 - 3/5)/(abs(x/10 - 3/5)^2...
 + abs((3*x)/10 - 9/5)^2)^(1/2)]

R =
[10^(1/2), (10^(1/2)*(3*x + 2))/10]
[0, (abs(x/10 - 3/5)^2 + abs((3*x)/10 - 9/5)^2)^(1/2)]

When you use 'real', qr assumes that all symbolic variables represent real numbers,
and can return shorter results:

[Q,R] = qr(A,'real')

4 Functions — Alphabetical List

4-1472

Q =
[10^(1/2)/10, -((3*x)/10 - 9/5)/(x^2/10 - (6*x)/5...
 + 18/5)^(1/2)]
[(3*10^(1/2))/10, (x/10 - 3/5)/(x^2/10 - (6*x)/5...
 + 18/5)^(1/2)]

R =
[10^(1/2), (10^(1/2)*(3*x + 2))/10]
[0, (x^2/10 - (6*x)/5 + 18/5)^(1/2)]

Input Arguments
A — Input matrix
m-by-n symbolic matrix

Input matrix, specified as an m-by-n symbolic matrix.

B — Input
symbolic vector | symbolic matrix

Input, specified as a symbolic vector or matrix. The number of rows in B must be the same
as the number of rows in A.

Output Arguments
R — R part of the QR decomposition
m-by-n upper triangular symbolic matrix

R part of the QR decomposition, returned as an m-by-n upper triangular symbolic matrix.

Q — Q part of the QR decomposition
m-by-m unitary symbolic matrix

Q part of the QR decomposition, returned as an m-by-m unitary symbolic matrix.

P — Permutation information
matrix of double-precision values

Permutation information, returned as a matrix of double-precision values, such that A*P
= Q*R.

 qr

4-1473

p — Permutation information
vector of double-precision values

Permutation information, returned as a vector of double-precision values, such that
A(:,p) = Q*R.

C — Matrix representing solution of matrix equation A*X = B
symbolic matrix

Matrix representing solution of matrix equation A*X = B, returned as a symbolic matrix,
such that C = Q'*B.

Definitions

QR Factorization of Matrix
The QR factorization expresses an m-by-n matrix A as A = Q*R. Here, Q is an m-by-m
unitary matrix, and R is an m-by-n upper triangular matrix. If the components of A are real
numbers, then Q is an orthogonal matrix.

Tips
• The upper triangular matrix A satisfies the following condition: R = chol(A'*A).
• The arguments 'econ' and 0 only affect the shape of the returned matrices.
• Calling qr for numeric matrices that are not symbolic objects (not created by sym,

syms, or vpa) invokes the MATLAB qr function.
• If you use 'matrix' instead of 'vector', then qr returns permutation matrices, as it

does by default. If you use 'matrix' and 'econ', then qr throws an error.
• Matrix computations involving many symbolic variables can be slow. To increase the

computational speed, reduce the number of symbolic variables by substituting the
given values for some variables.

See Also
chol | eig | lu | svd

4 Functions — Alphabetical List

4-1474

Introduced in R2014a

 qr

4-1475

quorem
Quotient and remainder

Syntax
[Q,R] = quorem(A,B,var)
[Q,R] = quorem(A,B)

Description
[Q,R] = quorem(A,B,var) divides A by B and returns the quotient Q and remainder R
of the division, such that A = Q*B + R. This syntax regards A and B as polynomials in
the variable var.

If A and B are matrices, quorem performs elements-wise division, using var are a
variable. It returns the quotient Q and remainder R of the division, such that A = Q.*B +
R.

[Q,R] = quorem(A,B) uses the variable determined by symvar(A,1). If
symvar(A,1) returns an empty symbolic object sym([]), then quorem uses the variable
determined by symvar(B,1).

If both symvar(A,1) and symvar(B,1) are empty, then A and B must both be integers
or matrices with integer elements. In this case, quorem(A,B) returns symbolic integers
Q and R, such that A = Q*B + R. If A and B are matrices, then Q and R are symbolic
matrices with integer elements, such that A = Q.*B + R, and each element of R is
smaller in absolute value than the corresponding element of B.

Examples
Divide Multivariate Polynomials
Compute the quotient and remainder of the division of these multivariate polynomials
with respect to the variable y:

4 Functions — Alphabetical List

4-1476

syms x y
p1 = x^3*y^4 - 2*x*y + 5*x + 1;
p2 = x*y;
[q, r] = quorem(p1, p2, y)

q =
x^2*y^3 - 2

r =
5*x + 1

Divide Univariate Polynomials
Compute the quotient and remainder of the division of these univariate polynomials:

syms x
p = x^3 - 2*x + 5;
[q, r] = quorem(x^5, p)

q =
x^2 + 2

r =
- 5*x^2 + 4*x - 10

Divide Integers
Compute the quotient and remainder of the division of these integers:

[q, r] = quorem(sym(10)^5, sym(985))

q =
101

r =
515

Input Arguments
A — Dividend (numerator)
symbolic integer | polynomial | symbolic vector | symbolic matrix

 quorem

4-1477

Dividend (numerator), specified as a symbolic integer, polynomial, or a vector or matrix of
symbolic integers or polynomials.

B — Divisor (denominator)
symbolic integer | polynomial | symbolic vector | symbolic matrix

Divisor (denominator), specified as a symbolic integer, polynomial, or a vector or matrix of
symbolic integers or polynomials.

var — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

Output Arguments
Q — Quotient of the division
symbolic integer | symbolic expression | symbolic vector | symbolic matrix

Quotient of the division, returned as a symbolic integer, expression, or a vector or matrix
of symbolic integers or expressions.

R — Remainder of the division
symbolic integer | symbolic expression | symbolic vector | symbolic matrix

Remainder of the division, returned as a symbolic integer, expression, or a vector or
matrix of symbolic integers or expressions.

See Also
deconv | mod

Introduced before R2006a

4 Functions — Alphabetical List

4-1478

rank
Find rank of symbolic matrix

Syntax
rank(A)

Description
rank(A) returns the rank of symbolic matrix A.

Examples

Find Rank of Matrix
syms a b c d
A = [a b; c d];
rank(A)

ans =
 2

Rank of Symbolic Matrices Is Exact
Symbolic calculations return the exact rank of a matrix while numeric calculations can
suffer from round-off errors. This exact calculation is useful for ill-conditioned matrices,
such as the Hilbert matrix. The rank of a Hilbert matrix of order n is n.

Find the rank of the Hilbert matrix of order 15 numerically. Then convert the numeric
matrix to a symbolic matrix using sym and find the rank symbolically.

H = hilb(15);
rank(H)
rank(sym(H))

 rank

4-1479

ans =
 12
ans =
 15

The symbolic calculation returns the correct rank of 15. The numeric calculation returns
an incorrect rank of 12 due to round-off errors.

Rank Function Does Not Simplify Symbolic Calculations
Consider this matrix

A = 1− sin2 x cos2 x
1 1

.

After simplification of 1-sin(x)^2 to cos(x)^2, the matrix has a rank of 1. However,
rank returns an incorrect rank of 2 because it does not take into account identities
satisfied by special functions occurring in the matrix elements. Demonstrate the incorrect
result.

syms x
A = [1-sin(x) cos(x); cos(x) 1+sin(x)];
rank(A)

ans =
 2

rank returns an incorrect result because the outputs of intermediate steps are not
simplified. While there is no fail-safe workaround, you can simplify symbolic expressions
by using numeric substitution and evaluating the substitution using vpa.

Find the correct rank by substituting x with a number and evaluating the result using
vpa.

rank(vpa(subs(A,x,1)))

ans =
 1

However, even after numeric substitution, rank can return incorrect results due to round-
off errors.

4 Functions — Alphabetical List

4-1480

Input Arguments
A — Input
number | vector | matrix | symbolic number | symbolic vector | symbolic matrix

Input, specified as a number, vector, or matrix or a symbolic number, vector, or matrix.

See Also
eig | null | rref

Introduced before R2006a

 rank

4-1481

rdivide, ./
Symbolic array right division

Syntax
A./B
rdivide(A,B)

Description
A./B divides A by B.

rdivide(A,B) is equivalent to A./B.

Examples

Divide Scalar by Matrix
Create a 2-by-3 matrix.

B = sym('b', [2 3])

B =
[b1_1, b1_2, b1_3]
[b2_1, b2_2, b2_3]

Divide the symbolic expression sin(a) by each element of the matrix B.

syms a
sin(a)./B

ans =
[sin(a)/b1_1, sin(a)/b1_2, sin(a)/b1_3]
[sin(a)/b2_1, sin(a)/b2_2, sin(a)/b2_3]

4 Functions — Alphabetical List

4-1482

Divide Matrix by Matrix
Create a 3-by-3 symbolic Hilbert matrix and a 3-by-3 diagonal matrix.

H = sym(hilb(3))
d = diag(sym([1 2 3]))

H =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

d =
[1, 0, 0]
[0, 2, 0]
[0, 0, 3]

Divide d by H by using the elementwise right division operator .\. This operator divides
each element of the first matrix by the corresponding element of the second matrix. The
dimensions of the matrices must be the same.

d./H

ans =
[1, 0, 0]
[0, 6, 0]
[0, 0, 15]

Divide Expression by Symbolic Function
Divide a symbolic expression by a symbolic function. The result is a symbolic function.

syms f(x)
f(x) = x^2;
f1 = (x^2 + 5*x + 6)./f

f1(x) =
(x^2 + 5*x + 6)/x^2

 rdivide, ./

4-1483

Input Arguments
A — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array |
symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or
expression. Inputs A and B must be the same size unless one is a scalar. A scalar value
expands into an array of the same size as the other input.

B — Input
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array |
symbolic function | symbolic expression

Input, specified as a symbolic variable, vector, matrix, multidimensional array, function, or
expression. Inputs A and B must be the same size unless one is a scalar. A scalar value
expands into an array of the same size as the other input.

See Also
ctranspose | ldivide | minus | mldivide | mpower | mrdivide | mtimes | plus |
power | times | transpose

Introduced before R2006a

4 Functions — Alphabetical List

4-1484

read
(Not recommended) Read MuPAD program file into symbolic engine

Note read(symengine,...) is not recommended. Use equivalent Symbolic Math
Toolbox™ functions that replace MuPAD® functions instead. For more information, see
“Compatibility Considerations”.

Syntax
read(symengine,filename)

Description
read(symengine,filename) reads the MuPAD program file filename into the
symbolic engine. Reading a program file means finding and executing it.

Examples

Read MuPAD Program File into Symbolic Engine
Suppose you wrote the MuPAD procedure myProc and saved it in the file
myProcedure.mu.

 read

4-1485

Before you can call this procedure at the MATLAB Command Window, you must read the
file myProcedure.mu into the symbolic engine. To read a program file into the symbolic
engine, use read:

read(symengine, 'myProcedure.mu')

If the file is not on the MATLAB path, specify the full path to this file. For example, if
myProcedure.mu is in the MuPAD folder on disk C, enter:

read(symengine, 'C:/MuPAD/myProcedure.mu')

Now you can access the procedure myProc using evalin or feval. For example,
compute the factorial of 10:

feval(symengine, 'myProc', 10)

ans =
3628800

4 Functions — Alphabetical List

4-1486

Input Arguments
filename — name of a MuPAD program file
character vector

Name of a MuPAD program file, specified as a character vector. This file must have the
extension .mu or .gz.

Tips
• If you do not specify the file extension, read searches for the file filename.mu.
• If filename is a GNU® zip file with the extension .gz, read uncompresses it upon

reading.
• filename can include full or relative path information. If filename does not have a

path component, read uses the MATLAB function which to search for the file on the
MATLAB path.

• read ignores any MuPAD aliases defined in the program file. If your program file
contains aliases or uses the aliases predefined by MATLAB, see “Alternatives” on page
4-1487.

Alternatives
You also can use feval to call the MuPAD read function. The read function available
from the MATLAB Command Window is equivalent to calling the MuPAD read function
with the Plain option. It ignores any MuPAD aliases defined in the program file:

feval(symengine, 'read',' "myProcedure.mu" ', 'Plain')

If your program file contains aliases or uses the aliases predefined by MATLAB, do not
use Plain:

feval(symengine, 'read',' "myProcedure.mu" ')

 read

4-1487

Compatibility Considerations

read(symengine,...) is not recommended
Not recommended starting in R2018b

Symbolic Math Toolbox includes operations and functions for symbolic math expressions
that parallel MATLAB functionality for numeric values. Unlike MuPAD functionality,
Symbolic Math Toolbox functions enable you to work in familiar interfaces, such as the
MATLAB Command Window or Live Editor, which offer a smooth workflow and are
optimized for usability.

Therefore, instead of passing a MuPAD program file to read, enter the equivalent
Symbolic Math Toolbox functionality into the MATLAB command line or Live Editor to
work with symbolic math expressions. For a list of available functions, see Symbolic Math
Toolbox functions list.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook.

If you cannot find the Symbolic Math Toolbox equivalent for MuPAD functionality, contact
MathWorks Technical Support.

Although the use of read is not recommended, there are no plans to remove it at this
time.

Introduced in R2011b

4 Functions — Alphabetical List

4-1488

https://www.mathworks.com/support/contact_us.html

real
Real part of complex number

Syntax
real(z)

Description
real(z) returns the real part of z. If z is a matrix, real acts elementwise on z.

Examples

Compute Real Part of Numeric Inputs
Find the real parts of these numbers. Because these numbers are not symbolic objects,
you get floating-point results.

[real(2 + 3/2*i), real(sin(5*i)), real(2*exp(1 + i))]

ans =
 2.0000 0 2.9374

Compute Real Part of Symbolic Inputs
Compute the real parts of the numbers converted to symbolic objects:

[real(sym(2) + 3/2*i), real(4/(sym(1) + 3*i)), real(sin(sym(5)*i))]

ans =
[2, 2/5, 0]

Compute the real part of this symbolic expression:

real(2*exp(1 + sym(i)))

 real

4-1489

ans =
2*cos(1)*exp(1)

Compute Real Part of Symbolic Expressions
In general, real cannot extract the entire real parts from symbolic expressions
containing variables. However, real can rewrite and sometimes simplify the input
expression:

syms a x y
real(a + 2)
real(x + y*i)

ans =
real(a) + 2

ans =
real(x) - imag(y)

If you assign numeric values to these variables or specify that these variables are real,
real can extract the real part of the expression:

syms a
a = 5 + 3*i;
real(a + 2)

ans =
 7

syms x y real
real(x + y*i)

ans =
x

Clear the assumption that x and y are real by recreating them using syms:

syms x y

Compute Real Part for Matrix Input
Find the real parts of the elements of matrix A:

4 Functions — Alphabetical List

4-1490

syms x
A = [-1 + sym(i), sinh(x); exp(10 + sym(7)*i), exp(sym(pi)*i)];
real(A)

ans =
[-1, real(sinh(x))]
[cos(7)*exp(10), -1]

Input Arguments
z — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Tips
• Calling real for a number that is not a symbolic object invokes the MATLAB real

function.

Alternatives
You can compute the real part of z via the conjugate: real(z)= (z + conj(z))/2.

See Also
conj | imag | in | sign | signIm

Introduced before R2006a

 real

4-1491

rectangularPulse
Rectangular pulse function

Syntax
rectangularPulse(a,b,x)
rectangularPulse(x)

Description
rectangularPulse(a,b,x) returns the “Rectangular Pulse Function” on page 4-1496.

rectangularPulse(x) is a shortcut for rectangularPulse(-1/2,1/2,x).

Examples

Plot Rectangular Pulse Function

Plot the rectangular pulse function using fplot.

syms x
fplot(rectangularPulse(x), [-1 1])

4 Functions — Alphabetical List

4-1492

Compute Rectangular Pulse Function

Compute the rectangular pulse function for these numbers. Because these numbers are
not symbolic objects, you get floating-point results.

[rectangularPulse(-1, 1, -2)
 rectangularPulse(-1, 1, -1)
 rectangularPulse(-1, 1, 0)
 rectangularPulse(-1, 1, 1)
 rectangularPulse(-1, 1, 2)]

 rectangularPulse

4-1493

ans =
 0
 0.5000
 1.0000
 0.5000
 0

Compute the rectangular pulse function for the same numbers in symbolic form.

[rectangularPulse(sym(-1), 1, -2)
 rectangularPulse(-1, sym(1), -1)
 rectangularPulse(-1, 1, sym(0))
 rectangularPulse(sym(-1), 1, 1)
 rectangularPulse(sym(-1), 1, 2)]

ans =
 0
 1/2
 1
 1/2
 0

Edge Values of Rectangular Pulse

Show that if a < b, the rectangular pulse function for x = a and x = b equals 1/2.

syms a b x
assume(a < b)
rectangularPulse(a, b, a)
rectangularPulse(a, b, b)

ans =
1/2

ans =
1/2

For further computations, remove the assumptions on the variables by recreating them
using syms:

syms a b

For a = b, the rectangular pulse function returns 0:

4 Functions — Alphabetical List

4-1494

syms a x
rectangularPulse(a, a, x)

ans =
0

Fixed Rectangular Pulse of Width 1

Compute a rectangular pulse of width by using rectangularPulse(x). This call is
equal to rectangularPulse(-1/2, 1/2, x).

syms x
rectangularPulse(x)

ans =
rectangularPulse(-1/2, 1/2, x)

[rectangularPulse(sym(-1))
 rectangularPulse(sym(-1/2))
 rectangularPulse(sym(0))
 rectangularPulse(sym(1/2))
 rectangularPulse(sym(1))]

ans =
 0
 1/2
 1
 1/2
 0

Relation Between Heaviside and Rectangular Pulse

When the rising or falling edge of rectangularPulse is Inf, then the result is in terms
of heaviside.

syms x
rectangularPulse(-inf, 0, x)
rectangularPulse(0, inf, x)
rectangularPulse(-inf, inf, x)

ans =
heaviside(-x)

 rectangularPulse

4-1495

ans =
heaviside(x)

ans =
1

Input Arguments
a — Input
-1/2 (default) | number | symbolic scalar

Input, specified as a number or a symbolic scalar. This argument specifies the rising edge
of the rectangular pulse function.

b — Input
-1/2 (default) | number | symbolic scalar

Input, specified as a number or a symbolic scalar. This argument specifies the falling edge
of the rectangular pulse function.

x — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Definitions

Rectangular Pulse Function
• If a < x < b, then the rectangular pulse function equals 1.
• If x = a or x = b and a <> b, then the rectangular pulse function equals 1/2.
• Otherwise, it equals 0.

The rectangular pulse function is also called the rectangle function, boxcar function, Pi
function, or gate function.

4 Functions — Alphabetical List

4-1496

Tips
• If a and b are variables or expressions with variables, rectangularPulse assumes

that a < b. If a and b are numerical values, such that a > b, rectangularPulse
throws an error.

• If a = b, rectangularPulse returns 0.

See Also
dirac | heaviside | triangularPulse

Introduced in R2012b

 rectangularPulse

4-1497

reduceDAEIndex
Convert system of first-order differential algebraic equations to equivalent system of
differential index 1

Syntax
[newEqs,newVars] = reduceDAEIndex(eqs,vars)
[newEqs,newVars,R] = reduceDAEIndex(eqs,vars)
[newEqs,newVars,R,oldIndex] = reduceDAEIndex(eqs,vars)

Description
[newEqs,newVars] = reduceDAEIndex(eqs,vars) converts a high-index system of
first-order differential algebraic equations eqs to an equivalent system newEqs of
differential index 1.

reduceDAEIndex keeps the original equations and variables and introduces new
variables and equations. After conversion, reduceDAEIndex checks the differential index
of the new system by calling isLowIndexDAE. If the index of newEqs is 2 or higher, then
reduceDAEIndex issues a warning.

[newEqs,newVars,R] = reduceDAEIndex(eqs,vars) returns matrix R that
expresses the new variables in newVars as derivatives of the original variables vars.

[newEqs,newVars,R,oldIndex] = reduceDAEIndex(eqs,vars) returns the
differential index, oldIndex, of the original system of DAEs, eqs.

Examples

Reduce Differential Index of DAE System
Check if the following DAE system has a low (0 or 1) or high (>1) differential index. If the
index is higher than 1, then use reduceDAEIndex to reduce it.

4 Functions — Alphabetical List

4-1498

Create the following system of two differential algebraic equations. Here, the symbolic
functions x(t), y(t), and z(t) represent the state variables of the system. Specify the
equations and variables as two symbolic vectors: equations as a vector of symbolic
equations, and variables as a vector of symbolic function calls.

syms x(t) y(t) z(t) f(t)
eqs = [diff(x) == x + z, diff(y) == f(t), x == y];
vars = [x(t), y(t), z(t)];

Use isLowIndexDAE to check the differential index of the system. For this system,
isLowIndexDAE returns 0 (false). This means that the differential index of the system
is 2 or higher.

isLowIndexDAE(eqs, vars)

ans =
 logical
 0

Use reduceDAEIndex to rewrite the system so that the differential index is 1. The new
system has one additional state variable, Dyt(t).

[newEqs, newVars] = reduceDAEIndex(eqs, vars)

newEqs =
 diff(x(t), t) - z(t) - x(t)
 Dyt(t) - f(t)
 x(t) - y(t)
 diff(x(t), t) - Dyt(t)

newVars =
 x(t)
 y(t)
 z(t)
 Dyt(t)

Check if the differential order of the new system is lower than 2.

isLowIndexDAE(newEqs, newVars)

ans =
 logical
 1

 reduceDAEIndex

4-1499

Reduce the Index and Return More Details
Reduce the differential index of a system that contains two second-order differential
algebraic equation. Because the equations are second-order equations, first use
reduceDifferentialOrder to rewrite the system to a system of first-order DAEs.

Create the following system of two second-order DAEs. Here, x(t), y(t), and F(t) are
the state variables of the system. Specify the equations and variables as two symbolic
vectors: equations as a vector of symbolic equations, and variables as a vector of symbolic
function calls.

syms t x(t) y(t) F(t) r g
eqs = [diff(x(t), t, t) == -F(t)*x(t),...
 diff(y(t), t, t) == -F(t)*y(t) - g,...
 x(t)^2 + y(t)^2 == r^2];
vars = [x(t), y(t), F(t)];

Rewrite this system so that all equations become first-order differential equations. The
reduceDifferentialOrder function replaces the second-order DAE by two first-order
expressions by introducing the new variables Dxt(t) and Dyt(t). It also replaces the
first-order equations by symbolic expressions.

[eqs, vars] = reduceDifferentialOrder(eqs, vars)

eqs =
 diff(Dxt(t), t) + F(t)*x(t)
 diff(Dyt(t), t) + g + F(t)*y(t)
 - r^2 + x(t)^2 + y(t)^2
 Dxt(t) - diff(x(t), t)
 Dyt(t) - diff(y(t), t)

vars =
 x(t)
 y(t)
 F(t)
 Dxt(t)
 Dyt(t)

Use reduceDAEIndex to rewrite the system so that the differential index is 1.

[eqs, vars, R, originalIndex] = reduceDAEIndex(eqs, vars)

eqs =
 Dxtt(t) + F(t)*x(t)

4 Functions — Alphabetical List

4-1500

 g + Dytt(t) + F(t)*y(t)
 - r^2 + x(t)^2 + y(t)^2
 Dxt(t) - Dxt1(t)
 Dyt(t) - Dyt1(t)
 2*Dxt1(t)*x(t) + 2*Dyt1(t)*y(t)
 2*Dxt1t(t)*x(t) + 2*Dxt1(t)^2 + 2*Dyt1(t)^2 + 2*y(t)*diff(Dyt1(t), t)
 Dxtt(t) - Dxt1t(t)
 Dytt(t) - diff(Dyt1(t), t)
 Dyt1(t) - diff(y(t), t)

vars =
 x(t)
 y(t)
 F(t)
 Dxt(t)
 Dyt(t)
 Dytt(t)
 Dxtt(t)
 Dxt1(t)
 Dyt1(t)
 Dxt1t(t)

R =
[Dytt(t), diff(Dyt(t), t)]
[Dxtt(t), diff(Dxt(t), t)]
[Dxt1(t), diff(x(t), t)]
[Dyt1(t), diff(y(t), t)]
[Dxt1t(t), diff(x(t), t, t)]

originalIndex =
 3

Use reduceRedundancies to shorten the system.

[eqs, vars] = reduceRedundancies(eqs, vars)

eqs =
 Dxtt(t) + F(t)*x(t)
 g + Dytt(t) + F(t)*y(t)
 - r^2 + x(t)^2 + y(t)^2
 2*Dxt(t)*x(t) + 2*Dyt(t)*y(t)
 2*Dxtt(t)*x(t) + 2*Dytt(t)*y(t) + 2*Dxt(t)^2 + 2*Dyt(t)^2
 Dytt(t) - diff(Dyt(t), t)
 Dyt(t) - diff(y(t), t)

 reduceDAEIndex

4-1501

vars =
 x(t)
 y(t)
 F(t)
 Dxt(t)
 Dyt(t)
 Dytt(t)
 Dxtt(t)

Input Arguments
eqs — System of first-order DAEs
vector of symbolic equations | vector of symbolic expressions

System of first-order DAEs, specified as a vector of symbolic equations or expressions.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as x(t).
Example: [x(t),y(t)]

Output Arguments
newEqs — System of first-order DAEs of differential index 1
column vector of symbolic expressions

System of first-order DAEs of differential index 1, returned as a column vector of symbolic
expressions.

newVars — Extended set of variables
column vector of symbolic function calls

Extended set of variables, returned as a column vector of symbolic function calls. This
vector includes the original state variables vars followed by the generated variables that
replace the second- and higher-order derivatives in eqs.

R — Relations between new and original variables
symbolic matrix

4 Functions — Alphabetical List

4-1502

Relations between new and original variables, returned as a symbolic matrix with two
columns. The first column contains the new variables. The second column contains their
definitions as derivatives of the original variables vars.

oldIndex — Differential index of original DAE system
integer

Differential index of original DAE system, returned as an integer or NaN.

Algorithms
The implementation of reduceDAEIndex uses the Pantelides algorithm. This algorithm
reduces higher-index systems to lower-index systems by selectively adding differentiated
forms of the original equations. The Pantelides algorithm can underestimate the
differential index of a new system, and therefore, can fail to reduce the differential index
to 1. In this case, reduceDAEIndex issues a warning and, for the syntax with four output
arguments, returns the value of oldIndex as NaN. The reduceDAEToODE function uses
more reliable, but slower Gaussian elimination. Note that reduceDAEToODE requires the
DAE system to be semilinear.

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix |
isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEToODE |
reduceDifferentialOrder | reduceRedundancies

Topics
“Solve Differential Algebraic Equations (DAEs)” on page 2-203

Introduced in R2014b

 reduceDAEIndex

4-1503

reduceDAEToODE
Convert system of first-order semilinear differential algebraic equations to equivalent
system of differential index 0

Syntax
newEqs = reduceDAEToODE(eqs,vars)
[newEqs,constraintEqs] = reduceDAEToODE(eqs,vars)
[newEqs,constraintEqs,oldIndex] = reduceDAEToODE(eqs,vars)

Description
newEqs = reduceDAEToODE(eqs,vars) converts a high-index system of first-order
semilinear algebraic equations eqs to an equivalent system of ordinary differential
equations, newEqs. The differential index of the new system is 0, that is, the Jacobian of
newEqs with respect to the derivatives of the variables in vars is invertible.

[newEqs,constraintEqs] = reduceDAEToODE(eqs,vars) returns a vector of
constraint equations.

[newEqs,constraintEqs,oldIndex] = reduceDAEToODE(eqs,vars) returns the
differential index oldIndex of the original system of semilinear DAEs, eqs.

Examples
Convert DAE System to Implicit ODE System
Convert a system of differential algebraic equations (DAEs) to a system of implicit
ordinary differential equations (ODEs).

Create the following system of two differential algebraic equations. Here, the symbolic
functions x(t), y(t), and z(t) represent the state variables of the system. Specify the
equations and variables as two symbolic vectors: equations as a vector of symbolic
equations, and variables as a vector of symbolic function calls.

4 Functions — Alphabetical List

4-1504

syms x(t) y(t) z(t)
eqs = [diff(x,t)+x*diff(y,t) == y,...
 x*diff(x, t)+x^2*diff(y) == sin(x),...
 x^2 + y^2 == t*z];
vars = [x(t), y(t), z(t)];

Use reduceDAEToODE to rewrite the system so that the differential index is 0.

newEqs = reduceDAEToODE(eqs, vars)

newEqs =
 x(t)*diff(y(t), t) - y(t) + diff(x(t), t)
 diff(x(t), t)*(cos(x(t)) - y(t)) - x(t)*diff(y(t), t)
 z(t) - 2*x(t)*diff(x(t), t) - 2*y(t)*diff(y(t), t) + t*diff(z(t), t)

Reduce System and Return More Details
Check if the following DAE system has a low (0 or 1) or high (>1) differential index. If the
index is higher than 1, first try to reduce the index by using reduceDAEIndex and then
by using reduceDAEToODE.

Create the system of differential algebraic equations. Here, the functions x1(t), x2(t),
and x3(t) represent the state variables of the system. The system also contains the
functions q1(t), q2(t), and q3(t). These functions do not represent state variables.
Specify the equations and variables as two symbolic vectors: equations as a vector of
symbolic equations, and variables as a vector of symbolic function calls.

syms x1(t) x2(t) x3(t) q1(t) q2(t) q3(t)
eqs = [diff(x2) == q1 - x1,
 diff(x3) == q2 - 2*x2 - t*(q1-x1),
 q3 - t*x2 - x3];
vars = [x1(t), x2(t), x3(t)];

Use isLowIndexDAE to check the differential index of the system. For this system,
isLowIndexDAE returns 0 (false). This means that the differential index of the system
is 2 or higher.

isLowIndexDAE(eqs, vars)

ans =
 logical
 0

 reduceDAEToODE

4-1505

Use reduceDAEIndex as your first attempt to rewrite the system so that the differential
index is 1. For this system, reduceDAEIndex issues a warning because it cannot reduce
the differential index of the system to 0 or 1.

[newEqs, newVars] = reduceDAEIndex(eqs, vars)

Warning: Index of reduced DAEs is larger than 1.

newEqs =
 x1(t) - q1(t) + diff(x2(t), t)
 Dx3t(t) - q2(t) + 2*x2(t) + t*(q1(t) - x1(t))
 q3(t) - x3(t) - t*x2(t)
 diff(q3(t), t) - x2(t) - t*diff(x2(t), t) - Dx3t(t)

newVars =
 x1(t)
 x2(t)
 x3(t)
 Dx3t(t)

If reduceDAEIndex cannot reduce the semilinear system so that the index is 0 or 1, try
using reduceDAEToODE. This function can be much slower, therefore it is not
recommended as a first choice. Use the syntax with two output arguments to also return
the constraint equations.

[newEqs, constraintEqs] = reduceDAEToODE(eqs, vars)

newEqs =
 x1(t) - q1(t) + diff(x2(t), t)
 2*x2(t) - q2(t) + t*q1(t) - t*x1(t) + diff(x3(t), t)
 diff(x1(t), t) - diff(q1(t), t) + diff(q2(t), t, t) - diff(q3(t), t, t, t)

constraintEqs =
 x1(t) - q1(t) + diff(q2(t), t) - diff(q3(t), t, t)
 x3(t) - q3(t) + t*x2(t)
 x2(t) - q2(t) + diff(q3(t), t)

Use the syntax with three output arguments to return the new equations, constraint
equations, and the differential index of the original system, eqs.

[newEqs, constraintEqs, oldIndex] = reduceDAEToODE(eqs, vars)

newEqs =
 x1(t) - q1(t) + diff(x2(t), t)
 2*x2(t) - q2(t) + t*q1(t) - t*x1(t) + diff(x3(t), t)

4 Functions — Alphabetical List

4-1506

 diff(x1(t), t) - diff(q1(t), t) + diff(q2(t), t, t) - diff(q3(t), t, t, t)

constraintEqs =
 x1(t) - q1(t) + diff(q2(t), t) - diff(q3(t), t, t)
 x3(t) - q3(t) + t*x2(t)
 x2(t) - q2(t) + diff(q3(t), t)

oldIndex =
 3

Input Arguments
eqs — System of first-order semilinear DAEs
vector of symbolic equations | vector of symbolic expressions

System of first-order semilinear DAEs, specified as a vector of symbolic equations or
expressions.

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as x(t).
Example: [x(t),y(t)] or [x(t);y(t)]

Output Arguments
newEqs — System of implicit ordinary differential equations
column vector of symbolic expressions

System of implicit ordinary differential equations, returned as a column vector of
symbolic expressions. The differential index of this system is 0.

constraintEqs — Constraint equations encountered during system reduction
column vector of symbolic expressions

Constraint equations encountered during system reduction, returned as a column vector
of symbolic expressions. These expressions depend on the variables vars, but not on
their derivatives. The constraints are conserved quantities of the differential equations in
newEqs, meaning that the time derivative of each constraint vanishes modulo the
equations in newEqs.

 reduceDAEToODE

4-1507

You can use these equations to determine consistent initial conditions for the DAE system.

oldIndex — Differential index of original DAE system eqs
integer

Differential index of original DAE system eqs, returned as an integer.

Algorithms
The implementation of reduceDAEToODE is based on Gaussian elimination. This
algorithm is more reliable than the Pantelides algorithm used by reduceDAEIndex, but it
can be much slower.

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix |
isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEIndex |
reduceDifferentialOrder | reduceRedundancies

Topics
“Solve Semilinear DAE System” on page 2-215

Introduced in R2014b

4 Functions — Alphabetical List

4-1508

reduceDifferentialOrder
Reduce system of higher-order differential equations to equivalent system of first-order
differential equations

Syntax
[newEqs,newVars] = reduceDifferentialOrder(eqs,vars)
[newEqs,newVars,R] = reduceDifferentialOrder(eqs,vars)

Description
[newEqs,newVars] = reduceDifferentialOrder(eqs,vars) rewrites a system of
higher-order differential equations eqs as a system of first-order differential equations
newEqs by substituting derivatives in eqs with new variables. Here, newVars consists of
the original variables vars augmented with these new variables.

[newEqs,newVars,R] = reduceDifferentialOrder(eqs,vars) returns the matrix
R that expresses the new variables in newVars as derivatives of the original variables
vars.

Examples

Reduce Differential Order of DAE System
Reduce a system containing higher-order DAEs to a system containing only first-order
DAEs.

Create the system of differential equations, which includes a second-order expression.
Here, x(t) and y(t) are the state variables of the system, and c1 and c2 are
parameters. Specify the equations and variables as two symbolic vectors: equations as a
vector of symbolic equations, and variables as a vector of symbolic function calls.

syms x(t) y(t) c1 c2
eqs = [diff(x(t), t, t) + sin(x(t)) + y(t) == c1*cos(t),...

 reduceDifferentialOrder

4-1509

 diff(y(t), t) == c2*x(t)];
vars = [x(t), y(t)];

Rewrite this system so that all equations become first-order differential equations. The
reduceDifferentialOrder function replaces the higher-order DAE by first-order
expressions by introducing the new variable Dxt(t). It also represents all equations as
symbolic expressions.

[newEqs, newVars] = reduceDifferentialOrder(eqs, vars)

newEqs =
 diff(Dxt(t), t) + sin(x(t)) + y(t) - c1*cos(t)
 diff(y(t), t) - c2*x(t)
 Dxt(t) - diff(x(t), t)

newVars =
 x(t)
 y(t)
 Dxt(t)

Show Relations Between Generated and Original Variables
Reduce a system containing a second- and a third-order expression to a system containing
only first-order DAEs. In addition, return a matrix that expresses the variables generated
by reduceDifferentialOrder via the original variables of this system.

Create a system of differential equations, which includes a second- and a third-order
expression. Here, x(t) and y(t) are the state variables of the system. Specify the
equations and variables as two symbolic vectors: equations as a vector of symbolic
equations, and variables as a vector of symbolic function calls.

syms x(t) y(t) f(t)
eqs = [diff(x(t),t,t) == diff(f(t),t,t,t), diff(y(t),t,t,t) == diff(f(t),t,t)];
vars = [x(t), y(t)];

Call reduceDifferentialOrder with three output arguments. This syntax returns
matrix R with two columns: the first column contains the new variables, and the second
column expresses the new variables as derivatives of the original variables, x(t) and
y(t).

[newEqs, newVars, R] = reduceDifferentialOrder(eqs, vars)

newEqs =
 diff(Dxt(t), t) - diff(f(t), t, t, t)

4 Functions — Alphabetical List

4-1510

 diff(Dytt(t), t) - diff(f(t), t, t)
 Dxt(t) - diff(x(t), t)
 Dyt(t) - diff(y(t), t)
 Dytt(t) - diff(Dyt(t), t)

newVars =
 x(t)
 y(t)
 Dxt(t)
 Dyt(t)
 Dytt(t)

R =
[Dxt(t), diff(x(t), t)]
[Dyt(t), diff(y(t), t)]
[Dytt(t), diff(y(t), t, t)]

Input Arguments
eqs — System containing higher-order differential equations
vector of symbolic equations | vector of symbolic expressions

System containing higher-order differential equations, specified as a vector of symbolic
equations or expressions.

vars — Variables of original differential equations
vector of symbolic functions | vector of symbolic function calls

Variables of original differential equations, specified as a vector of symbolic functions, or
function calls, such as x(t).
Example: [x(t),y(t)]

Output Arguments
newEqs — System of first-order differential equations
column vector of symbolic expressions

System of first-order differential equations, returned as a column vector of symbolic
expressions.

 reduceDifferentialOrder

4-1511

newVars — Extended set of variables
column vector of symbolic function calls

Extended set of variables, returned as a column vector of symbolic function calls. This
vector includes the original state variables vars followed by the generated variables that
replace the higher-order derivatives in eqs.

R — Relations between new and original variables
symbolic matrix

Relations between new and original variables, returned as a symbolic matrix with two
columns. The first column contains the new variables newVars. The second column
contains their definition as derivatives of the original variables vars.

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix |
isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEIndex |
reduceDAEToODE | reduceRedundancies

Topics
“Solve Differential Algebraic Equations (DAEs)” on page 2-203

Introduced in R2014b

4 Functions — Alphabetical List

4-1512

reduceRedundancies
Simplify system of first-order differential algebraic equations by eliminating redundant
equations and variables

Syntax
[newEqs,newVars] = reduceRedundancies(eqs,vars)
[newEqs,newVars,R] = reduceRedundancies(eqs,vars)

Description
[newEqs,newVars] = reduceRedundancies(eqs,vars) eliminates redundant
equations and variables from the system of first-order differential algebraic equations
(DAEs) eqs. The input argument vars specifies the state variables of the system.

reduceRedundancies returns the new DAE system as a column vector newEqs and the
reduced state variables as a column vector newVars. Each element of newEqs represents
an equation with right side equal to zero.

[newEqs,newVars,R] = reduceRedundancies(eqs,vars) returns a structure array
R containing information on the eliminated equations and variables.

Examples

Reduce DAE System by Removing Redundant Equations

Simplify a system of five differential algebraic equations (DAEs) in four state variables to
a system of two equations in two state variables.

Create the following system of five DAEs in four state variables x1(t), x2(t), x3(t),
and x4(t). The system also contains symbolic parameters a1, a2, a3, a4, b, c, and the
function f(t) that are not state variables.

syms x1(t) x2(t) x3(t) x4(t) a1 a2 a3 a4 b c f(t)
eqs = [a1*diff(x1(t),t)+a2*diff(x2(t),t) == b*x4(t),

 reduceRedundancies

4-1513

 a3*diff(x2(t),t)+a4*diff(x3(t),t) == c*x4(t),
 x1(t) == 2*x2(t),
 x4(t) == f(t),
 f(t) == sin(t)];
vars = [x1(t),x2(t),x3(t),x4(t)];

Use reduceRedundancies to eliminate redundant equations and corresponding state
variables.

[newEqs,newVars] = reduceRedundancies(eqs,vars)

newEqs =

a1
∂
∂t x1 t + 0.5000 a2

∂
∂t x1 t − b f t

0.5000 a3
∂
∂t x1 t + a4

∂
∂t x3 t − c f t

newVars =
x1 t
x3 t

Specify Input Order of State Variables

Specify input order of the state variables to choose which variables are being returned
when eliminating DAEs.

Create a system of four DAEs in four state variables V_ac(t), V1(t), V2(t), and I(t).
The system also contains symbolic parameters L, R, and V0.

syms V_ac(t) V1(t) V2(t) I(t) L R V0
eqs = [V_ac(t) == V1(t) + V2(t),
 V1(t) == I(t)*R,
 V2(t) == L*diff(I(t),t),
 V_ac(t) == V0*cos(t)]

eqs =
Vac t = V1 t + V2 t

V1 t = R I t

V2 t = L ∂
∂t I t

Vac t = V0 cos t

4 Functions — Alphabetical List

4-1514

vars = [V_ac(t),I(t),V1(t),V2(t)]

vars = Vac t I t V1 t V2 t

Use reduceRedundancies to eliminate redundant equations and variables.
reduceRedundancies prioritizes to keep the state variables in the vector vars starting
from the first element.

[newEqs,newVars] = reduceRedundancies(eqs,vars)

newEqs =

−L ∂
∂t I t − R I t + V0 cos t

newVars = I t

Here, reduceRedundancies returns a reduced equation in term of the variable I(t).

When multiple ways of reducing the DAEs exist, specify a different input order of the
state variables to choose which variables are being returned. Specify another vector that
contains a different order of the state variables. Eliminate the DAEs again.

vars2 = [V_ac(t),V1(t),V2(t),I(t)]

vars2 = Vac t V1 t V2 t I t

[newEqs,newVars] = reduceRedundancies(eqs,vars2)

newEqs =

−
L ∂
∂t V1 t + R V1 t − R V0 cos t

R

newVars = V1 t

Here, reduceRedundancies returns a reduced equation in term of the state variable
V1(t).

Obtain Information About Eliminated Equations

Declare three output arguments when calling reduceRedundancies to simplify a system
of equations and return information about the eliminated equations.

 reduceRedundancies

4-1515

Create the following system of five differential algebraic equations (DAEs) in four state
variables x1(t), x2(t), x3(t), and x4(t). The system also contains symbolic
parameters a1, a2, a3, a4, b, c, and the function f(t) that are not state variables.

syms x1(t) x2(t) x3(t) x4(t) a1 a2 a3 a4 b c f(t)
eqs = [a1*diff(x1(t),t)+a2*diff(x2(t),t) == b*x4(t),
 a3*diff(x2(t),t)+a4*diff(x3(t),t) == c*x4(t),
 x1(t) == 2*x2(t),
 x4(t) == f(t),
 f(t) == sin(t)];
vars = [x1(t),x2(t),x3(t),x4(t)];

Call reduceRedundancies with three output arguments.

[newEqs,newVars,R] = reduceRedundancies(eqs,vars)

newEqs =

a1
∂
∂t x1 t +

a2
∂
∂t x1 t

2 − b f t

a3
∂
∂t x1 t

2 + a4
∂
∂t x3 t − c f t

newVars =
x1 t
x3 t

R = struct with fields:
 solvedEquations: [2x1 sym]
 constantVariables: [1x2 sym]
 replacedVariables: [1x2 sym]
 otherEquations: [1x1 sym]

The function reduceRedundancies returns information about eliminated equations to R.
Here, R is a structure array with four fields.

The solvedEquations field contains the equations that are eliminated by
reduceRedundancies. The eliminated equations contain those state variables from
vars that do not appear in newEqs. The right side of each eliminated equation is equal to
zero.

R1 = R.solvedEquations

4 Functions — Alphabetical List

4-1516

R1 =
x1 t − 2 x2 t

x4 t − f t

The constantVariables field contains a matrix with two columns. The first column
contains those state variables from vars that reduceRedundancies replaced by
constant values. The second column contains the corresponding constant values.

R2 = R.constantVariables

R2 = x4 t f t

The replacedVariables field contains a matrix with two columns. The first column
contains those state variables from vars that reduceRedundancies replaced by
expressions in terms of other variables. The second column contains the corresponding
values of the eliminated variables.

R3 = R.replacedVariables

R3 =

x2 t
x1 t

2

The otherEquations field contains those equations from eqs that do not contain any of
the state variables vars.

R4 = R.otherEquations

R4 = f t − sin t

Input Arguments
eqs — System of first-order DAEs
vector of symbolic equations | vector of symbolic expressions

System of first-order DAEs, specified as a vector of symbolic equations or expressions.

The relation operator == defines symbolic equations. If you specify the element of eqs as
a symbolic expression without a right side, then a symbolic equation with right side equal
to zero is assumed.

 reduceRedundancies

4-1517

vars — State variables
vector of symbolic functions | vector of symbolic function calls

State variables, specified as a vector of symbolic functions or function calls, such as x(t).

The input order of the state variables determines which reduced variables are being
returned. If multiple ways of reducing the DAEs exist, then reduceRedundancies
prioritizes to keep the state variables in vars starting from the first element.
Example: [x(t),z(t),y(t)]

Output Arguments
newEqs — System of first-order DAEs
column vector of symbolic expressions

System of first-order DAEs, returned as a column vector of symbolic expressions. Each
element of newEqs represents an equation with right side equal to zero.

newVars — Reduced set of variables
column vector of symbolic function calls

Reduced set of variables, returned as a column vector of symbolic function calls.

R — Information about eliminated variables
structure array

Information about eliminated variables, returned as a structure array containing four
fields. To access this information, use:

• R.solvedEquations to return a symbolic column vector of all equations that
reduceRedundancies used to replace those state variables that do not appear in
newEqs.

• R.constantVariables to return a matrix with the following two columns. The first
column contains those original state variables of the vector vars that were eliminated
and replaced by constant values. The second column contains the corresponding
constant values.

• R.replacedVariables to return a matrix with the following two columns. The first
column contains those original state variables of the vector vars that were eliminated
and replaced in terms of other variables. The second column contains the
corresponding values of the eliminated variables.

4 Functions — Alphabetical List

4-1518

• R.otherEquations to return a column vector containing all original equations eqs
that do not contain any of the input variables vars.

See Also
daeFunction | decic | findDecoupledBlocks | incidenceMatrix |
isLowIndexDAE | massMatrixForm | odeFunction | reduceDAEIndex |
reduceDAEToODE | reduceDifferentialOrder

Topics
“Solve Differential Algebraic Equations (DAEs)” on page 2-203

Introduced in R2014b

 reduceRedundancies

4-1519

rem
Remainder after division

Syntax
rem(a,b)

Description
rem(a,b) finds the remainder after division. If b <> 0, then rem(a,b) = a - fix(a/
b)*b. If b = 0 or b = Inf or b = -Inf, then rem returns NaN.

The rem function does not support complex numbers: all values must be real numbers.

To find the remainder after division of polynomials, use quorem.

Examples
Divide Integers by Integers
Find the remainder after division in case both the dividend and divisor are integers.

Find the modulus after division for these numbers.

[rem(sym(27), 4), rem(sym(27), -4), rem(sym(-27), 4), rem(sym(-27), -4)]

ans =
[3, 3, -3, -3]

Divide Rationals by Integers
Find the remainder after division in case the dividend is a rational number, and the
divisor is an integer.

Find the remainder after division for these numbers.

4 Functions — Alphabetical List

4-1520

[rem(sym(22/3), 5), rem(sym(1/2), -7), rem(sym(27/6), -11)]

ans =
[7/3, 1/2, 9/2]

Divide Elements of Matrices
For vectors and matrices, rem finds the remainder after division element-wise. Nonscalar
arguments must be the same size.

Find the remainder after division for the elements of these two matrices.

A = sym([27, 28; 29, 30]);
B = sym([2, 3; 4, 5]);
rem(A,B)

ans =
[1, 1]
[1, 0]

Find the remainder after division for the elements of matrix A and the value 9. Here, rem
expands 9 into the 2-by-2 matrix with all elements equal to 9.

rem(A,9)

ans =
[0, 1]
[2, 3]

Input Arguments
a — Dividend (numerator)
number | symbolic number | vector | matrix

Dividend (numerator), specified as a number, symbolic number, or a vector or matrix of
numbers or symbolic numbers.

b — Divisor (denominator)
number | symbolic number | vector | matrix

Divisor (denominator), specified as a number, symbolic number, or a vector or matrix of
numbers or symbolic numbers.

 rem

4-1521

Tips
• Calling rem for numbers that are not symbolic objects invokes the MATLAB rem

function.
• All nonscalar arguments must be the same size. If one input arguments is nonscalar,

then mod expands the scalar into a vector or matrix of the same size as the nonscalar
argument, with all elements equal to the corresponding scalar.

See Also
mod | quorem

Introduced before R2006a

4 Functions — Alphabetical List

4-1522

removeUnit
Remove unit

Syntax
removeUnit(unit)

Description
removeUnit(unit) removes the symbolic unit unit. You can remove only user-defined
units created with newUnit. You cannot remove predefined units. If unit is a vector,
removeUnit removes all units in unit.

Examples

Remove Unit

Remove units you define by using removeUnit. Create the unit warp3, use the unit in
calculations, and then remove the unit.

Define the unit warp3 as 3 times the speed of light.

u = symunit;
warp3 = newUnit('warp3',3*u.c_0)

warp3 =
[warp3]

Convert 1e10 meter per second to u.warp3.

speed = rewrite(1e10*u.m/u.s,u.warp3)

speed =
(5000000000/449688687)*[warp3]

 removeUnit

4-1523

After calculations, remove the unit u.warp3 by using removeUnit.

removeUnit(u.warp3)

Conversion to u.warp3 now throws an error.

Input Arguments
unit — Unit name
symbolic unit | vector of symbolic units

Unit name, specified as a symbolic unit or a vector of symbolic units.

See Also
checkUnits | isUnit | newUnit | newUnitSystem | symunit

Topics
“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

External Websites
The International System of Units (SI)

Introduced in R2017b

4 Functions — Alphabetical List

4-1524

https://www.bipm.org/en/publications/si-brochure/

reset
(Not recommended) Close MuPAD engine

Note reset(symengine) is not recommended. Call clear all instead. For more
information, see “Compatibility Considerations”.

Syntax
reset(symengine)

Description
reset(symengine) closes the MuPAD engine associated with the MATLAB workspace,
and resets all its assumptions. Immediately before or after executing
reset(symengine) you should clear all symbolic objects in the MATLAB workspace.

Compatibility Considerations

reset(symengine) is not recommended
Not recommended starting in R2018b

To update your code, replace any instance of reset(symengine) with clear all. The
clear all call closes the MuPAD engine associated with the MATLAB Workspace, resets
all associated assumptions, and removes all variables, including symbolic objects, from
the MATLAB Workspace.

Although the use of reset is not recommended, there are no plans to remove it at this
time.

Introduced in R2008b

 reset

4-1525

reshape
Reshape symbolic array

Syntax
reshape(A,n1,n2)
reshape(A,n1,...,nM)
reshape(A,...,[],...)
reshape(A,sz)

Description
reshape(A,n1,n2) returns the n1-by-n2 matrix, which has the same elements as A. The
elements are taken column-wise from A to fill in the elements of the n1-by-n2 matrix.

reshape(A,n1,...,nM) returns the n1-by-...-by-nM array, which has the same
elements as A. The elements are taken column-wise from A to fill in the elements of the
n1-by-...-by-nM array.

reshape(A,...,[],...) lets you represent a size value with the placeholder [] while
calculating the magnitude of that size value automatically. For example, if A has size 2-
by-6, then reshape(A,4,[]) returns a 4-by-3 array.

reshape(A,sz) reshapes A into an array with size specified by sz, where sz is a vector.

Examples

Reshape Symbolic Row Vector into Column Vector
Reshape V, which is a 1-by-4 row vector, into the 4-by-1 column vector Y. Here, V and Y
must have the same number of elements.

Create the vector V.

4 Functions — Alphabetical List

4-1526

syms f(x) y
V = [3 f(x) -4 y]

V =
[3, f(x), -4, y]

Reshape V into Y.

Y = reshape(V,4,1)

Y =
 3
f(x)
 -4
 y

Alternatively, use Y = V.' where .' is the nonconjugate transpose.

Reshape Symbolic Matrix
Reshape the 2-by-6 symbolic matrix M into a 4-by-3 matrix.

M = sym([1 9 4 3 0 1; 3 9 5 1 9 2])
N = reshape(M,4,3)

M =
[1, 9, 4, 3, 0, 1]
[3, 9, 5, 1, 9, 2]

N =
[1, 4, 0]
[3, 5, 9]
[9, 3, 1]
[9, 1, 2]

M and N must have the same number of elements. reshape reads M column-wise to fill in
the elements of N column-wise.

Alternatively, use a size vector to specify the dimensions of the reshaped matrix.

sz = [4 3];
N = reshape(M,sz)

N =
[1, 4, 0]

 reshape

4-1527

[3, 5, 9]
[9, 3, 1]
[9, 1, 2]

Automatically Set Dimension of Reshaped Matrix
When you replace a dimension with the placeholder [], reshape calculates the required
magnitude of that dimension to reshape the matrix.

Create the matrix M.

M = sym([1 9 4 3 0 1; 3 9 5 1 9 2])

M =
[1, 9, 4, 3, 0, 1]
[3, 9, 5, 1, 9, 2]

Reshape M into a matrix with three columns.

reshape(M,[],3)

ans =
[1, 4, 0]
[3, 5, 9]
[9, 3, 1]
[9, 1, 2]

reshape calculates that a reshaped matrix of three columns needs four rows.

Reshape Matrix Row-wise
Reshape a matrix row-wise by transposing the result.

Create matrix M.

syms x
M = sym([1 9 0 sin(x) 2 2; NaN x 5 1 4 7])

M =
[1, 9, 0, sin(x), 2, 2]
[NaN, x, 5, 1, 4, 7]

Reshape M row-wise by transposing the result.

4 Functions — Alphabetical List

4-1528

reshape(M,4,3).'

ans =
[1, NaN, 9, x]
[0, 5, sin(x), 1]
[2, 4, 2, 7]

Note that .' returns the non-conjugate transpose while ' returns the conjugate
transpose.

Reshape 3-D Array into 2-D Matrix
Reshape the 3-by-3-by-2 array M into a 9-by-2 matrix.

M has 18 elements. Because a 9-by-2 matrix also has 18 elements, M can be reshaped into
it. Construct M.

syms x
M = [sin(x) x 4; 3 2 9; 8 x x];
M(:,:,2) = M'

M(:,:,1) =
[sin(x), x, 4]
[3, 2, 9]
[8, x, x]
M(:,:,2) =
[sin(conj(x)), 3, 8]
[conj(x), 2, conj(x)]
[4, 9, conj(x)]

Reshape M into a 9-by-2 matrix.

N = reshape(M,9,2)

N =
[sin(x), sin(conj(x))]
[3, conj(x)]
[8, 4]
[x, 3]
[2, 2]
[x, 9]
[4, 8]
[9, conj(x)]
[x, conj(x)]

 reshape

4-1529

Use reshape to Break Up Arrays
Use reshape instead of loops to break up arrays for further computation. Use reshape
to break up the vector V to find the product of every three elements.

Create vector V.

syms x
V = [exp(x) 1 3 9 x 2 7 7 1 8 x^2 3 4 sin(x) x]

V =
[exp(x), 1, 3, 9, x, 2, 7, 7, 1, 8, x^2, 3, 4, sin(x), x]

Specify 3 for the number of rows. Use the placeholder [] for the number of columns. This
lets reshape automatically calculate the number of columns required for three rows.

M = prod(reshape(V,3,[]))

M =
[3*exp(x), 18*x, 49, 24*x^2, 4*x*sin(x)]

reshape calculates that five columns are required for a matrix of three rows. prod then
multiples the elements of each column to return the result.

Input Arguments
A — Input array
symbolic vector | symbolic matrix | symbolic multidimensional array

Input array, specified as a symbolic vector, matrix, or multidimensional array.

n1,n2 — Dimensions of reshaped matrix
comma-separated scalars

Dimensions of reshaped matrix, specified as comma-separated scalars. For example,
reshape(A,3,2) returns a 3-by-2 matrix. The number of elements in the output array
specified by n1,n2 must be equal to numel(A).

n1,...,nM — Dimensions of reshaped array
comma-separated scalars

4 Functions — Alphabetical List

4-1530

Dimensions of reshaped array, specified as comma-separated scalars. For example,
reshape(A,3,2,2) returns a 3-by-2-by-2 matrix. The number of elements in the output
array specified by n1,...,nM must be equal to numel(A).

sz — Size of reshaped array
numeric vector

Size of reshaped array, specified as a numeric vector. For example, reshape(A,[3 2])
returns a 3-by-2 matrix. The number of elements in the output array specified by sz must
be equal to numel(A).

See Also
colon | transpose

Introduced before R2006a

 reshape

4-1531

resultant
Resultant of two polynomials

Syntax
resultant(p,q)
resultant(p,q,var)

Description
resultant(p,q) returns the resultant of the polynomials p and q with respect to the
variable found by symvar.

resultant(p,q,var) returns the resultant with respect to the variable var.

Examples

Resultant of Two Polynomials

Find the resultant of two polynomials.

syms x y
p = x^2+y;
q = x-2*y;
resultant(p,q)

ans =
4*y^2 + y

Find the resultant with respect to a specific variable by using the third argument.

resultant(p,q,y)

4 Functions — Alphabetical List

4-1532

ans =
2*x^2 + x

Solve Polynomial Equations in Two Variables

If two polynomials have a common root, then the resultant must be 0 at that root. Solve
polynomial equations in two variables by calculating the resultant with respect to one
variable, and solving the resultant for the other variable.

First, calculate the resultant of two polynomials with respect to x to return a polynomial
in y.

syms x y
p = y^3 - 2*x^2 + 3*x*y;
q = x^3 + 2*y^2 - 5*x^2*y;
res = resultant(p,q,x)

res =
y^9 - 35*y^8 + 44*y^6 + 126*y^5 - 32*y^4

Solve the resultant for y values of the roots. Avoid numerical roundoff errors by solving
equations symbolically using the solve function. solve represents the solutions
symbolically by using root.

yRoots = solve(res)

yRoots =
 0
 0
 0
 0
 root(z^5 - 35*z^4 + 44*z^2 + 126*z - 32, z, 1)
 root(z^5 - 35*z^4 + 44*z^2 + 126*z - 32, z, 2)
 root(z^5 - 35*z^4 + 44*z^2 + 126*z - 32, z, 3)
 root(z^5 - 35*z^4 + 44*z^2 + 126*z - 32, z, 4)
 root(z^5 - 35*z^4 + 44*z^2 + 126*z - 32, z, 5)

Calculate numeric values by using vpa.

vpa(yRoots)

ans =
 0
 0
 0

 resultant

4-1533

 0
 0.23545637976581197505601615070637
 - 0.98628744767074109264070992415511 - 1.1027291033304653904984097788422i
 - 0.98628744767074109264070992415511 + 1.1027291033304653904984097788422i
 1.7760440932430169904041045113342
 34.96107442233265321982129918627

Assume that you want to investigate the fifth root. For the fifth root, calculate the x value
by substituting the y value into p and q. Then simultaneously solve the polynomials for x.
Avoid numerical roundoff errors by solving equations symbolically using solve.

eqns = subs([p q], y, yRoots(5));
xRoot5 = solve(eqns,x);

Calculate the numeric value of the fifth root by using vpa.

root5 = vpa([xRoot5 yRoots(5)])

root5 =
[0.37078716473998365045397220797284, 0.23545637976581197505601615070637]

Verify that the root is correct by substituting root5 into p and q. The result is 0 within
roundoff error.

subs([p q],[x y],root5)

ans =
[-6.313690360861895794753956010471e-41, -9.1835496157991211560057541970488e-41]

Input Arguments
p — Polynomial
symbolic expression | symbolic function

Polynomial, specified as a symbolic expression or function.

q — Polynomial
symbolic expression | symbolic function

Polynomial, specified as a symbolic expression or function.

var — Variable
symbolic variable

4 Functions — Alphabetical List

4-1534

Variable, specified as a symbolic variable.

See Also
eliminate | gcd | solve

Introduced in R2018a

 resultant

4-1535

removeUnitSystem
Remove unit system

Syntax
removeUnitSystem(unitSystem)

Description
removeUnitSystem(unitSystem) removes the unit system unitSystem. You can
remove only user-defined unit systems created with newUnitSystem. You cannot remove
predefined unit systems listed in “Unit Systems List” on page 2-36.

Examples

Remove Unit System

Define a unit system, use the unit system to rewrite units, and then remove the unit
system by using removeUnitSystem.

Define the unit system mySystem with SI base units and the derived unit kilowatt hour.

u = symunit;
bunits = baseUnits('SI');
dunits = [u.kWh];
mySystem = newUnitSystem('mySystem',bunits,dunits)

mySystem =
 "mySystem"

Convert 50,000 Joules to derived units of mySystem by using rewrite with the third
argument 'Derived'. As expected, the result is in kilowatt hour.

rewrite(50000*u.J,mySystem,'Derived')

4 Functions — Alphabetical List

4-1536

ans =
(1/72)*[kWh]

Remove the unit system mySystem by using removeUnitSystem.

removeUnitSystem(mySystem)

Converting units to mySystem now throws an error.

Input Arguments
unitSystem — Name of unit system
string | character vector

Name of the unit system, specified as a string or character vector.

See Also
baseUnits | derivedUnits | newUnitSystem | removeUnit | rewrite | symunit |
unitSystems

Topics
“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

External Websites
The International System of Units (SI)

Introduced in R2017b

 removeUnitSystem

4-1537

https://www.bipm.org/en/publications/si-brochure/

rewindAnimation
Rewind previously played animation objects

Syntax
rewindAnimation
rewindAnimation(fig)

Description
rewindAnimation rewinds previously played animation objects by restoring the
animation time parameter to its initial value. The animation objects must be created using
the fanimator function.

rewindAnimation(fig) rewinds animation objects in the figure fig.

Examples

Rewind Animation of Moving Circle

Create an animation of a moving circle and rewind it using rewindAnimation.

First, create two symbolic variables, t and x. The variable t defines the time parameter
of the animation. Use t to set the center of the circle at (t,1) and x to parameterize the
perimeter of the circle within the range [-pi pi]. Create the circle animation object
using fanimator. Set the x-axis and y-axis to be equal length.

syms t x
fanimator(@fplot,cos(x)+t,sin(x)+1,[-pi pi])
axis equal

Play the animation by entering the command playAnimation. By default,
playAnimation plays the animation within the range of t from 0 to 10. You can rewind

4 Functions — Alphabetical List

4-1538

the animation by using rewindAnimation. rewindAnimation restores the animation
time parameter to its initial value at t = 0 and shows the starting animation frame.

rewindAnimation

Rewind Animation of Moving Circle with Timer

Create an animation of a moving circle with a timer, and rewind the animation using
rewindAnimation.

First, create two symbolic variables, t and x. The variable t defines the time parameter
of the animation. Create a figure window for the animation.

 rewindAnimation

4-1539

syms t x
fig = figure;

Create the circle animation object using fanimator. Use t to set the center of the circle
at (t,1) and x to parameterize the perimeter of the circle within the range [-pi pi].
Set the range of the animation time parameter to [4 8]. Set the x-axis and y-axis to be
equal length.

fanimator(@fplot,cos(x)+t,sin(x)+1,[-pi pi],'AnimationRange',[4 8])
axis equal

Next, add a timer animation object. Use the text function to create a piece of text to
count the elapsed time. Use num2str to convert the time parameter to a string.

hold on
fanimator(@(t) text(8,3,"Timer: "+num2str(t,2)),'AnimationRange',[4 8])
hold off

Play the animation in figure fig between 4 and 8 seconds by entering the
playAnimation command.

playAnimation(fig,'AnimationRange',[4 8])

You can rewind a previously played animation by using rewindAnimation.
rewindAnimation restores the animation time parameter to its initial value at t = 4
and shows the starting animation frame.

rewindAnimation(fig)

4 Functions — Alphabetical List

4-1540

Input Arguments
fig — Target figure
Figure object

Target figure, specified as a Figure object. For more information about Figure objects,
see figure.

See Also
animationToFrame | fanimator | playAnimation | writeAnimation

 rewindAnimation

4-1541

Introduced in R2019a

4 Functions — Alphabetical List

4-1542

rewrite
Rewrite expression in terms of another function

Syntax
rewrite(expr,target)

Description
rewrite(expr,target) rewrites the symbolic expression expr in terms of the target
function target. The rewritten expression is mathematically equivalent to the original
expression. If expr is a vector or matrix, rewrite acts element-wise on expr.

Examples

Rewrite Between Trigonometric and Exponential Functions

Rewrite any trigonometric function in terms of the exponential function by specifying the
target 'exp'.

syms x
sin2exp = rewrite(sin(x), 'exp')
tan2exp = rewrite(tan(x), 'exp')

sin2exp =
(exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2

tan2exp =
-(exp(x*2i)*1i - 1i)/(exp(x*2i) + 1)

Rewrite the exponential function in terms of any trigonometric function by specifying the
trigonometric function as the target. For a full list of targets, see target.

 rewrite

4-1543

syms x
exp2sin = rewrite(exp(x), 'sin')
exp2tan = rewrite(-(exp(x*2i)*1i - 1i)/(exp(x*2i) + 1), 'tan')

exp2sin =
1 - 2*sin((x*1i)/2)^2 - sin(x*1i)*1i
exp2tan =
-(((tan(x) - 1i)*1i)/(tan(x) + 1i) + 1i)/...
 ((tan(x) - 1i)/(tan(x) + 1i) - 1)

Simplify exp2tan into the expected form by using simplify.

exp2tan = simplify(exp2tan)

exp2tan =
tan(x)

Rewrite Between Trigonometric Functions

Rewrite any trigonometric function in terms of any other trigonometric function by
specifying the target. For a full list of targets, see target.

Rewrite tan(x) in terms of the sine function by specifying the target 'sin'.

syms x
tan2sin = rewrite(tan(x), 'sin')

tan2sin =
-sin(x)/(2*sin(x/2)^2 - 1)

Rewrite Between Hyperbolic Functions and Trigonometric Functions

Rewrite any hyperbolic function in terms of any trigonometric function by specifying the
trigonometric function as the target. For a full list of targets, see target.

Rewrite tanh(x) in terms of the sine function by specifying the target 'sin'.

syms x
tanh2sin = rewrite(tanh(x), 'sin')

tanh2sin =
(sin(x*1i)*1i)/(2*sin((x*1i)/2)^2 - 1)

4 Functions — Alphabetical List

4-1544

Similarly, rewrite trigonometric functions in terms of hyperbolic functions by specifying
the hyperbolic function as the target.

Rewrite Between Inverse Trigonometric Functions and Logarithm Function

Rewrite any inverse trigonometric function in terms of the logarithm function by
specifying the target 'log'. For a full list of targets, see target.

Rewrite acos(x) and acot(x) in terms of the log function.

syms x
acos2log = rewrite(acos(x), 'log')
acot2log = rewrite(acot(x), 'log')

acos2log =
-log(x + (1 - x^2)^(1/2)*1i)*1i

acot2log =
(log(1 - 1i/x)*1i)/2 - (log(1i/x + 1)*1i)/2

Similarly, rewrite the logarithm function in terms of an inverse trigonometric function by
specifying the inverse trigonometric function as the target.

Rewrite Elements of Matrix

Rewrite each element of a matrix by calling rewrite on the matrix.

Rewrite all elements of a matrix in terms of the exp function.

syms x
matrix = [sin(x) cos(x); sinh(x) cosh(x)];
rewrite(matrix, 'exp')

ans =
[(exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2, exp(-x*1i)/2 + exp(x*1i)/2]
[exp(x)/2 - exp(-x)/2, exp(-x)/2 + exp(x)/2]

 rewrite

4-1545

Rewrite Between Sine and Cosine Functions

Rewrite the cosine function in terms of the sine function. Here, rewrite replaces the
cosine function using the identity cos(2*x) = 1 – 2*sin(x)^2 which is valid for any
x.

syms x
rewrite(cos(x),'sin')

ans =
1 - 2*sin(x/2)^2

rewrite does not replace sin(x) with either − 1− cos2 x or 1− cos2 x because
these expressions are not valid for all x. However, using the square of these expressions
to replace sin(x)^2 is valid for all x. Thus, rewrite replaces sin(x)^2.

syms x
rewrite(sin(x),'cos')
rewrite(sin(x)^2,'cos')

ans =
sin(x)
ans =
1 - cos(x)^2

Input Arguments
expr — Input to rewrite
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix | symbolic multidimensional array

Input to rewrite, specified as a symbolic number, variable, expression, function, vector,
matrix, or multidimensional array.

target — Target function
character vector

Target function, specified as a character vector. This table summarizes the rewriting rules
for all allowed targets.

4 Functions — Alphabetical List

4-1546

Target Rewrites These Functions In Terms of These
Functions

'exp' All trigonometric and
hyperbolic functions
including inverse functions

exp, log

'log' All inverse trigonometric
and hyperbolic functions

log

'sincos' tan, cot, exp, sinh, cosh,
tanh, coth

sin, cos

'sin', 'cos', 'tan', or
'cot'

sin, cos, exp, tan, cot,
sinh, cosh, tanh, coth
except the target

Target trigonometric
function

'sinhcosh' tan, cot, exp, sin, cos,
tanh, coth

sinh, cosh

'sinh', 'cosh', 'tanh',
'coth'

tan, cot, exp, sin, cos,
sinh, cosh, tanh, coth
except the target

Target hyperbolic function

'asin', 'acos', 'atan',
'acot'

log, and all inverse
trigonometric and inverse
hyperbolic functions

Target inverse trigonometric
function

'asinh', 'acosh',
'atanh', 'acoth'

log, and all inverse
trigonometric and inverse
hyperbolic functions

Target inverse hyperbolic
function

'sqrt' abs(x + 1i*y) sqrt(x^2 + y^2)
'heaviside' sign, triangularPulse,

rectangularPulse
heaviside

'piecewise' abs, heaviside, sign,
triangularPulse,
rectangularPulse

piecewise

Tips
• rewrite replaces symbolic function calls in expr with the target function only if the

replacement is mathematically valid. Otherwise, it keeps the original function calls.

 rewrite

4-1547

See Also
collect | combine | expand | factor | horner | numden | simplify |
simplifyFraction | unitConvert

Topics
“Choose Function to Rearrange Expression” on page 2-101

Introduced in R2012a

4 Functions — Alphabetical List

4-1548

rhs
Right side (RHS) of equation

Syntax
rhs(eqn)

Description
rhs(eqn) returns the right side of the symbolic equation eqn. The value of eqn also can
be a symbolic condition, such as x > 0. If eqn is an array, then rhs returns an array of
the right sides of the equations in eqn.

Examples

Find Right Side of Equation
Find the right side of the equation 2*y == x^2 by using rhs.

First, declare the equation.

syms x y
eqn = 2*y == x^2

eqn =
2*y == x^2

Find the right side of eqn by using rhs.

rhsEqn = rhs(eqn)

rhsEqn =
 x^2

 rhs

4-1549

Find Right Side of Condition
Find the right side of the condition x < y + 1 by using rhs.

First, declare the condition.

syms x y
cond = x < y + 1

cond =
x < y + 1

Find the right side of cond by using rhs.

rhsCond = rhs(cond)

rhsCond =
y + 1

Note Conditions that use the > operator are internally rewritten using the < operator.
Therefore, rhs returns the original left side. For example, rhs(x > a) returns x.

Find Right Side of Equations in Array
For an array that contains equations and conditions, rhs returns an array of the right
sides of those equations or conditions. The output array is the same size as the input
array.

Find the right side of the equations and conditions in the vector V.

syms x y
V = [y^2 == x^2, x ~= 0, x*y >= 1]

V =
[y^2 == x^2, x ~= 0, 1 <= x*y]

rhsV = rhs(V)

rhsV =
[x^2, 0, x*y]

Because any condition using the >= operator is internally rewritten using the <= operator,
the sides of the last condition in V are exchanged.

4 Functions — Alphabetical List

4-1550

Input Arguments
eqn — Equation or condition
symbolic equation | symbolic condition | vector of symbolic equations or conditions |
matrix of symbolic equations or conditions | multidimensional array of symbolic equations
or conditions

Equation or condition, specified as a symbolic equation or condition, or a vector, matrix,
or multidimensional array of symbolic equations or conditions.

See Also
assume | children | lhs | subs

Introduced in R2017a

 rhs

4-1551

root
Represent roots of polynomial

Syntax
root(p,x)
root(p,x,k)

Description
root(p,x) returns a column vector of numbered roots of symbolic polynomial p with
respect to x. Symbolically solving a high-degree polynomial for its roots can be complex
or mathematically impossible. In this case, the Symbolic Math Toolbox uses the root
function to represent the roots of the polynomial.

root(p,x,k) represents the kth root of symbolic polynomial p with respect to x.

Examples

Represent Roots of High-Degree Polynomial

Represent the roots of the polynomial x3 + 1 using root. The root function returns a
column vector. The elements of this vector represent the three roots of the polynomial.

syms x
p = x^3 + 1;
root(p,x)

ans =
 root(x^3 + 1, x, 1)
 root(x^3 + 1, x, 2)
 root(x^3 + 1, x, 3)

4 Functions — Alphabetical List

4-1552

root(x^3 + 1, x, 1) represents the first root of p, while root(x^3 + 1, x, 2)
represents the second root, and so on. Use this syntax to represent roots of high-degree
polynomials.

Find Roots of High-Degree Polynomial
When solving a high-degree polynomial, solve represents the roots by using root.
Alternatively, you can either return an explicit solution by using the MaxDegree option or
return a numerical result by using vpa.

Find the roots of x^3 + 3*x - 16.

syms x
p = x^3 + 3*x - 16;
R = solve(p,x)

R =
 root(z^3 + 3*z - 16, z, 1)
 root(z^3 + 3*z - 16, z, 2)
 root(z^3 + 3*z - 16, z, 3)

Find the roots explicitly by setting the MaxDegree option to the degree of the polynomial.
Polynomials with a degree greater than 4 do not have explicit solutions.

Rexplicit = solve(p,x,'MaxDegree',3)

Rexplicit =
 (65^(1/2) + 8)^(1/3) - 1/(65^(1/2) + 8)^(1/3)
 1/(2*(65^(1/2) + 8)^(1/3)) - (65^(1/2) + 8)^(1/3)/2 -...
 (3^(1/2)*(1/(65^(1/2) + 8)^(1/3) + (65^(1/2) + 8)^(1/3))*1i)/2
 1/(2*(65^(1/2) + 8)^(1/3)) - (65^(1/2) + 8)^(1/3)/2 +...
 (3^(1/2)*(1/(65^(1/2) + 8)^(1/3) + (65^(1/2) + 8)^(1/3))*1i)/2

Calculate the roots numerically by using vpa to convert R to high-precision floating point.

Rnumeric = vpa(R)

RRnumeric =
 2.1267693318103912337456401562601
 - 1.0633846659051956168728200781301 - 2.5283118563671914055545884653776i
 - 1.0633846659051956168728200781301 + 2.5283118563671914055545884653776i

If the call to root contains parameters, substitute the parameters with numbers by using
subs before calling vpa.

 root

4-1553

Use root in Symbolic Computations
You can use the root function as input to Symbolic Math Toolbox functions such as
simplify, subs, and diff.

Simplify an expression containing root using the simplify function.

syms x
r = root(x^6 + x, x, 1);
simplify(sin(r)^2 + cos(r)^2)

ans =
1

Substitute for parameters in root with numbers using subs.

syms b
subs(root(x^2 + b*x, x, 1), b, 5)

ans =
root(x^2 + 5*x, x, 1)

Substituting for parameters using subs is necessary before converting root to numeric
form using vpa.

Differentiate an expression containing root with respect to a parameter using diff.

diff(root(x^2 + b*x, x, 1), b)

ans =
root(b^2*x^2 + b^2*x, x, 1)

Find Inverse Laplace Transform of Ratio of Polynomials
Find the inverse Laplace transform of a ratio of two polynomials using ilaplace. The
inverse Laplace transform is returned in terms of root.

syms s
G = (s^3 + 1)/(s^6 + s^5 + s^2);
H = ilaplace(G)

H =
t - symsum(exp(t*root(s3^4 + s3^3 + 1, s3, k))/...
(4*root(s3^4 + s3^3 + 1, s3, k) + 3), k, 1, 4)

4 Functions — Alphabetical List

4-1554

When you get the root function in output, you can use the root function as input in
subsequent symbolic calculations. However, if a numerical result is required, convert the
root function to a high-precision numeric result using vpa.

Convert the inverse Laplace transform to numeric form using vpa.

H_vpa = simplify(vpa(H))

H_vpa =
t +...
0.30881178580997278695808136329347*exp(-1.0189127943851558447865795886366*t)*...
 cos(0.60256541999859902604398442197193*t) -...
0.30881178580997278695808136329347*exp(0.5189127943851558447865795886366*t)*...
 cos(0.666609844932018579153758800733*t) -...
0.6919689479355443779463355813596*exp(-1.0189127943851558447865795886366*t)*...
 sin(0.60256541999859902604398442197193*t) -...
0.16223098826244593894459034019473*exp(0.5189127943851558447865795886366*t)*...
 sin(0.666609844932018579153758800733*t)

Input Arguments
p — Symbolic polynomial
symbolic expression

Symbolic polynomial, specified as a symbolic expression.

x — Variable
symbolic variable

Variable, specified as a symbolic variable.

k — Number of polynomial root
number | vector | matrix | multidimensional array | symbolic number | symbolic vector |
symbolic matrix | symbolic multidimensional array

Number of polynomial root, specified as a number, vector, matrix, multidimensional array,
or a symbolic number, vector, matrix, or multidimensional array. When k is a nonscalar,
root acts element-wise on k.
Example: root(f,x,3) represents the third root of f.

 root

4-1555

See Also
solve | vpa

Introduced in R2015b

4 Functions — Alphabetical List

4-1556

rref
Reduced row echelon form of matrix (Gauss-Jordan elimination)

Syntax
rref(A)

Description
rref(A) computes the reduced row echelon form of the symbolic matrix A. If the
elements of a matrix contain free symbolic variables, rref regards the matrix as nonzero.

To solve a system of linear equations, use linsolve.

Examples

Compute Reduced Row Echelon Form of Numeric Matrix

Compute the reduced row echelon form of the magic square matrix.

rref(sym(magic(4)))

ans =
[1, 0, 0, 1]
[0, 1, 0, 3]
[0, 0, 1, -3]
[0, 0, 0, 0]

Compute Reduced Row Echelon Form of Symbolic Matrix

Compute the reduced row echelon form of the following symbolic matrix.

syms a b c
A = [a b c; b c a; a + b, b + c, c + a];
rref(A)

 rref

4-1557

ans =
[1, 0, -(- c^2 + a*b)/(- b^2 + a*c)]
[0, 1, -(- a^2 + b*c)/(- b^2 + a*c)]
[0, 0, 0]

See Also
eig | jordan | linsolve | rank

Introduced before R2006a

4 Functions — Alphabetical List

4-1558

rsums
Interactive evaluation of Riemann sums

Syntax
rsums(f)
rsums(f,a,b)
rsums(f,[a,b])

Description
rsums(f) interactively approximates the integral of f(x) by Middle Riemann sums for x
from 0 to 1. rsums(f) displays a graph of f(x) using 10 terms (rectangles). You can adjust
the number of terms taken in the Middle Riemann sum by using the slider below the
graph. The number of terms available ranges from 2 to 128. f can be a character vector
or a symbolic expression. The height of each rectangle is determined by the value of the
function in the middle of each interval.

rsums(f,a,b) and rsums(f,[a,b]) approximates the integral for x from a to b.

Introduced before R2006a

 rsums

4-1559

sec
Symbolic secant function

Syntax
sec(X)

Description
sec(X) returns the secant function on page 4-1563 of X.

Examples
Secant Function for Numeric and Symbolic Arguments
Depending on its arguments, sec returns floating-point or exact symbolic results.

Compute the secant function for these numbers. Because these numbers are not symbolic
objects, sec returns floating-point results.

A = sec([-2, -pi, pi/6, 5*pi/7, 11])

A =
 -2.4030 -1.0000 1.1547 -1.6039 225.9531

Compute the secant function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, sec returns unresolved symbolic calls.

symA = sec(sym([-2, -pi, pi/6, 5*pi/7, 11]))

symA =
[1/cos(2), -1, (2*3^(1/2))/3, -1/cos((2*pi)/7), 1/cos(11)]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

4 Functions — Alphabetical List

4-1560

ans =
[-2.4029979617223809897546004014201,...
-1.0,...
1.1547005383792515290182975610039,...
-1.6038754716096765049444092780298,...
225.95305931402493269037542703557]

Plot Secant Function
Plot the secant function on the interval from −4π to 4π.

syms x
fplot(sec(x),[-4*pi 4*pi])
grid on

 sec

4-1561

Handle Expressions Containing Secant Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing sec.

Find the first and second derivatives of the secant function:

syms x
diff(sec(x), x)
diff(sec(x), x, x)

ans =
sin(x)/cos(x)^2

ans =
1/cos(x) + (2*sin(x)^2)/cos(x)^3

Find the indefinite integral of the secant function:

int(sec(x), x)

ans =
log(1/cos(x)) + log(sin(x) + 1)

Find the Taylor series expansion of sec(x):

taylor(sec(x), x)

ans =
(5*x^4)/24 + x^2/2 + 1

Rewrite the secant function in terms of the exponential function:

rewrite(sec(x), 'exp')

ans =
1/(exp(-x*1i)/2 + exp(x*1i)/2)

Evaluate Units with sec Function
sec numerically evaluates these units automatically: radian, degree, arcmin, arcsec,
and revolution.

4 Functions — Alphabetical List

4-1562

Show this behavior by finding the secant of x degrees and 2 radians.

u = symunit;
syms x
f = [x*u.degree 2*u.radian];
secf = sec(f)

secf =
[1/cos((pi*x)/180), 1/cos(2)]

You can calculate secf by substituting for x using subs and then using double or vpa.

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Secant Function
The secant of an angle, α, defined with reference to a right angled triangle is

sec(α) = 1
cos α = hypotenuse

adjacent side = h
b .

 sec

4-1563

The secant of a complex argument, α, is

sec(α) = 2
eiα + e−iα .

See Also
acos | acot | acsc | asec | asin | atan | cos | cot | csc | sin | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-1564

sech
Symbolic hyperbolic secant function

Syntax
sech(X)

Description
sech(X) returns the hyperbolic secant function of X.

Examples

Hyperbolic Secant Function for Numeric and Symbolic
Arguments
Depending on its arguments, sech returns floating-point or exact symbolic results.

Compute the hyperbolic secant function for these numbers. Because these numbers are
not symbolic objects, sech returns floating-point results.

A = sech([-2, -pi*i, pi*i/6, 0, pi*i/3, 5*pi*i/7, 1])

A =
 0.2658 -1.0000 1.1547 1.0000 2.0000 -1.6039 0.6481

Compute the hyperbolic secant function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, sech returns unresolved symbolic calls.

symA = sech(sym([-2, -pi*i, pi*i/6, 0, pi*i/3, 5*pi*i/7, 1]))

symA =
[1/cosh(2), -1, (2*3^(1/2))/3, 1, 2, -1/cosh((pi*2i)/7), 1/cosh(1)]

Use vpa to approximate symbolic results with floating-point numbers:

 sech

4-1565

vpa(symA)

ans =
[0.26580222883407969212086273981989,...
-1.0,...
1.1547005383792515290182975610039,...
1.0,...
2.0,...
-1.6038754716096765049444092780298,...
0.64805427366388539957497735322615]

Plot Hyperbolic Secant Function
Plot the hyperbolic secant function on the interval from -10 to 10.

syms x
fplot(sech(x),[-10, 10])
grid on

4 Functions — Alphabetical List

4-1566

Handle Expressions Containing Hyperbolic Secant Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing sech.

Find the first and second derivatives of the hyperbolic secant function:

syms x
diff(sech(x), x)
diff(sech(x), x, x)

ans =
-sinh(x)/cosh(x)^2

 sech

4-1567

ans =
(2*sinh(x)^2)/cosh(x)^3 - 1/cosh(x)

Find the indefinite integral of the hyperbolic secant function:

int(sech(x), x)

ans =
2*atan(exp(x))

Find the Taylor series expansion of sech(x):

taylor(sech(x), x)

ans =
(5*x^4)/24 - x^2/2 + 1

Rewrite the hyperbolic secant function in terms of the exponential function:

rewrite(sech(x), 'exp')

ans =
1/(exp(-x)/2 + exp(x)/2)

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | atanh | cosh | coth | csch | sinh | tanh

Introduced before R2006a

4 Functions — Alphabetical List

4-1568

separateUnits
Separate units from expression

Syntax
[Data,Units] = separateUnits(expr)
Data = separateUnits(expr)

Description
[Data,Units] = separateUnits(expr) returns the units of the symbolic expression
expr in Units and the rest of expr in Data.

Data = separateUnits(expr) removes symbolic units from expr and then returns
the rest.

Examples

Separate Units and Expression
Separate the units from the expression 10*t*u.m/u.s, where u = symunit, by
providing two output arguments for separateUnits.

u = symunit;
syms t
speed = 10*t*u.m/u.s;
[Data,Units] = separateUnits(speed)

Data =
10*t
Units =
1*([m]/[s])

Return only the expression with the units removed by providing one output argument.

 separateUnits

4-1569

Data = separateUnits(speed)

Data =
10*t

Separate Incompatible Units
When the expression has incompatible units, separateUnits errors. Units are
incompatible when they do not have the same dimensions, such as length or time.

Separate the units from 2*u.m + 3*u.s, where u = symunit. The separateUnits
function throws an error. Instead, to list the units in the input, use findUnits.

u = symunit;
[Data,Units] = separateUnits(2*u.m + 3*u.s)

Error using separateUnits (line 51)
Input has incompatible units.

Separate Inconsistent Units
When the input has inconsistent units that can be converted to the same unit, then
separateUnits performs the conversion and returns the separated result. Units are
inconsistent when they cannot be converted to each other with a conversion factor of 1

Separate the units from 2*u.m + 30*u.cm. Even though the units differ,
separateUnits converts them to the same unit and returns the separated result.

u = symunit;
[Data,Units] = separateUnits(2*u.m + 30*u.cm)

Data =
230
Units =
[cm]

4 Functions — Alphabetical List

4-1570

Input Arguments
expr — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, returned as a number, vector, matrix or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function, or expression.

Output Arguments
Data — Expression after removing units
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic equation | symbolic multidimensional array |
symbolic function | symbolic expression

Expression after removing units, returned as a number, vector, matrix or
multidimensional array, or a symbolic number, variable, vector, matrix, equation,
multidimensional array, function, or expression.

Units — Units from input
symbolic units

Units from input, specified as symbolic units.

See Also
checkUnits | findUnits | isUnit | newUnit | str2symunit | symunit |
symunit2str | unitConversionFactor

Topics
“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

External Websites
The International System of Units (SI)

 separateUnits

4-1571

https://www.bipm.org/en/publications/si-brochure/

Introduced in R2017a

4 Functions — Alphabetical List

4-1572

series
Puiseux series

Syntax
series(f,var)
series(f,var,a)
series(___ ,Name,Value)

Description
series(f,var) approximates f with the Puiseux series expansion of f up to the fifth
order at the point var = 0. If you do not specify var, then series uses the default
variable determined by symvar(f,1).

series(f,var,a) approximates f with the Puiseux series expansion of f at the point
var = a.

series(___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. You can specify Name,Value after the input arguments in
any of the previous syntaxes.

Examples
Find Puiseux Series Expansion
Find the Puiseux series expansions of univariate and multivariate expressions.

Find the Puiseux series expansion of this expression at the point x = 0.

syms x
series(1/sin(x), x)

ans =
x/6 + 1/x + (7*x^3)/360

 series

4-1573

Find the Puiseux series expansion of this multivariate expression. If you do not specify the
expansion variable, series uses the default variable determined by symvar(f,1).

syms s t
f = sin(s)/sin(t);
symvar(f, 1)
series(f)

ans =
t

ans =
sin(s)/t + (7*t^3*sin(s))/360 + (t*sin(s))/6

To use another expansion variable, specify it explicitly.

syms s t
f = sin(s)/sin(t);
series(f, s)

ans =
s^5/(120*sin(t)) - s^3/(6*sin(t)) + s/sin(t)

Specify Expansion Point
Find the Puiseux series expansion of psi(x) around x = Inf. The default expansion
point is 0. To specify a different expansion point, use the ExpansionPoint name-value
pair.

series(psi(x), x, 'ExpansionPoint', Inf)

ans =
log(x) - 1/(2*x) - 1/(12*x^2) + 1/(120*x^4)

Alternatively, specify the expansion point as the third argument of series.

syms x
series(psi(x), x, Inf)

ans =
log(x) - 1/(2*x) - 1/(12*x^2) + 1/(120*x^4)

4 Functions — Alphabetical List

4-1574

Specify Truncation Order
Find the Puiseux series expansion of exp(x)/x using different truncation orders.

Find the series expansion up to the default truncation order 6.

syms x
f = exp(x)/x;
s6 = series(f, x)

s6 =
x/2 + 1/x + x^2/6 + x^3/24 + x^4/120 + 1

Use Order to control the truncation order. For example, approximate the same
expression up to the orders 7 and 8.

s7 = series(f, x, 'Order', 7)
s8 = series(f, x, 'Order', 8)

s7 =
x/2 + 1/x + x^2/6 + x^3/24 + x^4/120 + x^5/720 + 1

s8 =
x/2 + 1/x + x^2/6 + x^3/24 + x^4/120 + x^5/720 + x^6/5040 + 1

Plot the original expression f and its approximations s6, s7, and s8. Note how the
accuracy of the approximation depends on the truncation order.

fplot([s6 s7 s8 f])
legend('approximation up to O(x^6)','approximation up to O(x^7)',...
 'approximation up to O(x^8)','exp(x)/x','Location', 'Best')
title('Puiseux Series Expansion')

 series

4-1575

Specify Direction of Expansion
Find the Puiseux series approximations using the Direction argument. This argument
lets you change the convergence area, which is the area where series tries to find
converging Puiseux series expansion approximating the original expression.

Find the Puiseux series approximation of this expression. By default, series finds the
approximation that is valid in a small open circle in the complex plane around the
expansion point.

syms x
series(sin(sqrt(-x)), x)

4 Functions — Alphabetical List

4-1576

ans =
(-x)^(1/2) - (-x)^(3/2)/6 + (-x)^(5/2)/120

Find the Puiseux series approximation of the same expression that is valid in a small
interval to the left of the expansion point. Then, find an approximation that is valid in a
small interval to the right of the expansion point.

syms x
series(sin(sqrt(-x)), x)
series(sin(sqrt(-x)), x, 'Direction', 'left')
series(sin(sqrt(-x)), x, 'Direction', 'right')

ans =
(-x)^(1/2) - (-x)^(3/2)/6 + (-x)^(5/2)/120

ans =
- x^(1/2)*1i - (x^(3/2)*1i)/6 - (x^(5/2)*1i)/120

ans =
x^(1/2)*1i + (x^(3/2)*1i)/6 + (x^(5/2)*1i)/120

Try computing the Puiseux series approximation of this expression. By default, series
tries to find an approximation that is valid in the complex plane around the expansion
point. For this expression, such approximation does not exist.

series(real(sin(x)), x)

Error using sym/series>scalarSeries (line 90)
Cannot compute a series expansion of the input.

However, the approximation exists along the real axis, to both sides of x = 0.

series(real(sin(x)), x, 'Direction', 'realAxis')

ans =
x^5/120 - x^3/6 + x

Input Arguments
f — Input to approximate
symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic
multidimensional array

 series

4-1577

Input to approximate, specified as a symbolic expression or function. It also can be a
vector, matrix, or multidimensional array of symbolic expressions or functions.

var — Expansion variable
symbolic variable

Expansion variable, specified as a symbolic variable. If you do not specify var, then
series uses the default variable determined by symvar(f,1).

a — Expansion point
0 (default) | number | symbolic number | symbolic variable | symbolic function | symbolic
expression

Expansion point, specified as a number, or a symbolic number, variable, function, or
expression. The expansion point cannot depend on the expansion variable.

You also can specify the expansion point as a Name,Value pair argument. If you specify
the expansion point both ways, then the Name,Value pair argument takes precedence.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: series(psi(x),x,'ExpansionPoint',Inf,'Order',9)

ExpansionPoint — Expansion point
0 (default) | number | symbolic number | symbolic variable | symbolic function | symbolic
expression

Expansion point, specified as a number, or a symbolic number, variable, function, or
expression. The expansion point cannot depend on the expansion variable.

You can also specify the expansion point using the input argument a. If you specify the
expansion point both ways, then the Name,Value pair argument takes precedence.

Order — Truncation order of Puiseux series expansion
6 (default) | positive integer | symbolic positive integer

4 Functions — Alphabetical List

4-1578

Truncation order of Puiseux series expansion, specified as a positive integer or a symbolic
positive integer.

series computes the Puiseux series approximation with the order n - 1. The truncation
order n is the exponent in the O-term: O(varn).

Direction — Direction for area of convergence of Puiseux series expansion
'complexPlane' (default) | 'left' | 'right' | 'realAxis'

Direction for area of convergence of Puiseux series expansion, specified as:

'left' Find a Puiseux series approximation that is valid in a small interval
to the left of the expansion point.

'right' Find a Puiseux series approximation that is valid in a small interval
to the right of the expansion point.

'realAxis' Find a Puiseux series approximation that is valid in a small interval
on the both sides of the expansion point.

'complexPlane' Find a Puiseux series approximation that is valid in a small open
circle in the complex plane around the expansion point. This is the
default value.

Tips
• If you use both the third argument a and the ExpansionPoint name-value pair to

specify the expansion point, the value specified via ExpansionPoint prevails.

See Also
pade | taylor

Introduced in R2015b

 series

4-1579

setVar
Assign variable in MuPAD notebook

Note

MuPAD® notebooks will be removed in a future release. Use MATLAB® live scripts
instead.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook. MATLAB live scripts support most MuPAD functionality,
although there are some differences. For more information, see “Convert MuPAD
Notebooks to MATLAB Live Scripts”.

Syntax
setVar(nb,MATLABvar)
setVar(nb,'MuPADvar',MATLABexpr)

Description
setVar(nb,MATLABvar) copies the symbolic variable MATLABvar and its value in the
MATLAB workspace to the variable MATLABvar in the MuPAD notebook nb.

setVar(nb,'MuPADvar',MATLABexpr) assigns the symbolic expression MATLABexpr
in the MATLAB workspace to the variable MuPADvar in the MuPAD notebook nb.

Examples

Copy Variable and Its Value from MATLAB to MuPAD

Copy a variable y with a value exp(-x) assigned to it from the MATLAB workspace to a
MuPAD notebook. Do all three steps in the MATLAB Command Window.

4 Functions — Alphabetical List

4-1580

Create the symbolic variable x and assign the expression exp(-x) to y:

syms x
y = exp(-x);

Create a new MuPAD notebook and specify a handle mpnb to that notebook:

mpnb = mupad;

Copy the variable y and its value exp(-x) to the MuPAD notebook mpnb:

setVar(mpnb,'y',y)

After executing this statement, the MuPAD engine associated with the mpnb notebook
contains the variable y, with its value exp(-x).

Assign MATLAB Symbolic Expression to Variable in MuPAD

Working in the MATLAB Command Window, assign an expression t^2 + 1 to a variable g
in a MuPAD notebook. Do all three steps in the MATLAB Command Window.

Create the symbolic variable t:

syms t

Create a new MuPAD notebook and specify a handle mpnb to that notebook:

mpnb = mupad;

Assign the value t^2 + 1 to the variable g in the MuPAD notebook mpnb:

setVar(mpnb,'g',t^2 + 1)

After executing this statement, the MuPAD engine associated with the mpnb notebook
contains the variable g, with its value t^2 + 1.

Input Arguments
nb — Pointer to MuPAD notebook
handle to notebook | vector of handles to notebooks

 setVar

4-1581

Pointer to a MuPAD notebook, specified as a MuPAD notebook handle or a vector of
handles. You create the notebook handle when opening a notebook with the mupad or
openmn function.

MuPADvar — Variable in MuPAD notebook
variable

Variable in a MuPAD notebook, specified as a variable.

MATLABvar — Variable in MATLAB workspace
symbolic variable

Variable in the MATLAB workspace, specified as a symbolic variable.

MATLABexpr — Expression in MATLAB workspace
symbolic expression

Expression in the MATLAB workspace, specified as a symbolic expression.

See Also
getVar | mupad | openmu

Topics
“Copy Variables and Expressions Between MATLAB and MuPAD” on page 3-55

Introduced in R2008b

4 Functions — Alphabetical List

4-1582

sign
Sign of real or complex value

Syntax
sign(z)

Description
sign(z) returns the sign of real or complex value z. The sign of a complex number z is
defined as z/abs(z). If z is a vector or a matrix, sign(z) returns the sign of each
element of z.

Examples

Signs of Real Numbers
Find the signs of these symbolic real numbers:

[sign(sym(1/2)), sign(sym(0)), sign(sym(pi) - 4)]

ans =
[1, 0, -1]

Signs of Matrix Elements
Find the signs of the real and complex elements of matrix A:

A = sym([(1/2 + i), -25; i*(i + 1), pi/6 - i*pi/2]);
sign(A)

ans =
[5^(1/2)*(1/5 + 2i/5), -1]
[2^(1/2)*(- 1/2 + 1i/2), 5^(1/2)*18^(1/2)*(1/30 - 1i/10)]

 sign

4-1583

Sign of Symbolic Expression
Find the sign of this expression assuming that the value x is negative:

syms x
assume(x < 0)
sign(5*x^3)

ans =
-1

For further computations, clear the assumption on x by recreating it using syms:

syms x

Input Arguments
z — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input specified as a symbolic number, variable, expression, function, vector, or matrix.

Definitions

Sign Function
The sign function of any number z is defined via the absolute value of z:

sign z = z
z

Thus, the sign function of a real number z can be defined as follows:

sign z =
−1 if x < 0
 0 if x = 0
 1 if x > 0

4 Functions — Alphabetical List

4-1584

Tips
• Calling sign for a number that is not a symbolic object invokes the MATLAB sign

function.

See Also
abs | angle | imag | real | signIm

Introduced in R2013a

 sign

4-1585

signIm
Sign of the imaginary part of complex number

Syntax
signIm(z)

Description
signIm(z) returns the sign of the imaginary part of a complex number z. For all
complex numbers with a nonzero imaginary part, singIm(z) = sign(imag(z)). For
real numbers, signIm(z) = -sign(z).

signIm z =
1
0
−1

if Im z > 0 or Im z = 0 and z < 0
if z = 0

otherwise

Examples

Symbolic Results Including signIm
Results of symbolic computations, especially symbolic integration, can include the
signIm function.

Integrate this expression. For complex values a and x, this integral includes signIm.

syms a x
f = 1/(a^2 + x^2);
F = int(f, x, -Inf, Inf)

F =
(pi*signIm(1i/a))/a

4 Functions — Alphabetical List

4-1586

Signs of Imaginary Parts of Numbers
Find the signs of imaginary parts of complex numbers with nonzero imaginary parts and
of real numbers.

Use signIm to find the signs of imaginary parts of these numbers. For complex numbers
with nonzero imaginary parts, signIm returns the sign of the imaginary part of the
number.

[signIm(-18 + 3*i), signIm(-18 - 3*i),...
signIm(10 + 3*i), signIm(10 - 3*i),...
signIm(Inf*i), signIm(-Inf*i)]

ans =
 1 -1 1 -1 1 -1

For real positive numbers, signIm returns -1.

[signIm(2/3), signIm(1), signIm(100), signIm(Inf)]

ans =
 -1 -1 -1 -1

For real negative numbers, signIm returns 1.

[signIm(-2/3), signIm(-1), signIm(-100), signIm(-Inf)]

ans =
 1 1 1 1

signIm(0) is 0.

[signIm(0), signIm(0 + 0*i), signIm(0 - 0*i)]

ans =
 0 0 0

Signs of Imaginary Parts of Symbolic Expressions
Find the signs of imaginary parts of symbolic expressions that represent complex
numbers.

 signIm

4-1587

Call signIm for these symbolic expressions without additional assumptions. Because
signIm cannot determine if the imaginary part of a symbolic expression is positive,
negative, or zero, it returns unresolved symbolic calls.

syms x y z
[signIm(z), signIm(x + y*i), signIm(x - 3*i)]

ans =
[signIm(z), signIm(x + y*1i), signIm(x - 3i)]

Assume that x, y, and z are positive values. Find the signs of imaginary parts of the same
symbolic expressions.

syms x y z positive
[signIm(z), signIm(x + y*i), signIm(x - 3*i)]

ans =
[-1, 1, -1]

For further computations, clear the assumptions by recreating the variables using syms.

syms x y z

Find the first derivative of the signIm function. signIm is a constant function, except for
the jump discontinuities along the real axis. The diff function ignores these
discontinuities.

syms z
diff(signIm(z), z)

ans =
0

Signs of Imaginary Parts of Matrix Elements
singIm accepts vectors and matrices as its input argument. This lets you find the signs of
imaginary parts of several numbers in one function call.

Find the signs of imaginary parts of the real and complex elements of matrix A.

A = sym([(1/2 + i), -25; i*(i + 1), pi/6 - i*pi/2]);
signIm(A)

4 Functions — Alphabetical List

4-1588

ans =
[1, 1]
[1, -1]

Input Arguments
z — Input representing complex number
number | symbolic number | symbolic variable | symbolic expression | vector | matrix

Input representing complex number, specified as a number, symbolic number, symbolic
variable, expression, vector, or matrix.

Tips
• signIm(NaN) returns NaN.

See Also
conj | imag | real | sign

Introduced in R2014b

 signIm

4-1589

simplify
Algebraic simplification

Syntax
S = simplify(expr)
S = simplify(expr,Name,Value)

Description
S = simplify(expr) performs algebraic simplification of expr. If expr is a symbolic
vector or matrix, this function simplifies each element of expr.

S = simplify(expr,Name,Value) performs algebraic simplification of expr using
additional options specified by one or more Name,Value pair arguments.

Examples

Simplify Expressions
Simplify these symbolic expressions:

syms x a b c
S = simplify(sin(x)^2 + cos(x)^2)
S = simplify(exp(c*log(sqrt(a+b))))

S =
1

S =
(a + b)^(c/2)

4 Functions — Alphabetical List

4-1590

Simplify Matrix Elements
Call simplify for this symbolic matrix. When the input argument is a vector or matrix,
simplify tries to find a simpler form of each element of the vector or matrix.

syms x
M = [(x^2 + 5*x + 6)/(x + 2), sin(x)*sin(2*x) + cos(x)*cos(2*x);
 (exp(-x*i)*i)/2 - (exp(x*i)*i)/2, sqrt(16)];
S = simplify(M)

S =
[x + 3, cos(x)]
[sin(x), 4]

Get Simpler Results For Logarithms and Powers
Simplify a symbolic expression that contain logarithms and powers. By default, simplify
does not combine powers and logarithms because combining them is not valid for generic
complex values.

syms x
expr = (log(x^2 + 2*x + 1) - log(x + 1))*sqrt(x^2);
S = simplify(expr)

S =
-(log(x + 1) - log((x + 1)^2))*(x^2)^(1/2)

To apply the simplification rules that allow the simplify function to combine powers and
logarithms, set 'IgnoreAnalyticConstraints' to true:

S = simplify(expr, 'IgnoreAnalyticConstraints', true)

S =
x*log(x + 1)

Get Simpler Results Using More Simplification Steps
Simplify this expression:

syms x
expr = ((exp(-x*i)*i) - (exp(x*i)*i))/(exp(-x*i) + exp(x*i));
S = simplify(expr)

 simplify

4-1591

S =
-(exp(x*2i)*1i - 1i)/(exp(x*2i) + 1)

By default, simplify uses one internal simplification step. You can get different, often
shorter, simplification results by increasing the number of simplification steps:

S10 = simplify(expr,'Steps',10)
S30 = simplify(expr,'Steps',30)
S50 = simplify(expr,'Steps',50)

S10 =
2i/(exp(x*2i) + 1) - 1i

S30 =
((cos(x) - sin(x)*1i)*1i)/cos(x) - 1i

S50 =
tan(x)

If you are unable to return the desired result, try alternate simplification functions. See
“Choose Function to Rearrange Expression” on page 2-101.

Get Equivalent Results For Symbolic Expression
Get equivalent results for a symbolic expression by setting the value of 'All' to true.

syms x
expr = cos(x)^2 - sin(x)^2;
S = simplify(expr,'All',true)

S =
 cos(2*x)
 cos(x)^2 - sin(x)^2

Increase the number of simplification steps to 10. Find the other equivalent results for the
same expression.

S = simplify(expr,'Steps',10,'All',true)

S =
 cos(2*x)
 1 - 2*sin(x)^2
 2*cos(x)^2 - 1

4 Functions — Alphabetical List

4-1592

 cos(x)^2 - sin(x)^2
 cot(2*x)*sin(2*x)
 exp(-x*2i)/2 + exp(x*2i)/2

Separate Real and Imaginary Parts
Attempt to separate real and imaginary parts of an expression by setting the value of
'Criterion' to 'preferReal'.

syms x
f = (exp(x + exp(-x*i)/2 - exp(x*i)/2)*i)/2 -...
 (exp(- x - exp(-x*i)/2 + exp(x*i)/2)*i)/2;
S = simplify(f, 'Criterion','preferReal', 'Steps', 100)

S =
sin(sin(x))*cosh(x) + cos(sin(x))*sinh(x)*1i

If 'Criterion' is not set to 'preferReal', then simplify returns a shorter result but
the real and imaginary parts are not separated.

S = simplify(f,'Steps',100)

S =
sin(sin(x) + x*1i)

When you set 'Criterion' to 'preferReal', the simplifier disfavors expression forms
where complex values appear inside subexpressions. In nested subexpressions, the
deeper the complex value appears inside an expression, the least preference this form of
an expression gets.

Avoid Imaginary Terms in Exponents
Attempt to avoid imaginary terms in exponents by setting 'Criterion' to
'preferReal'.

Show this behavior by simplifying a complex symbolic expression with and without setting
'Criterion' to 'preferReal'. When 'Criterion' is set to 'preferReal', then
simplify places the imaginary term outside the exponent.

expr = sym(i)^(i+1);
withoutPreferReal = simplify(expr,'Steps',100)

 simplify

4-1593

withoutPreferReal =
(-1)^(1/2 + 1i/2)

withPreferReal = simplify(expr,'Criterion','preferReal','Steps',100)

withPreferReal =
exp(-pi/2)*1i

Simplify Units
Simplify expressions containing symbolic units of the same dimension by using
simplify.

u = symunit;
expr = 300*u.cm + 40*u.inch + 2*u.m;
S = simplify(expr)

S =
(3008/5)*[cm]

simplify automatically chooses the unit to rewrite into. To choose a specific unit, use
rewrite.

Input Arguments
expr — Input expression
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input expression, specified as a symbolic expression, function, vector, or matrix.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Seconds',60 limits the simplification process to 60 seconds.

All — Option to return equivalent results
false (default) | true

4 Functions — Alphabetical List

4-1594

Option to return equivalent results, specified as the comma-separated pair consisting of
'All' and either of the two logical values. When you use this option, the input argument
expr must be a scalar.

false Use the default option to return only the final simplification result.
true Return a column vector of equivalent results for the input

expression. You can use this option along with the 'Steps' option
to obtain alternative expressions in the simplification process.

Criterion — Simplification criterion
'default' (default) | 'preferReal'

Simplification criterion, specified as the comma-separated pair consisting of
'Criterion' and one of these character vectors.

'default' Use the default (internal) simplification criteria.
'preferReal' Favor the forms of S containing real values over the forms

containing complex values. If any form of S contains complex
values, the simplifier disfavors the forms where complex values
appear inside subexpressions. In case of nested subexpressions,
the deeper the complex value appears inside an expression, the
least preference this form of an expression gets.

IgnoreAnalyticConstraints — Simplification rules
false (default) | true

Simplification rules, specified as the comma-separated pair consisting of
'IgnoreAnalyticConstraints' and one of these values.

false Use strict simplification rules. simplify always returns results
that are analytically equivalent to the initial expression.

true Apply purely algebraic simplifications to an expression. simplify
can return simpler results for the input expressions where it would
return more complicated results otherwise. Setting
IgnoreAnalyticConstraints to true can lead to results that
are not equivalent to the initial expression.

Seconds — Time limit for the simplification process
Inf (default) | positive number

 simplify

4-1595

Time limit for the simplification process, specified as the comma-separated pair consisting
of 'Seconds' and a positive value that denotes the maximal time in seconds.

Steps — Number of simplification steps
1 (default) | positive number

Number of simplification steps, specified as the comma-separated pair consisting of
'Steps' and a positive value that denotes the maximal number of internal simplification
steps. Note that increasing the number of simplification steps can slow down your
computations.

simplify(expr,'Steps',n) is equivalent to simplify(expr,n), where n is the
number of simplification steps.

Tips
• Simplification of mathematical expression is not a clearly defined subject. There is no

universal idea as to which form of an expression is simplest. The form of a
mathematical expression that is simplest for one problem might be complicated or
even unsuitable for another problem.

Algorithms
When you use IgnoreAnalyticConstraints, then simplify follows these rules:

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the following equality
is valid for all values of a, b, and c:

 (a·b)c = ac·bc.
• log(ab) = b·log(a) for all values of a and b. In particular, the following equality is valid

for all values of a, b, and c:

 (ab)c = ab·c.
• If f and g are standard mathematical functions and f(g(x)) = x for all small positive

numbers, f(g(x)) = x is assumed to be valid for all complex values of x. In particular:

• log(ex) = x
• asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x

4 Functions — Alphabetical List

4-1596

• asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x
• Wk(x·ex) = x for all branch indices k of the Lambert W function.

See Also
collect | combine | expand | factor | horner | numden | rewrite |
simplifyFraction

Topics
“Simplify Symbolic Expressions” on page 2-93
“Choose Function to Rearrange Expression” on page 2-101

Introduced before R2006a

 simplify

4-1597

simplifyFraction
Simplify symbolic rational expressions

Syntax
simplifyFraction(expr)
simplifyFraction(expr,'Expand',true)

Description
simplifyFraction(expr) simplifies the rational expression expr such that the
numerator and denominator have no divisors in common.

simplifyFraction(expr,'Expand',true) expands the numerator and denominator
of the resulting simplified fraction as polynomials without factorization.

Examples

Simplify Symbolic Rational Expressions

Simplify two rational expressions by using simplifyFraction.

syms x y
fraction = (x^2-1)/(x+1);
simplifyFraction(fraction)

ans =
x - 1

fraction = (y*(x^2-1))/((x+1)*(x-1));
simplifyFraction(fraction)

ans =
y

4 Functions — Alphabetical List

4-1598

Expand Simplified Rational Expression

Create a rational expression. Simplify the expression by using simplifyFraction.

syms x y
fraction = ((y+1)^2*(x^2-1))/((x+1)*(x-1)^2);
simplifyFraction(fraction)

ans =
(y + 1)^2/(x - 1)

Simplify the same rational expression again. Expand the numerator and denominator of
the resulting fraction by setting 'Expand' to true.

simplifyFraction(fraction,'Expand',true)

ans =
(y^2 + 2*y + 1)/(x - 1)

Simplify Rational Subexpressions of Expressions

Simplify rational expressions by using simplifyFraction.

syms x
expr = ((x^2+2*x+1)/(x+1))^(1/2);
simplifyFraction(expr)

ans =
(x + 1)^(1/2)

Simplify rational expressions that contain irrational subexpressions instead of variables.

expr = (1-sin(x)^2)/(1-sin(x));
simplifyFraction(expr)

ans =
sin(x) + 1

simplifyFraction does not apply algebraic identities to simplify the rational
expression. Show that simplifyFraction does not apply standard trigonometric
identities.

expr = (1-cos(x)^2)/sin(x);
simplifyFraction(expr)

 simplifyFraction

4-1599

ans =
-(cos(x)^2 - 1)/sin(x)

Input Arguments
expr — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Tips
• expr can contain irrational subexpressions, such as sin(x) and x^(-1/3).

simplifyFraction simplifies such expressions as if they were variables.
• simplifyFraction does not apply algebraic identities.

Alternatives
You can also simplify rational expressions using the general simplification function
simplify. However, simplifyFraction is more efficient for simplifying rational
expressions.

See Also
collect | combine | expand | factor | horner | numden | rewrite | simplify

Topics
“Simplify Symbolic Expressions” on page 2-93
“Choose Function to Rearrange Expression” on page 2-101

Introduced in R2011b

4 Functions — Alphabetical List

4-1600

simscapeEquation
Convert symbolic expressions to Simscape language equations

Syntax
simscapeEquation(f)
simscapeEquation(LHS,RHS)

Description
simscapeEquation(f) converts the symbolic expression f to a Simscape language
equation. This function call converts any derivative with respect to the variable t to the
Simscape notation X.der. Here X is the time-dependent variable. In the resulting
Simscape equation, the variable time replaces all instances of the variable t except for
derivatives with respect to t.

simscapeEquation converts expressions with the second and higher-order derivatives
to a system of first-order equations, introducing new variables, such as x1, x2, and so on.

simscapeEquation(LHS,RHS) returns a Simscape equation LHS == RHS.

Examples

Convert Expressions to Simscape Equations

Convert the following expressions to Simscape language equations.

syms t x(t) y(t)
phi = diff(x) + 5*y + sin(t);
simscapeEquation(phi)
simscapeEquation(diff(y),phi)

ans =
 'phi == sin(time)+y*5.0+x.der;'

 simscapeEquation

4-1601

ans =
 'y.der == sin(time)+y*5.0+x.der;'

Convert ODE to Simscape Equation

Convert this expression containing the second derivative.

syms x(t)
eqn1 = diff(x,2) - diff(x) + sin(t);
simscapeEquation(eqn1)

ans =
 'x.der == x1;
 eqn1 == sin(time)-x1+x1.der;'

Convert this expression containing the fourth and second derivatives.

eqn2 = diff(x,4) + diff(x,2) - diff(x) + sin(t);
simscapeEquation(eqn2)

ans =
 'x.der == x1;
 x1.der == x2;
 x2.der == x3;
 eqn2 == sin(time)-x1+x2+x3.der;'

Tips
• The equation section of a Simscape component file supports a limited number of

functions. For details and the list of supported functions, see Simscape equations. If
a symbolic equation contains functions that are not available in the equation section of
a Simscape component file, simscapeEquation cannot convert these equations
correctly to Simscape equations. Such expressions do not trigger an error message.
Expressions with infinities are prone to invalid conversion.

See Also
ccode | fortran | matlabFunction | matlabFunctionBlock | symWriteSSC

Topics
“Generate Simscape Equations from Symbolic Expressions” on page 2-270

4 Functions — Alphabetical List

4-1602

Introduced in R2010a

 simscapeEquation

4-1603

sin
Symbolic sine function

Syntax
sin(X)

Description
sin(X) returns the sine function on page 4-1607 of X.

Examples
Sine Function for Numeric and Symbolic Arguments
Depending on its arguments, sin returns floating-point or exact symbolic results.

Compute the sine function for these numbers. Because these numbers are not symbolic
objects, sin returns floating-point results.

A = sin([-2, -pi, pi/6, 5*pi/7, 11])

A =
 -0.9093 -0.0000 0.5000 0.7818 -1.0000

Compute the sine function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, sin returns unresolved symbolic calls.

symA = sin(sym([-2, -pi, pi/6, 5*pi/7, 11]))

symA =
[-sin(2), 0, 1/2, sin((2*pi)/7), sin(11)]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

4 Functions — Alphabetical List

4-1604

ans =
[-0.90929742682568169539601986591174,...
0,...
0.5,...
0.78183148246802980870844452667406,...
-0.99999020655070345705156489902552]

Plot Sine Function
Plot the sine function on the interval from −4π to 4π.

syms x
fplot(sin(x),[-4*pi 4*pi])
grid on

 sin

4-1605

Handle Expressions Containing Sine Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing sin.

Find the first and second derivatives of the sine function:

syms x
diff(sin(x), x)
diff(sin(x), x, x)

ans =
cos(x)

ans =
-sin(x)

Find the indefinite integral of the sine function:

int(sin(x), x)

ans =
-cos(x)

Find the Taylor series expansion of sin(x):

taylor(sin(x), x)

ans =
x^5/120 - x^3/6 + x

Rewrite the sine function in terms of the exponential function:

rewrite(sin(x), 'exp')

ans =
(exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2

Evaluate Units with sin Function
sin numerically evaluates these units automatically: radian, degree, arcmin, arcsec,
and revolution.

4 Functions — Alphabetical List

4-1606

Show this behavior by finding the sine of x degrees and 2 radians.

u = symunit;
syms x
f = [x*u.degree 2*u.radian];
sinf = sin(f)

sinf =
[sin((pi*x)/180), sin(2)]

You can calculate sinf by substituting for x using subs and then using double or vpa.

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Sine Function
The sine of an angle, α, defined with reference to a right angled triangle is

sin α = opposite side
hypotenuse = a

h .

 sin

4-1607

The sine of a complex argument, α, is

sin α = eiα− e−iα

2i .

See Also
acos | acot | acsc | asec | asin | atan | cos | cot | csc | sec | sinc | tan

Introduced before R2006a

4 Functions — Alphabetical List

4-1608

sinc
Normalized sinc function

Syntax
sinc(x)

Description
sinc(x) returns sin(pi*x)/(pi*x). The symbolic sinc function does not implement
floating-point results, only symbolic results. Floating-point results are returned by the
sinc function in Signal Processing Toolbox™.

Examples

Sinc Function of Symbolic Inputs

syms x
sinc(x)

ans =
sin(pi*x)/(x*pi)

Show that sinc returns 1 at 0, 0 at other integer inputs, and exact symbolic values for
other inputs.

V = sym([-1 0 1 3/2]);
S = sinc(V)

S =
[0, 1, 0, -2/(3*pi)]

Convert the exact symbolic output to high-precision floating point by using vpa.

vpa(S)

 sinc

4-1609

ans =
[0, 1.0, 0, -0.21220659078919378102517835116335]

Fourier Transforms Involving Sinc Function

Although sinc appears in tables of Fourier transforms, fourier does not return sinc in
output.

Show that fourier transforms a pulse in terms of sin and cos.

fourier(rectangularPulse(x))

ans =
(cos(w/2)*1i + sin(w/2))/w - (cos(w/2)*1i - sin(w/2))/w

Show that fourier transforms sinc in terms of heaviside.

syms x
fourier(sinc(x))

ans =
(pi*heaviside(pi - w) - pi*heaviside(- w - pi))/pi

Plot Sinc Function

Plot the sinc function by using fplot.

syms x
fplot(sinc(x))

4 Functions — Alphabetical List

4-1610

Rewrite Sinc Function to Other Functions

Rewrite the sinc function to the exponential function exp by using rewrite.

syms x
rewrite(sinc(x),'exp')

ans =
((exp(-pi*x*1i)*1i)/2 - (exp(pi*x*1i)*1i)/2)/(x*pi)

 sinc

4-1611

Differentiate, Integrate, and Expand the Sinc Function

Differentiate, integrate, and expand sinc by using the diff, int, and taylor functions,
respectively.

Differentiate sinc.

syms x
diff(sinc(x))

ans =
cos(pi*x)/x - sin(pi*x)/(x^2*pi)

Integrate sinc from -Inf to Inf.

int(sinc(x),[-Inf Inf])

ans =
1

Integrate sinc from -Inf to x.

int(sinc(x),-Inf,x)

ans =
sinint(pi*x)/pi + 1/2

Find the Taylor expansion of sinc.

taylor(sinc(x))

ans =
(pi^4*x^4)/120 - (pi^2*x^2)/6 + 1

Prove Identity Involving Sinc Function

Prove an identity by defining the identity as a condition and using the isAlways function
to check the condition.

Prove this identity.

sinc x = 1
Γ(1 + x)Γ(1− x) .

4 Functions — Alphabetical List

4-1612

syms x
cond = sinc(x) == 1/(gamma(1+x)*gamma(1-x));
isAlways(cond)

ans =
 logical
 1

Input Arguments
x — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

See Also
sin

Introduced in R2018b

 sinc

4-1613

sinh
Symbolic hyperbolic sine function

Syntax
sinh(X)

Description
sinh(X) returns the hyperbolic sine function of X.

Examples

Hyperbolic Sine Function for Numeric and Symbolic
Arguments
Depending on its arguments, sinh returns floating-point or exact symbolic results.

Compute the hyperbolic sine function for these numbers. Because these numbers are not
symbolic objects, sinh returns floating-point results.

A = sinh([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2])

A =
 -3.6269 + 0.0000i 0.0000 - 0.0000i 0.0000 + 0.5000i...
 0.0000 + 0.7818i 0.0000 - 1.0000i

Compute the hyperbolic sine function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, sinh returns unresolved symbolic calls.

symA = sinh(sym([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2]))

symA =
[-sinh(2), 0, 1i/2, sinh((pi*2i)/7), -1i]

4 Functions — Alphabetical List

4-1614

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[-3.6268604078470187676682139828013,...
0,...
0.5i,...
0.78183148246802980870844452667406i,...
-1.0i]

Plot Hyperbolic Sine Function
Plot the hyperbolic sine function on the interval from −π to π.

syms x
fplot(sinh(x),[-pi pi])
grid on

 sinh

4-1615

Handle Expressions Containing Hyperbolic Sine Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing sinh.

Find the first and second derivatives of the hyperbolic sine function:

syms x
diff(sinh(x), x)
diff(sinh(x), x, x)

ans =
cosh(x)

4 Functions — Alphabetical List

4-1616

ans =
sinh(x)

Find the indefinite integral of the hyperbolic sine function:

int(sinh(x), x)

ans =
cosh(x)

Find the Taylor series expansion of sinh(x):

taylor(sinh(x), x)

ans =
x^5/120 + x^3/6 + x

Rewrite the hyperbolic sine function in terms of the exponential function:

rewrite(sinh(x), 'exp')

ans =
exp(x)/2 - exp(-x)/2

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | atanh | cosh | coth | csch | sech | tanh

Introduced before R2006a

 sinh

4-1617

sinhint
Hyperbolic sine integral function

Syntax
sinhint(X)

Description
sinhint(X) returns the hyperbolic sine integral function on page 4-1621 of X.

Examples

Hyperbolic Sine Integral Function for Numeric and Symbolic
Arguments
Depending on its arguments, sinhint returns floating-point or exact symbolic results.

Compute the hyperbolic sine integral function for these numbers. Because these numbers
are not symbolic objects, sinhint returns floating-point results.

A = sinhint([-pi, -1, 0, pi/2, 2*pi])

A =
 -5.4696 -1.0573 0 1.8027 53.7368

Compute the hyperbolic sine integral function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, sinhint returns unresolved symbolic calls.

symA = sinhint(sym([-pi, -1, 0, pi/2, 2*pi]))

symA =
[-sinhint(pi), -sinhint(1), 0, sinhint(pi/2), sinhint(2*pi)]

Use vpa to approximate symbolic results with floating-point numbers:

4 Functions — Alphabetical List

4-1618

vpa(symA)

ans =
[-5.4696403451153421506369580091277,...
-1.0572508753757285145718423548959,...
0,...
1.802743198288293882089794577617,...
53.736750620859153990408011863262]

Plot Hyperbolic Sine Integral Function
Plot the hyperbolic sine integral function on the interval from -2*pi to 2*pi.

syms x
fplot(sinhint(x),[-2*pi 2*pi])
grid on

 sinhint

4-1619

Handle Expressions Containing Hyperbolic Sine Integral
Function
Many functions, such as diff, int, and taylor, can handle expressions containing
sinhint.

Find the first and second derivatives of the hyperbolic sine integral function:

syms x
diff(sinhint(x), x)
diff(sinhint(x), x, x)

4 Functions — Alphabetical List

4-1620

ans =
sinh(x)/x

ans =
cosh(x)/x - sinh(x)/x^2

Find the indefinite integral of the hyperbolic sine integral function:

int(sinhint(x), x)

ans =
x*sinhint(x) - cosh(x)

Find the Taylor series expansion of sinhint(x):

taylor(sinhint(x), x)

ans =
x^5/600 + x^3/18 + x

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Hyperbolic Sine Integral Function
The hyperbolic sine integral function is defined as follows:

Shi x = ∫
0

x
sinh t

t dt

 sinhint

4-1621

References
[1] Gautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.” Handbook

of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M.
Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
coshint | cosint | eulergamma | int | sin | sinint | ssinint

Introduced in R2014a

4 Functions — Alphabetical List

4-1622

sinint
Sine integral function

Syntax
sinint(X)

Description
sinint(X) returns the sine integral function of X.

Examples
Sine Integral Function for Numeric and Symbolic Arguments
Depending on its arguments, sinint returns floating-point or exact symbolic results.

Compute the sine integral function for these numbers. Because these numbers are not
symbolic objects, sinint returns floating-point results.

A = sinint([- pi, 0, pi/2, pi, 1])

A =
 -1.8519 0 1.3708 1.8519 0.9461

Compute the sine integral function for the numbers converted to symbolic objects. For
many symbolic (exact) numbers, sinint returns unresolved symbolic calls.

symA = sinint(sym([- pi, 0, pi/2, pi, 1]))

symA =
[-sinint(pi), 0, sinint(pi/2), sinint(pi), sinint(1)]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

 sinint

4-1623

ans =
[-1.851937051982466170361053370158,...
0,...
1.3707621681544884800696782883816,...
1.851937051982466170361053370158,...
0.94608307036718301494135331382318]

Plot Sine Integral Function
Plot the sine integral function on the interval from -4*pi to 4*pi.

syms x
fplot(sinint(x),[-4*pi 4*pi])
grid on

4 Functions — Alphabetical List

4-1624

Handle Expressions Containing Sine Integral Function
Many functions, such as diff, int, and taylor, can handle expressions containing
sinint.

Find the first and second derivatives of the sine integral function:

syms x
diff(sinint(x), x)
diff(sinint(x), x, x)

ans =
sin(x)/x

ans =
cos(x)/x - sin(x)/x^2

Find the indefinite integral of the sine integral function:

int(sinint(x), x)

ans =
cos(x) + x*sinint(x)

Find the Taylor series expansion of sinint(x):

taylor(sinint(x), x)

ans =
x^5/600 - x^3/18 + x

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

 sinint

4-1625

Definitions

Sine Integral Function
The sine integral function is defined as follows:

Si x = ∫
0

x
sin t

t dt

References
[1] Gautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.” Handbook

of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M.
Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
coshint | cosint | eulergamma | int | sin | sinhint | ssinint

Introduced before R2006a

4 Functions — Alphabetical List

4-1626

smithForm
Smith form of matrix

Syntax
S = smithForm(A)
[U,V,S] = smithForm(A)

___ = smithForm(A,var)

Description
S = smithForm(A) returns the Smith normal form on page 4-1632 of a square
invertible matrix A. The elements of A must be integers or polynomials in a variable
determined by symvar(A,1). The Smith form S is a diagonal matrix.

[U,V,S] = smithForm(A) returns the Smith normal form of A and unimodular
transformation matrices U and V, such that S = U*A*V.

___ = smithForm(A,var) assumes that the elements of A are univariate polynomials
in the specified variable var. If A contains other variables, smithForm treats those
variables as symbolic parameters.

You can use the input argument var in any of the previous syntaxes.

If A does not contain var, then smithForm(A) and smithForm(A,var) return different
results.

Examples

Smith Form for Matrix of Integers
Find the Smith form of an inverse Hilbert matrix.

 smithForm

4-1627

A = sym(invhilb(5))
S = smithForm(A)

A =
[25, -300, 1050, -1400, 630]
[-300, 4800, -18900, 26880, -12600]
[1050, -18900, 79380, -117600, 56700]
[-1400, 26880, -117600, 179200, -88200]
[630, -12600, 56700, -88200, 44100]

S =
[5, 0, 0, 0, 0]
[0, 60, 0, 0, 0]
[0, 0, 420, 0, 0]
[0, 0, 0, 840, 0]
[0, 0, 0, 0, 2520]

Smith Form for Matrix of Univariate Polynomials
Create a 2-by-2 matrix, the elements of which are polynomials in the variable x.

syms x
A = [x^2 + 3, (2*x - 1)^2; (x + 2)^2, 3*x^2 + 5]

A =
[x^2 + 3, (2*x - 1)^2]
[(x + 2)^2, 3*x^2 + 5]

Find the Smith form of this matrix.

S = smithForm(A)

S =
[1, 0]
[0, x^4 + 12*x^3 - 13*x^2 - 12*x - 11]

Smith Form for Matrix of Multivariate Polynomials
Create a 2-by-2 matrix containing two variables: x and y.

syms x y
A = [2/x + y, x^2 - y^2; 3*sin(x) + y, x]

4 Functions — Alphabetical List

4-1628

A =
[y + 2/x, x^2 - y^2]
[y + 3*sin(x), x]

Find the Smith form of this matrix. If you do not specify the polynomial variable,
smithForm uses symvar(A,1) and thus determines that the polynomial variable is x.
Because 3*sin(x) + y is not a polynomial in x, smithForm throws an error.

S = smithForm(A)

Error using mupadengine/feval (line 163)
Cannot convert the matrix entries to integers or univariate polynomials.

Find the Smith form of A specifying that all elements of A are polynomials in the variable
y.

S = smithForm(A,y)

S =
[1, 0]
[0, 3*y^2*sin(x) - 3*x^2*sin(x) + y^3 + y*(- x^2 + x) + 2]

Smith Form and Transformation Matrices
Find the Smith form and transformation matrices for an inverse Hilbert matrix.

A = sym(invhilb(3));
[U,V,S] = smithForm(A)

U =
[1, 1, 1]
[-4, -1, 0]
[10, 5, 3]

V =
[1, -2, 0]
[0, 1, 5]
[0, 1, 4]

S =
[3, 0, 0]
[0, 12, 0]
[0, 0, 60]

Verify that S = U*A*V.

 smithForm

4-1629

isAlways(S == U*A*V)

ans =
 3×3 logical array
 1 1 1
 1 1 1
 1 1 1

Find the Smith form and transformation matrices for a matrix of polynomials.

syms x y
A = [2*(x - y), 3*(x^2 - y^2);
 4*(x^3 - y^3), 5*(x^4 - y^4)];
[U,V,S] = smithForm(A,x)

U =
[0, 1]
[1, - x/(10*y^3) - 3/(5*y^2)]

V =
[-x/(4*y^3), - (5*x*y^2)/2 - (5*x^2*y)/2 - (5*x^3)/2 - (5*y^3)/2]
[1/(5*y^3), 2*x^2 + 2*x*y + 2*y^2]

S =
[x - y, 0]
[0, x^4 + 6*x^3*y - 6*x*y^3 - y^4]

Verify that S = U*A*V.

isAlways(S == U*A*V)

ans =
 2×2 logical array
 1 1
 1 1

If You Specify Variable for Integer Matrix
If a matrix does not contain a particular variable, and you call smithForm specifying that
variable as the second argument, then the result differs from what you get without
specifying that variable. For example, create a matrix that does not contain any variables.

A = [9 -36 30; -36 192 -180; 30 -180 180]

A =
 9 -36 30

4 Functions — Alphabetical List

4-1630

 -36 192 -180
 30 -180 180

Call smithForm specifying variable x as the second argument. In this
case, smithForm assumes that the elements of A are univariate polynomials in x.

syms x
smithForm(A,x)

ans =
 1 0 0
 0 1 0
 0 0 1

Call smithForm without specifying variables. In this case, smithForm treats A as a
matrix of integers.

smithForm(A)

ans =
 3 0 0
 0 12 0
 0 0 60

Input Arguments
A — Input matrix
square invertible symbolic matrix

Input matrix, specified as a square invertible symbolic matrix, the elements of which are
integers or univariate polynomials. If the elements of A contain more than one variable,
use the var argument to specify a polynomial variable, and treat all other variables as
symbolic parameters. If A is multivariate, and you do not specify var, then smithForm
uses symvar(A,1) to determine a polynomial variable.

var — Polynomial variable
symbolic variable

Polynomial variable, specified as a symbolic variable.

 smithForm

4-1631

Output Arguments
S — Smith normal form of input matrix
symbolic diagonal matrix

Smith normal form of input matrix, returned as a symbolic diagonal matrix. The first
diagonal element divides the second, the second divides the third, and so on.

U — Transformation matrix
unimodular symbolic matrix

Transformation matrix, returned as a unimodular symbolic matrix. If elements of A are
integers, then elements of U are also integers, and det(U) = 1 or det(U) = -1. If
elements of A are polynomials, then elements of U are univariate polynomials, and
det(U) is a constant.

V — Transformation matrix
unimodular symbolic matrix

Transformation matrix, returned as a unimodular symbolic matrix. If elements of A are
integers, then elements of V are also integers, and det(V) = 1 or det(V) = -1. If
elements of A are polynomials, then elements of V are univariate polynomials, and
det(V) is a constant.

Definitions

Smith Normal Form
Smith normal form of a an n-by-n matrix A is an n-by-n diagonal matrix S, such that Si, i
divides Si + 1, i + 1 for all i < n.

See Also
hermiteForm | jordan

Introduced in R2015b

4 Functions — Alphabetical List

4-1632

solve
Equations and systems solver

Note Character vector inputs have been removed. Instead, use syms to declare variables
and replace inputs such as solve('2*x == 1','x') with solve(2*x == 1,x).

Syntax
S = solve(eqn,var)
S = solve(eqn,var,Name,Value)

Y = solve(eqns,vars)
Y = solve(eqns,vars,Name,Value)

[y1,...,yN] = solve(eqns,vars)
[y1,...,yN] = solve(eqns,vars,Name,Value)
[y1,...,yN,parameters,conditions] = solve(eqns,vars,'
ReturnConditions',true)

Description
S = solve(eqn,var) solves the equation eqn for the variable var. If you do not specify
var, the symvar function determines the variable to solve for. For example, solve(x +
1 == 2, x) solves the equation x + 1 = 2 for x.

S = solve(eqn,var,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Y = solve(eqns,vars) solves the system of equations eqns for the variables vars and
returns a structure that contains the solutions. If you do not specify vars, solve uses
symvar to find the variables to solve for. In this case, the number of variables that
symvar finds is equal to the number of equations eqns.

Y = solve(eqns,vars,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

 solve

4-1633

[y1,...,yN] = solve(eqns,vars) solves the system of equations eqns for the
variables vars. The solutions are assigned to the variables y1,...,yN. If you do not
specify the variables, solve uses symvar to find the variables to solve for. In this case,
the number of variables that symvar finds is equal to the number of output arguments N.

[y1,...,yN] = solve(eqns,vars,Name,Value) uses additional options specified by
one or more Name,Value pair arguments.

[y1,...,yN,parameters,conditions] = solve(eqns,vars,'
ReturnConditions',true) returns the additional arguments parameters and
conditions that specify the parameters in the solution and the conditions on the
solution.

Examples

Solve an Equation
Use the == operator to specify the equation sin(x) == 1 and solve it.

syms x
eqn = sin(x) == 1;
solx = solve(eqn,x)

solx =
pi/2

Find the complete solution of the same equation by specifying the ReturnConditions
option as true. Specify output variables for the solution, the parameters in the solution,
and the conditions on the solution.

[solx, params, conds] = solve(eqn, x, 'ReturnConditions', true)

solx =
pi/2 + 2*pi*k

params =
k

conds =
in(k, 'integer')

4 Functions — Alphabetical List

4-1634

The solution pi/2 + 2*pi*k contains the parameter k which is valid under the
condition in(k, 'integer'). This condition means the parameter k must be an integer.

If solve returns an empty object, then no solutions exist. If solve returns an empty
object with a warning, solutions might exist but solve did not find any solutions.

eqns = [3*x+2, 3*x+1];
solve(eqns, x)

ans =
Empty sym: 0-by-1

Use Parameters and Conditions Returned by solve to Refine
Solution
Return the complete solution of an equation with parameters and conditions of the
solution by specifying ReturnConditions as true.

Solve the equation sin(x) = 0. Provide two additional output variables for output
arguments parameters and conditions.

syms x
eqn = sin(x) == 0;
[solx, param, cond] = solve(eqn, x, 'ReturnConditions', true)

solx =
pi*k
param =
k
cond =
in(k, 'integer')

The solution pi*k contains the parameter k and is valid under the condition
in(k,'integer'). This condition means the parameter k must be an integer. k does not
exist in the MATLAB workspace and must be accessed using param.

Find a valid value of k for 0 < x < 2*pi by assuming the condition, cond, and using
solve to solve these conditions for k. Substitute the value of k found into the solution for
x.

assume(cond)
interval = [solx > 0, solx < 2*pi];

 solve

4-1635

solk = solve(interval, param)
valx = subs(solx, param, solk)

solk =
1
valx =
pi

A valid value of k for 0 < x < 2*pi is 1. This produces the value x = pi.

Alternatively, find a solution for x by choosing a value of k. Check if the value chosen
satisfies the condition on k using isAlways.

Check if k = 4 satisfies the condition on k.

condk4 = subs(cond, param, 4);
isAlways(condk4)

ans =
 logical
 1

isAlways returns logical 1 (true), meaning 4 is a valid value for k. Substitute k with 4
to obtain a solution for x. Use vpa to obtain a numeric approximation.

valx = subs(solx, param, 4)
vpa(valx)

valx =
4*pi
ans =
12.566370614359172953850573533118

Solve Multivariate Equations and Assign Outputs to Variables
Avoid ambiguities when solving equations with symbolic parameters by specifying the
variable for which you want to solve an equation. If you do not specify the variable, solve
chooses a variable using symvar. First, solve the quadratic equation without specifying a
variable. solve chooses x to return the familiar solution. Then solve the quadratic
equation for a to return the solution for a.

syms a b c x
eqn = a*x^2 + b*x + c == 0;

4 Functions — Alphabetical List

4-1636

sol = solve(eqn)
sola = solve(eqn, a)

sol =
 -(b + (b^2 - 4*a*c)^(1/2))/(2*a)
 -(b - (b^2 - 4*a*c)^(1/2))/(2*a)
sola =
-(c + b*x)/x^2

When solving for more than one variable, the order in which you specify the variables
defines the order in which the solver returns the solutions.

Solve this system of equations and assign the solutions to variables solv and solu by
specifying the variables explicitly. The solver returns an array of solutions for each
variable.

syms u v
eqns = [2*u^2 + v^2 == 0, u - v == 1];
vars = [v u];
[solv, solu] = solve(eqns, vars)

solv =
 - (2^(1/2)*1i)/3 - 2/3
 (2^(1/2)*1i)/3 - 2/3
solu =
 1/3 - (2^(1/2)*1i)/3
 (2^(1/2)*1i)/3 + 1/3

Entries with the same index form the solutions of a system.

solutions = [solv solu]

solutions =
[- (2^(1/2)*1i)/3 - 2/3, 1/3 - (2^(1/2)*1i)/3]
[(2^(1/2)*1i)/3 - 2/3, (2^(1/2)*1i)/3 + 1/3]

A solution of the system is v = - (2^(1/2)*1i)/3 - 2/3, and u = 1/3 -
(2^(1/2)*1i)/3.

Solve Multivariate Equations and Assign Outputs to Structure
When solving for multiple variables, it can be more convenient to store the outputs in a
structure array than in separate variables. The solve function returns a structure when
you specify a single output argument and multiple outputs exist.

 solve

4-1637

Solve a system of equations to return the solutions in a structure array.

syms u v
eqns = [2*u + v == 0, u - v == 1];
S = solve(eqns, [u v])

S =
 struct with fields:

 u: [1×1 sym]
 v: [1×1 sym]

Access the solutions by addressing the elements of the structure.

S.u
S.v

ans =
1/3
ans =
-2/3

Using a structure array allows you to conveniently substitute solutions into expressions.
The subs function substitutes the correct values irrespective of which variables you
substitute.

Substitute solutions into expressions using the structure S.

expr1 = u^2;
subs(expr1, S)
expr2 = 3*v+u;
subs(expr2, S)

ans =
1/9
ans =
-5/3

Return Complete Solution of System of Equations Using
Structure
Return the complete solution of a system of equations with parameters and conditions of
the solution by specifying ReturnConditions as true.

4 Functions — Alphabetical List

4-1638

syms x y
eqns = [sin(x)^2 == cos(y), 2*x == y];
S = solve(eqns, [x y], 'ReturnConditions', true);
S.x
S.y
S.conditions
S.parameters

ans =
 pi*k - asin(3^(1/2)/3)
 asin(3^(1/2)/3) + pi*k
ans =
 2*pi*k - 2*asin(3^(1/2)/3)
 2*asin(3^(1/2)/3) + 2*pi*k
ans =
 in(k, 'integer')
 in(k, 'integer')
ans =
k

A solution is formed by the elements of the same index in S.x, S.y, and S.conditions.
Any element of S.parameters can appear in any solution. For example, a solution is x =
pi*k - asin(3^(1/2)/3), and y = 2*pi*k - 2*asin(3^(1/2)/3), with the
parameter k under the condition in(k, 'integer'). This condition means k must be an
integer for the solution to be valid. k does not exist in the MATLAB workspace and must
be accessed with S.parameters.

For the first solution, find a valid value of k for 0 < x < pi by assuming the condition
S.conditions(1) and using solve to solve these conditions for k. Substitute the value
of k found into the solution for x.

assume(S.conditions(1))
interval = [S.x(1)>0, S.x(1)<pi];
solk = solve(interval, S.parameters)
solx = subs(S.x(1), S.parameters, solk)

solk =
1
solx =
pi - asin(3^(1/2)/3)

A valid value of k for 0 < x < pi is 1. This produces the value x = pi -
asin(3^(1/2)/3).

 solve

4-1639

Alternatively, find a solution for x by choosing a value of k. Check if the value chosen
satisfies the condition on k using isAlways.

Check if k = 4 satisfies the condition on k.

condk4 = subs(S.conditions(1), S.parameters, 4);
isAlways(condk4)

ans =
 logical
 1

isAlways returns logical 1 (true) meaning 4 is a valid value for k. Substitute k with 4 to
obtain a solution for x. Use vpa to obtain a numeric approximation.

valx = subs(S.x(1), S.parameters, 4)
vpa(valx)

valx =
4*pi - asin(3^(1/2)/3)
ans =
11.950890905688785612783108943994

Numerically Solve Equations
When solve cannot symbolically solve an equation, it tries to find a numeric solution
using vpasolve. The vpasolve function returns the first solution found.

Try solving the following equation. solve returns a numeric solution because it cannot
find a symbolic solution.

syms x
eqn = sin(x) == x^2 - 1;
solve(eqn, x)

Warning: Unable to solve symbolically. Returning a numeric solution using vpasolve.
> In solve (line 304)
ans =
-0.63673265080528201088799090383828

Plot the left and the right sides of the equation. Observe that the equation also has a
positive solution.

fplot([lhs(eqn) rhs(eqn)], [-2 2])

4 Functions — Alphabetical List

4-1640

Find this solution by directly calling the numeric solver vpasolve and specifying the
interval.

vpasolve(eqn, x, [0 2])

ans =
1.4096240040025962492355939705895

Solve Inequalities
solve can solve inequalities to find a solution that satisfies the inequalities.

 solve

4-1641

Solve the following inequalities. Set ReturnConditions to true to return any
parameters in the solution and conditions on the solution.

x > 0
y > 0
x2 + y2 + xy < 1

syms x y
cond1 = x^2 + y^2 + x*y < 1;
cond2 = x > 0;
cond3 = y > 0;
conds = [cond1 cond2 cond3];

sol = solve(conds, [x y], 'ReturnConditions', true);

sol.x
sol.y
sol.parameters
sol.conditions

ans =
(- 3*v^2 + u)^(1/2)/2 - v/2
ans =
v
ans =
[u, v]
ans =
4*v^2 < u & u < 4 & 0 < v

The parameters u and v do not exist in the MATLAB workspace and must be accessed
using sol.parameters.

Check if the values u = 7/2 and v = 1/2 satisfy the condition using subs and
isAlways.

condWithValues = subs(sol.conditions, sol.parameters, [7/2,1/2]);
isAlways(condWithValues)

ans =
 logical
 1

isAlways returns logical 1 (true) indicating that these values satisfy the condition.
Substitute these parameter values into sol.x and sol.y to find a solution for x and y.

4 Functions — Alphabetical List

4-1642

xSol = subs(sol.x, sol.parameters, [7/2,1/2])
ySol = subs(sol.y, sol.parameters, [7/2,1/2])

xSol =
11^(1/2)/4 - 1/4

ySol =
1/2

Convert the solution into numeric form by using vpa.

vpa(xSol)
vpa(ySol)

ans =
0.57915619758884996227873318416767

ans =
0.5

Return Real Solutions
Solve this equation. It has five solutions.

syms x
eqn = x^5 == 3125;
solve(eqn, x)

ans =
 5
 - (2^(1/2)*(5 - 5^(1/2))^(1/2)*5i)/4 - (5*5^(1/2))/4 - 5/4
 (2^(1/2)*(5 - 5^(1/2))^(1/2)*5i)/4 - (5*5^(1/2))/4 - 5/4
 (5*5^(1/2))/4 - (2^(1/2)*(5^(1/2) + 5)^(1/2)*5i)/4 - 5/4
 (5*5^(1/2))/4 + (2^(1/2)*(5^(1/2) + 5)^(1/2)*5i)/4 - 5/4

Return only real solutions by setting argument Real to true. The only real solution of
this equation is 5.

solve(eqn, x, 'Real', true)

ans =
5

 solve

4-1643

Return One Solution
Solve this equation. Instead of returning an infinite set of periodic solutions, the solver
picks these three solutions that it considers to be most practical.

syms x
eqn = sin(x) + cos(2*x) == 1;
solve(eqn, x)

ans =
 0
 pi/6
 (5*pi)/6

Pick only one solution using PrincipalValue.

eqn = sin(x) + cos(2*x) == 1;
solve(eqn, x, 'PrincipalValue', true)

ans =
0

Shorten Result with Simplification Rules
Try to solve this equation. By default, solve does not apply simplifications that are not
always mathematically correct. As a result, solve cannot solve this equation symbolically.

syms x
eqn = exp(log(x)*log(3*x)) == 4;
solve(eqn, x)

Warning: Unable to solve symbolically. Returning a numeric solution using vpasolve.
> In solve (line 304)
ans =
- 14.009379055223370038369334703094 - 2.9255310052111119036668717988769i

Set IgnoreAnalyticConstraints to true to apply simplifications that might allow
solve to find a result. For details, see “Algorithms” on page 4-1652.

S = solve(eqn, x, 'IgnoreAnalyticConstraints', true)

S =
 (3^(1/2)*exp(-(log(256) + log(3)^2)^(1/2)/2))/3
 (3^(1/2)*exp((log(256) + log(3)^2)^(1/2)/2))/3

4 Functions — Alphabetical List

4-1644

solve applies simplifications that allow it to find a solution. The simplifications applied
do not always hold. Thus, the solutions in this mode might not be correct or complete, and
need verification.

Ignore Assumptions on Variables
The sym and syms functions let you set assumptions for symbolic variables.

Assume that the variable x can have only positive values.

syms x positive

When you solve an equation or a system of equations for a variable under assumptions,
the solver only returns solutions consistent with the assumptions. Solve this equation for
x.

eqn = x^2 + 5*x - 6 == 0;
solve(eqn, x)

ans =
1

Allow solutions that do not satisfy the assumptions by setting IgnoreProperties to
true.

solve(eqn, x, 'IgnoreProperties', true)

ans =
 -6
 1

For further computations, clear the assumption that you set on the variable x by
recreating it using syms.

syms x

Numerically Approximating Symbolic Solutions That Contain
root

When solving polynomials, solve might return solutions containing root. To numerically
approximate these solutions, use vpa. Consider the following equation and solution.

 solve

4-1645

syms x
eqn = x^4 + x^3 + 1 == 0;
s = solve(eqn, x)

s =
 root(z^4 + z^3 + 1, z, 1)
 root(z^4 + z^3 + 1, z, 2)
 root(z^4 + z^3 + 1, z, 3)
 root(z^4 + z^3 + 1, z, 4)

Because there are no parameters in this solution, use vpa to approximate it numerically.

vpa(s)

ans =
 0.5189127943851558447865795886366 - 0.666609844932018579153758800733i
 0.5189127943851558447865795886366 + 0.666609844932018579153758800733i
 - 1.0189127943851558447865795886366 - 0.60256541999859902604398442197193i
 - 1.0189127943851558447865795886366 + 0.60256541999859902604398442197193i

Solve Polynomial Equations of High Degree
When you solve a higher order polynomial equation, the solver might use root to return
the results. Solve an equation of order 3.

syms x a
eqn = x^3 + x^2 + a == 0;
solve(eqn, x)

ans =
root z3 + z2 + a, z, 1

root z3 + z2 + a, z, 2

root z3 + z2 + a, z, 3

Try to get an explicit solution for such equations by calling the solver with MaxDegree.
The option specifies the maximum degree of polynomials for which the solver tries to
return explicit solutions. The default value is 2. Increasing this value, you can get explicit
solutions for higher order polynomials.

Solve the same equations for explicit solutions by increasing the value of MaxDegree to
3.

4 Functions — Alphabetical List

4-1646

S = solve(eqn, x, 'MaxDegree', 3)

S =
1

9 σ1
+ σ1−

1
3

− 1
18 σ1

−
σ1
2 − 1

3 −
3 1

9 σ1
− σ1 i

2

− 1
18 σ1

−
σ1
2 − 1

3 +
3 1

9 σ1
− σ1 i

2

where

 σ1 = a
2 + 1

27
2
− 1

729 −
a
2 −

1
27

1/3

Input Arguments
eqn — Equation to solve
symbolic expression | symbolic equation

Equation to solve, specified as a symbolic expression or symbolic equation. The relation
operator == defines symbolic equations. If eqn is a symbolic expression (without the right
side), the solver assumes that the right side is 0, and solves the equation eqn == 0.

var — Variable for which you solve equation
symbolic variable

Variable for which you solve an equation, specified as a symbolic variable. By default,
solve uses the variable determined by symvar.

eqns — System of equations
symbolic expressions | symbolic equations

System of equations, specified as symbolic expressions or symbolic equations. If any
elements of eqns are symbolic expressions (without the right side), solve equates the
element to 0.

vars — Variables for which you solve an equation or system of equations
symbolic variables

 solve

4-1647

Variables for which you solve an equation or system of equations, specified as symbolic
variables. By default, solve uses the variables determined by symvar.

The order in which you specify these variables defines the order in which the solver
returns the solutions.

Name-Value Pair Arguments
Example: 'Real',true specifies that the solver returns real solutions.

ReturnConditions — Flag for returning parameters conditions
false (default) | true

Flag for returning parameters in solution and conditions under which the solution is true,
specified as the comma-separated pair consisting of 'ReturnConditions' and one of
these values.

false Do not return parameterized solutions. Do not return the
conditions under which the solution holds. The solve function
replaces parameters with appropriate values.

true Return the parameters in the solution and the conditions under
which the solution holds. For a call with a single output variable,
solve returns a structure with the fields parameters and
conditions. For multiple output variables, solve assigns the
parameters and conditions to the last two output variables. This
behavior means that the number of output variables must be equal
to the number of variables to solve for plus two.

Example: [v1, v2, params, conditions] = solve(sin(x) +y == 0,y^2 ==
3,'ReturnConditions',true) returns the parameters in params and conditions in
conditions.

IgnoreAnalyticConstraints — Simplification rules applied to expressions and
equations
false (default) | true

Simplification rules applied to expressions and equations, specified as the comma-
separated pair consisting of 'IgnoreAnalyticConstraints' and one of these values.

false Use strict simplification rules.

4 Functions — Alphabetical List

4-1648

true Apply purely algebraic simplifications to expressions and
equations. Setting IgnoreAnalyticConstraints to true can
give you simple solutions for the equations for which the direct use
of the solver returns complicated results. In some cases, it also
enables solve to solve equations and systems that cannot be
solved otherwise. Setting IgnoreAnalyticConstraints to true
can lead to wrong or incomplete results.

IgnoreProperties — Flag for returning solutions inconsistent with properties of
variables
false (default) | true

Flag for returning solutions inconsistent with the properties of variables, specified as the
comma-separated pair consisting of 'IgnoreProperties' and one of these values.

false Do not exclude solutions inconsistent with the properties of
variables.

true Exclude solutions inconsistent with the properties of variables.

MaxDegree — Maximum degree of polynomial equations for which solver uses
explicit formulas
2 (default) | positive integer smaller than 5

Maximum degree of polynomial equations for which solver uses explicit formulas,
specified as a positive integer smaller than 5. The solver does not use explicit formulas
that involve radicals when solving polynomial equations of a degree larger than the
specified value.

PrincipalValue — Flag for returning one solution
false (default) | true

Flag for returning one solution, specified as the comma-separated pair consisting of
'PrincipalValue' and one of these values.

false Return all solutions.
true Return only one solution. If an equation or a system of equations

does not have a solution, the solver returns an empty symbolic
object.

 solve

4-1649

Real — Flag for returning only real solutions
false (default) | true

Flag for returning only real solutions, specified as the comma-separated pair consisting of
'Real' and one of these values.

false Return all solutions.
true Return only those solutions for which every subexpression of the

original equation represents a real number. Also, assume that all
symbolic parameters of an equation represent real numbers.

Output Arguments
S — Solutions of equation
symbolic array

Solutions of an equation, returned as a symbolic array. The size of a symbolic array
corresponds to the number of the solutions.

Y — Solutions of system of equations
structure

Solutions of a system of equations, returned as a structure. The number of fields in the
structure correspond to the number of independent variables in a system. If
ReturnConditions is set to true, the solve function returns two additional fields that
contain the parameters in the solution, and the conditions under which the solution is
true.

y1,...,yN — Solutions of system of equations
symbolic variables

Solutions of a system of equations, returned as symbolic variables. The number of output
variables or symbolic arrays must be equal to the number of independent variables in a
system. If you explicitly specify independent variables vars, then the solver uses the
same order to return the solutions. If you do not specify vars, the toolbox sorts
independent variables alphabetically, and then assigns the solutions for these variables to
the output variables.

parameters — Parameters in solution
vector of generated parameters

4 Functions — Alphabetical List

4-1650

Parameters in a solution, returned as a vector of generated parameters. This output
argument is only returned if ReturnConditions is true. If a single output argument is
provided, parameters is returned as a field of a structure. If multiple output arguments
are provided, parameters is returned as the second-to-last output argument. The
generated parameters do not appear in the MATLAB workspace. They must be accessed
using parameters.
Example: [solx, params, conditions] = solve(sin(x) == 0,
'ReturnConditions', true) returns the parameter k in the argument params.

conditions — Conditions under which solutions are valid
vector of symbolic expressions

Conditions under which solutions are valid, returned as a vector of symbolic expressions.
This output argument is only returned if ReturnConditions is true. If a single output
argument is provided, conditions is returned as a field of a structure. If multiple output
arguments are provided, conditions is returned as the last output argument.
Example: [solx, params, conditions] = solve(sin(x) == 0,
'ReturnConditions', true) returns the condition in(k, 'integer') in
conditions. The solution in solx is valid only under this condition.

Tips
• If solve cannot find a solution and ReturnConditions is false, the solve function

internally calls the numeric solver vpasolve that tries to find a numeric solution. If
solve cannot find a solution and ReturnConditions is true, solve returns an
empty solution with a warning. If no solutions exist, solve returns an empty solution
without a warning. For polynomial equations and systems without symbolic
parameters, the numeric solver returns all solutions. For nonpolynomial equations and
systems without symbolic parameters, the numeric solver returns only one solution (if
a solution exists).

• If the solution contains parameters and ReturnConditions is true, solve returns
the parameters in the solution and the conditions under which the solutions are true.
If ReturnConditions is false, the solve function either chooses values of the
parameters and returns the corresponding results, or returns parameterized solutions
without choosing particular values. In the latter case, solve also issues a warning
indicating the values of parameters in the returned solutions.

• If a parameter does not appear in any condition, it means the parameter can take any
complex value.

 solve

4-1651

• The output of solve can contain parameters from the input equations in addition to
parameters introduced by solve.

• Parameters introduced by solve do not appear in the MATLAB workspace. They must
be accessed using the output argument that contains them. Alternatively, to use the
parameters in the MATLAB workspace use syms to initialize the parameter. For
example, if the parameter is k, use syms k.

• The variable names parameters and conditions are not allowed as inputs to
solve.

• The syntax S = solve(eqn,var,'ReturnConditions',true) returns S as a
structure instead of a symbolic array.

• To solve differential equations, use the dsolve function.
• When solving a system of equations, always assign the result to output arguments.

Output arguments let you access the values of the solutions of a system.
• MaxDegree only accepts positive integers smaller than 5 because, in general, there

are no explicit expressions for the roots of polynomials of degrees higher than 4.
• The output variables y1,...,yN do not specify the variables for which solve solves

equations or systems. If y1,...,yN are the variables that appear in eqns, then there
is no guarantee that solve(eqns) will assign the solutions to y1,...,yN using the
correct order. Thus, when you run [b,a] = solve(eqns), you might get the
solutions for a assigned to b and vice versa.

To ensure the order of the returned solutions, specify the variables vars. For example,
the call [b,a] = solve(eqns,b,a) assigns the solutions for a to a and the
solutions for b to b.

Algorithms
When you use IgnoreAnalyticConstraints, the solver applies these rules to the
expressions on both sides of an equation.

• log(a) + log(b) = log(a·b) for all values of a and b. In particular, the following equality
is valid for all values of a, b, and c:

 (a·b)c = ac·bc.
• log(ab) = b·log(a) for all values of a and b. In particular, the following equality is valid

for all values of a, b, and c:

4 Functions — Alphabetical List

4-1652

 (ab)c = ab·c.
• If f and g are standard mathematical functions and f(g(x)) = x for all small positive

numbers, f(g(x)) = x is assumed to be valid for all complex values x. In particular:

• log(ex) = x
• asin(sin(x)) = x, acos(cos(x)) = x, atan(tan(x)) = x
• asinh(sinh(x)) = x, acosh(cosh(x)) = x, atanh(tanh(x)) = x
• Wk(x·ex) = x for all values of k

• The solver can multiply both sides of an equation by any expression except 0.
• The solutions of polynomial equations must be complete.

See Also
dsolve | isolate | linsolve | root | subs | symvar | vpasolve

Topics
“Solve Algebraic Equation” on page 2-152
“Solve System of Algebraic Equations” on page 2-163
“Solve System of Linear Equations” on page 2-179
“Select Numeric or Symbolic Solver” on page 2-161
“Troubleshoot Equation Solutions from solve Function” on page 2-174

Introduced before R2006a

 solve

4-1653

sort
Sort elements of symbolic vectors or matrices

Syntax
Y = sort(X)
[Y,I] = sort(___)
___ = sort(X,dim)
___ = sort(___ ,'descend')

Description
Y = sort(X) sorts the elements of a symbolic vector or matrix in ascending order. If X is
a vector, sort(X) sorts the elements of X in lexicographic order. If X is a matrix,
sort(X) sorts each column of X.

[Y,I] = sort(___) shows the indices that each element of Y had in the original
vector or matrix X.

If X is an m-by-n matrix and you sort elements of each column (dim = 2), then each
column of I is a permutation vector of the corresponding column of X, such that

for j = 1:n
 Y(:,j) = X(I(:,j),j);
end

If X is a two-dimensional matrix, and you sort the elements of each column, the array I
shows the row indices that the elements of Y had in the original matrix X. If you sort the
elements of each row, I shows the original column indices.

___ = sort(X,dim) sorts the elements of X along the dimension dim. Thus, if X is a
two-dimensional matrix, then sort(X,1) sorts elements of each column of X, and
sort(X,2) sorts elements of each row.

___ = sort(___ ,'descend') sorts X in descending order. By default, sort uses
ascending order.

4 Functions — Alphabetical List

4-1654

Examples

Sort Vector Elements
By default, sort sorts the element of a vector or a matrix in ascending order.

Sort the elements of the following symbolic vector:

syms a b c d e
sort([7 e 1 c 5 d a b])

ans =
[1, 5, 7, a, b, c, d, e]

Find Indices That Elements of Sorted Matrix Had in Original
Matrix
To find the indices that each element of a new vector or matrix Y had in the original
vector or matrix X, call sort with two output arguments.

Sort the matrix X returning the matrix of indices that each element of the sorted matrix
had in X:

X = sym(magic(3));
[Y, I] = sort(X)

Y =
[3, 1, 2]
[4, 5, 6]
[8, 9, 7]

I =
 2 1 3
 3 2 1
 1 3 2

Sort Matrix Along Its Columns and Rows
When sorting elements of a matrix, sort can work along the columns or rows of that
matrix.

 sort

4-1655

Sort the elements of the following symbolic matrix:

X = sym(magic(3))

X =
[8, 1, 6]
[3, 5, 7]
[4, 9, 2]

By default, the sort command sorts elements of each column:

sort(X)

ans =
[3, 1, 2]
[4, 5, 6]
[8, 9, 7]

To sort the elements of each row, use set the value of the dim option to 2:

sort(X,2)

ans =
[1, 6, 8]
[3, 5, 7]
[2, 4, 9]

Sort in Descending Order
sort can sort the elements of a vector or a matrix in descending order.

Sort the elements of this vector in descending order:

syms a b c d e
sort([7 e 1 c 5 d a b], 'descend')

ans =
[e, d, c, b, a, 7, 5, 1]

Sort the elements of each column of this matrix X in descending order:

X = sym(magic(3))
sort(X,'descend')

X =
[8, 1, 6]

4 Functions — Alphabetical List

4-1656

[3, 5, 7]
[4, 9, 2]

ans =
[8, 9, 7]
[4, 5, 6]
[3, 1, 2]

Now, sort the elements of each row of X in descending order:

sort(X, 2, 'descend')

ans =
[8, 6, 1]
[7, 5, 3]
[9, 4, 2]

Input Arguments
X — Input that needs to be sorted
symbolic vector | symbolic matrix

Input that needs to be sorted, specified as a symbolic vector or matrix.

dim — Dimension to operate along
positive integer

Dimension to operate along, specified as a positive integer. The default value is 1. If dim
exceeds the number of dimensions of X, then sort(X,dim) returns X, and [Y,I] =
sort(X,dim) returns Y = X and I = ones(size(X)).

Output Arguments
Y — Sorted output
symbolic vector | symbolic matrix

Sorted output, returned as a symbolic vector or matrix.

I — Indices that elements of Y had in X
symbolic vector | symbolic matrix

 sort

4-1657

Indices that elements of Y had in X, returned as a symbolic vector or matrix. [Y,I] =
sort(X,dim) also returns matrix I = ones(size(X)) if the value dim exceeds the
number of dimensions of X.

Tips
• Calling sort for vectors or matrices of numbers that are not symbolic objects invokes

the MATLAB sort function.
• For complex input X, sort compares elements by their magnitudes (complex moduli),

computed with abs(X). If complex numbers have the same complex modulus, sort
compares their phase angles, angle(X).

• If you use 'ascend' instead of 'descend', then sort returns elements in ascending
order, as it does by default.

• sort uses the following rules:

• It sorts symbolic numbers and floating-point numbers numerically.
• It sorts symbolic variables alphabetically.
• In all other cases, including symbolic expressions and functions, sort uses internal

sorting rules.

Introduced before R2006a

4 Functions — Alphabetical List

4-1658

sqrtm
Matrix square root

Syntax
X = sqrtm(A)
[X,resnorm] = sqrtm(A)

Description
X = sqrtm(A) returns a matrix X, such that X2 = A and the eigenvalues of X are the
square roots of the eigenvalues of A.

[X,resnorm] = sqrtm(A) returns a matrix X and the residual norm(A-X^2,'fro')/
norm(A,'fro').

Examples

Compute Square Root of Matrix
Compute the square root of this matrix. Because these numbers are not symbolic objects,
you get floating-point results.

A = [2 -2 0; -1 3 0; -1/3 5/3 2];
X = sqrtm(A)

X =
 1.3333 -0.6667 0.0000
 -0.3333 1.6667 -0.0000
 -0.0572 0.5286 1.4142

Now, convert this matrix to a symbolic object, and compute its square root again:

A = sym([2 -2 0; -1 3 0; -1/3 5/3 2]);
X = sqrtm(A)

 sqrtm

4-1659

X =
[4/3, -2/3, 0]
[-1/3, 5/3, 0]
[(2*2^(1/2))/3 - 1, 1 - 2^(1/2)/3, 2^(1/2)]

Check the correctness of the result:

isAlways(X^2 == A)

ans =
 3×3 logical array
 1 1 1
 1 1 1
 1 1 1

Return Residual of Matrix Square Root
Use the syntax with two output arguments to return the square root of a matrix and the
residual:

A = vpa(sym([0 0; 0 5/3]), 100);
[X,resnorm] = sqrtm(A)

X =
[0, 0]
[0, 1.2909944487358056283930884665941]

resnorm =
2.9387358770557187699218413430556e-40

Input Arguments
A — Input
symbolic matrix

Input, specified as a symbolic matrix.

Output Arguments
X — Matrix square root
symbolic matrix

4 Functions — Alphabetical List

4-1660

Matrix square root, returned as a symbolic matrix such that X2 = A.

resnorm — Residual
symbolic expression

Residual, returned as a symbolic expression. The residual is computed as norm(A-
X^2,'fro')/norm(A,'fro').

Tips
• Calling sqrtm for a matrix that is not a symbolic object invokes the MATLAB sqrtm

function.

See Also
cond | eig | expm | funm | jordan | logm | norm

Introduced in R2013a

 sqrtm

4-1661

ssinint
Shifted sine integral function

Syntax
ssinint(X)

Description
ssinint(X) returns the shifted sine integral function on page 4-1665 ssinint(X) =
sinint(X) — pi/2.

Examples

Shifted Sine Integral Function for Numeric and Symbolic
Arguments
Depending on its arguments, ssinint returns floating-point or exact symbolic results.

Compute the shifted sine integral function for these numbers. Because these numbers are
not symbolic objects, ssinint returns floating-point results.

A = ssinint([- pi, 0, pi/2, pi, 1])

A =
 -3.4227 -1.5708 -0.2000 0.2811 -0.6247

Compute the shifted sine integral function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, ssinint returns unresolved symbolic calls.

symA = ssinint(sym([- pi, 0, pi/2, pi, 1]))

symA =
[- pi - ssinint(pi), -pi/2, ssinint(pi/2), ssinint(pi), ssinint(1)]

4 Functions — Alphabetical List

4-1662

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[-3.4227333787773627895923750617977,...
-1.5707963267948966192313216916398,...
-0.20003415864040813916164340325818,...
0.28114072518756955112973167851824,...
-0.62471325642771360428996837781657]

Plot Shifted Sine Integral Function
Plot the shifted sine integral function on the interval from -4*pi to 4*pi. Prior to
R2016a, use ezplot instead of fplot.

syms x
fplot(ssinint(x), [-4*pi, 4*pi])
grid on

 ssinint

4-1663

Handle Expressions Containing Shifted Sine Integral Function
Many functions, such as diff, int, and taylor, can handle expressions containing
ssinint.

Find the first and second derivatives of the shifted sine integral function:

syms x
diff(ssinint(x), x)
diff(ssinint(x), x, x)

ans =
sin(x)/x

4 Functions — Alphabetical List

4-1664

ans =
cos(x)/x - sin(x)/x^2

Find the indefinite integral of the shifted sine integral function:

int(ssinint(x), x)

ans =
cos(x) + x*ssinint(x)

Find the Taylor series expansion of ssinint(x):

taylor(ssinint(x), x)

ans =
x^5/600 - x^3/18 + x - pi/2

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions
Sine Integral Function
The sine integral function is defined as follows:

Si x = ∫
0

x
sin t

t dt

Shifted Sine Integral Function
The sine integral function is defined as Ssi(x) = Si(x) - π/2.

 ssinint

4-1665

References
[1] Gautschi, W. and W. F. Cahill. “Exponential Integral and Related Functions.” Handbook

of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M.
Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.

See Also
coshint | cosint | eulergamma | int | sin | sinhint | sinhint | sinint

Introduced in R2014a

4 Functions — Alphabetical List

4-1666

str2symunit
Convert character vector or string to unit

Syntax
str2symunit(unitStr)
str2symunit(unitStr,toolbox)

Description
str2symunit(unitStr) converts the character vector or string unitStr to symbolic
units.

str2symunit(unitStr,toolbox) converts the character vector unitStr assuming it
represents units in the toolbox toolbox. The allowed values of toolbox are
'Aerospace', 'SimBiology', 'Simscape', or 'Simulink'.

Examples

Convert Character Vector to Unit
Convert the character vector 'km/hour' to symbolic units.

unit = str2symunit('km/hour')

unit =
1*([km]/[h])

Use this unit to define a speed of 50 km/hour.

speed = 50*unit

speed =
50*([km]/[h])

 str2symunit

4-1667

Convert Units of Specified Toolbox
Convert units from other toolboxes to symbolic units by specifying the toolbox name as
the second argument to str2symunit. The allowed names are 'Aerospace',
'SimBiology', 'Simscape', or 'Simulink'.

Convert 'km/h-s' from Aerospace Toolbox to symbolic units.

unit = str2symunit('km/h-s','Aerospace')

unit =
1*([km]/([h]*[s]))

Convert 'molecules/s' from SimBiology® to symbolic units.

unit = str2symunit('molecule/s','SimBiology')

unit =
1*([molecule]/[s])

Convert 'gee/km' from Simscape to symbolic units.

unit = str2symunit('gee/km','Simscape')

unit =
1*([g_n]/[km])

Convert 'rad/second' from Simulink to symbolic units.

unit = str2symunit('rad/second','Simulink')

unit =
1*([rad]/[s])

Input Arguments
unitStr — Input units
character vector | string

Input, specified as a character vector or string.
Example: str2symunit('km/hour')

4 Functions — Alphabetical List

4-1668

toolbox — Toolbox to which units belong
'Aerospace' | 'SimBiology' | 'Simscape' | 'Simulink'

Toolbox to which input belongs, specified as 'Aerospace', 'SimBiology',
'Simscape', or 'Simulink'.
Example: str2symunit('km/h-s', 'Aerospace')

See Also
checkUnits | findUnits | isUnit | newUnit | separateUnits | symunit |
symunit2str | unitConversionFactor

Topics
“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

External Websites
The International System of Units (SI)

Introduced in R2017a

 str2symunit

4-1669

https://www.bipm.org/en/publications/si-brochure/

str2sym
Evaluate string representing symbolic expression

Syntax
str2sym(symstr)

Description
str2sym(symstr) evaluates symstr where symstr is a string representing a symbolic
expression. Enter symbolic expressions as strings only when reading expressions from
text files or when specifying numbers exactly. Otherwise, do not use strings for symbolic
input.

Examples

Evaluate String as Symbolic Expression

Evaluate the string 'sin(pi)'. str2sym returns the expected result.

str2sym('sin(pi)')

ans =
0

str2sym assumes the = operator represents an equation, not an assignment. Also,
str2sym does not add the variables contained in the string to the workspace.

Show this behavior by evaluating 'x^2 = 4'. The str2sym function returns the
equation x^2 == 4 but x does not appear in the workspace.

eqn = str2sym('x^2 = 4')

eqn =
x^2 == 4

4 Functions — Alphabetical List

4-1670

Find the variable in eqn by using symvar. The variable var now refers to x.

var = symvar(eqn)

var =
x

Assign values from eqn by solving eqn for var and assigning the result.

varVal = solve(eqn,var)

varVal =
 -2
 2

Substitute Workspace Values into String Input

str2sym does not substitute values from the workspace for variables in the input.
Therefore, str2sym has reproducible output. Instead, substitute workspace values by
using subs on the output of str2sym.

Set y to 2. Then, evaluate 'y^2' with and without subs to show how subs substitutes y
with its value.

y = 2;
withoutSubs = str2sym('y^2')

withoutSubs =
y^2

withSubs = subs(str2sym('y^2'))

withSubs =
4

Evaluate Strings from File as Symbolic Expressions

When symbolic expressions are stored as strings in a file, evaluate the strings by reading
the file and using str2sym.

Assume the file mySym.txt contains this text.

 str2sym

4-1671

a = 2.431
y = a*exp(t)
diff(z(t),t) = b*y*z

Evaluate expressions in mySym.txt using str2sym.

filename = 'mySym.txt';
filetext = fileread(filename);
filetext = splitlines(filetext);
str2sym(filetext)

ans =
 a == 2.431
 y == a*exp(t)
 diff(z(t), t) == b*y*z

The output of str2sym is independent of workspace values, which means the output is
reproducible. Show this reproducibility by assigning a value to b and re-evaluating the
stored expressions.

b = 5;
str2sym(filetext)

ans =
 a == 2.431
 y == a*exp(t)
 diff(z(t), t) == b*y*z

To use workspace values or a value from input equations, use subs (solve the equation
first using solve), as described in “Evaluate String as Symbolic Expression” on page 4-
1670 and “Substitute Workspace Values into String Input” on page 4-1671.

Execute Functions in String Input

str2sym executes functions in input when the functions are on the path. Otherwise,
str2sym returns the symbolic object as expected. This behavior means that the output is
reproducible.

Show this behavior by reading a differential equation and initial condition from a file.
Solve the equation for the condition. Because str2sym does not evaluate y(t) in the
equation, the output is reproducible.

4 Functions — Alphabetical List

4-1672

filename = 'mySym.txt';
filetext = fileread(filename);
filetext = splitlines(filetext);
eqn = str2sym(filetext(1))

eqn =
diff(y(t), t) == -y(t)

cond = str2sym(filetext(2))

cond =
y(0) == 2

ySol = dsolve(eqn,cond)

ySol =
2*exp(-t)

Exactly Represent Large Numbers and High-Precision Numbers

Because the MATLAB parser automatically converts all numbers to double precision,
maintain original precision by entering large numbers and high-precision numbers as
strings. Instead of str2sym, enter integers using sym and floating-point numbers using
vpa because sym and vpa are faster.

Show the error between entering a ratio of large integers directly versus the exact string
representation.

num = sym(12230984290/38490293482)

num =
5724399718238385/18014398509481984

numExact = sym('12230984290/38490293482')

numExact =
6115492145/19245146741

error = num - numExact

error =
-7827162395/346689742765832461975814144

 str2sym

4-1673

Show the error between entering a high-precision number directly versus the exact string
representation.

num = vpa(8.023098429038490293482)

num =
8.0230984290384910195825796108693

numExact = vpa('8.023098429038490293482')

numExact =
8.023098429038490293482

error = num - numExact

error =
0.00000000000000072610057961086928844451883343504

For details, see “Numeric to Symbolic Conversion” on page 2-132. For full workflows, see
“Numerical Computations With High Precision” and “Prime Factorizations”.

Input Arguments
symstr — String representing symbolic expression
character vector | string | cell array of character vectors

String representing a symbolic expression, specified as a character vector, string, or cell
array of character vectors.

Tips
• str2sym assumes the = operator represents an equation, not an assignment.
• str2sym does not create variables contained in the input.
• str2sym('inf') returns infinity (Inf).
• str2sym('i') returns the imaginary number 1i.

See Also
subs | sym | syms | vpa

4 Functions — Alphabetical List

4-1674

Topics
“Numeric to Symbolic Conversion” on page 2-132

Introduced in R2017b

 str2sym

4-1675

subexpr
Rewrite symbolic expression in terms of common subexpressions

Syntax
[r,sigma] = subexpr(expr)
[r,var] = subexpr(expr,'var')
[r,var] = subexpr(expr,var)

Description
[r,sigma] = subexpr(expr) rewrites the symbolic expression expr in terms of a
common subexpression, substituting this common subexpression with the symbolic
variable sigma. The input expression expr cannot contain the variable sigma.

[r,var] = subexpr(expr,'var') substitutes the common subexpression by var. The
input expression expr cannot contain the symbolic variable var.

[r,var] = subexpr(expr,var) is equivalent to [r,var] =
subexpr(expr,'var'), except that the symbolic variable var must already exist in the
MATLAB workspace.

This syntax overwrites the value of the variable var with the common subexpression
found in expr. To avoid overwriting the value of var, use another variable name as the
second output argument. For example, use [r,var1] = subexpr(expr,var).

Examples

Rewrite Expression Using Abbreviations

Solve the following equation. The solutions are very long expressions. To display the
solutions, remove the semicolon at the end of the solve command.

4 Functions — Alphabetical List

4-1676

syms a b c d x
solutions = solve(a*x^3 + b*x^2 + c*x + d == 0, x, 'MaxDegree', 3);

These long expressions have common subexpressions. To shorten the expressions,
abbreviate the common subexpression by using subexpr. If you do not specify the
variable to use for abbreviations as the second input argument of subexpr, then
subexpr uses the variable sigma.

[r, sigma] = subexpr(solutions)

r =

σ − 0.3333 b
a −

σ1
σ

σ −0.5000− 0.8660 i − 0.3333 b
a +

σ1 0.5000− 0.8660 i
σ

σ −0.5000 + 0.8660 i − 0.3333 b
a +

σ1 0.5000 + 0.8660 i
σ

where

 σ1 = 0.3333 c
a − 0.1111 b2

a2

sigma =

0.5000 d
a + 0.0370 b3

a3 − 0.1667 b c
a2

2
+ 0.3333 c

a − 0.1111 b2

a2

3
− 0.5000 d

a − 0.0370 b3

a3 + 0.1667 b c
a2

0.3333

Customize Abbreviation Variables

Solve a quadratic equation.

syms a b c x
solutions = solve(a*x^2 + b*x + c == 0, x)

solutions =

−b + b2− 4 a c
2 a

−b− b2− 4 a c
2 a

 subexpr

4-1677

Use syms to create the symbolic variable s, and then replace common subexpressions in
the result with this variable.

syms s
[abbrSolutions,s] = subexpr(solutions,s)

abbrSolutions =

−b + s
2 a

−b− s
2 a

s = b2− 4 a c

Alternatively, use 's' to specify the abbreviation variable.

[abbrSolutions,s] = subexpr(solutions,'s')

abbrSolutions =

−b + s
2 a

−b− s
2 a

s = b2− 4 a c

Both syntaxes overwrite the value of the variable s with the common subexpression.
Therefore, you cannot, for example, substitute s with some value.

subs(abbrSolutions,s,0)

ans =

−b + s
2 a

−b− s
2 a

To avoid overwriting the value of the variable s, use another variable name for the second
output argument.

syms s
[abbrSolutions,t] = subexpr(solutions,'s')

abbrSolutions =

4 Functions — Alphabetical List

4-1678

−b + s
2 a

−b− s
2 a

t = b2− 4 a c

subs(abbrSolutions,s,0)

ans =

− b
2 a

− b
2 a

Input Arguments
expr — Long expression containing common subexpressions
symbolic expression | symbolic function

Long expression containing common subexpressions, specified as a symbolic expression
or function.

var — Variable to use for substituting common subexpressions
character vector | symbolic variable

Variable to use for substituting common subexpressions, specified as a character vector
or symbolic variable.

subexpr throws an error if the input expression expr already contains var.

Output Arguments
r — Expression with common subexpressions replaced by abbreviations
symbolic expression | symbolic function

Expression with common subexpressions replaced by abbreviations, returned as a
symbolic expression or function.

 subexpr

4-1679

var — Variable used for abbreviations
symbolic variable

Variable used for abbreviations, returned as a symbolic variable.

See Also
children | simplify | subs

Topics
“Abbreviate Common Terms in Long Expressions” on page 2-99

Introduced before R2006a

4 Functions — Alphabetical List

4-1680

subs
Symbolic substitution

Syntax
subs(s,old,new)
subs(s,new)
subs(s)

Description
subs(s,old,new) returns a copy of s, replacing all occurrences of old with new, and
then evaluates s.

subs(s,new) returns a copy of s, replacing all occurrences of the default variable in s
with new, and then evaluates s. The default variable is defined by symvar.

subs(s) returns a copy of s, replacing symbolic variables in s, with their values obtained
from the calling function and the MATLAB Workspace, and then evaluates s. Variables
with no assigned values remain as variables.

Examples

Single Substitution
Replace a with 4 in this expression.

syms a b
subs(a + b, a, 4)

ans =
b + 4

Replace a*b with 5 in this expression.

 subs

4-1681

subs(a*b^2, a*b, 5)

ans =
5*b

Default Substitution Variable
Substitute the default variable in this expression with a. If you do not specify the variable
or expression to replace, subs uses symvar to find the default variable. For x + y, the
default variable is x.

syms x y a
symvar(x + y, 1)

ans =
x

Therefore, subs replaces x with a.

subs(x + y, a)

ans =
a + y

Evaluate Expression with New Values
When you assign a new value to a symbolic variable, expressions containing the variable
are not automatically evaluated. Instead, evaluate expressions by using subs.

Define the expression y = x^2.

syms x
y = x^2;

Assign 2 to x. The value of y is still x^2 instead of 4.

x = 2;
y

y =
x^2

Evaluate y with the new value of x by using subs.

4 Functions — Alphabetical List

4-1682

subs(y)

ans =
4

Multiple Substitutions
Make multiple substitutions by specifying the old and new values as vectors.

syms a b
subs(cos(a) + sin(b), [a, b], [sym('alpha'), 2])

ans =
sin(2) + cos(alpha)

Alternatively, for multiple substitutions, use cell arrays.

subs(cos(a) + sin(b), {a, b}, {sym('alpha'), 2})

ans =
sin(2) + cos(alpha)

Substitute Scalars with Arrays
Replace variable a in this expression with the 3-by-3 magic square matrix. Note that the
constant 1 expands to the 3-by-3 matrix with all its elements equal to 1.

syms a t
subs(exp(a*t) + 1, a, -magic(3))

ans =
[exp(-8*t) + 1, exp(-t) + 1, exp(-6*t) + 1]
[exp(-3*t) + 1, exp(-5*t) + 1, exp(-7*t) + 1]
[exp(-4*t) + 1, exp(-9*t) + 1, exp(-2*t) + 1]

You can also replace an element of a vector, matrix, or array with a nonscalar value. For
example, create these 2-by-2 matrices.

A = sym('A', [2,2])
B = sym('B', [2,2])

A =
[A1_1, A1_2]
[A2_1, A2_2]

 subs

4-1683

B =
[B1_1, B1_2]
[B2_1, B2_2]

Replace the first element of the matrix A with the matrix B. While making this
substitution, subs expands the 2-by-2 matrix A into this 4-by-4 matrix.

A44 = subs(A, A(1,1), B)

A44 =
[B1_1, B1_2, A1_2, A1_2]
[B2_1, B2_2, A1_2, A1_2]
[A2_1, A2_1, A2_2, A2_2]
[A2_1, A2_1, A2_2, A2_2]

subs does not let you replace a nonscalar with a scalar.

Substitute Multiple Scalars with Arrays
Replace variables x and y with these 2-by-2 matrices. When you make multiple
substitutions involving vectors or matrices, use cell arrays to specify the old and new
values.

syms x y
subs(x*y, {x, y}, {[0 1; -1 0], [1 -1; -2 1]})

ans =
[0, -1]
[2, 0]

Note that these substitutions are element-wise.

[0 1; -1 0].*[1 -1; -2 1]

ans =
 0 -1
 2 0

Substitutions in Equations
Eliminate variables from an equation by using the variable's value from another equation.
In the second equation, isolate the variable on the left side using isolate, and then
substitute the right side with the variable in the first equation.

4 Functions — Alphabetical List

4-1684

First, declare the equations eqn1 and eqn2.

syms x y
eqn1 = sin(x)+y == x^2 + y^2;
eqn2 = y*x == cos(x);

Isolate y in eqn2 by using isolate.

eqn2 = isolate(eqn2,y)

eqn2 =
y == cos(x)/x

Eliminate y from eqn1 by substituting the right side of eqn2 with the left side of eqn2 in
eqn1.

eqn1 = subs(eqn1,lhs(eqn2),rhs(eqn2))

eqn1 =
sin(x) + cos(x)/x == cos(x)^2/x^2 + x^2

Substitutions in Functions
Replace x with a in this symbolic function.

syms x y a
syms f(x, y)
f(x, y) = x + y;
f = subs(f, x, a)

f(x, y) =
a + y

subs replaces the values in the symbolic function formula, but does not replace input
arguments of the function.

formula(f)
argnames(f)

ans =
a + y

ans =
[x, y]

 subs

4-1685

Replace the arguments of a symbolic function explicitly.

syms x y
f(x, y) = x + y;
f(a, y) = subs(f, x, a);
f

f(a, y) =
a + y

Substitute Variables with Corresponding Values from
Structure
Suppose you want to verify the solutions of this system of equations.

syms x y
eqs = [x^2 + y^2 == 1, x == y];
S = solve(eqs, [x y]);
S.x
S.y

ans =
 -2^(1/2)/2
 2^(1/2)/2
ans =
 -2^(1/2)/2
 2^(1/2)/2

Verify the solutions by substituting the solutions into the original system.

isAlways(subs(eqs, S))

ans =
 2×2 logical array
 1 1
 1 1

Input Arguments
s — Input
symbolic variable | symbolic expression | symbolic equation | symbolic function | symbolic
array | symbolic matrix

4 Functions — Alphabetical List

4-1686

Input, specified as a symbolic variable, expression, equation, function, array, or matrix.

old — Element to substitute
symbolic variable | symbolic expression | symbolic array

Element to substitute, specified as a symbolic variable, expression, or array.

new — New element
number | symbolic number | symbolic variable | symbolic expression | symbolic array |
structure

New element to substitute with, specified as a number, symbolic number, variable,
expression, array, or a structure.

Tips
• subs(s,old,new) does not modify s. To modify s, use s = subs(s,old,new).
• If old and new are both vectors or cell arrays of the same size, subs replaces each

element of old with the corresponding element of new.
• If old is a scalar, and new is a vector or matrix, then subs(s,old,new) replaces all

instances of old in s with new, performing all operations element-wise. All constant
terms in s are replaced with the constant multiplied by a vector or matrix of all 1s.

• If s is a univariate polynomial and new is a numeric matrix, use
polyvalm(sym2poly(s), new) to evaluate s as a matrix. All constant terms are
replaced with the constant multiplied by an identity matrix.

See Also
double | lhs | rhs | simplify | subexpr | vpa

Topics
“Substitutions in Symbolic Expressions” on page 1-19
“Substitute Variables in Symbolic Expressions” on page 2-114
“Substitute Elements in Symbolic Matrices” on page 2-116
“Substitute Scalars with Matrices” on page 2-118
“Evaluate Symbolic Expressions Using subs” on page 2-120

 subs

4-1687

Introduced before R2006a

4 Functions — Alphabetical List

4-1688

svd
Singular value decomposition of symbolic matrix

Syntax
sigma = svd(A)
[U,S,V] = svd(A)
[U,S,V] = svd(A,0)
[U,S,V] = svd(A,'econ')

Description
sigma = svd(A) returns a vector sigma containing the singular values of a symbolic
matrix A.

[U,S,V] = svd(A) returns numeric unitary matrices U and V with the columns
containing the singular vectors, and a diagonal matrix S containing the singular values.
The matrices satisfy the condition A = U*S*V', where V' is the Hermitian transpose (the
complex conjugate transpose) of V. The singular vector computation uses variable-
precision arithmetic. svd does not compute symbolic singular vectors. Therefore, the
input matrix A must be convertible to floating-point numbers. For example, it can be a
matrix of symbolic numbers.

[U,S,V] = svd(A,0) returns the thin, or economy, SVD. If A is an m-by-n matrix with m
> n, then svd computes only the first n columns of U. In this case, S is an n-by-n matrix.
For m <= n, this syntax is equivalent to svd(A).

[U,S,V] = svd(A,'econ') also returns the thin, or economy, SVD. If A is an m-by-n
matrix with m >= n, then this syntax is equivalent to svd(A,0). For m < n, svd
computes only the first m columns of V. In this case, S is an m-by-m matrix.

 svd

4-1689

Examples

Symbolic Singular Values
Compute the singular values of the symbolic 5-by-5 magic square:

A = sym(magic(5));
sigma = svd(A)

sigma =

 65
 5^(1/2)*(1345^(1/2) + 65)^(1/2)
 65^(1/2)*(5^(1/2) + 5)^(1/2)
 65^(1/2)*(5 - 5^(1/2))^(1/2)
 5^(1/2)*(65 - 1345^(1/2))^(1/2)

Now, compute singular values of the matrix whose elements are symbolic expressions:

syms t real
A = [0 1; -1 0];
E = expm(t*A)
sigma = svd(E)

E =
[cos(t), sin(t)]
[-sin(t), cos(t)]

sigma =
 (cos(t)^2 + sin(t)^2)^(1/2)
 (cos(t)^2 + sin(t)^2)^(1/2)

Simplify the result:

sigma = simplify(sigma)

sigma =
 1
 1

For further computations, remove the assumption on t by recreating it using syms:

syms t

4 Functions — Alphabetical List

4-1690

Floating-Point Singular Values
Convert the elements of the symbolic 5-by-5 magic square to floating-point numbers, and
compute the singular values of the matrix:

A = sym(magic(5));
sigma = svd(vpa(A))

sigma =

 65.0
 22.547088685879657984674226396467
 21.687425355202639411956035427154
 13.403565997991492328585154445703
 11.900789544861194527298509087321

Singular Values and Singular Vectors
Compute the singular values and singular vectors of the 5-by-5 magic square:

old = digits(10);
A = sym(magic(5))
[U, S, V] = svd(A)
digits(old)

A =

[17, 24, 1, 8, 15]
[23, 5, 7, 14, 16]
[4, 6, 13, 20, 22]
[10, 12, 19, 21, 3]
[11, 18, 25, 2, 9]

U =

[0.4472135955, 0.5456348731, 0.5116672736, -0.1954395076, -0.4497583632]
[0.4472135955, 0.4497583632, -0.1954395076, 0.5116672736, 0.5456348731]
[0.4472135955, 2.420694008e-15, -0.632455532, -0.632455532, 1.29906993e-15]
[0.4472135955, -0.4497583632, -0.1954395076, 0.5116672736, -0.5456348731]
[0.4472135955, -0.5456348731, 0.5116672736, -0.1954395076, 0.4497583632]

S =

 svd

4-1691

[65.0, 0, 0, 0, 0]
[0, 22.54708869, 0, 0, 0]
[0, 0, 21.68742536, 0, 0]
[0, 0, 0, 13.403566, 0]
[0, 0, 0, 0, 11.90078954]

V =

[0.4472135955, 0.4045164361, 0.2465648962, 0.6627260007, 0.3692782866]
[0.4472135955, 0.005566159714, 0.6627260007, -0.2465648962, -0.5476942741]
[0.4472135955, -0.8201651916, -3.091014288e-15, 6.350407543e-16, 0.3568319751]
[0.4472135955, 0.005566159714, -0.6627260007, 0.2465648962, -0.5476942741]
[0.4472135955, 0.4045164361, -0.2465648962, -0.6627260007, 0.3692782866]

Compute the product of U, S, and the Hermitian transpose of V with the 10-digit accuracy.
The result is the original matrix A with all its elements converted to floating-point
numbers:

vpa(U*S*V',10)

ans =

[17.0, 24.0, 1.0, 8.0, 15.0]
[23.0, 5.0, 7.0, 14.0, 16.0]
[4.0, 6.0, 13.0, 20.0, 22.0]
[10.0, 12.0, 19.0, 21.0, 3.0]
[11.0, 18.0, 25.0, 2.0, 9.0]

Thin or Economy SVD
Use the second input argument 0 to compute the thin, or economy, SVD of this 3-by-2
matrix:

old = digits(10);
A = sym([1 1;2 2; 2 2]);
[U, S, V] = svd(A, 0)

U =
[0.3333333333, -0.6666666667]
[0.6666666667, 0.6666666667]
[0.6666666667, -0.3333333333]

4 Functions — Alphabetical List

4-1692

S =
[4.242640687, 0]
[0, 0]

V =
[0.7071067812, 0.7071067812]
[0.7071067812, -0.7071067812]

Now, use the second input argument 'econ' to compute the thin, or economy, of matrix
B. Here, the 3-by-2 matrix B is the transpose of A.

B = A';
[U, S, V] = svd(B, 'econ')
digits(old)

U =
[0.7071067812, -0.7071067812]
[0.7071067812, 0.7071067812]

S =
[4.242640687, 0]
[0, 0]

V =
[0.3333333333, 0.6666666667]
[0.6666666667, -0.6666666667]
[0.6666666667, 0.3333333333]

Input Arguments
A — Input matrix
symbolic matrix

Input matrix specified as a symbolic matrix. For syntaxes with one output argument, the
elements of A can be symbolic numbers, variables, expressions, or functions. For syntaxes
with three output arguments, the elements of A must be convertible to floating-point
numbers.

 svd

4-1693

Output Arguments
sigma — Singular values
symbolic vector | vector of symbolic numbers

Singular values of a matrix, returned as a vector. If sigma is a vector of numbers, then its
elements are sorted in descending order.

U — Singular vectors
matrix of symbolic numbers

Singular vectors, returned as a unitary matrix. Each column of this matrix is a singular
vector.

S — Singular values
matrix of symbolic numbers

Singular values, returned as a diagonal matrix. Diagonal elements of this matrix appear in
descending order.

V — Singular vectors
matrix of symbolic numbers

Singular vectors, returned as a unitary matrix. Each column of this matrix is a singular
vector.

Tips
• The second arguments 0 and 'econ' only affect the shape of the returned matrices.

These arguments do not affect the performance of the computations.
• Calling svd for numeric matrices that are not symbolic objects invokes the MATLAB

svd function.
• Matrix computations involving many symbolic variables can be slow. To increase the

computational speed, reduce the number of symbolic variables by substituting the
given values for some variables.

See Also
chol | digits | eig | inv | lu | qr | svd | vpa

4 Functions — Alphabetical List

4-1694

Topics
“Singular Value Decomposition” on page 2-150

Introduced before R2006a

 svd

4-1695

sym
Create symbolic variables, expressions, functions, matrices

Note Support of character vectors that are not valid variable names and that do not
define a number has been removed. To create symbolic expressions, first create symbolic
variables, and then use operations on them. For example, use syms x; x + 1 instead of
sym('x + 1'), exp(sym(pi)) instead of sym('exp(pi)'), and syms
f(var1,...varN) instead of f(var1,...varN) = sym('f(var1,...varN)').

Syntax
x = sym('x')
A = sym('a',[n1 ... nM])
A = sym('a',n)

sym(___ ,set)
sym(___ ,'clear')

sym(num)
sym(num,flag)

symexpr = sym(h)

Description
x = sym('x') creates symbolic variable x.

A = sym('a',[n1 ... nM]) creates an n1-by-...-by-nM symbolic array filled with
automatically generated elements. For example, A = sym('a',[1 3]) creates the row
vector A = [a1 a2 a3]. The generated elements a1, a2, and a3 do not appear in the
MATLAB workspace. For multidimensional arrays, these elements have the prefix a
followed by the element’s index using _ as a delimiter, such as a1_3_2.

A = sym('a',n) creates an n-by-n symbolic matrix filled with automatically generated
elements.

4 Functions — Alphabetical List

4-1696

sym(___ ,set) creates a symbolic variable or array and sets the assumption that the
variable or all array elements belong to a set. Here, set can be 'real', 'positive',
'integer', or 'rational'. You also can combine multiple assumptions by specifying a
string array or cell array of character vectors. For example, assume a positive rational
value by specifying set as ["positive" "rational"] or
{'positive','rational'}.

sym(___ ,'clear') clears assumptions set on a symbolic variable or array. You can
specify 'clear' after the input arguments in any of the previous syntaxes, except
combining 'clear' and set. You cannot set and clear an assumption in the same
function call to sym.

sym(num) converts a number or numeric matrix to a symbolic number or symbolic
matrix.

sym(num,flag) uses the technique specified by flag for converting floating-point
numbers to symbolic numbers.

symexpr = sym(h) creates a symbolic expression or matrix symexpr from an
anonymous MATLAB function associated with the function handle h.

Examples

Create Symbolic Variables
Create the symbolic variables x and y.

x = sym('x');
y = sym('y');

Create Symbolic Vector
Create a 1-by-4 symbolic vector a with automatically generated elements a1, ..., a4.

a = sym('a',[1 4])

a =
[a1, a2, a3, a4]

 sym

4-1697

Format the names of elements of a by using a format character vector as the first
argument. sym replaces %d in the format character vector with the index of the element
to generate the element names.

a = sym('x_%d',[1 4])

a =
[x_1, x_2, x_3, x_4]

This syntax does not create symbolic variables x_1, ..., x_4 in the MATLAB workspace.
Access elements of a using standard indexing methods.

a(1)
a(2:3)

ans =
x_1
ans =
[x_2, x_3]

Create Symbolic Matrices
Create a 3-by-4 symbolic matrix with automatically generated elements. The elements are
of the form Ai_j, which generates the elements A1_1, ..., A3_4.

A = sym('A',[3 4])

A =
[A1_1, A1_2, A1_3, A1_4]
[A2_1, A2_2, A2_3, A2_4]
[A3_1, A3_2, A3_3, A3_4]

Create a 4-by-4 matrix with the element names x_1_1, ..., x_4_4 by using a format
character vector as the first argument. sym replaces %d in the format character vector
with the index of the element to generate the element names.

B = sym('x_%d_%d',4)

B =
[x_1_1, x_1_2, x_1_3, x_1_4]
[x_2_1, x_2_2, x_2_3, x_2_4]
[x_3_1, x_3_2, x_3_3, x_3_4]
[x_4_1, x_4_2, x_4_3, x_4_4]

4 Functions — Alphabetical List

4-1698

This syntax does not create symbolic variables A1_1, ..., A3_4, x_1_1, ..., x_4_4 in the
MATLAB workspace. To access an element of a matrix, use parentheses.

A(2,3)
B(4,2)

ans =
A2_3

ans =
x_4_2

Create Symbolic Multidimensional Arrays
Create a 2-by-2-by-2 symbolic array with automatically generated elements A1_1_1, ...,
A2_2_2.

A = sym('a',[2 2 2])

A(:,:,1) =
[a1_1_1, a1_2_1]
[a2_1_1, a2_2_1]
A(:,:,2) =
[a1_1_2, a1_2_2]
[a2_1_2, a2_2_2]

Create Symbolic Numbers
Convert numeric values to symbolic numbers or expressions. Use sym on subexpressions
instead of the entire expression for better accuracy. Using sym on entire expressions is
inaccurate because MATLAB first converts the expression to a floating-point number,
which loses accuracy. sym cannot always recover this lost accuracy.

inaccurate1 = sym(1/1234567)
accurate1 = 1/sym(1234567)

inaccurate2 = sym(sqrt(1234567))
accurate2 = sqrt(sym(1234567))

inaccurate3 = sym(exp(pi))
accurate3 = exp(sym(pi))

inaccurate1 =
7650239286923505/9444732965739290427392

 sym

4-1699

accurate1 =
1/1234567

inaccurate2 =
4886716562018589/4398046511104
accurate2 =
1234567^(1/2)

inaccurate3 =
6513525919879993/281474976710656
accurate3 =
exp(pi)

Create Large Symbolic Numbers
When creating symbolic numbers with 15 or more digits, use quotation marks to
accurately represent the numbers.

inaccurateNum = sym(11111111111111111111)
accurateNum = sym('11111111111111111111')

inaccurateNum =
11111111111111110656
accurateNum =
11111111111111111111

When you use quotation marks to create symbolic complex numbers, specify the
imaginary part of a number as 1i, 2i, and so on.

sym('1234567 + 1i')

ans =
1234567 + 1i

Create Symbolic Expressions from Function Handles
Create a symbolic expression and a symbolic matrix from anonymous functions associated
with MATLAB handles.

h_expr = @(x)(sin(x) + cos(x));
sym_expr = sym(h_expr)

sym_expr =
cos(x) + sin(x)

4 Functions — Alphabetical List

4-1700

h_matrix = @(x)(x*pascal(3));
sym_matrix = sym(h_matrix)

sym_matrix =
[x, x, x]
[x, 2*x, 3*x]
[x, 3*x, 6*x]

Set Assumptions While Creating Variables
Create the symbolic variables x, y, z, and t while simultaneously assuming that x is real,
y is positive, z rational, and t is positive integer.

x = sym('x','real');
y = sym('y','positive');
z = sym('z','rational');
t = sym('t',{'positive','integer'});

Check the assumptions on x, y, z, and t using assumptions.

assumptions

ans =
[in(x, 'real'), in(z, 'rational'), 1 <= t, 0 < y, in(t, 'integer')]

For further computations, clear the assumptions using assume.

assume([x y z t],'clear')
assumptions

ans =
Empty sym: 1-by-0

Set Assumptions on Matrix Elements
Create a symbolic matrix and set assumptions on each element of that matrix.

A = sym('A%d%d',[2 2],'positive')

A =
[A11, A12]
[A21, A22]

 sym

4-1701

Solve an equation involving the first element of A. MATLAB assumes that this element is
positive.

solve(A(1, 1)^2 - 1, A(1, 1))

ans =
1

Check the assumptions set on the elements of A by using assumptions.

assumptions(A)

ans =
[0 < A11, 0 < A12, 0 < A21, 0 < A22]

Clear all previously set assumptions on elements of a symbolic matrix by using assume.

assume(A,'clear');
assumptions(A)

ans =
Empty sym: 1-by-0

Solve the same equation again.

solve(A(1, 1)^2 - 1, A(1, 1))

ans =
 -1
 1

Choose Conversion Technique for Floating-Point Values
Convert pi to a symbolic value.

Choose the conversion technique by specifying the optional second argument, which can
be 'r', 'f', 'd', or 'e'. The default is 'r'. See the Input Arguments section for the
details about conversion techniques.

r = sym(pi)
f = sym(pi,'f')
d = sym(pi,'d')
e = sym(pi,'e')

r =
pi

4 Functions — Alphabetical List

4-1702

f =
884279719003555/281474976710656

d =
3.1415926535897931159979634685442

e =
pi - (198*eps)/359

Input Arguments
x — Variable name
character vector

Variable name, specified as a character vector. Argument x must a valid variable name.
That is, x must begin with a letter and can contain only alphanumeric characters and
underscores. To verify that the name is a valid variable name, use isvarname.
Example: x, y123, z_1

h — Anonymous function
MATLAB function handle

Anonymous function, specified as a MATLAB function handle. For more information, see
“Anonymous Functions” (MATLAB).
Example: h = @(x)sin(x); symexpr = sym(h)

a — Prefix for automatically generated matrix elements
character vector

Prefix for automatically generated matrix elements, specified as a character vector.
Argument a must be a valid variable name. That is, a must begin with a letter and can
contain only alphanumeric characters and underscores. To verify that the name is a valid
variable name, use isvarname.
Example: a, b, a_bc

[n1 ... nM] — Vector, matrix, or array dimensions
vector of integers

 sym

4-1703

Vector, matrix, or array dimensions, specified as a vector of integers. As a shortcut, you
can create a square matrix by specifying only one integer. For example, A =
sym('A',3) creates a square 3-by-3 matrix.
Example: [2 3], [2,3], [2;3]

set — Assumptions on symbolic variable or matrix
character vector | string array | cell array

Assumptions on symbolic variable or matrix, specified as a character vector, string array,
or cell array. The available assumptions are 'integer', 'rational', 'real', or
'positive'.

You can combine multiple assumptions by specifying a string array or cell array of
character vectors. For example, assume a positive rational value by specifying set as
["positive" "rational"] or {'positive','rational'}.
Example: 'integer'

num — Numeric value to be converted to symbolic number or matrix
number | matrix of numbers

Numeric value to be converted to symbolic number or matrix, specified as a number or a
matrix of numbers.
Example: 10, pi, hilb(3)

flag — Conversion technique
'r' (default) | 'd' | 'e' | 'f'

Conversion technique, specified as one of the characters listed in this table.

'r' When sym uses the rational mode, it converts floating-point numbers obtained
by evaluating expressions of the form p/q, p*pi/q, sqrt(p), 2^q, and 10^q
for modest sized integers p and q to the corresponding symbolic form. This
effectively compensates for the round-off error involved in the original
evaluation, but might not represent the floating-point value precisely. If sym
cannot find simple rational approximation, then it uses the same technique as
it would use with the flag 'f'.

4 Functions — Alphabetical List

4-1704

'd' When sym uses the decimal mode, it takes the number of digits from the
current setting of digits. Conversions with fewer than 16 digits lose some
accuracy, while more than 16 digits might not be warranted. For example,
sym(4/3,'d') with the 10-digit accuracy returns 1.333333333, while with
the 20-digit accuracy it returns 1.3333333333333332593. The latter does
not end in 3s, but it is an accurate decimal representation of the floating-point
number nearest to 4/3.

'e' When sym uses the estimate error mode, it supplements a result obtained in
the rational mode by a term involving the variable eps. This term estimates
the difference between the theoretical rational expression and its actual
floating-point value. For example, sym(3*pi/4,'e') returns (3*pi)/4 -
(103*eps)/249.

'f' When sym uses the floating-point mode, it represents all values in the form
N*2^e or -N*2^e, where N >= 0 and e are integers. For example,
sym(1/10,'f') returns 3602879701896397/36028797018963968. The
returned rational value is the exact value of the floating-point number that you
convert to a symbolic number.

Output Arguments
x — Variable
symbolic variable

Variable, returned as a symbolic variable.

A — Vector or matrix with automatically generated elements
symbolic vector | symbolic matrix

Vector or matrix with automatically generated elements, returned as a symbolic vector or
matrix. The elements of this vector or matrix do not appear in the MATLAB workspace.

symexpr — Expression or matrix generated from anonymous MATLAB function
symbolic expression | symbolic matrix

Expression or matrix generated from an anonymous MATLAB function, returned as a
symbolic expression or matrix.

 sym

4-1705

Tips
• Statements like pi = sym('pi') and delta = sym('1/10') create symbolic

numbers that avoid the floating-point approximations inherent in the values of pi and
1/10. The pi created in this way temporarily replaces the built-in numeric function
with the same name.

• sym always treats i in character vector input as an identifier. To input the imaginary
number i, use 1i instead.

• clear x does not clear the symbolic object of its assumptions, such as real, positive,
or any assumptions set by assume, sym, or syms. To remove assumptions, use one of
these options:

• assume(x,'clear') removes all assumptions affecting x.
• clear all clears all objects in the MATLAB workspace and resets the symbolic

engine.
• assume and assumeAlso provide more flexibility for setting assumptions on

variable.
• When you replace one or more elements of a numeric vector or matrix with a symbolic

number, MATLAB converts that number to a double-precision number.

A = eye(3);
A(1,1) = sym('pi')

A =
 3.1416 0 0
 0 1.0000 0
 0 0 1.0000

You cannot replace elements of a numeric vector or matrix with a symbolic variable,
expression, or function because these elements cannot be converted to double-
precision numbers. For example, A(1,1) = sym('a') throws an error.

• When you use the syntax A = sym('a',[n1 ... nM]), the sym function assigns
only the symbolic array A to the MATLAB workspace. To also assign the automatically
generated elements of A, use the syms function instead For example, syms a [1 3]
creates the row vector a = [a1 a2 a3] and the symbolic variables a1, a2, and a3 in
the MATLAB workspace.

4 Functions — Alphabetical List

4-1706

Alternative Functionality

Alternative Approaches for Creating Symbolic Variables
To create several symbolic variables in one function call, use syms. Using syms also
clears assumptions from the named variables.

See Also
assume | double | reset | str2sym | symfun | syms | symvar

Topics
“Create Symbolic Numbers, Variables, and Expressions” on page 1-3
“Create Symbolic Functions” on page 1-8
“Create Symbolic Matrices” on page 1-10
“Use Assumptions on Symbolic Variables” on page 1-29
“Add Subscripts, Superscripts, and Accents to Symbolic Variables” on page 2-5

Introduced before R2006a

 sym

4-1707

sym2cell
Convert symbolic array to cell array

Syntax
C = sym2cell(S)

Description
C = sym2cell(S) converts a symbolic array S to a cell array C. The resulting cell array
has the same size and dimensions as the input symbolic array.

Examples
Convert Symbolic Array to Cell Array
Convert a matrix of symbolic variables and numbers to a cell array.

Create the following symbolic matrix.

syms x y
S = [x 2 3 4; y 6 7 8; 9 10 11 12]

S =
[x, 2, 3, 4]
[y, 6, 7, 8]
[9, 10, 11, 12]

Convert this matrix to a cell array by using sym2cell. The size of the resulting cell array
corresponds to the size of the input matrix. Each cell contains an element of the symbolic
matrix S.

C = sym2cell(S)

C =
 3×4 cell array

4 Functions — Alphabetical List

4-1708

 {1×1 sym} {1×1 sym} {1×1 sym} {1×1 sym}
 {1×1 sym} {1×1 sym} {1×1 sym} {1×1 sym}
 {1×1 sym} {1×1 sym} {1×1 sym} {1×1 sym}

To access an element in each cell, use curly braces.

[C{1,1:4}]

ans =
[x, 2, 3, 4]

[C{1:3,1}]

ans =
[x, y, 9]

Input Arguments
S — Input symbolic array
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix | symbolic multidimensional array

Input symbolic array, specified as a symbolic vector, matrix, or multidimensional array. S
also can be a scalar, that is, a symbolic number, variable, expression, or function.

Output Arguments
C — Resulting cell array
cell array

Resulting cell array, returned as a cell array such that size(C) = size(S). Each
element of the input symbolic array S is enclosed in a separate cell.

See Also
cell2mat | cell2sym | mat2cell | num2cell

Introduced in R2016a

 sym2cell

4-1709

sym2poly
Extract vector of all numeric coefficients, including zeros, from symbolic polynomial

Syntax
c = sym2poly(p)

Description
c = sym2poly(p) returns the numeric vector of coefficients c of the symbolic
polynomial p. The returned vector c includes all coefficients, including those equal 0.

sym2poly returns coefficients in order of descending powers of the polynomial variable.
If c1xn− 1 + c2xn− 2 + ... + cn, then c = sym2poly(p) returns c = [c1 c2 ... cn].

Examples

Extract Numeric Coefficients of Polynomial
Create row vectors of coefficients of symbolic polynomials.

Extract integer coefficients of a symbolic polynomial into a numeric row vector.

syms x
c = sym2poly(x^3 - 2*x - 5)

c =
 1 0 -2 -5

Extract rational and integer coefficients of a symbolic polynomial into a vector. Because
sym2poly returns numeric double-precision results, it approximates exact rational
coefficients with double-precision numbers.

c = sym2poly(1/2*x^3 - 2/3*x - 5)

4 Functions — Alphabetical List

4-1710

c =
 0.5000 0 -0.6667 -5.0000

Input Arguments
p — Polynomial
symbolic expression

Polynomial, specified as a symbolic expression.

Output Arguments
c — Polynomial coefficients
numeric row vector

Polynomial coefficients, returned as a numeric row vector.

Tips
• To extract symbolic coefficients of a polynomial, use coeffs. This function returns a

symbolic vector of coefficients and omits all zeros. For example, syms a b x; c =
coeffs(a*x^3 - 5*b,x) returns c = [-5*b, a].

See Also
coeffs | poly2sym

Introduced before R2006a

 sym2poly

4-1711

symengine
(Not recommended) Return symbolic engine

Note is not recommended. Use equivalent Symbolic Math Toolbox™ functions that
replace MuPAD®functions instead. For more information, see “Compatibility
Considerations”.

Syntax
s = symengine

Description
s = symengine returns the currently active symbolic engine.

Examples

Return Active Symbolic Engine

To see which symbolic computation engine is currently active, enter:

s = symengine

s =
MuPAD symbolic engine

Now you can use the variable s in function calls that require symbolic engine:

syms a b c x
p = a*x^2 + b*x + c;
feval(s,'polylib::discrim', p, x)

4 Functions — Alphabetical List

4-1712

ans =
b^2 - 4*a*c

Compatibility Considerations

symengine is not recommended
Not recommended starting in R2018b

Symbolic Math Toolbox includes operations and functions for symbolic math expressions
that parallel MATLAB functionality for numeric values. Unlike MuPAD functionality,
Symbolic Math Toolbox functions enable you to work in familiar interfaces, such as the
MATLAB Command Window or Live Editor, which offer a smooth workflow and are
optimized for usability.

Therefore, instead of passing a symbolic engine and MuPAD expressions to feval,
evalin, and read, use the equivalent Symbolic Math Toolbox functionality to work with
symbolic math expressions. For a list of available functions, see Symbolic Math Toolbox
functions list.

To convert a MuPAD notebook file to a MATLAB live script file, see
convertMuPADNotebook.

If you cannot find the Symbolic Math Toolbox equivalent for MuPAD functionality, contact
MathWorks Technical Support.

Although the use of symengine is not recommended, there are no plans to remove it at
this time.

Introduced in R2008b

 symengine

4-1713

https://www.mathworks.com/support/contact_us.html

symfun
Create symbolic functions

Syntax
f(inputs) = formula
f = symfun(formula,inputs)

Description
f(inputs) = formula creates the symbolic function f. For example, f(x,y) = x +
y. The symbolic variables in inputs are the input arguments. The symbolic expression
formula is the body of the function f.

f = symfun(formula,inputs) is the formal way to create a symbolic function.

Examples

Create and Define Symbolic Functions

Define the symbolic function x + y. First, create the function by using syms. Then define
the function.

syms f(x,y)
f(x,y) = x + y

f(x, y) =
x + y

Find the value of f at x = 1 and y = 2.

f(1,2)

ans =
3

4 Functions — Alphabetical List

4-1714

Define the function again by using the formal way.

syms x y
f = symfun(x+y,[x y])

f(x, y) =
x + y

Return Body and Arguments of Symbolic Function

Return the body of a symbolic function by using formula. You can use the body for
operations such as indexing into the function. Return the arguments of a symbolic
function by using argnames.

Index into the symbolic function [x^2, y^4]. Since a symbolic function is a scalar, you
cannot directly index into the function. Instead, index into the body of the function.

syms f(x,y)
f(x,y) = [x^2, y^4];

fbody = formula(f);
fbody(1)
fbody(2)

ans =
x^2
ans =
y^4

Return the arguments of the function.

fvars = argnames(f)

fvars =
[x, y]

Input Arguments
formula — Function body
symbolic expression | vector of symbolic expressions | matrix of symbolic expressions

Function body, specified as a symbolic expression, vector of symbolic expressions, or
matrix of symbolic expressions.

 symfun

4-1715

Example: x + y

inputs — Input argument or arguments of function
symbolic variable | array of symbolic variables

Input argument or arguments of a function, specified as a symbolic variable or an array of
symbolic variables, respectively.
Example: [x,y]

Output Arguments
f — Function
symbolic function (symfun data type)

Function, returned as a symbolic function (symfun data type).

See Also
argnames | formula | matlabFunction | sym | syms | symvar

Topics
“Create Symbolic Functions” on page 1-8

Introduced in R2012a

4 Functions — Alphabetical List

4-1716

symFunType
Determine functional type of symbolic object

Syntax
s = symFunType(symObj)

Description
s = symFunType(symObj) returns the functional type of a symbolic object.

• If symObj is a symbolic function or a symbolic expression, then symFunType returns
the topmost function name or operator of symObj. For example, syms x;
symFunType(2*sin(x)) returns "times".

• If symObj is not a symbolic function or a symbolic expression, then symFunType
returns the same output as symType. For example, symFunType(sym('2')) returns
"integer".

Examples

Symbolic Function or Expression

Create an array of symbolic functions and expressions.

syms f(x)
expr = [f(x) sin(x) exp(x) int(f(x)) diff(f(x))]

expr =

f x sin x ex ∫ f x dx ∂
∂x f x

Determine the functional type of each array element.

s = symFunType(expr)

 symFunType

4-1717

s = 1x5 string array
 "f" "sin" "exp" "int" "diff"

Topmost Arithmetic Operators of Symbolic Expressions

Create two symbolic expressions. Determine the topmost arithmetic operators of the
expressions.

syms x
expr1 = x/(x^2+x+2);
expr2 = x + 1/(x^2+x+2);
s1 = symFunType(expr1)

s1 =
"times"

s2 = symFunType(expr2)

s2 =
"plus"

To return the terms separated by the operators, use children.

terms1 = children(expr1)

terms1 =

x 1
x2 + x + 2

terms2 = children(expr2)

terms2 =

x 1
x2 + x + 2

Comparison Operators in Equations and Inequalities

Create an array of symbolic equations and inequalities.

4 Functions — Alphabetical List

4-1718

syms x y
eqns = [x+y==2, x<=5, y>3]

eqns = x + y = 2 x ≤ 5 3 < y

Determine the topmost comparison operator in each array element.

s = symFunType(eqns)

s = 1x3 string array
 "eq" "le" "lt"

Input Arguments
symObj — Symbolic objects
symbolic expressions | symbolic functions | symbolic variables | symbolic numbers |
symbolic units

Symbolic objects, specified as symbolic expressions, symbolic functions, symbolic
variables, symbolic numbers, or symbolic units.

Output Arguments
s — Symbolic functional types
string array

Symbolic functional types, returned as a string array. If symObj is a symbolic function or
a symbolic expression, then symFunType returns the topmost function name or operator
of symObj. This table shows output values for various symbolic objects.

Symbolic
Functional
Types

Returned Output Input Example

symbolic math
functions

"sin", "exp", "fourier", and so on —
name of the topmost symbolic math
function in a symbolic expression

syms f(x);
symFunType([sin(x),
exp(x), fourier(x)])

 symFunType

4-1719

Symbolic
Functional
Types

Returned Output Input Example

unassigned
symbolic
functions

"f", "g", and so on — unassigned symbolic
function

syms f(x) g(x);
symFunType([f, g(x
+2)])

arithmetic
operators

• "plus" — addition operator + and
subtraction operator -

• "times" — multiplication operator *
and division operator /

• "power" — power or exponentiation
operator ^ and square root operator
sqrt

• syms x;
symFunType(x^2-x)

• syms x;
symFunType(2*x^2)

• syms x;
symFunType([x^2
sqrt(x)])

equations and
inequalities

• "eq" — equality operator ==
• "ne" — inequality operator ~=
• "lt" — less-than operator < or greater-

than operator >
• "le" — less-than-or-equal-to operator

<= or greater-than-or-equal-to operator
>=

• syms x y;
symFunType(x==y)

• syms x y;
symFunType(x~=y)

• syms x y;
symFunType(x<y)

• syms x y;
symFunType(x>=y)

logical
operators

• "or" — logical OR operator |
• "and" — logical AND operator &
• "not" — logical NOT operator ~
• "xor" — logical exclusive-OR operator

xor

• syms x y;
symFunType(x|y)

• syms x y;
symFunType(x&y)

• syms x;
symFunType(~x)

• syms x y;
symFunType(xor(x,y)
)

4 Functions — Alphabetical List

4-1720

Symbolic
Functional
Types

Returned Output Input Example

numbers • "integer" — integer number
• "rational" — rational number
• "vpareal" — variable-precision
floating-point real number

• "complex" — complex number

• symFunType(sym('-1'
))

• symFunType(sym('1/2
'))

• symFunType([sym('1.
5') vpa('3/2')])

• symFunType(sym('1+2
i'))

constants "constant" symFunType(sym([pi
catalan]))

variables "variable" symFunType(sym(x))
units "units" symFunType(symunit('m'

))
unsupported
symbolic
types

"unsupported"

See Also
hasSymType | isSymType | sym | symType | symfun | syms

Introduced in R2019a

 symFunType

4-1721

sympref
Set symbolic preferences

Syntax
oldVal = sympref(pref,value)
oldVal = sympref(pref)

oldPrefs = sympref(prefs)
oldPrefs = sympref()

Description
oldVal = sympref(pref,value) sets the symbolic preference pref to value and
returns the previous value of the preference to oldVal. You can set the preference to its
default value using sympref(pref,'default').

Symbolic preferences can affect the computation of the symbolic functions fourier,
ifourier, and heaviside, and the display format of symbolic output.

oldVal = sympref(pref) returns the current value of pref.

oldPrefs = sympref(prefs) sets multiple symbolic preferences to the values in the
structure prefs and returns the previous values of all preferences to oldPrefs. You can
set all symbolic preferences to their default values using sympref('default').

oldPrefs = sympref() returns the current values of all symbolic preferences.

Note Symbolic preferences persist through successive MATLAB sessions. Opening a new
session does not restore the default preferences.

Examples

4 Functions — Alphabetical List

4-1722

Change Parameter Values of Fourier Transform

The Fourier transform F(w) of f = f(t) is

F w = c ∫
−∞

∞
f t eiswtdt,

where c and s are parameters with the default values 1 and –1, respectively. Other
common values for c are 1/2π and 1/ 2π, and other common values for s are 1, –2π, and
2π.

Find the Fourier transform of sin(t) with default c and s parameters.

syms t w
F = fourier(sin(t),t,w)

F =
-pi*(dirac(w - 1) - dirac(w + 1))*1i

Find the same Fourier transform with c = 1/(2π) and s = 1. Set the parameter values
by using the 'FourierParameters' preference. Represent π exactly by using sym.
Specify the values of c and s as the vector [1/(2*sym(pi)) 1]. Store the previous
values returned by sympref so that you can restore them later.

oldVal = sympref('FourierParameters',[1/(2*sym(pi)) 1])
F = fourier(sin(t),t,w)

oldVal =
[1, -1]

F =
(dirac(w - 1)*1i)/2 - (dirac(w + 1)*1i)/2

The preferences you set using sympref persist through your current and future MATLAB
sessions. Restore the previous values of c and s to oldVal.

sympref('FourierParameters',oldVal);

Alternatively, you can restore the default values of c and s by specifying the 'default'
option.

sympref('FourierParameters','default');

 sympref

4-1723

Change Value of Heaviside Function at Origin

In Symbolic Math Toolbox, the default value of the Heaviside function at the origin is 1/2.
Return the value of heaviside(0). Find the Z-transform of heaviside(x) for this
default value of heaviside(0).

syms x
H = heaviside(sym(0))
Z = ztrans(heaviside(x))

H =
1/2

Z =
1/(z - 1) + 1/2

Other common values for the Heaviside function at the origin are 0 and 1. Set
heaviside(0) to 1 using the 'HeavisideAtOrigin' preference. Store the previous
value returned by sympref so that you can restore it later.

oldVal = sympref('HeavisideAtOrigin',1)

oldVal =
1/2

Check if the new value of heaviside(0) is 1. Find the Z-transform of heaviside(x) for
this value.

H = heaviside(sym(0))
Z = ztrans(heaviside(x))

H =
1

Z =
1/(z - 1) + 1

The new output of heaviside(0) modifies the output of ztrans.

The preferences you set using sympref persist through your current and future MATLAB
sessions. Restore the previous value of heaviside(0) to oldVal.

sympref('HeavisideAtOrigin',oldVal);

4 Functions — Alphabetical List

4-1724

Alternatively, you can restore the default value of 'HeavisideAtOrigin' by specifying
the 'default' option.

sympref('HeavisideAtOrigin','default');

Modify Display of Symbolic Expressions in Live Scripts

By default, symbolic expressions in Live Scripts are displayed in abbreviated output
format, and typeset in mathematical notation. You can turn off abbreviated output format
and typesetting using symbolic preferences.

Create a symbolic expression and return the output, which is abbreviated by default.

syms a b c d x
f = a*x^3 + b*x^2 + c*x + d;
outputAbbrev = sin(f) + cos(f) + tan(f) + log(f) + 1/f

outputAbbrev =

cos σ1 + log σ1 + sin σ1 + tan σ1 + 1
σ1

where

 σ1 = a x3 + b x2 + c x + d

Turn off abbreviated output format by setting the 'AbbreviateOutput' preference to
false. Redisplay the expression.

sympref('AbbreviateOutput',false);
outputLong = sin(f) + cos(f) + tan(f) + log(f) + 1/f

outputLong =

cos a x3 + b x2 + c x + d + log a x3 + b x2 + c x + d + sin a x3 + b x2 + c x + d

+ tan a x3 + b x2 + c x + d + 1
a x3 + b x2 + c x + d

Create another symbolic expression and return the output, which is typeset in
mathematical notation by default. Turn off rendered output and use ASCII output instead
by setting the 'TypesetOutput' preference to false. First, show the typeset output.

syms a b c d x
f = exp(a^b)+pi

 sympref

4-1725

f = π + eab

Turn off typesetting by setting the 'TypesetOutput' preference to false. Redisplay
the expression.

sympref('TypesetOutput',false);
f = exp(a^b)+pi

f =

pi + exp(a^b)

The preferences you set using sympref persist through your current and future MATLAB
sessions. Restore the default values for 'AbbreviateOutput' and 'TypesetOutput'
by specifying the 'default' option.

sympref('AbbreviateOutput','default');
sympref('TypesetOutput','default');

Display Symbolic Results in Floating-Point Format

Display symbolic results in floating-point output format, that is the short, fixed-decimal
format with 4 digits after the decimal point.

Create a quadratic equation.

syms x
eq = x^2 - 2e3/sym(pi)*x + 0.5 == 0

eq =

x2− 2000 x
π + 1

2 = 0

Find the solutions of the equation using solve.

sols = solve(eq,x)

sols =

4 Functions — Alphabetical List

4-1726

− 2 2000000− π2− 2000
2 π

2 2000000− π2 + 2000
2 π

Set the 'FloatingPointOutput' preference to true. Store the previous value of the
preference in oldVal. Display the quadratic equation and its solutions in floating-point
format.

oldVal = sympref('FloatingPointOutput',true);
eq

eq = x2− 636.6198 x + 0.5000 = 0

sols

sols =
7.8540e−04

636.6190

The floating-point format displays each symbolic number in the short, fixed-decimal
format with 4 digits after the decimal point. Setting the 'FloatingPointOutput'
preference does not affect the floating-point precision in a symbolic computation. To
compute symbolic numbers using floating-point arithmetic, use the vpa function.

Now restore the previous value for 'FloatingPointOutput'. Compute the floating-
point approximation of the solutions in 8 significant digits using vpa.

sympref('FloatingPointOutput',oldVal);
sols = vpa(sols,8)

sols =
0.00078539913

636.61899

Modify Output Order of Symbolic Polynomial

Create a symbolic polynomial expression consisting of multiple variables. Display the
polynomial in the default order.

 sympref

4-1727

syms x y a b
p1 = b^2*x^2 + a^2*x + y^3 + 2

p1 = a2 x + b2 x2 + y3 + 2

The default option sorts the output in alphabetical order, without distinguishing the
different symbolic variables in each monomial term.

Now display the same polynomial in ascending order by setting the preference
'PolynomialDisplayStyle' to 'ascend'.

sympref('PolynomialDisplayStyle','ascend');
p1

p1 = 2 + y3 + a2 x + b2 x2

The 'ascend' option sorts the output in ascending order based on the importance of the
variables. Here, the most important variable x with the highest order in a monomial term
is displayed last.

Display the polynomial in descending order by setting the 'PolynomialDisplayStyle'
preference to 'descend'.

sympref('PolynomialDisplayStyle','descend');
p1

p1 = b2 x2 + a2 x + y3 + 2

Modify Display of Symbolic Matrix in Live Scripts

By default, a symbolic matrix in Live Scripts is set in parentheses (round brackets). You
can specify the use of square brackets instead by using sympref.

Create a symbolic matrix consisting of symbolic variables and numbers.

syms x y
A = [x*y, 2; 4, y^2]

A =
x y 2
4 y2

4 Functions — Alphabetical List

4-1728

Display the matrix with square brackets by setting the 'MatrixWithSquareBrackets'
preference to true.

sympref('MatrixWithSquareBrackets',true);
A

A =
x y 2
4 y2

The preferences you set using sympref persist through your current and future MATLAB
sessions. Restore the default value by specifying the 'default' option.

sympref('default');

Save and Restore All Symbolic Preferences

Instead of saving and restoring individual preferences one by one, you can use sympref
to save and restore all symbolic preferences simultaneously.

Return a structure containing the values of all symbolic preferences by using sympref().

oldPrefs = sympref()

oldPrefs =

 struct with fields:

 FourierParameters: [1×2 sym]
 HeavisideAtOrigin: [1×1 sym]
 AbbreviateOutput: 1
 TypesetOutput: 1
 FloatingPointOutput: 0
 PolynomialDisplayStyle: 'default'
 MatrixWithSquareBrackets: 0

Access the value of each symbolic preference by addressing the field of the structure.
Alternatively, you can use the command sympref(pref).

val1 = oldPrefs.FourierParameters
val2 = oldPrefs.HeavisideAtOrigin
val3 = sympref('FourierParameters')

 sympref

4-1729

val1 =
[1, -1]

val2 =
1/2

val3 =
[1, -1]

To modify multiple symbolic preferences simultaneously, you can create a structure
prefs that contains the preference values. Use the command sympref(prefs) to set
multiple preferences.

prefs.FourierParameters = [1/(2*sym(pi) 1]
prefs.HeavisideAtOrigin = 1
sympref(prefs);

Because symbolic preferences persist through your current and future MATLAB sessions,
you need to restore your previous preferences. Restore the saved preferences using
sympref(oldPrefs).

sympref(oldPrefs);

Alternatively, you can set all symbolic preferences to their default values by specifying the
'default' option.

sympref('default');

Input Arguments
pref — Symbolic preference
character vector | string

Symbolic preference, specified as a character vector or string. The value options for each
symbolic preference follow.

4 Functions — Alphabetical List

4-1730

Preference Value Description
'FourierParamet
ers'

Two-element row
vector [c,s]. The
parameters c and s
must be numeric or
symbolic numbers.

Default:
sym([1,-1]).

Set the values of the parameters c and s in the
Fourier transform:

F w = c ∫
−∞

∞
f t eiswtdt .

See “Change Parameter Values of Fourier
Transform” on page 4-1722.

'HeavisideAtOri
gin'

Scalar value,
specified as a
numeric or
symbolic number.

Default: sym(1/2).

Set the value of the Heaviside function
heaviside(0) at the origin.

See “Change Value of Heaviside Function at
Origin” on page 4-1723.

'AbbreviateOutp
ut'

Logical value
(boolean).

Default: logical 1
(true).

Specify whether or not to use abbreviated
output format of symbolic variables and
expressions in Live Scripts.

See “Modify Display of Symbolic Expressions
in Live Scripts” on page 4-1725.

'TypesetOutput' Logical value
(boolean).

Default: logical 1
(true).

Typeset or use ASCII characters for the output
of symbolic variables and expressions in Live
Scripts.

See “Modify Display of Symbolic Expressions
in Live Scripts” on page 4-1725.

'FloatingPointO
utput'

Logical value
(boolean).

Default: logical 0
(false).

Specify whether or not to display symbolic
results in floating-point output format.

The true value option displays symbolic
results in the short fixed-decimal format with
4 digits after the decimal point.

See “Display Symbolic Results in Floating-
Point Format” on page 4-1726.

 sympref

4-1731

Preference Value Description
'PolynomialDisp
layStyle'

Character vector or
scalar string,
specified as
'default',
'ascend', or
'descend'.

Default:
'default'.

Display a symbolic polynomial in default,
ascending, or descending order.

• The 'default' option sorts the output in
alphabetical order, without distinguishing
the different symbolic variables in each
monomial term.

• The 'ascend' option sorts the output in
ascending order based on the standard
mathematical notation for polynomials. For
example, the variable x with the highest
order in a monomial term is displayed last,
preceded by monomial terms that contain
the variables y, z, t, s, and so on.

• The 'descend' option sorts the output in
descending order based on the standard
mathematical notation for polynomials.
This option is the exact opposite of
'ascend'.

See “Modify Output Order of Symbolic
Polynomial” on page 4-1727.

'MatrixWithSqua
reBrackets'

Logical value
(boolean).

Default: logical 0
(false).

Set matrices in round brackets or parentheses
(round brackets) in Live Scripts.

See “Modify Display of Symbolic Matrix in
Live Scripts” on page 4-1728.

value — Value of symbolic preference
'default' (default) | valid value

Value of symbolic preference, specified as 'default' or a valid value of the specified
preference pref.

prefs — Symbolic preferences
structure array

Symbolic preferences, specified as a structure array. You can set multiple preferences by
declaring the field names and the valid preference values.

4 Functions — Alphabetical List

4-1732

Output Arguments
oldVal — Value of symbolic preference
valid value

Value of symbolic preference, returned as a valid value. oldVal represents the existing
value of the preference pref before the call to sympref.

oldPrefs — All symbolic preferences
structure array

All symbolic preferences, returned as a structure array. oldPrefs represent the existing
values of all preferences before the call to sympref.

Tips
• The clear command does not reset or affect symbolic preferences. Use sympref to

manipulate symbolic preferences.
• The symbolic preferences you set using sympref also determine the output generated

by the latex and mathml functions.
• Setting the 'FloatingPointOutput' preference affects only the output display

format of symbolic numbers. To change the output display format of numeric numbers,
use the format function. To compute symbolic numbers using floating-point precision,
use the vpa or digits functions.

See Also
digits | fourier | heaviside | ifourier | latex | mathml | taylor | vpa

Topics
“Change Output Display Format of Symbolic Results” on page 2-10

Introduced in R2015a

 sympref

4-1733

symprod
Product of series

Syntax
F = symprod(f,k,a,b)
F = symprod(f,k)

Description
F = symprod(f,k,a,b) returns the product of the series with terms that expression f
specifies, which depend on symbolic variable k. The value of k ranges from a to b. If you
do not specify k, symprod uses the variable that symvar determines. If f is a constant,
then the default variable is x.

F = symprod(f,k) returns the product of the series that expression f specifies, which
depend on symbolic variable k. The value of k starts at 1 with an unspecified upper
bound. The product F is returned in terms of k where k represents the upper bound. This
product F differs from the indefinite product. If you do not specify k, symprod uses the
variable that symvar determines. If f is a constant, then the default variable is x.

Examples

Find Product of Series Specifying Bounds
Find the following products of series

P1 = ∏
k = 2

∞
1− 1

k2 ,

P2 = ∏
k = 2

∞ k2

k2− 1
.

4 Functions — Alphabetical List

4-1734

syms k
P1 = symprod(1 - 1/k^2, k, 2, Inf)
P2 = symprod(k^2/(k^2 - 1), k, 2, Inf)

P1 =
1/2
P2 =
2

Alternatively, specify bounds as a row or column vector.

syms k
P1 = symprod(1 - 1/k^2, k, [2 Inf])
P2 = symprod(k^2/(k^2 - 1), k, [2; Inf])

P1 =
1/2
P2 =
2

Find Product of Series Specifying Product Index and Bounds
Find the product of series

P = ∏
k = 1

10000 ekx

x .

syms k x
P = symprod(exp(k*x)/x, k, 1, 10000)

P =
exp(50005000*x)/x^10000

Find Product of Series with Unspecified Bounds
When you do not specify the bounds of a series are unspecified, the variable k starts at 1.
In the returned expression, k itself represents the upper bound.

Find the products of series with an unspecified upper bound

P1 = ∏
k

k,

P2 = ∏
k

2k− 1
k2 .

 symprod

4-1735

syms k
P1 = symprod(k, k)
P2 = symprod((2*k - 1)/k^2, k)

P1 =
factorial(k)
P2 =
(1/2^(2*k)*2^(k + 1)*factorial(2*k))/(2*factorial(k)^3)

Input Arguments
f — Expression defining terms of series
symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic
number

Expression defining terms of series, specified as a symbolic expression, function,
constant, or a vector or matrix of symbolic expressions, functions, or constants.

k — Product index
symbolic variable

Product index, specified as a symbolic variable. If you do not specify this variable,
symprod uses the default variable that symvar(expr,1) determines. If f is a constant,
then the default variable is x.

a — Lower bound of product index
number | symbolic number | symbolic variable | symbolic expression | symbolic function

Lower bound of product index, specified as a number, symbolic number, variable,
expression, or function (including expressions and functions with infinities).

b — Upper bound of product index
number | symbolic number | symbolic variable | symbolic expression | symbolic function

Upper bound of product index, specified as a number, symbolic number, variable,
expression, or function (including expressions and functions with infinities).

4 Functions — Alphabetical List

4-1736

Definitions

Definite Product
The definite product of a series is defined as

∏
i = a

b
xi = xa ⋅ xa + 1 ⋅… ⋅ xb

Indefinite Product
The indefinite product of xi over i is

f (i) = ∏
i

xi

This definition holds under the assumption that the following identity is true for all values
of i.

f i + 1
f i = xi

Note symprod does not compute indefinite products.

See Also
cumprod | cumsum | int | syms | symsum | symvar

Introduced in R2011b

 symprod

4-1737

symReadSSCParameters
Load parameters from Simscape component

Syntax
[names,values,units] = symReadSSCParameters(componentName)

Description
[names,values,units] = symReadSSCParameters(componentName) returns cell
arrays containing the names, values, and units of all parameters from the Simscape
component called componentName.

Examples

Parameters of Simscape Component

Load the names, values, and units of the parameters of a Simscape component.

Suppose you have the Simscape component friction.ssc in your current folder.

type('friction.ssc');

component friction < foundation.mechanical.rotational.branch

parameters
 brkwy_trq = { 25, 'N*m' }; % Breakaway friction torque
 Col_trq = { 20, 'N*m' }; % Coulomb friction torque
 visc_coef = { 0.001, 'N*m*s/rad' }; % Viscous friction coefficient
 trans_coef = { 10, 's/rad' }; % Transition approximation coefficient
 vel_thr = { 1e-4, 'rad/s' }; % Linear region velocity threshold
end

parameters (Access=private)
 brkwy_trq_th = { 24.995, 'N*m' }; % Breakaway torque at threshold velocity

4 Functions — Alphabetical List

4-1738

end

function setup
 % Parameter range checking
 if brkwy_trq <= 0
 pm_error('simscape:GreaterThanZero','Breakaway friction torque')
 end
 if Col_trq <= 0
 pm_error('simscape:GreaterThanZero','Coulomb friction torque')
 end
 if Col_trq > brkwy_trq
 pm_error('simscape:LessThanOrEqual','Coulomb friction torque',...
 'Breakaway friction torque')
 end
 if visc_coef < 0
 pm_error('simscape:GreaterThanOrEqualToZero','Viscous friction coefficient')
 end
 if trans_coef <= 0
 pm_error('simscape:GreaterThanZero','Transition approximation coefficient')
 end
 if vel_thr <= 0
 pm_error('simscape:GreaterThanZero','Linear region velocity threshold')
 end

 % Computing breakaway torque at threshold velocity
 brkwy_trq_th = visc_coef * vel_thr + Col_trq + (brkwy_trq - Col_trq) * ...
 exp(-trans_coef * vel_thr);
end

equations
 if (abs(w) <= vel_thr)
 % Linear region
 t == brkwy_trq_th * w / vel_thr;
 elseif w > 0
 t == visc_coef * w + Col_trq + ...
 (brkwy_trq - Col_trq) * exp(-trans_coef * w);
 else
 t == visc_coef * w - Col_trq - ...
 (brkwy_trq - Col_trq) * exp(-trans_coef * abs(w));
 end
end

end

 symReadSSCParameters

4-1739

Load the names, values, and units of the parameters of the component friction.ssc.

[names,values,units] = symReadSSCParameters('friction.ssc');

In this example, all elements of the resulting cell arrays are scalars. You can convert the
cell arrays to symbolic vectors.

names_sym = cell2sym(names)

names_sym =
[Col_trq, brkwy_trq, brkwy_trq_th, trans_coef, vel_thr, visc_coef]

values_sym = cell2sym(values)

values_sym =
[20, 25, 4999/200, 10, 1/10000, 1/1000]

Create individual symbolic variables from the elements of the cell array names in the
MATLAB workspace. This command creates the symbolic variables Col_trq, brkwy_trq,
brkwy_trq_th, trans_coef, vel_thr, and visc_coef as sym objects in the
workspace.

syms(names)

Input Arguments
componentName — Simscape component name
file name enclosed in single quotes

Simscape component name, specified as a file name enclosed in single quotes. The file
must have the extension .ssc. If you do not provide the file extension,
symReadSSCParameters assumes it to be .ssc. The component must be on the
MATLAB path or in the current folder.
Example: 'MyComponent.ssc'

Output Arguments
names — Names of all parameters of Simscape component
cell array

Names of all parameters of a Simscape component, returned as a cell array.

4 Functions — Alphabetical List

4-1740

Data Types: cell

values — Values of all parameters of Simscape component
cell array

Values of all parameters of a Simscape component, returned as a cell array.
Data Types: cell

units — Units of all parameters of Simscape component
cell array

Units of all parameters of a Simscape component, returned as a cell array.
Data Types: cell

See Also
symReadSSCVariables | symWriteSSC

Introduced in R2016a

 symReadSSCParameters

4-1741

symReadSSCVariables
Load variables from Simscape component

Syntax
[names,values,units] = symReadSSCVariables(componentName)
[names,values,units] = symReadSSCVariables(
componentName,'ReturnFunctions',true)

Description
[names,values,units] = symReadSSCVariables(componentName) returns cell
arrays containing the names, values, and units of all variables from the Simscape
component called componentName.

[names,values,units] = symReadSSCVariables(
componentName,'ReturnFunctions',true) returns the names as symbolic functions
of variable t.

Examples

Variables of Simscape Component

Load the names, values, and units of the variables of a Simscape component.

Suppose you have the Simscape component friction.ssc in your current folder.

type('friction.ssc');

component friction < foundation.mechanical.rotational.branch

parameters
 brkwy_trq = { 25, 'N*m' }; % Breakaway friction torque
 Col_trq = { 20, 'N*m' }; % Coulomb friction torque

4 Functions — Alphabetical List

4-1742

 visc_coef = { 0.001, 'N*m*s/rad' }; % Viscous friction coefficient
 trans_coef = { 10, 's/rad' }; % Transition approximation coefficient
 vel_thr = { 1e-4, 'rad/s' }; % Linear region velocity threshold
end

parameters (Access=private)
 brkwy_trq_th = { 24.995, 'N*m' }; % Breakaway torque at threshold velocity
end

function setup
 % Parameter range checking
 if brkwy_trq <= 0
 pm_error('simscape:GreaterThanZero','Breakaway friction torque')
 end
 if Col_trq <= 0
 pm_error('simscape:GreaterThanZero','Coulomb friction torque')
 end
 if Col_trq > brkwy_trq
 pm_error('simscape:LessThanOrEqual','Coulomb friction torque',...
 'Breakaway friction torque')
 end
 if visc_coef < 0
 pm_error('simscape:GreaterThanOrEqualToZero','Viscous friction coefficient')
 end
 if trans_coef <= 0
 pm_error('simscape:GreaterThanZero','Transition approximation coefficient')
 end
 if vel_thr <= 0
 pm_error('simscape:GreaterThanZero','Linear region velocity threshold')
 end

 % Computing breakaway torque at threshold velocity
 brkwy_trq_th = visc_coef * vel_thr + Col_trq + (brkwy_trq - Col_trq) * ...
 exp(-trans_coef * vel_thr);
end

equations
 if (abs(w) <= vel_thr)
 % Linear region
 t == brkwy_trq_th * w / vel_thr;
 elseif w > 0
 t == visc_coef * w + Col_trq + ...
 (brkwy_trq - Col_trq) * exp(-trans_coef * w);
 else

 symReadSSCVariables

4-1743

 t == visc_coef * w - Col_trq - ...
 (brkwy_trq - Col_trq) * exp(-trans_coef * abs(w));
 end
end

end

Load the names, values, and units of the variables of the component friction.ssc.

[names,values,units] = symReadSSCVariables('friction.ssc');

In this example, all elements of the resulting cell arrays are scalars. You can convert the
cell arrays to symbolic vectors.

names_sym = cell2sym(names)

names_sym =
[t, w]

values_sym = cell2sym(values)

values_sym =
[0, 0]

Create individual symbolic variables from the elements of the cell array names in the
MATLAB workspace. This command creates the symbolic variables t and w as sym objects
in the workspace.

syms(names)

Variables of Simscape Component Returned as Functions

Load the names of the variables of a Simscape component while converting them to
symbolic functions of the variable t.

Suppose you have the Simscape component source.ssc in your current folder.

type('source.ssc');

component source
% Electrical Source
% Defines an electrical source with positive and negative external nodes.
% Also defines associated through and across variables.

4 Functions — Alphabetical List

4-1744

nodes
 p = foundation.electrical.electrical; % :top
 n = foundation.electrical.electrical; % :bottom
end

variables(Access=protected)
 i = { 0, 'A' }; % Current
 v = { 0, 'V' }; % Voltage
end

branches
 i : p.i -> n.i;
end

equations
 v == p.v - n.v;
end

end

Load the names of the variables of the component source.ssc by setting
'ReturnFunctions' to true.

[names,~,~] = symReadSSCVariables('source.ssc','ReturnFunctions',true);

In this example, all elements of the resulting cell arrays are scalars. You can convert the
cell arrays to symbolic vectors.

names_symfun = cell2sym(names)

names_symfun =
[i(t), v(t)]

Create individual symbolic functions from the elements of the cell array names in the
MATLAB workspace. This command creates the symbolic functions i and v as symfun
objects, and their variable t as a sym object in the workspace.

 symReadSSCVariables

4-1745

syms(names)

Input Arguments
componentName — Simscape component name
file name enclosed in single quotes

Simscape component name, specified as a file name enclosed in single quotes. The file
must have the extension .ssc. If you do not provide the file extension,
symReadSSCVariables assumes it to be .ssc. The component must be on the MATLAB
path or in the current folder.
Example: 'MyComponent.ssc'

Output Arguments
names — Names of all variables of Simscape component
cell array

Names of all variables of a Simscape component, returned as a cell array.
Data Types: cell

values — Values of all variables of Simscape component
cell array

Values of all variables of a Simscape component, returned as a cell array.
Data Types: cell

units — Units of all variables of Simscape component
cell array

Units of all variables of a Simscape component, returned as a cell array.
Data Types: cell

See Also
symReadSSCParameters | symWriteSSC

4 Functions — Alphabetical List

4-1746

Introduced in R2016a

 symReadSSCVariables

4-1747

syms
Create symbolic variables and functions

Syntax
syms var1 ... varN
syms var1 ... varN [n1 ... nM]
syms var1 ... varN n
syms ___ set

syms f(var1,...,varN)
syms f(var1,...,varN) [n1 ... nM]
syms f(var1,...,varN) n

syms(symArray)

syms
S = syms

Description
syms var1 ... varN creates symbolic variables var1 ... varN. Separate different
variables by spaces. syms clears all assumptions from the variables.

syms var1 ... varN [n1 ... nM] creates symbolic arrays var1 ... varN, where
each array has the size n1-by-...-by-nM and contains automatically generated symbolic
variables as its elements. For example, syms a [1 3] creates the symbolic array a =
[a1 a2 a3] and the symbolic variables a1, a2, and a3 in the MATLAB workspace. For
multidimensional arrays, these elements have the prefix a followed by the element’s index
using _ as a delimiter, such as a1_3_2.

syms var1 ... varN n creates n-by-n symbolic matrices filled with automatically
generated elements.

syms ___ set sets the assumption that the created symbolic variables belong to set,
and clears other assumptions. Here, set can be real, positive, integer, or

4 Functions — Alphabetical List

4-1748

rational. You also can combine multiple assumptions using spaces. For example, syms
x positive rational creates a variable x with a positive rational value.

syms f(var1,...,varN) creates the symbolic function f and the symbolic variables
var1,...,varN, which represent the input arguments of f. You can create multiple
symbolic functions in one call. For example, syms f(x) g(t) creates two symbolic
functions (f and g) and two symbolic variables (x and t).

syms f(var1,...,varN) [n1 ... nM] creates an n1-by-...-by-nM symbolic array
with automatically generated symbolic functions as its elements. This syntax also
generates the symbolic variables var1,...,varN that represent the input arguments of
f. For example, syms f(x) [1 2] creates the symbolic array f(x) = [f1(x)
f2(x)], the symbolic functions f1(x) and f2(x), and the symbolic variable x in the
MATLAB workspace. For multidimensional arrays, these elements have the prefix f
followed by the element’s index using _ as a delimiter, such as f1_3_2.

syms f(var1,...,varN) n creates an n-by-n symbolic matrix filled with automatically
generated elements.

syms(symArray) creates the symbolic variables and functions contained in symArray,
where symArray is either a vector of symbolic variables or a cell array of symbolic
variables and functions. Use this syntax only when such an array is returned by another
function, such as solve or symReadSSCVariables.

syms lists the names of all symbolic variables, functions, and arrays in the MATLAB
workspace.

S = syms returns a cell array of the names of all symbolic variables, functions, and
arrays.

Examples

Create Symbolic Variables

Create symbolic variables x and y.

syms x y

Create a 1-by-4 symbolic vector a with the automatically generated elements a1, ..., a4.

 syms

4-1749

syms a [1 4]
a

a =
[a1, a2, a3, a4]

Change the naming format of the generated elements by using a format character vector.
Declare the symbolic variables by enclosing each variable name in single quotes. syms
replaces %d in the format character vector with the index of the element to generate the
element names.

syms 'a_%d' 'b_%d' [1 4]
a
b

a =
[a_1, a_2, a_3, a_4]

b =
[b_1, b_2, b_3, b_4]

Set Assumptions While Creating Variables

Create symbolic variables x and y, and assume that they are integers.

syms x y integer

Create another variable z, and assume that it has a positive rational value.

syms z positive rational

Check assumptions.

assumptions

ans =
[in(x, 'integer'), in(y, 'integer'), in(z, 'rational'), 0 < z]

Alternatively, check assumptions on each variable. For example, check assumptions set on
the variable x.

assumptions(x)

4 Functions — Alphabetical List

4-1750

ans =
in(x, 'integer')

Clear assumptions on x, y, and z.

assume([x y z],'clear')
assumptions

ans =
Empty sym: 1-by-0

Create a 1-by-3 symbolic array a and assume that the array elements have real values.

syms a [1 3] real
assumptions

ans =
[in(a1, 'real'), in(a2, 'real'), in(a3, 'real')]

Create Symbolic Functions

Create symbolic functions with one and two arguments.

syms s(t) f(x,y)

Both s and f are abstract symbolic functions. They do not have symbolic expressions
assigned to them, so the bodies of these functions are s(t) and f(x,y), respectively.

Specify the following formula for f.

f(x,y) = x + 2*y

f(x, y) =
x + 2*y

Compute the function value at the point x = 1 and y = 2.

f(1,2)

ans =
5

 syms

4-1751

Create Symbolic Functions with Matrices as Formulas

Create a symbolic function and specify its formula by using a symbolic matrix.

syms x
M = [x x^3; x^2 x^4];
f(x) = M

f(x) =
[x, x^3]
[x^2, x^4]

Compute the function value at the point x = 2:

f(2)

ans =
[2, 8]
[4, 16]

Compute the value of this function for x = [1 2 3; 4 5 6]. The result is a cell array of
symbolic matrices.

xVal = [1 2 3; 4 5 6];
y = f(xVal)

y =
 2×2 cell array
 {2×3 sym} {2×3 sym}
 {2×3 sym} {2×3 sym}

Access the contents of a cell in the cell array by using braces.

y{1}

ans =
[1, 2, 3]
[4, 5, 6]

Create Symbolic Matrices as Functions of Two Variables

Create a 2-by-2 symbolic matrix with automatically generated symbolic functions as its
elements.

4 Functions — Alphabetical List

4-1752

syms f(x,y) 2
f

f(x, y) =
[f1_1(x, y), f1_2(x, y)]
[f2_1(x, y), f2_2(x, y)]

Assign symbolic expressions to the symbolic functions f1_1(x,y) and f2_2(x,y). When
you assign these expressions, the symbolic matrix f still contains the initial symbolic
functions in its elements.

f1_1(x,y) = 2*x;
f2_2(x,y) = x - y;
f

f(x, y) =
[f1_1(x, y), f1_2(x, y)]
[f2_1(x, y), f2_2(x, y)]

Substitute the expressions assigned to f1_1(x,y) and f2_2(x,y) by using the subs
function.

A = subs(f)

A(x, y) =
[2*x, f1_2(x, y)]
[f2_1(x, y), x - y]

Evaluate the value of the symbolic matrix A, which contains the substituted expressions at
x = 2 and y = 3.

A(2,3)

ans =
[4, f1_2(2, 3)]
[f2_1(2, 3), -1]

Create Symbolic Objects from Returned Symbolic Array

Certain functions, such as solve and symReadSSCVariables, can return a vector of
symbolic variables or a cell array of symbolic variables and functions. These variables or
functions do not automatically appear in the MATLAB workspace. Create these variables
or functions from the vector or cell array by using syms.

 syms

4-1753

Solve the equation sin(x) == 1 by using solve. The parameter k in the solution does
not appear in the MATLAB workspace.

syms x
eqn = sin(x) == 1;
[sol, parameter, condition] = solve(eqn, x, 'ReturnConditions', true);
parameter

parameter =
k

Create the parameter k by using syms. The parameter k now appears in the MATLAB
workspace.

syms(parameter)

Similarly, use syms to create the symbolic objects contained in a vector or cell array.
Examples of functions that return a cell array of symbolic objects are
symReadSSCVariables and symReadSSCParameters.

List All Symbolic Variables, Functions, and Arrays

Create some symbolic variables, functions, and arrays.

syms a f(x)
syms A [2 2]

Display a list of all symbolic objects that currently exist in the MATLAB workspace by
using syms.

syms

Your symbolic variables are:

A A1_1 A1_2 A2_1 A2_2 a f x

Instead of displaying a list, return a cell array of all symbolic objects by providing an
output to syms.

S = syms

S =
 8×1 cell array

4 Functions — Alphabetical List

4-1754

 {'A' }
 {'A1_1'}
 {'A1_2'}
 {'A2_1'}
 {'A2_2'}
 {'a' }
 {'f' }
 {'x' }

Delete All Symbolic Variables, Functions, or Arrays

Create several symbolic objects.

syms a b c f(x)

Return all symbolic objects as a cell array by using the syms function. Use the cellfun
function to delete all symbolic objects in the cell array symObj.

symObj = syms;
cellfun(@clear,symObj)

Check that you deleted all symbolic objects by calling syms. The output is empty, meaning
no symbolic objects exist in the MATLAB workspace.

syms

Input Arguments
var1 ... varN — Symbolic variables, matrices, or arrays
valid variable names separated by spaces

Symbolic variables, matrices, or arrays, specified as valid variable names separated by
spaces. Each variable name must begin with a letter and can contain only alphanumeric
characters and underscores. To verify that the name is a valid variable name, use
isvarname.
Example: x y123 z_1

[n1 ... nM] — Vector, matrix, or array dimensions
vector of integers

 syms

4-1755

Vector, matrix, or array dimensions, specified as a vector of integers. As a shortcut, you
can create a square matrix by specifying only one integer. For example, syms x 3
creates a square 3-by-3 matrix.
Example: [2 3], [2,3], [2;3]

set — Assumptions on symbolic variables
real | positive | integer | rational

Assumptions on a symbolic variable or matrix, specified as real, positive, integer, or
rational.

You can combine multiple assumptions using spaces. For example, syms x positive
rational creates a variable x with a positive rational value.
Example: rational

f(var1,...,varN) — Symbolic function with its input arguments
expression with parentheses

Symbolic function with its input arguments, specified as an expression with parentheses.
The function name f and the variable names var1...varN must be valid variable names.
That is, they must begin with a letter and can contain only alphanumeric characters and
underscores. To verify that the name is a valid variable name, use isvarname.
Example: s(t), f(x,y)

symArray — Symbolic variables and functions
vector of symbolic variables | cell array of symbolic variables and functions

Symbolic variables or functions, specified as a vector of symbolic variables or a cell array
of symbolic variables and functions. Such a vector or array is typically the output of
another function, such as solve or symReadSSCVariables.

Output Arguments
S — Names of all symbolic variables, functions, and arrays
cell array of character vectors

Names of all symbolic variables, functions, and arrays in the MATLAB workspace,
returned as a cell array of character vectors.

4 Functions — Alphabetical List

4-1756

Tips
• syms is a shortcut for sym. This shortcut lets you create several symbolic variables in

one function call. Alternatively, you can use sym and create each variable separately.
However, when you create variables using sym, any existing assumptions on the
created variables are retained. You can also use symfun to create symbolic functions.

• In functions and scripts, do not use syms to create symbolic variables with the same
names as MATLAB functions. For these names, MATLAB does not create symbolic
variables, but keeps the names assigned to the functions. If you want to create a
symbolic variable with the same name as a MATLAB function inside a function or a
script, use sym instead. For example, use alpha = sym('alpha').

• The following variable names are invalid with syms: integer, real, rational,
positive, and clear. To create variables with these names, use sym. For example,
real = sym('real').

• clear x does not clear the symbolic object of its assumptions, such as real, positive,
or any assumptions set by assume, sym, or syms. To remove assumptions, use one of
these options:

• syms x clears all assumptions from x.
• assume(x,'clear') clears all assumptions from x.
• clear all clears all objects in the MATLAB workspace and resets the symbolic

engine.
• assume and assumeAlso provide more flexibility for setting assumptions on

variables.
• When you replace one or more elements of a numeric vector or matrix with a symbolic

number, MATLAB converts that number to a double-precision number.

A = eye(3);
A(1,1) = sym('pi')

A =
 3.1416 0 0
 0 1.0000 0
 0 0 1.0000

You cannot replace elements of a numeric vector or matrix with a symbolic variable,
expression, or function because these elements cannot be converted to double-
precision numbers. For example, syms a; A(1,1) = a throws an error.

 syms

4-1757

Compatibility Considerations

syms clears assumptions
Behavior changed in R2018b

syms now clears any assumptions on the variables that it creates. For example,

syms x real
assume(x <= 5);
assumptions(x)

ans =

x <= 5

syms x
assumptions(x)

ans =

Empty sym: 1-by-0

To retain existing assumptions on a cleared variable, recreate it using sym instead of
syms. For example,

syms x real
assume(x <= 5);
clear x
x = sym('x');
assumptions(x)

ans =

x <= 5

syms will no longer support clear option
Warns starting in R2018b

The syntaxes syms x clear and the equivalent syms('x','clear') now warn that
they will be removed in a future release.

4 Functions — Alphabetical List

4-1758

In previous releases, both syntaxes cleared all assumptions applied to x. To update your
code, call syms and specify the variables whose assumptions you want to clear. For
example, syms x clears all assumptions applied to x.

See Also
assume | assumeAlso | assumptions | isvarname | reset | sym | symfun | symvar

Topics
“Create Symbolic Numbers, Variables, and Expressions” on page 1-3
“Create Symbolic Functions” on page 1-8
“Create Symbolic Matrices” on page 1-10
“Use Assumptions on Symbolic Variables” on page 1-29
“Add Subscripts, Superscripts, and Accents to Symbolic Variables” on page 2-5

Introduced before R2006a

 syms

4-1759

symsum
Sum of series

Syntax
F = symsum(f,k,a,b)
F = symsum(f,k)

Description
F = symsum(f,k,a,b) returns the sum of the series with terms that expression f
specifies, which depend on symbolic variable k. The value of k ranges from a to b. If you
do not specify the variable, symsum uses the variable that symvar determines. If f is a
constant, then the default variable is x.

F = symsum(f,k) returns the indefinite sum F of the series with terms that expression
f specifies, which depend on variable k. The f argument defines the series such that the
indefinite sum F is given by F(k+1) - F(k) = f(k). If you do not specify the variable,
symsum uses the variable that symvar determines. If f is a constant, then the default
variable is x.

Examples
Find Sum of Series Specifying Bounds
Find the following sums of series.

S1 = ∑
k = 0

10
k2

S2 = ∑
k = 1

∞ 1
k2

S3 = ∑
k = 1

∞ xk

k!

4 Functions — Alphabetical List

4-1760

syms k x
S1 = symsum(k^2, k, 0, 10)
S2 = symsum(1/k^2, k, 1, Inf)
S3 = symsum(x^k/factorial(k), k, 0, Inf)

S1 =
385
S2 =
pi^2/6
S3 =
exp(x)

Alternatively, specify bounds as a row or column vector.

S1 = symsum(k^2, k, [0 10])
S2 = symsum(1/k^2, k, [1; Inf])
S3 = symsum(x^k/factorial(k), k, [0 Inf])

S1 =
385
S2 =
pi^2/6
S3 =
exp(x)

Find Indefinite Sum of Series
Find the indefinite sum of the series specified by the symbolic expressions k and k^2.

syms k
symsum(k, k)
symsum(1/k^2, k)

ans =
k^2/2 - k/2

ans =
-psi(1, k)

Difference between symsum and sum
The sum function finds the sum of elements of symbolic vectors and matrices.

Consider the definite sum

 symsum

4-1761

S = ∑
k = 1

10 1
k2 .

Contrast symsum and sum by summing this definite sum using both functions.

syms k
S_sum = sum(subs(1/k^2, k, 1:10))
S_symsum = symsum(1/k^2, k, 1, 10)

S_sum =
1968329/1270080
S_symsum =
1968329/1270080

For details on sum, see the information on the MATLAB sum page.

Input Arguments
f — Expression defining terms of series
symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic
number

Expression defining terms of series, specified as a symbolic expression, function, or a
vector or matrix of symbolic expressions, functions, or constants.

k — Summation index
symbolic variable

Summation index, specified as a symbolic variable. If you do not specify this variable,
symsum uses the default variable determined by symvar(expr,1). If f is a constant,
then the default variable is x.

a — Lower bound of summation index
number | symbolic number | symbolic variable | symbolic expression | symbolic function

Lower bound of summation index, specified as a number, symbolic number, variable,
expression, or function (including expressions and functions with infinities).

b — Upper bound of summation index
number | symbolic number | symbolic variable | symbolic expression | symbolic function

4 Functions — Alphabetical List

4-1762

Upper bound of summation index, specified as a number, symbolic number, variable,
expression, or function (including expressions and functions with infinities).

Definitions

Definite Sum
The definite sum of series is defined as

∑
k = a

b
xk = xa + xa + 1 + … + xb .

Indefinite Sum
The indefinite sum of a series is defined as

F(x) = ∑
x

f x ,

such that

F x + 1 − F x = f x .

See Also
cumsum | int | sum | symprod | syms | symvar

Topics
“Symbolic Summation” on page 2-72

Introduced before R2006a

 symsum

4-1763

symType
Determine type of symbolic object

Syntax
s = symType(symObj)

Description
s = symType(symObj) returns the type of a symbolic object. For example,
symType(sym('x')) returns "variable".

Examples

Symbolic Number

Create a symbolic number and determine its type.

a = sym('3/9');
s = symType(a)

s =
"rational"

Now construct a symbolic array by including symbolic numbers in the array elements.
Determine the symbolic type of each array element.

B = [-5, a, vpa(a), 1i, pi];
s = symType(B)

s = 1x5 string array
 "integer" "rational" "vpareal" "complex" "constant"

4 Functions — Alphabetical List

4-1764

Symbolic Function or Expression

Create a symbolic function f(x) using syms.

syms f(x)

Determine the type of the function. Because f(x) is an unassigned symbolic function, it
has the symbolic type "symfun".

s = symType(f)

s =
"symfun"

Assigning a mathematical expression to f(x) changes its symbolic type.

f(x) = x^2;
s = symType(f)

s =
"expression"

Now check the symbolic type of f(x) = x and its derivative.

f(x) = x;
s = symType(f)

s =
"variable"

s = symType(diff(f))

s =
"integer"

Inequalities and Solutions

Determine the type of various symbolic objects when solving for inequalities.

Create a quadratic function.

syms y(x)
y(x) = 100 - 5*x^2

 symType

4-1765

y(x) = 100− 5 x2

Set two inequalities to the quadratic function. Check the symbolic type of each inequality.

eq1 = y(x) > 10;
eq2 = x > 2;
s = symType([eq1 eq2])

s = 1x2 string array
 "equation" "equation"

Solve the inequalities using solve. Return the solutions by setting
'ReturnConditions' to true.

eqSol = solve([eq1 eq2], 'ReturnConditions', true);
sols = eqSol.conditions

sols = x < 4.2426 ∧ 2 < x

Determine the symbolic type of the solutions.

s = symType(sols)

s =
"logicalexpression"

Input Arguments
symObj — Symbolic objects
symbolic numbers | symbolic variables | symbolic expressions | symbolic functions |
symbolic units

Symbolic objects, specified as symbolic numbers, symbolic variables, symbolic
expressions, symbolic functions, or symbolic units.

Output Arguments
s — Symbolic types
string array

4 Functions — Alphabetical List

4-1766

Symbolic types, returned as a string array. This table shows output values for various
symbolic objects.

Output Description Input Example
"integer" symbolic integer number symType(sym('-1'))
"rational" symbolic rational number symType(sym('1/2'))
"vpareal" symbolic variable-precision floating-point

real number
symType([sym('1.5')
vpa('3/2')])

"complex" symbolic complex number symType(sym('1+2i'))
"constant" symbolic constant symType(sym([pi

catalan]))
"variable" symbolic variable syms x; symType(x)
"symfun" unassigned symbolic function syms f(x); symType(f)
"expression
"

symbolic expression syms x;
symType(sqrt(x))

"equation" symbolic equation and inequality syms x; symType(x>=0)
"unit" symbolic unit symType(symunit('meter

'))
"logicalexp
ression"

symbolic logical expression syms x y; symType(x|y)

"unsupporte
d"

symbolic object not supported by symType

See Also
hasSymType | isSymType | sym | symFunType | symfun | syms

Introduced in R2019a

 symType

4-1767

symunit
Units of measurement

Syntax
u = symunit

Description
u = symunit returns the units collection. Then, specify any unit by using u.unit. For
example, specify 3 meters as 3*u.m. Common alternate names for units are supported,
such as u.meter and u.metre. Plurals are not supported.

Examples

Specify Units of Measurement
Before specifying units, load units by using symunit. Then, specify a unit by using dot
notation.

Specify a length of 3 meters. You can also use aliases u.meter or u.metre.

u = symunit;
length = 3*u.m

length =
3*[m]

Tip Use tab expansion to find names of units. Type u., press Tab, and continue typing.

Specify the acceleration due to gravity of 9.81 meters per second squared. Because units
are symbolic expressions, numeric inputs are converted to exact symbolic values. Here,
9.81 is converted to 981/100.

4 Functions — Alphabetical List

4-1768

g = 9.81*u.m/u.s^2

g =
(981/100)*([m]/[s]^2)

If you are unfamiliar with the differences between symbolic and numeric arithmetic, see
“Choose Symbolic or Numeric Arithmetic” on page 2-121.

Operations on Units and Conversion to Double
Units behave like symbolic expressions when you perform standard operations on them.
For numeric operations, separate the value from the units, substitute for any symbolic
parameters, and convert the result to double.

Find the speed required to travel 5 km in 2 hours.

u = symunit;
d = 5*u.km;
t = 2*u.hr;
s = d/t

s =
(5/2)*([km]/[h])

The value 5/2 is symbolic. You may prefer double output, or require double output for a
MATLAB function that does not accept symbolic values. Convert to double by separating
the numeric value using separateUnits and then using double.

[sNum,sUnits] = separateUnits(s)

sNum =
5/2
sUnits =
1*([km]/[h])

sNum = double(sNum)

sNum =
 2.5000

For the complete units workflow, see “Units of Measurement Tutorial” on page 2-14.

 symunit

4-1769

Convert Between Units
Use your preferred unit by rewriting units using unitConvert. Also, instead of
specifying specific units, you can specify that the output should be in terms of SI units.

Calculate the force required to accelerate 2 kg by 5 m/s2. The expression is not
automatically rewritten in terms of Newtons.

u = symunit;
m = 2*u.kg;
a = 5*u.m/u.s^2;
F = m*a

F =
10*(([kg]*[m])/[s]^2)

Convert the expression to newtons by using unitConvert.

F = unitConvert(F,u.N)

F =
10*[N]

Convert 5 cm to inches.

length = 5*u.cm;
length = unitConvert(length,u.in)

length =
(250/127)*[in]

Convert length to SI units. The result is in meters.

length = unitConvert(length,'SI')

length =
(1/20)*[m]

Simplify Units of Same Dimension
Simplify expressions containing units of the same dimension by using simplify. Units
are not automatically simplified or checked for consistency unless you call simplify.

u = symunit;
expr = 300*u.cm + 40*u.inch + 2*u.m

4 Functions — Alphabetical List

4-1770

expr =
300*[cm] + 40*[in] + 2*[m]

expr = simplify(expr)

expr =
(3008/5)*[cm]

simplify automatically chooses the unit to rewrite in terms of. To choose a specific unit,
see “Convert Between Units” on page 4-1770.

Temperature: Absolute and Difference Forms
By default, temperatures are assumed to represent temperature differences. For example,
5*u.Celsius represents a temperature difference of 5 degrees Celsius. This assumption
allows arithmetical operations on temperature values and conversion between
temperature scales.

To represent absolute temperatures, use degrees Kelvin so that you do not have to
distinguish an absolute temperature from a temperature difference.

Convert 23 degrees Celsius to Kelvin, treating the temperature first as a temperature
difference and then as an absolute temperature.

u = symunit;
T = 23*u.Celsius;
diffK = unitConvert(T,u.K)

diffK =
23*[K]

absK = unitConvert(T,u.K,'Temperature','absolute')

absK =
(5923/20)*[K]

Tips
• 1 represents a dimensionless unit. Hence, isUnit(sym(1)) returns logical 1 (true).
• Certain non-linear units, such as decibels, are not implemented because arithmetic

operations are not possible for these units.

 symunit

4-1771

• Instead of using dot notation to specify units, you can alternatively use string input as
symunit(unit). For example, symunit('m') specifies the unit meter.

See Also
checkUnits | isUnit | newUnit | separateUnits | symunit2str |
unitConversionFactor | unitConvert | unitInfo

Topics
“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

External Websites
The International System of Units (SI)

Introduced in R2017a

4 Functions — Alphabetical List

4-1772

https://www.bipm.org/en/publications/si-brochure/

symunit2str
Convert unit to character vector

Syntax
symunit2str(unit)
symunit2str(unit,toolbox)

Description
symunit2str(unit) converts the symbolic unit unit to a character vector.

symunit2str(unit,toolbox) converts the symbolic unit unit to a character vector
representing units in the toolbox toolbox. The allowed values of toolbox are
'Aerospace', 'SimBiology', 'Simscape', or 'Simulink'.

Examples

Convert Unit to Character Vector
Convert the symbolic unit u.km to a character vector, where u = symunit.

u = symunit;
unitStr = symunit2str(u.km)

unitStr =
 'km'

Convert Unit for Specified Toolbox
Convert symbolic units to character vectors representing units in other toolboxes by
specifying the toolbox name as the second argument to symunit2str. The allowed
toolboxes are 'Aerospace', 'SimBiology', 'Simscape', or 'Simulink'. The unit
must exist in the target toolbox to be valid.

 symunit2str

4-1773

Where u = symunit, convert u.km/(u.hour*u.s) to a character vector representing
units from Aerospace Toolbox.

u = symunit;
unit = symunit2str(u.km/(u.hour*u.s),'Aerospace')

unit =
 'km/h-s'

Convert u.molecule/u.s to a character vector representing units from SimBiology.

unit = symunit2str(u.molecule/u.s,'SimBiology')

unit =
 'molecule/second'

Convert u.gn/u.km to a character vector representing units from Simscape.

unit = symunit2str(u.gn/u.km,'Simscape')

unit =
 'gee/km'

Convert u.rad/u.s to a character vector representing units from Simulink.

unit = symunit2str(u.rad/u.s,'Simulink')

unit =
 'rad/s'

Input Arguments
unit — Symbolic unit to convert
symbolic unit

Symbolic unit to convert, specified as a symbolic unit.

toolbox — Toolbox to represent unit in
'Aerospace' | 'SimBiology' | 'Simscape' | 'Simulink'

Toolbox to represent unit in, specified as 'Aerospace', 'SimBiology', 'Simscape',
or 'Simulink'.
Example: symunit2str(u.km/u.h,'Aerospace')

4 Functions — Alphabetical List

4-1774

See Also
checkUnits | findUnits | isUnit | newUnit | separateUnits | str2symunit |
symunit | unitConversionFactor

Topics
“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

External Websites
The International System of Units (SI)

Introduced in R2017a

 symunit2str

4-1775

https://www.bipm.org/en/publications/si-brochure/

symvar
Find symbolic variables in symbolic input

Syntax
symvar(s)
symvar(s,n)

Description
symvar(s) returns a vector of all symbolic variables in s. The variables are in
alphabetical order with uppercase letters preceding lowercase letters.

symvar(s,n) chooses the n symbolic variables in s that are alphabetically closest to x
and returns them in alphabetical order. If s is a symbolic function, symvar(s,n) returns
the input arguments of s before other variables in s.

Examples

Find Symbolic Variables in Expression

Find all symbolic variables in an expression. symvar returns the variables in alphabetical
order.

syms wa wb yx ya
sum = wa + wb + ya + yx;
symvar(sum)

ans =
[wa, wb, ya, yx]

Find the first three symbolic variables in an expression. symvar chooses variables that
are alphabetically closest to x and returns them in alphabetical order.

4 Functions — Alphabetical List

4-1776

syms a x y b
f = a*x^2/(sin(3*y-b));
symvar(f,3)

ans =
[b, x, y]

Find Symbolic Variables in Function

Find all symbolic variables in this function. For a symbolic function, symvar returns the
function inputs before other variables.

syms x y a b
f(x,y) = a*x^2/(sin(3*y-b));
symvar(f)

ans =
[x, y, a, b]

Find the first three symbolic variables in f.

symvar(f,3)

ans =
[x, y, b]

Find Default Variable of Expression

When a symbolic function, such as solve, needs to find the default independent variable
in symbolic, the function uses symvar. Find the default independent variable for symbolic
expressions.

syms v z
g = v + z;
symvar(g,1)

ans =
z

syms aaa aab
g = aaa + aab;
symvar(g,1)

 symvar

4-1777

ans =
aaa

syms X1 x2 xa xb
g = X1 + x2 + xa + xb;
symvar(g,1)

ans =
x2

When differentiating, integrating, substituting, or solving equations, MATLAB uses the
variable returned by symvar(s,1) as a default variable. For a symbolic expression or
matrix, symvar(s,1) returns the variable closest to x. For a function, symvar(s,1)
returns the first input argument of s.

Input Arguments
s — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

n — Number of variables
integer

Number of variables, specified as an integer or Inf. If n exceeds the number of variables
in s, then symvar returns the number of variables in s.

Tips
• symvar treats the constants pi, i, and j as variables.
• If there are no symbolic variables in s, symvar returns the empty vector.

4 Functions — Alphabetical List

4-1778

Algorithms
When symvar sorts the symbolic variables alphabetically, all uppercase letters have
precedence over lowercase: 0 1 ... 9 A B ... Z a b ... z.

See Also
argnames | sym | symfun | syms

Topics
“Find Symbolic Variables in Expressions, Functions, Matrices” on page 2-3

Introduced in R2008b

 symvar

4-1779

symWriteSSC
Create new Simscape component

Syntax
symWriteSSC(newComponentName,templateComponentName,eqns)
symWriteSSC(newComponentName,templateComponentName,eqns,Name,Value)

Description
symWriteSSC(newComponentName,templateComponentName,eqns) creates a new
Simscape component newComponentName using an existing component
templateComponentName as a template and adding eqns. Thus, the new component has
both the existing equations taken from the template component and the added equations.

symWriteSSC(newComponentName,templateComponentName,eqns,Name,Value)
uses additional options specified by one or more Name,Value pair arguments.

Examples

Create Component with Additional Equation

Create a new Simscape component by using an existing component as a template and
adding an equation.

Suppose you have the Simscape component spring.ssc in your current folder.

type('spring.ssc');

component spring < foundation.mechanical.rotational.branch

parameters
 spr_rate = { 10, 'N*m/rad' };
end

4 Functions — Alphabetical List

4-1780

variables
 phi = { value = { 0, 'rad'}, priority = priority.high };
end

function setup
 if spr_rate <= 0
 pm_error('simscape:GreaterThanZero','Spring rate')
 end
end

equations
 w == phi.der;
 t == spr_rate*phi;
end

end

Create symbolic variables with names of the parameters and variables of the component
you are going to use when creating new equations. Also create a symbolic variable, u, to
denote the energy of the rotational spring.

syms spr_rate phi u

Create the equation defining the energy u.

eq = u == spr_rate*phi^2/2;

Create the new component, myRotationalSpring.ssc, that is a copy of the component
spring.ssc with an additional equation defining the energy of the rotational spring.

symWriteSSC('myRotationalSpring.ssc','spring.ssc',eq)

Warning: Equations contain undeclared variables 'u'.
> In symWriteSSC (line 94)

symWriteSSC creates the component myRotationalSpring.ssc.

type('myRotationalSpring.ssc');

component myRotationalSpring

parameters
 spr_rate = { 10, 'N*m/rad' };
end

 symWriteSSC

4-1781

variables
 phi = { value = { 0, 'rad'}, priority = priority.high };
end

function setup
 if spr_rate <= 0
 pm_error('simscape:GreaterThanZero','Spring rate')
 end
end

equations
 w == phi.der;
 t == spr_rate*phi;
 u == phi^2*spr_rate*(1.0/2.0);
end

end

Add Component Title and Description

Create a Simscape component with the title and descriptive text different from those of
the template component.

Suppose you have the Simscape component spring.ssc in your current folder. This
component does not have any title or descriptive text.

type('spring.ssc');

component spring < foundation.mechanical.rotational.branch

parameters
 spr_rate = { 10, 'N*m/rad' };
end

variables
 phi = { value = { 0, 'rad'}, priority = priority.high };
end

function setup
 if spr_rate <= 0
 pm_error('simscape:GreaterThanZero','Spring rate')
 end

4 Functions — Alphabetical List

4-1782

end

equations
 w == phi.der;
 t == spr_rate*phi;
end

end

Create symbolic variables with names of the parameters and variables of the component
you are going to use when creating new equations. Also create a symbolic variable, u, to
denote the energy of the rotational spring.

syms spr_rate phi u

Create the equation defining the energy u.

eq = u == spr_rate*phi^2/2;

Create the new component, myRotationalSpring.ssc, based on the spring.ssc
component. Add the equation eq, the title “Rotational Spring”, and a few lines of
descriptive text to the new component.

symWriteSSC('myRotationalSpring.ssc','spring.ssc',eq,...
'H1Header','% Rotational Spring',...
'HelpText',{'% The block represents an ideal mechanical rotational linear spring.',...
 '% Connections R and C are mechanical rotational conserving ports.'...
 '% The block positive direction is from port R to port C. This means'...
 '% that the torque is positive if it acts in the direction from R to C.'})

Warning: Equations contain undeclared variables 'u'.
> In symWriteSSC (line 94)

symWriteSSC creates the component myRotationalSpring.ssc.

type('myRotationalSpring.ssc');

component myRotationalSpring
% Rotational Spring
% The block represents an ideal mechanical rotational linear spring.
% Connections R and C are mechanical rotational conserving ports.
% The block positive direction is from port R to port C. This means
% that the torque is positive if it acts in the direction from R to C.

parameters

 symWriteSSC

4-1783

 spr_rate = { 10, 'N*m/rad' };
end

variables
 phi = { value = { 0, 'rad'}, priority = priority.high };
end

function setup
 if spr_rate <= 0
 pm_error('simscape:GreaterThanZero','Spring rate')
 end
end

equations
 w == phi.der;
 t == spr_rate*phi;
 u == phi^2*spr_rate*(1.0/2.0);
end

end

Input Arguments
newComponentName — Name of Simscape component to create
file name enclosed in single quotes

Name of Simscape component to create, specified as a file name enclosed in single
quotes. File must have the extension .ssc. If you do not provide file extension,
symWriteSSC assumes it to be .ssc. If you do not specify the absolute path,
symWriteSSC creates the new component in the current folder.
Example: 'MyNewComponent.ssc'

templateComponentName — Name of template Simscape component
file name enclosed in single quotes

Name of template Simscape component, specified as a file name enclosed in single
quotes. File must have the extension .ssc. If you do not provide the file extension,
symWriteSSC assumes it to be .ssc. The component must be on the MATLAB path or in
the current folder.
Example: 'TemplateComponent.ssc'

4 Functions — Alphabetical List

4-1784

eqns — Symbolic equations
row vector

Symbolic equations, specified as a row vector.
Example: [y(t) == diff(x(t), t), m*diff(y(t), t, t) + b*y(t) + k*x(t)
== F]

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: symWriteSSC('myComp.ssc','template.ssc',eq,'H1Header','% New
title','HelpText',{'% Description of the','% new component'})

H1Header — Title
row vector of characters

Title specified as a row vector of characters (type char) starting with %. If the first
character is not %, then symWriteSSC adds %.

If the template component has a title and you use H1Header, the new component will
have the title specified by H1Header. If the template component has a title and you call
symWriteSSC without H1Header, the new component will have the same title as the
template component.
Example: 'H1Header','% New title'

HelpText — Descriptive text
cell array of row vectors of characters

Descriptive text, specified as a cell array of row vectors of characters. Each row vector
must start with %. If the first character is not %, then symWriteSSC adds %.

If the template component has descriptive text and you use HelpText, the new
component will have only the text specified by HelpText. In this case, symWriteSSC
does not copy the descriptive text of the template component to the new component. If
the template component has a title and you call symWriteSSC without HelpText, the
new component will have the same descriptive text as the template component.

 symWriteSSC

4-1785

Example: 'HelpText',{'% Description of the','% new component'}

See Also
simscapeEquation | symReadSSCParameters | symReadSSCVariables

Introduced in R2016a

4 Functions — Alphabetical List

4-1786

tan
Symbolic tangent function

Syntax
tan(X)

Description
tan(X) returns the tangent function on page 4-1790 of X.

Examples
Tangent Function for Numeric and Symbolic Arguments
Depending on its arguments, tan returns floating-point or exact symbolic results.

Compute the tangent function for these numbers. Because these numbers are not
symbolic objects, tan returns floating-point results.

A = tan([-2, -pi, pi/6, 5*pi/7, 11])

A =
 2.1850 0.0000 0.5774 -1.2540 -225.9508

Compute the tangent function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, tan returns unresolved symbolic calls.

symA = tan(sym([-2, -pi, pi/6, 5*pi/7, 11]))

symA =
[-tan(2), 0, 3^(1/2)/3, -tan((2*pi)/7), tan(11)]

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

 tan

4-1787

ans =
[2.1850398632615189916433061023137,...
0,...
0.57735026918962576450914878050196,...
-1.2539603376627038375709109783365,...
-225.95084645419514202579548320345]

Plot Tangent Function
Plot the tangent function on the interval from −π to π.

syms x
fplot(tan(x),[-pi pi])
grid on

4 Functions — Alphabetical List

4-1788

Handle Expressions Containing Tangent Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing tan.

Find the first and second derivatives of the tangent function:

syms x
diff(tan(x), x)
diff(tan(x), x, x)

ans =
tan(x)^2 + 1

ans =
2*tan(x)*(tan(x)^2 + 1)

Find the indefinite integral of the tangent function:

int(tan(x), x)

ans =
-log(cos(x))

Find the Taylor series expansion of tan(x):

taylor(tan(x), x)

ans =
(2*x^5)/15 + x^3/3 + x

Rewrite the tangent function in terms of the sine and cosine functions:

rewrite(tan(x), 'sincos')

ans =
sin(x)/cos(x)

Rewrite the tangent function in terms of the exponential function:

rewrite(tan(x), 'exp')

ans =
-(exp(x*2i)*1i - 1i)/(exp(x*2i) + 1)

 tan

4-1789

Evaluate Units with tan Function
tan numerically evaluates these units automatically: radian, degree, arcmin, arcsec,
and revolution.

Show this behavior by finding the tangent of x degrees and 2 radians.

u = symunit;
syms x
f = [x*u.degree 2*u.radian];
tanf = tan(f)

tanf =
[tan((pi*x)/180), tan(2)]

You can calculate tanf by substituting for x using subs and then using double or vpa.

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

Definitions

Tangent Function
The tangent of an angle, α, defined with reference to a right angled triangle is

tan(α) = opposite side
adjacent side = a

b .

.

4 Functions — Alphabetical List

4-1790

The tangent of a complex argument, α, is

tan α = eiα− e−iα

i eiα + e−iα .

.

See Also
acos | acot | acsc | asec | asin | atan | cos | cot | csc | sec | sin

Introduced before R2006a

 tan

4-1791

tanh
Symbolic hyperbolic tangent function

Syntax
tanh(X)

Description
tanh(X) returns the hyperbolic tangent function of X.

Examples

Hyperbolic Tangent Function for Numeric and Symbolic
Arguments
Depending on its arguments, tanh returns floating-point or exact symbolic results.

Compute the hyperbolic tangent function for these numbers. Because these numbers are
not symbolic objects, tanh returns floating-point results.

A = tanh([-2, -pi*i, pi*i/6, pi*i/3, 5*pi*i/7])

A =
 -0.9640 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.5774i...
 0.0000 + 1.7321i 0.0000 - 1.2540i

Compute the hyperbolic tangent function for the numbers converted to symbolic objects.
For many symbolic (exact) numbers, tanh returns unresolved symbolic calls.

symA = tanh(sym([-2, -pi*i, pi*i/6, pi*i/3, 5*pi*i/7]))

symA =
[-tanh(2), 0, (3^(1/2)*1i)/3, 3^(1/2)*1i, -tanh((pi*2i)/7)]

4 Functions — Alphabetical List

4-1792

Use vpa to approximate symbolic results with floating-point numbers:

vpa(symA)

ans =
[-0.96402758007581688394641372410092,...
0,...
0.57735026918962576450914878050196i,...
1.7320508075688772935274463415059i,...
-1.2539603376627038375709109783365i]

Plot Hyperbolic Tangent Function
Plot the hyperbolic tangent function on the interval from −π to π.

syms x
fplot(tanh(x),[-pi pi])
grid on

 tanh

4-1793

Handle Expressions Containing Hyperbolic Tangent Function
Many functions, such as diff, int, taylor, and rewrite, can handle expressions
containing tanh.

Find the first and second derivatives of the hyperbolic tangent function:

syms x
diff(tanh(x), x)
diff(tanh(x), x, x)

ans =
1 - tanh(x)^2

4 Functions — Alphabetical List

4-1794

ans =
2*tanh(x)*(tanh(x)^2 - 1)

Find the indefinite integral of the hyperbolic tangent function:

int(tanh(x), x)

ans =
log(cosh(x))

Find the Taylor series expansion of tanh(x):

taylor(tanh(x), x)

ans =
(2*x^5)/15 - x^3/3 + x

Rewrite the hyperbolic tangent function in terms of the exponential function:

rewrite(tanh(x), 'exp')

ans =
(exp(2*x) - 1)/(exp(2*x) + 1)

Input Arguments
X — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix

Input, specified as a symbolic number, variable, expression, or function, or as a vector or
matrix of symbolic numbers, variables, expressions, or functions.

See Also
acosh | acoth | acsch | asech | asinh | atanh | cosh | coth | csch | sech | sinh

Introduced before R2006a

 tanh

4-1795

taylor
Taylor series

Syntax
T = taylor(f,var)
T = taylor(f,var,a)
T = taylor(___ ,Name,Value)

Description
T = taylor(f,var) approximates f with the Taylor series expansion on page 4-1803 of
f up to the fifth order at the point var = 0. If you do not specify var, then taylor uses
the default variable determined by symvar(f,1).

T = taylor(f,var,a) approximates f with the Taylor series expansion of f at the
point var = a.

T = taylor(___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments. You can specify Name,Value after the input arguments in
any of the previous syntaxes.

Examples

Find Maclaurin Series of Univariate Expressions

Find the Maclaurin series expansions of the exponential, sine, and cosine functions up to
the fifth order.

syms x
T1 = taylor(exp(x))
T2 = taylor(sin(x))
T3 = taylor(cos(x))

4 Functions — Alphabetical List

4-1796

T1 =
x^5/120 + x^4/24 + x^3/6 + x^2/2 + x + 1

T2 =
x^5/120 - x^3/6 + x

T3 =
x^4/24 - x^2/2 + 1

You can use the sympref function to modify the output order of symbolic polynomials.
Redisplay the polynomials in ascending order.

sympref('PolynomialDisplayStyle','ascend');
T1
T2
T3

T1 =
1 + x + x^2/2 + x^3/6 + x^4/24 + x^5/120

T2 =
x - x^3/6 + x^5/120

T3 =
1 - x^2/2 + x^4/24

The display format you set using sympref persists through your current and future
MATLAB sessions. Restore the default value by specifying the 'default' option.

sympref('default');

Specify Expansion Point

Find the Taylor series expansions at x = 1 for these functions. The default expansion point
is 0. To specify a different expansion point, use ExpansionPoint:

syms x
T = taylor(log(x), x, 'ExpansionPoint', 1)

T =
x - (x - 1)^2/2 + (x - 1)^3/3 - (x - 1)^4/4 + (x - 1)^5/5 - 1

Alternatively, specify the expansion point as the third argument of taylor:

 taylor

4-1797

T = taylor(acot(x), x, 1)

T =
pi/4 - x/2 + (x - 1)^2/4 - (x - 1)^3/12 + (x - 1)^5/40 + 1/2

Specify Truncation Order

Find the Maclaurin series expansion for f = sin(x)/x. The default truncation order is
6. Taylor series approximation of this expression does not have a fifth-degree term, so
taylor approximates this expression with the fourth-degree polynomial:

syms x
f = sin(x)/x;
T6 = taylor(f, x)

T6 =
x^4/120 - x^2/6 + 1

Use Order to control the truncation order. For example, approximate the same
expression up to the orders 8 and 10:

T8 = taylor(f, x, 'Order', 8)
T10 = taylor(f, x, 'Order', 10)

T8 =
- x^6/5040 + x^4/120 - x^2/6 + 1

T10 =
x^8/362880 - x^6/5040 + x^4/120 - x^2/6 + 1

Plot the original expression f and its approximations T6, T8, and T10. Note how the
accuracy of the approximation depends on the truncation order.

fplot([T6 T8 T10 f])
xlim([-4 4])
grid on

legend('approximation of sin(x)/x up to O(x^6)',...
 'approximation of sin(x)/x up to O(x^8)',...
 'approximation of sin(x)/x up to O(x^{10})',...
 'sin(x)/x','Location','Best')
title('Taylor Series Expansion')

4 Functions — Alphabetical List

4-1798

Specify Order Mode: Relative or Absolute

Find the Taylor series expansion of this expression. By default, taylor uses an absolute
order, which is the truncation order of the computed series.

T = taylor(1/(exp(x)) - exp(x) + 2*x, x, 'Order', 5)

T =
-x^3/3

Find the Taylor series expansion with a relative truncation order by using OrderMode.
For some expressions, a relative truncation order provides more accurate approximations.

 taylor

4-1799

T = taylor(1/(exp(x)) - exp(x) + 2*x, x, 'Order', 5, 'OrderMode', 'relative')

T =
- x^7/2520 - x^5/60 - x^3/3

Find Maclaurin Series of Multivariate Expressions

Find the Maclaurin series expansion of this multivariate expression. If you do not specify
the vector of variables, taylor treats f as a function of one independent variable.

syms x y z
f = sin(x) + cos(y) + exp(z);
T = taylor(f)

T =
x^5/120 - x^3/6 + x + cos(y) + exp(z)

Find the multivariate Maclaurin expansion by specifying the vector of variables.

syms x y z
f = sin(x) + cos(y) + exp(z);
T = taylor(f, [x, y, z])

T =
x^5/120 - x^3/6 + x + y^4/24 - y^2/2 + z^5/120 + z^4/24 + z^3/6 + z^2/2 + z + 2

You can use the sympref function to modify the output order of a symbolic polynomial.
Redisplay the polynomial in ascending order.

sympref('PolynomialDisplayStyle','ascend');
T

T =
2 + z + z^2/2 + z^3/6 + z^4/24 + z^5/120 - y^2/2 + y^4/24 + x - x^3/6 + x^5/120

The display format you set using sympref persists through your current and future
MATLAB sessions. Restore the default value by specifying the 'default' option.

sympref('default');

4 Functions — Alphabetical List

4-1800

Specify Expansion Point for Multivariate Expression

Find the multivariate Taylor expansion by specifying both the vector of variables and the
vector of values defining the expansion point:

syms x y
f = y*exp(x - 1) - x*log(y);
T = taylor(f, [x, y], [1, 1], 'Order', 3)

T =
x + (x - 1)^2/2 + (y - 1)^2/2

If you specify the expansion point as a scalar a, taylor transforms that scalar into a
vector of the same length as the vector of variables. All elements of the expansion vector
equal a:

T = taylor(f, [x, y], 1, 'Order', 3)

T =
x + (x - 1)^2/2 + (y - 1)^2/2

Input Arguments
f — Input to approximate
symbolic expression | symbolic function | symbolic vector | symbolic matrix | symbolic
multidimensional array

Input to approximate, specified as a symbolic expression or function. It also can be a
vector, matrix, or multidimensional array of symbolic expressions or functions.

var — Expansion variable
symbolic variable

Expansion variable, specified as a symbolic variable. If you do not specify var, then
taylor uses the default variable determined by symvar(f,1).

a — Expansion point
0 (default) | number | symbolic number | symbolic variable | symbolic function | symbolic
expression

Expansion point, specified as a number, or a symbolic number, variable, function, or
expression. The expansion point cannot depend on the expansion variable. You also can

 taylor

4-1801

specify the expansion point as a Name,Value pair argument. If you specify the expansion
point both ways, then the Name,Value pair argument takes precedence.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: taylor(log(x),x,'ExpansionPoint',1,'Order',9)

ExpansionPoint — Expansion point
0 (default) | number | symbolic number | symbolic variable | symbolic function | symbolic
expression

Expansion point, specified as a number, or a symbolic number, variable, function, or
expression. The expansion point cannot depend on the expansion variable. You can also
specify the expansion point using the input argument a. If you specify the expansion point
both ways, then the Name,Value pair argument takes precedence.

Order — Truncation order of Taylor series expansion
6 (default) | positive integer | symbolic positive integer

Truncation order of Taylor series expansion, specified as a positive integer or a symbolic
positive integer. taylor computes the Taylor series approximation with the order n - 1.
The truncation order n is the exponent in the O-term: O(varn).

OrderMode — Order mode indicator
'absolute' (default) | 'relative'

Order mode indicator, specified as 'absolute' or 'relative'. This indicator specifies
whether you want to use absolute or relative order when computing the Taylor polynomial
approximation.

Absolute order is the truncation order of the computed series. Relative order n means
that the exponents of var in the computed series range from the leading order m to the
highest exponent m + n - 1. Here m + n is the exponent of var in the O-term:
O(varm + n).

4 Functions — Alphabetical List

4-1802

Definitions

Taylor Series Expansion
Taylor series expansion represents an analytic function f(x) as an infinite sum of terms
around the expansion point x = a:

f (x) = f a + f ′ a
1! x− a + f ″ a

2! x− a 2 + … = ∑
m = 0

∞ f (m)(a)
m! ⋅ x− a m

Taylor series expansion requires a function to have derivatives up to an infinite order
around the expansion point.

Maclaurin Series Expansion
Taylor series expansion around x = 0 is called Maclaurin series expansion:

f (x) = f 0 + f ′ 0
1! x + f ″ 0

2! x2 + … = ∑
m = 0

∞ f (m)(0)
m! xm

Tips
• If you use both the third argument a and ExpansionPoint to specify the expansion

point, the value specified via ExpansionPoint prevails.
• If var is a vector, then the expansion point a must be a scalar or a vector of the same

length as var. If var is a vector and a is a scalar, then a is expanded into a vector of
the same length as var with all elements equal to a.

• If the expansion point is infinity or negative infinity, then taylor computes the
Laurent series expansion, which is a power series in 1/var.

• You can use the sympref function to modify the output order of symbolic polynomials.

See Also
coeffs | pade | polynomialDegree | series | sympref | symvar

 taylor

4-1803

Topics
“Taylor Series” on page 2-75

Introduced before R2006a

4 Functions — Alphabetical List

4-1804

taylortool
Taylor series calculator

Syntax
taylortool
taylortool('f')

Description
taylortool initiates a GUI that graphs a function against the Nth partial sum of its
Taylor series about a base point x = a. The default function, value of N, base point, and
interval of computation for taylortool are f = x*cos(x), N = 7, a = 0, and
[-2*pi,2*pi], respectively.

taylortool('f') initiates the GUI for the given expression f.

See Also
funtool | rsums

Topics
“Taylor Series” on page 2-75

Introduced before R2006a

 taylortool

4-1805

texlabel
TeX representation of symbolic expression

Syntax
texlabel(expr)
texlabel(expr,'literal')

Description
texlabel(expr) converts the symbolic expression expr into the TeX equivalent for use
in character vectors. texlabel converts Greek variable names, such as delta, into Greek
letters. Annotation functions, such as title, xlabel, and text can use the TeX
character vector as input. To obtain the LaTeX representation, use latex.

texlabel(expr,'literal') interprets Greek variable names literally.

Examples

Generate TeX Character Vector
Use texlabel to generate TeX character vectors for these symbolic expressions.

syms x y lambda12 delta
texlabel(sin(x) + x^3)
texlabel(3*(1-x)^2*exp(-(x^2) - (y+1)^2))
texlabel(lambda12^(3/2)/pi - pi*delta^(2/3))

ans =
 '{sin}({x}) + {x}^{3}'

ans =
 '{3} {exp}(- ({y} + {1})^{2} - {x}^{2}) ({x} - {1})^{2}'

4 Functions — Alphabetical List

4-1806

ans =
 '{\lambda_{12}}^{{3}/{2}}/{\pi} - {\delta}^{{2}/{3}} {\pi}'

To make texlabel interpret Greek variable names literally, include the argument
'literal'.

texlabel(lambda12,'literal')

ans =
 '{lambda12}'

Insert TeX in Figure
Plot y = x^2 using fplot. Show the plotted expression y by using texlabel to
generate a TeX character vector that text inserts into the figure.

syms x
y = x^2;
fplot(y)
ylabel = texlabel(y);
text(1, 15, ['y = ' ylabel]);

 texlabel

4-1807

Input Arguments
expr — Expression to be converted
symbolic expression

Expression to be converted, specified as a symbolic expression.

See Also
latex | text | title | xlabel | ylabel | zlabel

4 Functions — Alphabetical List

4-1808

Introduced before R2006a

 texlabel

4-1809

times, .*
Symbolic array multiplication

Syntax
A.*B
times(A,B)

Description
A.*B performs elementwise multiplication of A and B.

times(A,B) is equivalent to A.*B.

Examples

Multiply Matrix by Scalar
Create a 2-by-3 matrix.

A = sym('a', [2 3])

A =
[a1_1, a1_2, a1_3]
[a2_1, a2_2, a2_3]

Multiply the matrix by the symbolic expression sin(b). Multiplying a matrix by a scalar
means multiplying each element of the matrix by that scalar.

syms b
A.*sin(b)

ans =
[a1_1*sin(b), a1_2*sin(b), a1_3*sin(b)]
[a2_1*sin(b), a2_2*sin(b), a2_3*sin(b)]

4 Functions — Alphabetical List

4-1810

Multiply Two Matrices
Create a 3-by-3 symbolic Hilbert matrix and a 3-by-3 diagonal matrix.

H = sym(hilb(3))
d = diag(sym([1 2 3]))

H =
[1, 1/2, 1/3]
[1/2, 1/3, 1/4]
[1/3, 1/4, 1/5]

d =
[1, 0, 0]
[0, 2, 0]
[0, 0, 3]

Multiply the matrices by using the elementwise multiplication operator .*. This operator
multiplies each element of the first matrix by the corresponding element of the second
matrix. The dimensions of the matrices must be the same.

H.*d

ans =
[1, 0, 0]
[0, 2/3, 0]
[0, 0, 3/5]

Multiply Expression by Symbolic Function
Multiply a symbolic expression by a symbolic function. The result is a symbolic function.

syms f(x)
f(x) = x^2;
f1 = (x^2 + 5*x + 6).*f

f1(x) =
x^2*(x^2 + 5*x + 6)

 times, .*

4-1811

Input Arguments
A — Input
number | symbolic number | symbolic variable | symbolic vector | symbolic matrix |
symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number or a symbolic number, variable, vector, matrix,
multidimensional array, function, or expression. Inputs A and B must be the same size
unless one is a scalar. A scalar value expands into an array of the same size as the other
input.

B — Input
number | symbolic number | symbolic variable | symbolic vector | symbolic matrix |
symbolic multidimensional array | symbolic function | symbolic expression

Input, specified as a number or a symbolic number, variable, vector, matrix,
multidimensional array, function, or expression. Inputs A and B must be the same size
unless one is a scalar. A scalar value expands into an array of the same size as the other
input.

See Also
ctranspose | ldivide | minus | mldivide | mpower | mrdivide | mtimes | plus |
power | rdivide | transpose

Introduced before R2006a

4 Functions — Alphabetical List

4-1812

toeplitz
Symbolic Toeplitz matrix

Syntax
toeplitz(c,r)
toeplitz(r)

Description
toeplitz(c,r) generates a nonsymmetric Toeplitz matrix on page 4-1816 having c as
its first column and r as its first row. If the first elements of c and r are different,
toeplitz issues a warning and uses the first element of the column.

toeplitz(r) generates a symmetric Toeplitz matrix if r is real. If r is complex, but its
first element is real, then this syntax generates the Hermitian Toeplitz matrix formed
from r. If the first element of r is not real, then the resulting matrix is Hermitian off the
main diagonal, meaning that Tij = conjugate(Tji) for i ≠ j.

Examples

Generate Toeplitz Matrix
Generate the Toeplitz matrix from these vectors. Because these vectors are not symbolic
objects, you get floating-point results.

c = [1 2 3 4 5 6];
r = [1 3/2 3 7/2 5];
toeplitz(c,r)

ans =
 1.0000 1.5000 3.0000 3.5000 5.0000
 2.0000 1.0000 1.5000 3.0000 3.5000
 3.0000 2.0000 1.0000 1.5000 3.0000

 toeplitz

4-1813

 4.0000 3.0000 2.0000 1.0000 1.5000
 5.0000 4.0000 3.0000 2.0000 1.0000
 6.0000 5.0000 4.0000 3.0000 2.0000

Now, convert these vectors to a symbolic object, and generate the Toeplitz matrix:

c = sym([1 2 3 4 5 6]);
r = sym([1 3/2 3 7/2 5]);
toeplitz(c,r)

ans =
[1, 3/2, 3, 7/2, 5]
[2, 1, 3/2, 3, 7/2]
[3, 2, 1, 3/2, 3]
[4, 3, 2, 1, 3/2]
[5, 4, 3, 2, 1]
[6, 5, 4, 3, 2]

Generate Toeplitz Matrix from Vector
Generate the Toeplitz matrix from this vector:

syms a b c d
T = toeplitz([a b c d])

T =
[a, b, c, d]
[conj(b), a, b, c]
[conj(c), conj(b), a, b]
[conj(d), conj(c), conj(b), a]

If you specify that all elements are real, then the resulting Toeplitz matrix is symmetric:

syms a b c d real
T = toeplitz([a b c d])

T =
[a, b, c, d]
[b, a, b, c]
[c, b, a, b]
[d, c, b, a]

For further computations, clear the assumptions by recreating the variables using syms:

syms a b c d

4 Functions — Alphabetical List

4-1814

Generate Toeplitz with Complex Values
Generate the Toeplitz matrix from a vector containing complex numbers:

T = toeplitz(sym([1, 2, i]))

T =
[1, 2, 1i]
[2, 1, 2]
[-1i, 2, 1]

If the first element of the vector is real, then the resulting Toeplitz matrix is Hermitian:

isAlways(T == T')

ans =
 3×3 logical array
 1 1 1
 1 1 1
 1 1 1

If the first element is not real, then the resulting Toeplitz matrix is Hermitian off the main
diagonal:

T = toeplitz(sym([i, 2, 1]))

T =
[1i, 2, 1]
[2, 1i, 2]
[1, 2, 1i]

isAlways(T == T')

ans =
 3×3 logical array
 0 1 1
 1 0 1
 1 1 0

Use Vectors with Conflicting First Element
Generate a Toeplitz matrix using these vectors to specify the first column and the first
row. Because the first elements of these vectors are different, toeplitz issues a warning
and uses the first element of the column:

 toeplitz

4-1815

syms a b c
toeplitz([a b c], [1 b/2 a/2])

Warning: First element of given column does not match first element of given row.
Column wins diagonal conflict.

ans =
[a, b/2, a/2]
[b, a, b/2]
[c, b, a]

Input Arguments
c — First column of Toeplitz matrix
vector | symbolic vector

First column of Toeplitz matrix, specified as a vector or symbolic vector.

r — First row of Toeplitz matrix
vector | symbolic vector

First row of Toeplitz matrix, specified as a vector or symbolic vector.

Definitions

Toeplitz Matrix
A Toeplitz matrix is a matrix that has constant values along each descending diagonal
from left to right. For example, matrix T is a symmetric Toeplitz matrix:

T =

t0 t1 t2 tk
t−1 t0 t1 ⋯
t−2 t−1 t0

⋮ ⋱ ⋮
t0 t1 t2

⋯ t−1 t0 t1
t−k t−2 t−1 t0

4 Functions — Alphabetical List

4-1816

Tips
• Calling toeplitz for numeric arguments that are not symbolic objects invokes the

MATLAB toeplitz function.

See Also
toeplitz

Introduced in R2013a

 toeplitz

4-1817

transpose, .'
Symbolic matrix transpose

Syntax
A.'
transpose(A)

Description
A.' computes the nonconjugate transpose on page 4-1820 of A.

transpose(A) is equivalent to A.'.

Examples

Transpose of Real Matrix
Create a 2-by-3 matrix, the elements of which represent real numbers.

syms x y real
A = [x x x; y y y]

A =
[x, x, x]
[y, y, y]

Find the nonconjugate transpose of this matrix.

A.'

ans =
[x, y]
[x, y]
[x, y]

4 Functions — Alphabetical List

4-1818

If all elements of a matrix represent real numbers, then its complex conjugate transform
equals its nonconjugate transform.

isAlways(A' == A.')

ans =
 3×2 logical array
 1 1
 1 1
 1 1

Transpose of Complex Matrix
Create a 2-by-2 matrix, the elements of which represent complex numbers.

syms x y real
A = [x + y*i x - y*i; y + x*i y - x*i]

A =
[x + y*1i, x - y*1i]
[y + x*1i, y - x*1i]

Find the nonconjugate transpose of this matrix. The nonconjugate transpose operator,
A.', performs a transpose without conjugation. That is, it does not change the sign of the
imaginary parts of the elements.

A.'

ans =
[x + y*1i, y + x*1i]
[x - y*1i, y - x*1i]

For a matrix of complex numbers with nonzero imaginary parts, the nonconjugate
transform is not equal to the complex conjugate transform.

isAlways(A.' == A','Unknown','false')

ans =
 2×2 logical array
 0 0
 0 0

 transpose, .'

4-1819

Input Arguments
A — Input
number | symbolic number | symbolic variable | symbolic expression | symbolic vector |
symbolic matrix | symbolic multidimensional array

Input, specified as a number or a symbolic number, variable, expression, vector, matrix,
multidimensional array.

Definitions

Nonconjugate Transpose
The nonconjugate transpose of a matrix interchanges the row and column index for each
element, reflecting the elements across the main diagonal. The diagonal elements
themselves remain unchanged. This operation does not affect the sign of the imaginary
parts of complex elements.

For example, if B = A.' and A(3,2) is 1+1i, then the element B(2,3) is 1+1i.

See Also
ctranspose | ldivide | minus | mldivide | mpower | mrdivide | mtimes | plus |
power | rdivide | times

Introduced before R2006a

4 Functions — Alphabetical List

4-1820

triangularPulse
Triangular pulse function

Syntax
triangularPulse(a,b,c,x)
triangularPulse(a,c,x)
triangularPulse(x)

Description
triangularPulse(a,b,c,x) returns the “Triangular Pulse Function” on page 4-1826.

triangularPulse(a,c,x) is a shortcut for triangularPulse(a, (a + c)/2, c,
x).

triangularPulse(x) is a shortcut for triangularPulse(-1, 0, 1, x).

Examples

Plot Triangular Pulse Function

syms x
fplot(triangularPulse(x), [-2 2])

 triangularPulse

4-1821

Compute Triangular Pulse Function

Compute the triangular pulse function for these numbers. Because these numbers are not
symbolic objects, you get floating-point results.

[triangularPulse(-2, 0, 2, -3)
triangularPulse(-2, 0, 2, -1/2)
triangularPulse(-2, 0, 2, 0)
triangularPulse(-2, 0, 2, 3/2)
triangularPulse(-2, 0, 2, 3)]]

4 Functions — Alphabetical List

4-1822

ans =
 0
 0.7500
 1.0000
 0.2500
 0

Compute the same values symbolically by converting the numbers to symbolic objects.

[triangularPulse(sym(-2), 0, 2, -3)
triangularPulse(-2, 0, 2, sym(-1/2))
triangularPulse(-2, sym(0), 2, 0)
triangularPulse(-2, 0, 2, sym(3/2))
triangularPulse(-2, 0, sym(2), 3)]

ans =
 0
 3/4
 1
 1/4
 0

Fixed-Form Triangular Pulse of Width 2

Use triangularPulse with one input argument as a shortcut for computing
triangularPulse(-1, 0, 1, x):

syms x
triangularPulse(x)

ans =
triangularPulse(-1, 0, 1, x)

Symmetrical Triangular Pulse

Use triangularPulse with three input arguments as a shortcut for computing
triangularPulse(a, (a + c)/2, c, x):

syms a c x
triangularPulse(a, c, x)

 triangularPulse

4-1823

ans =
triangularPulse(a, a/2 + c/2, c, x)

Special Cases of Triangular Pulse Function

Depending on the relation between inputs, the triangularPulse has special values.

Compute the triangular pulse function for a < x < b:

syms a b c x
assume(a < x < b)
triangularPulse(a, b, c, x)

ans =
(a - x)/(a - b)

For further computations, remove the assumption by recreating the variables using syms:

syms a b x

Compute the triangular pulse function for b < x < c:

assume(b < x < c)
triangularPulse(a, b, c, x)

ans =
-(c - x)/(b - c)

For further computations, remove the assumption:

syms b c x

Compute the triangular pulse function for a = b:

syms a b c x
assume(b < c)
triangularPulse(b, b, c, x)

ans =
-((c - x)*rectangularPulse(b, c, x))/(b - c)

Compute the triangular pulse function for c = b:

4 Functions — Alphabetical List

4-1824

assume(a < b)
triangularPulse(a, b, b, x)

ans =
((a - x)*rectangularPulse(a, b, x))/(a - b)

For further computations, remove all assumptions on a, b, and c:

syms a b c

Input Arguments
a — Input
-1 (default) | number | symbolic scalar

Input, specified as a number or a symbolic scalar. This argument specifies the rising edge
of the triangular pulse function.

b — Input
number | symbolic scalar

Input, specified as a number or a symbolic scalar. This argument specifies the peak of the
triangular pulse function. If you specify a and c, then (a + c)/2. Otherwise, 0.

c — Input
1 (default) | number | symbolic scalar

Input, specified as a number or a symbolic scalar. This argument specifies the falling edge
of the triangular pulse function.

x — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

 triangularPulse

4-1825

Definitions

Triangular Pulse Function
If a < x < b, then the triangular pulse function equals (x - a)/(b - a).

If b < x < c, then the triangular pulse function equals (c - x)/(c - b).

If x <= a or x >= c, then the triangular pulse function equals 0.

The triangular pulse function is also called the triangle function, hat function, tent
function, or sawtooth function.

Tips
• If a, b, and c are variables or expressions with variables, triangularPulse assumes

that a <= b <= c. If a, b, and c are numerical values that do not satisfy this
condition, triangularPulse throws an error.

• If a = b = c, triangularPulse returns 0.
• If a = b or b = c, the triangular function can be expressed in terms of the

rectangular function.

See Also
dirac | heaviside | rectangularPulse

Introduced in R2012b

4 Functions — Alphabetical List

4-1826

tril
Return lower triangular part of symbolic matrix

Syntax
tril(A)
tril(A,k)

Description
tril(A) returns a triangular matrix that retains the lower part of the matrix A. The
upper triangle of the resulting matrix is padded with zeros.

tril(A,k) returns a matrix that retains the elements of A on and below the k-th
diagonal. The elements above the k-th diagonal equal to zero. The values k = 0, k > 0,
and k < 0 correspond to the main, superdiagonals, and subdiagonals, respectively.

Examples

Lower Triangular Part of Symbolic Matrix
Display the matrix retaining only the lower triangle of the original symbolic matrix:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A)

ans =
[a, 0, 0]
[1, 2, 0]
[a + 1, b + 2, c + 3]

 tril

4-1827

Triangular Matrix On and Below Specified Superdiagonal
Display the matrix that retains the elements of the original symbolic matrix on and below
the first superdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A, 1)

ans =
[a, b, 0]
[1, 2, 3]
[a + 1, b + 2, c + 3]

Triangular Matrix On and Below Specified Subdiagonal
Display the matrix that retains the elements of the original symbolic matrix on and below
the first subdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
tril(A, -1)

ans =
[0, 0, 0]
[1, 0, 0]
[a + 1, b + 2, 0]

Input Arguments
A — Input
matrix | symbolic matrix

Input, specified as a numeric or symbolic matrix.

k — Diagonal
number | symbolic number

Diagonal, specified as a numeric or symbolic number.

4 Functions — Alphabetical List

4-1828

See Also
diag | triu

Introduced before R2006a

 tril

4-1829

triu
Return upper triangular part of symbolic matrix

Syntax
triu(A)
triu(A,k)

Description
triu(A) returns a triangular matrix that retains the upper part of the matrix A. The
lower triangle of the resulting matrix is padded with zeros.

triu(A,k) returns a matrix that retains the elements of A on and above the k-th
diagonal. The elements below the k-th diagonal equal to zero. The values k = 0, k > 0,
and k < 0 correspond to the main, superdiagonals, and subdiagonals, respectively.

Examples

Upper Triangular Part of Symbolic Matrix
Display the matrix retaining only the upper triangle of the original symbolic matrix:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A)

ans =
[a, b, c]
[0, 2, 3]
[0, 0, c + 3]

4 Functions — Alphabetical List

4-1830

Triangular Matrix On and Above Specified Superdiagonal
Display the matrix that retains the elements of the original symbolic matrix on and above
the first superdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A, 1)

ans =
[0, b, c]
[0, 0, 3]
[0, 0, 0]

Triangular Matrix On and Above Specified Subdiagonal
Display the matrix that retains the elements of the original symbolic matrix on and above
the first subdiagonal:

syms a b c
A = [a b c; 1 2 3; a + 1 b + 2 c + 3];
triu(A, -1)

ans =
[a, b, c]
[1, 2, 3]
[0, b + 2, c + 3]

Input Arguments
A — Input
matrix | symbolic matrix

Input, specified as a numeric or symbolic matrix.

k — Diagonal
number | symbolic number

Diagonal, specified as a numeric or symbolic number.

 triu

4-1831

See Also
diag | tril

Introduced before R2006a

4 Functions — Alphabetical List

4-1832

unitConversionFactor
Conversion factor between units

Syntax
C = unitConversionFactor(unit1,unit2)
C = unitConversionFactor(unit1,unit2,'Force',true)

Description
C = unitConversionFactor(unit1,unit2) returns the conversion factor C between
units unit1 and unit2 so that unit1 = C*unit2.

C = unitConversionFactor(unit1,unit2,'Force',true) forces
unitConversionFactor to return a conversion factor even if the units are not
dimensionally compatible.

Examples

Conversion Factor Between Units

Find the conversion factor between inches and centimeters.

u = symunit;
inch2cm = unitConversionFactor(u.inch,u.cm)

inch2cm =
127/50

Convert the conversion factor to double.

inch2cm = double(inch2cm)

inch2cm =
 2.5400

 unitConversionFactor

4-1833

Find the conversion factor between Newtons and kg m/s2. The conversion factor is 1.

convFactor = unitConversionFactor(1*u.N, 1*u.kg*u.m/u.s^2)

convFactor =
1

Convert Between Units

Convert between units quickly by using text input as a shortcut. Convert 3 inch to cm.

3*double(unitConversionFactor("inch","cm"))

ans =
 7.6200

Convert Between Dimensionally Incompatible Units

Convert between dimensionally incompatible units by specifying the argument 'Force'
as true.

Convert between Watts and Joules. unitConversionFactor returns the factor 1/[s]
because 1 W = 1 J/s.

u = symunit;
convFactor = unitConversionFactor(u.W, u.J, 'Force', true)

convFactor =
1/[s]

If you do not specify 'Force' as true, then unitConversionFactor returns an error.

unitConversionFactor(u.W, u.J)

4 Functions — Alphabetical List

4-1834

Error using unitConversionFactor (line 73)
Incompatible units.

Input Arguments
unit — Units
character vector | string | symbolic units

Units, specified as a character vector, string, or symbolic units.

See Also
checkUnits | findUnits | isUnit | newUnit | separateUnits | str2symunit |
symunit | symunit2str

Topics
“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

External Websites
The International System of Units (SI)

Introduced in R2017a

 unitConversionFactor

4-1835

https://www.bipm.org/en/publications/si-brochure/

unitConvert
Convert units to other units of measurement

Syntax
unitConvert(expr,units)
unitConvert(expr,unitSystem)
unitConvert(expr,unitSystem,'Derived')

___ = unitConvert(___ ,'Temperature',convMode)

Description
unitConvert(expr,units) converts symbolic units in the expression expr to the units
units, where units can be a compound unit or a vector of units.

unitConvert(expr,unitSystem) converts expr to the unit system unitSystem. By
default, the SI, CGS, and US unit systems are available. You can also define custom unit
systems by using newUnitSystem.

unitConvert(expr,unitSystem,'Derived') converts units to derived units of
unitSystem.

___ = unitConvert(___ ,'Temperature',convMode) indicates whether
temperatures represent absolute temperatures or temperature differences by specifying
'absolute' or 'difference' respectively, using input arguments in the previous
syntaxes. The 'Temperature' argument affects only conversion between units of
temperature. By default, temperatures are assumed to be differences.

Examples

4 Functions — Alphabetical List

4-1836

Convert Between Units

Convert 5 cm to inches. Because the calculation is symbolic, unitConvert returns a
symbolic fractional result.

u = symunit;
length = unitConvert(5*u.cm,u.in)

length =
(250/127)*[in]

If conversion is not possible, unitConvert returns the input.

Convert length to floating point by separating the value using separateUnits and
converting using double. Alternatively, keep the units by using vpa instead of double.

double(separateUnits(length))

ans =
 1.9685

vpa(length)

ans =
1.968503937007874015748031496063*[in]

For more complex workflows, see “Unit Conversions and Unit Systems” on page 2-39.

Calculate the force required to accelerate 2 kg by 5 m/s2. The result is not automatically
in newtons.

m = 2*u.kg;
a = 5*u.m/u.s^2;
F = m*a

F =
10*(([kg]*[m])/[s]^2)

Convert F to newtons by using unitConvert.

F = unitConvert(F,u.N)

 unitConvert

4-1837

F =
10*[N]

Specify Compound Unit for Conversion

Convert 5 km per hour to meters per second by specifying meters per second as a
compound unit.

u = symunit;
unitConvert(5*u.km/u.hr,u.m/u.s)

ans =
(25/18)*([m]/[s])

Specify Multiple Units for Conversion

Specify multiple units for conversion by specifying the second argument as a vector of
units. This syntax lets you specify units for every dimension to get the desired units.

Convert 5 km per hour to centimeters per minute.

u = symunit;
f = 5*u.km/u.hr;
units = [u.cm u.min];
unitConvert(f,units)

ans =
(25000/3)*([cm]/[min])

Convert Units to Unit System

Instead of converting to specific units, you can convert to units of a unit system, such as
SI, CGS, or US.

Convert 5 meters to the 'US' unit system. unitConvert returns the result in feet.

u = symunit;
unitConvert(5*u.m,'US')

ans =
(6250/381)*[ft]

4 Functions — Alphabetical List

4-1838

Convert 10 newtons to derived units in CGS by using the input 'Derived'. The result is
in dynes. Repeat the conversion without the input 'Derived' to get a result in base
units.

F = 10*u.N;
cgsDerived = unitConvert(F,'CGS','Derived')

cgsDerived =
1000000*[dyn]

cgsBase = unitConvert(F,'CGS')

cgsBase =
1000000*(([cm]*[g])/[s]^2)

Convert Temperature to Absolute and Difference Forms

By default, temperatures are assumed to represent temperature differences. For example,
5*u.Celsius represents a temperature difference of 5 degrees Celsius. This assumption
allows arithmetical operations on temperature values and conversion between
temperature scales.

To represent absolute temperatures, use degrees Kelvin so that you do not have to
distinguish an absolute temperature from a temperature difference.

Convert 23 degrees Celsius to Kelvin, treating the temperature first as a temperature
difference and then as an absolute temperature.

u = symunit;
T = 23*u.Celsius;
diffK = unitConvert(T,u.K)

diffK =
23*[K]

absK = unitConvert(T,u.K,'Temperature','absolute')

 unitConvert

4-1839

absK =
(5923/20)*[K]

Input Arguments
expr — Input
symbolic number | symbolic variable | symbolic expression | symbolic function | symbolic
vector | symbolic matrix | symbolic multidimensional array

Input, specified as a symbolic number, variable, expression, function, or array.

units — Units to convert input to
symbolic unit | vector of symbolic units

Units to convert input to, specified as a symbolic unit or an array of symbolic units.

unitSystem — Unit system to convert input to
string | character vector

Unit system to convert input to, specified as a string or character vector. By default, the
SI, CGS, and US unit systems are available. You can also define custom unit systems. See
“Unit Conversions and Unit Systems” on page 2-39.

convMode — Temperature conversion mode
'difference' (default) | 'absolute'

Temperature conversion mode, specified as 'difference' or 'absolute'.

See Also
baseUnits | derivedUnits | newUnit | newUnitSystem | symunit

Topics
“Units of Measurement Tutorial” on page 2-14
“Units and Unit Systems List” on page 2-21

External Websites
The International System of Units (SI)

4 Functions — Alphabetical List

4-1840

https://www.bipm.org/en/publications/si-brochure/

Introduced in R2018b

 unitConvert

4-1841

unitInfo
Information on units of measurement

Syntax
unitInfo(unit)
unitInfo(dim)
unitInfo

A = unitInfo(___)

Description
unitInfo(unit) returns information for the symbolic unit unit.

unitInfo(dim) returns available units for the dimension dim.

unitInfo returns a list of available physical dimensions.

A = unitInfo(___) returns the output in A using any of the input arguments in the
previous syntaxes. Dimensions are returned as strings, and units are returned as symbolic
units.

Examples

Find Information on Units and Dimensions

Find information on unit u.Wb where u = symunit. The unitInfo function specifies
that Wb is the SI unit of magnetic flux.

u = symunit;
unitInfo(u.Wb)

weber - a physical unit of magnetic flux. ['SI']

4 Functions — Alphabetical List

4-1842

Get all units for measuring 'MagneticFlux' by calling unitInfo('MagneticFlux').
SI units accept all SI prefixes. For details, see SI Unit Prefixes List.

Find all available units for 'MagneticFlux' as described.

unitInfo('MagneticFlux')

All units of dimension 'MagneticFlux':

abWb - abweber
Mx - maxwell
statWb - statweber
Wb - weber ['SI']

Get the base SI units of any unit above by calling rewrite(<unit>,'SI').
SI units accept all SI prefixes. For details, see SI Unit Prefixes List.

unitInfo also returns information on compound units. Find information on u.m/u.s^2.

unitInfo(u.m/u.s^2)

meter per square second - a physical unit of acceleration. ['SI']

Get all units for measuring 'Acceleration' by calling unitInfo('Acceleration').
SI units accept all SI prefixes. For details, see SI Unit Prefixes List.

Find All Physical Dimensions Available

Return all available dimensions using unitInfo without input arguments.

unitInfo

"AbsorbedDose"
"AbsorbedDoseOrDoseEquivalent"
"Acceleration"
...
...
"Length"
"Luminance"
"LuminousFlux"
...
...
"Time"
"Velocity"
"Volume"

 unitInfo

4-1843

Use Information on Units and Dimensions

Store information returned by unitInfo for use by providing an output.

Store the dimension of u.C.

u = symunit;
dimC = unitInfo(u.C)

dimC =
 "ElectricCharge"

Find and store all units for the dimension dimC.

unitsEC = unitInfo(dimC)

unitsEC =
 [abC]
 [C]
 [e]
 [Fr]
 [statC]

Find information on the third unit of unitsEC.

unitInfo(unitsEC(3))

elementary charge - a physical unit of electric charge.

Get all units for measuring 'ElectricCharge' by calling unitInfo('ElectricCharge').

Store [e]. Then, approximate the electrons in a coulomb of electric charge.

electronCharge = unitsEC(3);
numElectrons = simplify(u.C/electronCharge)

numElectrons =
6241509125883257931.9708914204845

Show that approximately 6.24 x 1018 electrons are in a coulomb by converting the high-
precision symbolic result to double.

numElectrons = double(numElectrons)

4 Functions — Alphabetical List

4-1844

numElectrons =
 6.2415e+18

Input Arguments
unit — Unit name
symbolic unit | character vector | string

Unit name, specified as a symbolic unit, character vector, or string.
Example: unitInfo(u.m) where u = symunit

dim — Dimension
character vector | string

Dimension, specified as a character vector or string.
Example: unitInfo('Length')

See Also
rewrite | simplify | symunit

Introduced in R2017b

 unitInfo

4-1845

unitSystems
List available unit systems

Syntax
unitSystems

Description
unitSystems returns a row vector of available unit systems.

• To add custom unit systems, see newUnitSystem.
• To convert between unit systems, see “Unit Conversions and Unit Systems” on page 2-

39.
• For available unit systems, see “Unit Systems List” on page 2-36.

Examples

Get Available Unit Systems

Get available unit systems by using unitSystems. Add a custom unit system and check
that unitSystems lists it as available.

Find the unit systems available by default.

unitSystems

ans =
 1×6 string array
 "CGS" "EMU" "ESU" "GU" "SI" "US"

Add a custom unit system that modifies the SI base units. For details, see
newUnitSystem and “Unit Conversions and Unit Systems” on page 2-39.

4 Functions — Alphabetical List

4-1846

u = symunit;
SIUnits = baseUnits('SI');
newUnits = subs(SIUnits,[u.m u.s],[u.km u.hr]);
newUnitSystem('SI_km_hr',newUnits)

ans =
 "SI_km_hr"

Check that the new unit system is available by using unitSystems.

unitSystems

ans =
 1×7 string array
 "CGS" "EMU" "ESU" "GU" "SI" "SI_km_hr" "US"

After calculations, remove the new unit system and check that it is unavailable.

removeUnitSystem('SI_km_hr');
unitSystems

ans =
 1×6 string array
 "CGS" "EMU" "ESU" "GU" "SI" "US"

See Also
baseUnits | derivedUnits | newUnitSystem | removeUnitSystem | rewrite |
symunit

Topics
“Units of Measurement Tutorial” on page 2-14
“Unit Conversions and Unit Systems” on page 2-39
“Units and Unit Systems List” on page 2-21

External Websites
The International System of Units (SI)

Introduced in R2017b

 unitSystems

4-1847

https://www.bipm.org/en/publications/si-brochure/

vectorPotential
Vector potential of vector field

Syntax
vectorPotential(V,X)
vectorPotential(V)

Description
vectorPotential(V,X) computes the vector potential of the vector field on page 4-
1850 V with respect to the vector X in Cartesian coordinates. The vector field V and the
vector X are both three-dimensional.

vectorPotential(V) returns the vector potential V with respect to a vector
constructed from the first three symbolic variables found in V by symvar.

Examples

Compute Vector Potential of Field
Compute the vector potential of this row vector field with respect to the vector [x, y,
z]:

syms x y z
vectorPotential([x^2*y, -1/2*y^2*x, -x*y*z], [x y z])

ans =
 -(x*y^2*z)/2
 -x^2*y*z
 0

Compute the vector potential of this column vector field with respect to the vector [x,
y, z]:

4 Functions — Alphabetical List

4-1848

syms x y z
f(x,y,z) = 2*y^3 - 4*x*y;
g(x,y,z) = 2*y^2 - 16*z^2+18;
h(x,y,z) = -32*x^2 - 16*x*y^2;
A = vectorPotential([f; g; h], [x y z])

A(x, y, z) =
 z*(2*y^2 + 18) - (16*z^3)/3 + (16*x*y*(y^2 + 6*x))/3
 2*y*z*(- y^2 + 2*x)
 0

Test if Vector Potential Exists for Field
To check whether the vector potential exists for a particular vector field, compute the
divergence of that vector field:

syms x y z
V = [x^2 2*y z];
divergence(V, [x y z])

ans =
2*x + 3

If the divergence is not equal to 0, the vector potential does not exist. In this case,
vectorPotential returns the vector with all three components equal to NaN:

vectorPotential(V, [x y z])

ans =
 NaN
 NaN
 NaN

Input Arguments
V — Vector field
3-D symbolic vector of symbolic expressions or functions (default)

Vector field, specified as a 3-D vector of symbolic expressions or functions.

X — Input
vector of three symbolic variables

 vectorPotential

4-1849

Input, specified as a vector of three symbolic variables with respect to which you compute
the vector potential.

Definitions

Vector Potential of a Vector Field
The vector potential of a vector field V is a vector field A, such that:

V = ∇ × A = curl(A)

Tips
• The vector potential exists if and only if the divergence of a vector field V with respect

to X equals 0. If vectorPotential cannot verify that V has a vector potential, it
returns the vector with all three components equal to NaN.

See Also
curl | diff | divergence | gradient | hessian | jacobian | laplacian |
potential

Introduced in R2012a

4 Functions — Alphabetical List

4-1850

vertcat
Concatenate symbolic arrays vertically

Syntax
vertcat(A1,...,AN)
[A1;...;AN]

Description
vertcat(A1,...,AN) vertically concatenates the symbolic arrays A1,...,AN. For
vectors and matrices, all inputs must have the same number of columns. For
multidimensional arrays, vertcat concatenates inputs along the first dimension. The
remaining dimensions must match.

[A1;...;AN] is a shortcut for vertcat(A1,...,AN).

Examples

Concatenate Two Symbolic Vectors Vertically
Concatenate the two symbolic vectors A and B to form a symbolic matrix.

A = sym('a%d',[1 4]);
B = sym('b%d',[1 4]);
vertcat(A,B)

ans =
[a1, a2, a3, a4]
[b1, b2, b3, b4]

Alternatively, you can use the shorthand [A;B] to concatenate A and B.

[A;B]

 vertcat

4-1851

ans =
[a1, a2, a3, a4]
[b1, b2, b3, b4]

Concatenate Multiple Symbolic Arrays Vertically
Concatenate multiple symbolic arrays into one symbolic matrix.

A = sym('a%d',[1 3]);
B = sym('b%d%d',[4 3]);
C = sym('c%d%d',[2 3]);
vertcat(C,A,B)

ans =
[c11, c12, c13]
[c21, c22, c23]
[a1, a2, a3]
[b11, b12, b13]
[b21, b22, b23]
[b31, b32, b33]
[b41, b42, b43]

Concatenate Multidimensional Arrays Vertically
Create the 3-D symbolic arrays A and B.

A = [2 4; 1 7; 3 3];
A(:,:,2) = [8 9; 4 5; 6 2];
A = sym(A)
B = [8 3; 0 2];
B(:,:,2) = [6 2; 3 3];
B = sym(B)

A(:,:,1) =
[2, 4]
[1, 7]
[3, 3]
A(:,:,2) =
[8, 9]
[4, 5]
[6, 2]

B(:,:,1) =

4 Functions — Alphabetical List

4-1852

[8, 3]
[0, 2]
B(:,:,2) =
[6, 2]
[3, 3]

Use vertcat to concatenate A and B.

vertcat(A,B)

ans(:,:,1) =
[2, 4]
[1, 7]
[3, 3]
[8, 3]
[0, 2]

ans(:,:,2) =
[8, 9]
[4, 5]
[6, 2]
[6, 2]
[3, 3]

Input Arguments
A1,...,AN — Input arrays
symbolic variable | symbolic vector | symbolic matrix | symbolic multidimensional array

Input arrays, specified as symbolic variables, vectors, matrices, or multidimensional
arrays.

See Also
cat | horzcat

Introduced before R2006a

 vertcat

4-1853

vpa
Variable-precision arithmetic (arbitrary-precision arithmetic)

Note Support for character vectors that do not define a number has been removed.
Instead, first create symbolic numbers and variables using sym and syms, and then use
operations on them. For example, use vpa((1 + sqrt(sym(5)))/2) instead of
vpa('(1 + sqrt(5))/2').

Syntax
vpa(x)
vpa(x,d)

Description
vpa(x) uses variable-precision floating-point arithmetic (VPA) to evaluate each element
of the symbolic input x to at least d significant digits, where d is the value of the digits
function. The default value of digits is 32.

vpa(x,d) uses at least d significant digits, instead of the value of digits.

Examples
Evaluate Symbolic Inputs with Variable-Precision Arithmetic
Evaluate symbolic inputs with variable-precision floating-point arithmetic. By default, vpa
calculates values to 32 significant digits.

syms x
p = sym(pi);
piVpa = vpa(p)

piVpa =
3.1415926535897932384626433832795

4 Functions — Alphabetical List

4-1854

a = sym(1/3);
f = a*sin(2*p*x);
fVpa = vpa(f)

fVpa =
0.33333333333333333333333333333333*sin(6.283185307179586476925286766559*x)

Evaluate elements of vectors or matrices with variable-precision arithmetic.

V = [x/p a^3];
M = [sin(p) cos(p/5); exp(p*x) x/log(p)];
vpa(V)
vpa(M)

ans =
[0.31830988618379067153776752674503*x, 0.037037037037037037037037037037037]
ans =
[0, 0.80901699437494742410229341718282]
[exp(3.1415926535897932384626433832795*x), 0.87356852683023186835397746476334*x]

Note You must wrap all inner inputs with vpa, such as exp(vpa(200)). Otherwise the
inputs are automatically converted to double by MATLAB.

Change Precision Used by vpa
By default, vpa evaluates inputs to 32 significant digits. You can change the number of
significant digits by using the digits function.

Approximate the expression 100001/10001 with seven significant digits using digits.
Save the old value of digits returned by digits(7). The vpa function returns only five
significant digits, which can mean the remaining digits are zeros.

digitsOld = digits(7);
y = sym(100001)/10001;
vpa(y)

ans =
9.9991

Check if the remaining digits are zeros by using a higher precision value of 25. The result
shows that the remaining digits are in fact a repeating decimal.

 vpa

4-1855

digits(25)
vpa(y)

ans =
9.999100089991000899910009

Alternatively, to override digits for a single vpa call, change the precision by specifying
the second argument.

Find π to 100 significant digits by specifying the second argument.

vpa(pi,100)

ans =
3.141592653589793238462643383279502884197169...
39937510582097494459230781640628620899862803...
4825342117068

Restore the original precision value in digitsOld for further calculations.

digits(digitsOld)

Numerically Approximate Symbolic Results
While symbolic results are exact, they might not be in a convenient form. You can use vpa
to numerically approximate exact symbolic results.

Solve a high-degree polynomial for its roots using solve. The solve function cannot
symbolically solve the high-degree polynomial and represents the roots using root.

syms x
y = solve(x^4 - x + 1, x)

y =
 root(z^4 - z + 1, z, 1)
 root(z^4 - z + 1, z, 2)
 root(z^4 - z + 1, z, 3)
 root(z^4 - z + 1, z, 4)

Use vpa to numerically approximate the roots.

yVpa = vpa(y)

yVpa =
 0.72713608449119683997667565867496 - 0.43001428832971577641651985839602i

4 Functions — Alphabetical List

4-1856

 0.72713608449119683997667565867496 + 0.43001428832971577641651985839602i
 - 0.72713608449119683997667565867496 - 0.93409928946052943963903028710582i
 - 0.72713608449119683997667565867496 + 0.93409928946052943963903028710582i

vpa Uses Guard Digits to Maintain Precision
The value of the digits function specifies the minimum number of significant digits
used. Internally, vpa can use more digits than digits specifies. These additional digits
are called guard digits because they guard against round-off errors in subsequent
calculations.

Numerically approximate 1/3 using four significant digits.

a = vpa(1/3, 4)

a =
0.3333

Approximate the result a using 20 digits. The result shows that the toolbox internally
used more than four digits when computing a. The last digits in the result are incorrect
because of the round-off error.

vpa(a, 20)

ans =
0.33333333333303016843

Avoid Hidden Round-off Errors
Hidden round-off errors can cause unexpected results.

Evaluate 1/10 with the default 32-digit precision, and then with the 10 digits precision.

a = vpa(1/10, 32)
b = vpa(1/10, 10)

a =
0.1

b =
0.1

Superficially, a and b look equal. Check their equality by finding a - b.

 vpa

4-1857

a - b

ans =
0.000000000000000000086736173798840354720600815844403

The difference is not equal to zero because b was calculated with only 10 digits of
precision and contains a larger round-off error than a. When you find a - b, vpa
approximates b with 32 digits. Demonstrate this behavior.

a - vpa(b, 32)

ans =
0.000000000000000000086736173798840354720600815844403

vpa Restores Precision of Common Double-Precision Inputs
Unlike exact symbolic values, double-precision values inherently contain round-off errors.
When you call vpa on a double-precision input, vpa cannot restore the lost precision,
even though it returns more digits than the double-precision value. However, vpa can
recognize and restore the precision of expressions of the form p/q, pπ/q, (p/q)1/2, 2q, and
10q, where p and q are modest-sized integers.

First, demonstrate that vpa cannot restore precision for a double-precision input. Call
vpa on a double-precision result and the same symbolic result.

dp = log(3);
s = log(sym(3));
dpVpa = vpa(dp)
sVpa = vpa(s)
d = sVpa - dpVpa

dpVpa =
1.0986122886681095600636126619065

sVpa =
1.0986122886681096913952452369225

d =
0.00000000000000013133163257501600766255995767652

As expected, the double-precision result differs from the exact result at the 16th decimal
place.

Demonstrate that vpa restores precision for expressions of the form p/q, pπ/q, (p/q)1/2, 2q,
and 10q, where p and q are modest sized integers, by finding the difference between the

4 Functions — Alphabetical List

4-1858

vpa call on the double-precision result and on the exact symbolic result. The differences
are 0.0 showing that vpa restores lost precision in the double-precision input.

vpa(1/3) - vpa(1/sym(3))
vpa(pi) - vpa(sym(pi))
vpa(1/sqrt(2)) - vpa(1/sqrt(sym(2)))
vpa(2^66) - vpa(2^sym(66))
vpa(10^25) - vpa(10^sym(25))

ans =
0.0

ans =
0.0

ans =
0.0

ans =
0.0

ans =
0.0

Input Arguments
x — Input to evaluate
number | vector | matrix | multidimensional array | symbolic number | symbolic vector |
symbolic matrix | symbolic multidimensional array | symbolic expression | symbolic
function | symbolic character vector

Input to evaluate, specified as a number, vector, matrix, multidimensional array, or a
symbolic number, vector, matrix, multidimensional array, expression, function, or
character vector.

d — Number of significant digits
integer

Number of significant digits, specified as an integer. d must be greater than 1 and lesser
than 229 + 1.

 vpa

4-1859

Tips
• vpa does not convert fractions in the exponent to floating point. For example,

vpa(a^sym(2/5)) returns a^(2/5).
• vpa uses more digits than the number of digits specified by digits. These extra

digits guard against round-off errors in subsequent calculations and are called guard
digits.

• When you call vpa on a numeric input, such as 1/3, 2^(-5), or sin(pi/4), the
numeric expression is evaluated to a double-precision number that contains round-off
errors. Then, vpa is called on that double-precision number. For accurate results,
convert numeric expressions to symbolic expressions with sym. For example, to
approximate exp(1), use vpa(exp(sym(1))).

• If the second argument d is not an integer, vpa rounds it to the nearest integer with
round.

• vpa restores precision for numeric inputs that match the forms p/q, pπ/q, (p/q)1/2, 2q,
and 10q, where p and q are modest-sized integers.

• Atomic operations using variable-precision arithmetic round to nearest.
• The differences between variable-precision arithmetic and IEEE Floating-Point

Standard 754 are

• Inside computations, division by zero throws an error.
• The exponent range is larger than in any predefined IEEE mode. vpa underflows

below approximately 10^(-323228496).
• Denormalized numbers are not implemented.
• Zeroes are not signed.
• The number of binary digits in the mantissa of a result may differ between variable-

precision arithmetic and IEEE predefined types.
• There is only one NaN representation. No distinction is made between quiet and

signaling NaN.
• No floating-point number exceptions are available.

See Also
digits | double | root | vpaintegral

4 Functions — Alphabetical List

4-1860

Topics
“Increase Precision of Numeric Calculations” on page 2-123
“Recognize and Avoid Round-Off Errors” on page 2-125
“Increase Speed by Reducing Precision” on page 2-130
“Choose Symbolic or Numeric Arithmetic” on page 2-121

Introduced before R2006a

 vpa

4-1861

vpaintegral
Numerical integration using variable precision

Syntax
vpaintegral(f,a,b)
vpaintegral(f,x,a,b)
vpaintegral(___ ,Name,Value)

Description
vpaintegral(f,a,b) numerically approximates f from a to b. The default variable x in
f is found by symvar.

vpaintegral(f,[a b]) is equal to vpaintegral(f,a,b).

vpaintegral(f,x,a,b) performs numerical integration using the integration variable
x.

vpaintegral(___ ,Name,Value) uses additional options specified by one or more
Name,Value pair arguments.

Examples

Numerically Integrate Symbolic Expression
Numerically integrate the symbolic expression x^2 from 1 to 2.

syms x
vpaintegral(x^2, 1, 2)

ans =
2.33333

4 Functions — Alphabetical List

4-1862

Numerically Integrate Symbolic Function
Numerically integrate the symbolic function y(x) = x2 from 1 to 2.

syms y(x)
y(x) = x^2;
vpaintegral(y, 1, 2)

ans =
2.33333

High-Precision Numerical Integration
vpaintegral uses variable-precision arithmetic while the MATLAB integral function
uses double-precision arithmetic. Using the default values of tolerance, vpaintegral
can handle values that cause the MATLAB integral function to overflow or underflow.

Integrate besseli(5,25*u).*exp(-u*25) by using both integral and
vpaintegral. The integral function returns NaN and issues a warning while
vpaintegral returns the correct result.

syms u x
f = besseli(5,25*x).*exp(-x*25);
fun = @(u)besseli(5,25*u).*exp(-u*25);

usingIntegral = integral(fun, 0, 30)
usingVpaintegral = vpaintegral(f, 0, 30)

Warning: Infinite or Not-a-Number value encountered.
usingIntegral =
 NaN

usingVpaintegral =
0.688424

Increase Precision Using Tolerances
The digits function does not affect vpaintegral. Instead, increase the precision of
vpainteral by decreasing the integration tolerances. Conversely, increase the speed of
numerical integration by increasing the tolerances. Control the tolerance used by
vpaintegral by changing the relative tolerance RelTol and absolute tolerance
AbsTol, which affect the integration through the condition

 vpaintegral

4-1863

Q− I ≤ max(AbsTol, Q · RelTol)
where Q = Calculated Integral

I = Exact Integral.

Numerically integrate besselj(0,x) from 0 to pi, to 32 significant figures by setting
RelTol to 10^(-32). Turn off AbsTol by setting it to 0.

syms x
vpaintegral(besselj(0,x), [0 pi], 'RelTol', 1e-32, 'AbsTol', 0)

ans =
1.3475263146739901712314731279612

Using lower tolerance values increases precision at the cost of speed.

Complex Path Integration Using Waypoints
Integrate 1/(2*z-1) over the triangular path from 0 to 1+1i to 1-1i back to 0 by
specifying waypoints.

syms z
vpaintegral(1/(2*z-1), [0 0], 'Waypoints', [1+1i 1-1i])

ans =
- 8.67362e-19 - 3.14159i

Reversing the direction of the integral, by changing the order of the waypoints and
exchanging the limits, changes the sign of the result.

Multiple Integrals
Perform multiple integration by nesting calls to vpaintegral. Integrate

∫
−1

2

∫
1

3
xy dx dy .

syms x y
vpaintegral(vpaintegral(x*y, x, [1 3]), y, [-1 2])

ans =
6.0

4 Functions — Alphabetical List

4-1864

The limits of integration can be symbolic expressions or functions. Integrate over the
triangular region 0 ≤ x ≤ 1 and |y| < x by specifying the limits of the integration over y in
terms of x.

vpaintegral(vpaintegral(sin(x-y)/(x-y), y, [-x x]), x, [0 1])

ans =
0.89734

Input Arguments
f — Expression or function to integrate
symbolic number | symbolic variable | symbolic vector | symbolic matrix | symbolic
multidimensional array | symbolic function | symbolic expression

Expression or function to integrate, specified as a symbolic number, variable, vector,
matrix, multidimensional array, function, or expression.

a,b — Limits of integration
list of two numbers | list of two symbolic numbers | list of two symbolic variables | list of
two symbolic functions | list of two symbolic expressions

Limits of integration, specified as a list of two numbers, symbolic numbers, symbolic
variables, symbolic functions, or symbolic expressions.

x — Integration variable
symbolic variable

Integration variable, specified as a symbolic variable. If x is not specified, the integration
variable is found by symvar.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'RelTol',1e-20

 vpaintegral

4-1865

RelTol — Relative error tolerance
1e-6 (default) | positive real number

Relative error tolerance, specified as a positive real number. The default is 1e-6. The
RelTol argument determines the accuracy of the integration only if
RelTol · Q > AbsTol, where Q is the calculated integral. In this case, vpaintegral
satisfies the condition Q− I ≤ RelTol · Q , where I is the exact integral value. To use
only RelTol and turn off AbsTol, set AbsTol to 0.
Example: 1e-8

AbsTol — Absolute error tolerance
1e-10 (default) | non-negative real number

Absolute error tolerance, specified as a non-negative real number. The default is 1e-10.
AbsTol determines the accuracy of the integration if AbsTol > RelTol · Q , where Q is
the calculated integral. In this case, vpaintegral satisfies the condition
Q− I ≤ AbsTol, where I is the exact integral value. To turn off AbsTol and use only
RelTol, set AbsTol to 0.
Example: 1e-12

Waypoints — Integration path
vector of numbers | vector of symbolic numbers | vector of symbolic expressions | vector
of symbolic functions

Integration path, specified as a vector of numbers, or as a vector of symbolic numbers,
expressions, or functions. vpaintegral integrates along the sequence of straight-line
paths (lower limit to the first waypoint, from the first to the second waypoint, and so on)
and finally from the last waypoint to the upper limit. For contour integrals, set equal
lower and upper limits and define the contour using waypoints.

MaxFunctionCalls — Maximum evaluations of input
10^5 (default) | positive integer | positive symbolic integer

Maximum evaluations of input, specified as a positive integer or a positive symbolic
integer. The default value is 10^5. If the number of evaluations of f is greater than
MaxFunctionCalls, then vpaintegral throws an error. For unlimited evaluations, set
MaxFunctionCalls to Inf.

4 Functions — Alphabetical List

4-1866

Tips
• Ensure that the input is integrable. If the input is not integrable, the output of

vpaintegral is unpredictable.
• The digits function does not affect vpaintegral. To increase precision, use the

RelTol and AbsTol arguments instead.

See Also
diff | int | integral | vpa

Topics
“Integration” on page 2-64

Introduced in R2016b

 vpaintegral

4-1867

vpasolve
Solve equations numerically

Syntax
S = vpasolve(eqn)
S = vpasolve(eqn,var)
S = vpasolve(eqn,var,init_guess)

Y = vpasolve(eqns)
Y = vpasolve(eqns,vars)
Y = vpasolve(eqns,vars,init_guess)

[y1,...,yN] = vpasolve(eqns)
[y1,...,yN] = vpasolve(eqns,vars)
[y1,...,yN] = vpasolve(eqns,vars,init_guess)

___ = vpasolve(___ ,'Random',true)

Description
S = vpasolve(eqn) numerically solves the equation eqn for the variable determined by
symvar.

S = vpasolve(eqn,var) numerically solves the equation eqn for the variable specified
by var.

S = vpasolve(eqn,var,init_guess) numerically solves the equation eqn for the
variable specified by var using the starting point or search range specified in
init_guess. If you do not specify var, vpasolve solves for variables determined by
symvar.

Y = vpasolve(eqns) numerically solves the system of equations eqns for variables
determined by symvar. This syntax returns Y as a structure array. You can access the
solutions by indexing into the array.

4 Functions — Alphabetical List

4-1868

Y = vpasolve(eqns,vars) numerically solves the system of equations eqns for
variables specified by vars. This syntax returns a structure array that contains the
solutions. The fields in the structure array correspond to the variables specified by vars.

Y = vpasolve(eqns,vars,init_guess) numerically solves the system of equations
eqns for the variables vars using the starting values or the search range init_guess.

[y1,...,yN] = vpasolve(eqns) numerically solves the system of equations eqns for
variables determined by symvar. This syntax assigns the solutions to variables
y1,...,yN.

[y1,...,yN] = vpasolve(eqns,vars) numerically solves the system of equations
eqns for the variables specified by vars.

[y1,...,yN] = vpasolve(eqns,vars,init_guess) numerically solves the system
of equations eqns for the variables specified by vars using the starting values or the
search range init_guess.

___ = vpasolve(___ ,'Random',true) uses a random starting point for finding
solutions. Use this input to avoid returning the same solution repeatedly for
nonpolynomial equations. If you specify starting points for all variables, setting 'Random'
to true has no effect.

Examples

Solve Polynomial Equation
For polynomial equations, vpasolve returns all solutions:

syms x
vpasolve(4*x^4 + 3*x^3 + 2*x^2 + x + 5 == 0, x)

ans =
 - 0.88011377126068169817875190457835 + 0.76331583387715452512978468102263i
 - 0.88011377126068169817875190457835 - 0.76331583387715452512978468102263i
 0.50511377126068169817875190457835 + 0.81598965068946312853227067890656i
 0.50511377126068169817875190457835 - 0.81598965068946312853227067890656i

If vpasolve returns an empty object, then no solution was found.

eqns = [3*x+2, 3*x+1];
vpasolve(eqns, x)

 vpasolve

4-1869

ans =
Empty sym: 0-by-1

Solve Nonpolynomial Equation
For nonpolynomial equations, vpasolve returns the first solution that it finds:

syms x
vpasolve(sin(x^2) == 1/2, x)

ans =
-226.94447241941511682716953887638

Assign Solutions to Structure Array
When solving a system of equations, use one output argument to return the solutions in
the form of a structure array:

syms x y
S = vpasolve([x^3 + 2*x == y, y^2 == x], [x, y])

S =
 struct with fields:

 x: [6×1 sym]
 y: [6×1 sym]

Display solutions by accessing the elements of the structure array S:

S.x

ans =
 0.2365742942773341617614871521768
 0
 - 0.28124065338711968666197895499453 + 1.2348724236470142074859894531946i
 - 0.28124065338711968666197895499453 - 1.2348724236470142074859894531946i
 0.16295350624845260578123537890613 - 1.6151544650555366917886585417926i
 0.16295350624845260578123537890613 + 1.6151544650555366917886585417926i

S.y

ans =
 0.48638903593454300001655725369801
 0
 0.70187356885586188630668751791218 + 0.87969719792982402287026727381769i
 0.70187356885586188630668751791218 - 0.87969719792982402287026727381769i

4 Functions — Alphabetical List

4-1870

 - 0.94506808682313338631496614476119 + 0.85451751443904587692179191887616i
 - 0.94506808682313338631496614476119 - 0.85451751443904587692179191887616i

Assign Solutions to Variables When Solving System of
Equations
When solving a system of equations, use multiple output arguments to assign the
solutions directly to output variables. To ensure the correct order of the returned
solutions, specify the variables explicitly. The order in which you specify the variables
defines the order in which the solver returns the solutions.
syms x y
[sol_x, sol_y] = vpasolve([x*sin(10*x) == y^3, y^2 == exp(-2*x/3)], [x, y])

sol_x =
88.90707209659114864849280774681

sol_y =
0.00000000000013470479710676694388973703681918

Find Multiple Solutions by Specifying Starting Points
Plot the two sides of the equation, and then use the plot to specify initial guesses for the
solutions.

Plot the left and right sides of the equation 200sin(x) = x3− 1.

syms x
eqnLeft = 200*sin(x);
eqnRight = x^3 - 1;
fplot([eqnLeft eqnRight])
title([texlabel(eqnLeft) ' = ' texlabel(eqnRight)])

 vpasolve

4-1871

This equation has three solutions. If you do not specify the initial guess (zero-
approximation), vpasolve returns the first solution that it finds:

vpasolve(200*sin(x) == x^3 - 1, x)

ans =
-0.0050000214585835715725440675982988

Find one of the other solutions by specifying the initial point that is close to that solution:

vpasolve(200*sin(x) == x^3 - 1, x, -4)

ans =
-3.0009954677086430679926572924945

4 Functions — Alphabetical List

4-1872

vpasolve(200*sin(x) == x^3 - 1, x, 3)

ans =
3.0098746383859522384063444361906

Specify Ranges for Solutions
You can specify ranges for solutions of an equation. For example, if you want to restrict
your search to only real solutions, you cannot use assumptions because vpasolve
ignores assumptions. Instead, specify a search interval. For the following equation, if you
do not specify ranges, the numeric solver returns all eight solutions of the equation:

syms x
vpasolve(x^8 - x^2 == 3, x)

ans =
 -1.2052497163799060695888397264341
 1.2052497163799060695888397264341
 - 0.77061431370803029127495426747428 + 0.85915207603993818859321142757163i
 - 0.77061431370803029127495426747428 - 0.85915207603993818859321142757164i
 -1.0789046020338265308047436284205i
 1.0789046020338265308047436284205i
 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i
 0.77061431370803029127495426747428 - 0.85915207603993818859321142757163i

Suppose you need only real solutions of this equation. You cannot use assumptions on
variables because vpasolve ignores them.

assume(x, 'real')
vpasolve(x^8 - x^2 == 3, x)

ans =
 -1.2052497163799060695888397264341
 1.2052497163799060695888397264341
 - 0.77061431370803029127495426747428 + 0.85915207603993818859321142757163i
 - 0.77061431370803029127495426747428 - 0.85915207603993818859321142757164i
 -1.0789046020338265308047436284205i
 1.0789046020338265308047436284205i
 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i
 0.77061431370803029127495426747428 - 0.85915207603993818859321142757163i

Specify the search range to restrict the returned results to particular ranges. For
example, to return only real solutions of this equation, specify the search interval as [-
Inf Inf]:

vpasolve(x^8 - x^2 == 3, x, [-Inf Inf])

 vpasolve

4-1873

ans =
 -1.2052497163799060695888397264341
 1.2052497163799060695888397264341

Return only nonnegative solutions:

vpasolve(x^8 - x^2 == 3, x, [0 Inf])

ans =
1.2052497163799060695888397264341

The search range can contain complex numbers. In this case, vpasolve uses a
rectangular search area in the complex plane:

vpasolve(x^8 - x^2 == 3, x, [-1, 1 + i])

ans =
 - 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i
 0.77061431370803029127495426747428 + 0.85915207603993818859321142757164i

Find Multiple Solutions for Nonpolynomial Equation
By default, vpasolve returns the same solution on every call. To find more than one
solution for nonpolynomial equations, set 'Random' to true. This makes vpasolve use a
random starting value which can lead to different solutions on successive calls.

If Random is not specified, vpasolve returns the same solution on every call.

syms x
f = x-tan(x);
for n = 1:3
 vpasolve(f,x)
end

ans =
0
ans =
0
ans =
0

When 'Random' is set to true, vpasolve returns a distinct solution on every call.

syms x
f = x-tan(x);

4 Functions — Alphabetical List

4-1874

for n = 1:3
 vpasolve(f,x,'Random',true)
end

ans =
 -227.76107684764829218924973598808
 ans =
 102.09196646490764333652956578441
 ans =
 61.244730260374400372753016364097

random can be used in conjunction with a search range:

vpasolve(f,x,[10 12],'Random',true)

ans =
10.904121659428899827148702790189

Input Arguments
eqn — Equation to solve
symbolic equation | symbolic expression

Equation to solve, specified as a symbolic equation or symbolic expression. A symbolic
equation is defined by the relation operator ==. If eqn is a symbolic expression (without
the right side), the solver assumes that the right side is 0, and solves the equation eqn
== 0.

var — Variable to solve equation for
symbolic variable

Variable to solve equation for, specified as a symbolic variable. If var is not specified,
symvar determines the variables.

eqns — System of equations or expressions to solve
symbolic vector | symbolic matrix | symbolic N-D array

System of equations or expressions to be solve, specified as a symbolic vector, matrix, or
N-D array of equations or expressions. These equations or expressions can also be
separated by commas. If an equation is a symbolic expression (without the right side), the
solver assumes that the right side of that equation is 0.

 vpasolve

4-1875

vars — Variables to solve system of equations for
symbolic vector

Variables to solve system of equations for, specified as a symbolic vector. These variables
are specified as a vector or comma-separated list. If vars is not specified, symvar
determines the variables.

init_guess — Initial guess for solution
numeric value | vector | matrix with two columns

Initial guess for a solution, specified as a numeric value, vector, or matrix with two
columns.

If init_guess is a number or, in the case of multivariate equations, a vector of numbers,
then the numeric solver uses it as a starting point. If init_guess is specified as a scalar
while the system of equations is multivariate, then the numeric solver uses the scalar
value as a starting point for all variables.

If init_guess is a matrix with two columns, then the two entries of the rows specify the
bounds of a search range for the corresponding variables. To specify a starting point in a
matrix of search ranges, specify both columns as the starting point value.

To omit a search range for a variable, set the search range for that variable to [NaN,
NaN] in init_guess. All other uses of NaN in init_guess will error.

By default, vpasolve uses its own internal choices for starting points and search ranges.

Output Arguments
S — Solutions of univariate equation
symbolic value | symbolic array

Solutions of univariate equation, returned as symbolic value or symbolic array. The size of
a symbolic array corresponds to the number of the solutions.

Y — Solutions of system of equations
structure array

Solutions of system of equations, returned as a structure array. The number of fields in
the structure array corresponds to the number of variables to be solved for.

4 Functions — Alphabetical List

4-1876

y1,...,yN — Variables that are assigned solutions of system of equations
array of numeric variables | array of symbolic variables

Variables that are assigned solutions of system of equations, returned as an array of
numeric or symbolic variables. The number of output variables or symbolic arrays must
equal the number of variables to be solved for. If you explicitly specify independent
variables vars, then the solver uses the same order to return the solutions. If you do not
specify vars, the toolbox sorts independent variables alphabetically, and then assigns the
solutions for these variables to the output variables or symbolic arrays.

Tips
• If vpasolve returns an empty object, then no solution was found.
• vpasolve returns all solutions only for polynomial equations. For nonpolynomial

equations, there is no general method of finding all solutions. When you look for
numerical solutions of a nonpolynomial equation or system that has several solutions,
then, by default, vpasolve returns only one solution, if any. To find more than just one
solution, set 'Random' to true. Now, calling vpasolve repeatedly might return
several different solutions.

• When you solve a system where there are not enough equations to determine all
variables uniquely, the behavior of vpasolve behavior depends on whether the
system is polynomial or nonpolynomial. If polynomial, vpasolve returns all solutions
by introducing an arbitrary parameter. If nonpolynomial, a single numerical solution is
returned, if it exists.

• When you solve a system of rational equations, the toolbox transforms it to a
polynomial system by multiplying out the denominators. vpasolve returns all
solutions of the resulting polynomial system, including those that are also roots of
these denominators.

• vpasolve ignores assumptions set on variables. You can restrict the returned results
to particular ranges by specifying appropriate search ranges using the argument
init_guess.

• If init_guess specifies a search range [a,b], and the values a,b are complex
numbers, then vpasolve searches for the solutions in the rectangular search area in
the complex plane. Here, a specifies the bottom-left corner of the rectangular search
area, and b specifies the top-right corner of that area.

• The output variables y1,...,yN do not specify the variables for which vpasolve
solves equations or systems. If y1,...,yN are the variables that appear in eqns, that

 vpasolve

4-1877

does not guarantee that vpasolve(eqns) will assign the solutions to y1,...,yN
using the correct order. Thus, for the call [a,b] = vpasolve(eqns), you might get
the solutions for a assigned to b and vice versa.

To ensure the order of the returned solutions, specify the variables vars. For example,
the call [b,a] = vpasolve(eqns,b,a) assigns the solutions for a assigned to a
and the solutions for b assigned to b.

• Place equations and expressions to the left of the argument list, and the variables to
the right. vpasolve checks for variables starting on the right, and on reaching the
first equation or expression, assumes everything to the left is an equation or
expression.

• If possible, solve equations symbolically using solve, and then approximate the
obtained symbolic results numerically using vpa. Using this approach, you get
numeric approximations of all solutions found by the symbolic solver. Using the
symbolic solver and postprocessing its results requires more time than using the
numeric methods directly. This can significantly decrease performance.

Algorithms
• When you set 'Random' to true and specify a search range for a variable, random

starting points within the search range are chosen using the internal random number
generator. The distribution of starting points within finite search ranges is uniform.

• When you set random to true and do not specify a search range for a variable,
random starting points are generated using a Cauchy distribution with a half-width of
100. This means the starting points are real valued and have a large spread of values
on repeated calls.

See Also
dsolve | equationsToMatrix | fzero | linsolve | solve | symvar | vpa

Introduced in R2012b

4 Functions — Alphabetical List

4-1878

whittakerM
Whittaker M function

Syntax
whittakerM(a,b,z)

Description
whittakerM(a,b,z) returns the value of the Whittaker M function on page 4-1882.

Examples
Compute Whittaker M Function for Numeric Input
Compute the Whittaker M function for these numbers. Because these numbers are not
symbolic objects, you get floating-point results.

[whittakerM(1, 1, 1), whittakerM(-2, 1, 3/2 + 2*i),...
whittakerM(2, 2, 2), whittakerM(3, -0.3, 1/101)]

ans =
 0.7303 -9.2744 + 5.4705i 2.6328 0.3681

Compute Whittaker M Function for Symbolic Input
Compute the Whittaker M function for the numbers converted to symbolic objects. For
most symbolic (exact) numbers, whittakerM returns unresolved symbolic calls.

[whittakerM(sym(1), 1, 1), whittakerM(-2, sym(1), 3/2 + 2*i),...
whittakerM(2, 2, sym(2)), whittakerM(sym(3), -0.3, 1/101)]

ans =
[whittakerM(1, 1, 1), whittakerM(-2, 1, 3/2 + 2i),
whittakerM(2, 2, 2), whittakerM(3, -3/10, 1/101)]

 whittakerM

4-1879

For symbolic variables and expressions, whittakerM also returns unresolved symbolic
calls:

syms a b x y
[whittakerM(a, b, x), whittakerM(1, x, x^2),...
whittakerM(2, x, y), whittakerM(3, x + y, x*y)]

ans =
[whittakerM(a, b, x), whittakerM(1, x, x^2),...
whittakerM(2, x, y), whittakerM(3, x + y, x*y)]

Solve ODE for Whittaker Functions
Solve this second-order differential equation. The solutions are given in terms of the
Whittaker functions.

syms a b w(z)
dsolve(diff(w, 2) + (-1/4 + a/z + (1/4 - b^2)/z^2)*w == 0)

ans =
C2*whittakerM(-a,-b,-z) + C3*whittakerW(-a,-b,-z)

Verify Whittaker Functions are Solution of ODE
Verify that the Whittaker M function is a valid solution of this differential equation:

syms a b z
isAlways(diff(whittakerM(a,b,z), z, 2) +...
(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerM(a,b,z) == 0)

ans =
 logical
 1

Verify that whittakerM(-a,-b,-z) also is a valid solution of this differential equation:

syms a b z
isAlways(diff(whittakerM(-a,-b,-z), z, 2) +...
(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerM(-a,-b,-z) == 0)

ans =
 logical
 1

4 Functions — Alphabetical List

4-1880

Compute Special Values of Whittaker M Function
The Whittaker M function has special values for some parameters:

whittakerM(sym(-3/2), 1, 1)

ans =
exp(1/2)

syms a b x
whittakerM(0, b, x)

ans =
4^b*x^(1/2)*gamma(b + 1)*besseli(b, x/2)

whittakerM(a + 1/2, a, x)

ans =
x^(a + 1/2)*exp(-x/2)whittakerM(a, a - 5/2, x)

ans =
(2*x^(a - 2)*exp(-x/2)*(2*a^2 - 7*a + x^2/2 -...
x*(2*a - 3) + 6))/pochhammer(2*a - 4, 2)

Differentiate Whittaker M Function
Differentiate the expression involving the Whittaker M function:

syms a b z
diff(whittakerM(a,b,z), z)

ans =
(whittakerM(a + 1, b, z)*(a + b + 1/2))/z -...
(a/z - 1/2)*whittakerM(a, b, z)

Compute Whittaker M Function for Matrix Input
Compute the Whittaker M function for the elements of matrix A:

syms x
A = [-1, x^2; 0, x];
whittakerM(-1/2, 0, A)

 whittakerM

4-1881

ans =
[exp(-1/2)*1i, exp(x^2/2)*(x^2)^(1/2)]
[0, x^(1/2)*exp(x/2)]

Input Arguments
a — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

If a is a vector or matrix, whittakerM returns the beta function for each element of a.

b — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

If b is a vector or matrix, whittakerM returns the beta function for each element of b.

z — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

If x is a vector or matrix, whittakerM returns the beta function for each element of z.

Definitions

Whittaker M Function
The Whittaker functions Ma,b(z) and Wa,b(z) are linearly independent solutions of this
differential equation:

4 Functions — Alphabetical List

4-1882

d2w
dz2 + −1

4 + a
z + 1/4− b2

z2 w = 0

The Whittaker M function is defined via the confluent hypergeometric functions:

Ma, b z = e−z/2 zb + 1/2 M b− a + 1
2, 1 + 2b, z

Tips
• All non-scalar arguments must have the same size. If one or two input arguments are

non-scalar, then whittakerM expands the scalars into vectors or matrices of the same
size as the non-scalar arguments, with all elements equal to the corresponding scalar.

References
[1] Slater, L. J. “Cofluent Hypergeometric Functions.” Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

See Also
hypergeom | kummerU | whittakerW

Introduced in R2012a

 whittakerM

4-1883

whittakerW
Whittaker W function

Syntax
whittakerW(a,b,z)

Description
whittakerW(a,b,z) returns the value of the Whittaker W function on page 4-1888.

Examples
Compute Whittaker W Function for Numeric Input
Compute the Whittaker W function for these numbers. Because these numbers are not
symbolic objects, you get floating-point results.

[whittakerW(1, 1, 1), whittakerW(-2, 1, 3/2 + 2*i),...
whittakerW(2, 2, 2), whittakerW(3, -0.3, 1/101)]

ans =
 1.1953 -0.0156 - 0.0225i 4.8616 -0.1692

Compute Whittaker W Function for Symbolic Input
Compute the Whittaker W function for the numbers converted to symbolic objects. For
most symbolic (exact) numbers, whittakerW returns unresolved symbolic calls.

[whittakerW(sym(1), 1, 1), whittakerW(-2, sym(1), 3/2 + 2*i),...
whittakerW(2, 2, sym(2)), whittakerW(sym(3), -0.3, 1/101)]

ans =
[whittakerW(1, 1, 1), whittakerW(-2, 1, 3/2 + 2i),
whittakerW(2, 2, 2), whittakerW(3, -3/10, 1/101)]

4 Functions — Alphabetical List

4-1884

For symbolic variables and expressions, whittakerW also returns unresolved symbolic
calls:

syms a b x y
[whittakerW(a, b, x), whittakerW(1, x, x^2),...
whittakerW(2, x, y), whittakerW(3, x + y, x*y)]

ans =
[whittakerW(a, b, x), whittakerW(1, x, x^2),
whittakerW(2, x, y), whittakerW(3, x + y, x*y)]

Solve ODE for Whittaker Functions
Solve this second-order differential equation. The solutions are given in terms of the
Whittaker functions.

syms a b w(z)
dsolve(diff(w, 2) + (-1/4 + a/z + (1/4 - b^2)/z^2)*w == 0)

ans =
C2*whittakerM(-a, -b, -z) + C3*whittakerW(-a, -b, -z)

Verify Whittaker Functions are Solution of ODE
Verify that the Whittaker W function is a valid solution of this differential equation:

syms a b z
isAlways(diff(whittakerW(a, b, z), z, 2) +...
(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerW(a, b, z) == 0)

ans =
 logical
 1

Verify that whittakerW(-a, -b, -z) also is a valid solution of this differential
equation:

syms a b z
isAlways(diff(whittakerW(-a, -b, -z), z, 2) +...
(-1/4 + a/z + (1/4 - b^2)/z^2)*whittakerW(-a, -b, -z) == 0)

ans =
 logical
 1

 whittakerW

4-1885

Compute Special Values of Whittaker W Function
The Whittaker W function has special values for some parameters:

whittakerW(sym(-3/2), 1/2, 0)

ans =
4/(3*pi^(1/2))

syms a b x
whittakerW(0, b, x)

ans =
(x^(b + 1/2)*besselk(b, x/2))/(x^b*pi^(1/2))

whittakerW(a, -a + 1/2, x)

ans =
x^(1 - a)*x^(2*a - 1)*exp(-x/2)

whittakerW(a - 1/2, a, x)

ans =
(x^(a + 1/2)*exp(-x/2)*exp(x)*igamma(2*a, x))/x^(2*a)

Differentiate Whittaker W Function
Differentiate the expression involving the Whittaker W function:

syms a b z
diff(whittakerW(a,b,z), z)

ans =
- (a/z - 1/2)*whittakerW(a, b, z) -...
whittakerW(a + 1, b, z)/z

Compute Whittaker W Function for Matrix Input
Compute the Whittaker W function for the elements of matrix A:

syms x
A = [-1, x^2; 0, x];
whittakerW(-1/2, 0, A)

4 Functions — Alphabetical List

4-1886

ans =
[-exp(-1/2)*(ei(1) + pi*1i)*1i,...
 exp(x^2)*exp(-x^2/2)*expint(x^2)*(x^2)^(1/2)]
[0,...
 x^(1/2)*exp(-x/2)*exp(x)*expint(x)]

Input Arguments
a — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

If a is a vector or matrix, whittakerW returns the beta function for each element of a.

b — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

If b is a vector or matrix, whittakerW returns the beta function for each element of b.

z — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

If x is a vector or matrix, whittakerW returns the beta function for each element of z.

 whittakerW

4-1887

Definitions

Whittaker W Function
The Whittaker functions Ma,b(z) and Wa,b(z) are linearly independent solutions of this
differential equation:

d2w
dz2 + −1

4 + a
z + 1/4− b2

z2 w = 0

The Whittaker W function is defined via the confluent hypergeometric functions:

Wa, b z = e−z/2zb + 1/2U b− a + 1
2, 1 + 2b, z

Tips
• All non-scalar arguments must have the same size. If one or two input arguments are

non-scalar, then whittakerW expands the scalars into vectors or matrices of the same
size as the non-scalar arguments, with all elements equal to the corresponding scalar.

References
[1] Slater, L. J. “Cofluent Hypergeometric Functions.” Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and
I. A. Stegun, eds.). New York: Dover, 1972.

See Also
hypergeom | kummerU | whittakerM

Introduced in R2012a

4 Functions — Alphabetical List

4-1888

wrightOmega
Wright omega function

Syntax
wrightOmega(x)

Description
wrightOmega(x) computes the Wright omega function on page 4-1891 of x. If z is a
matrix, wrightOmega acts elementwise on z.

Examples

Compute Wright Omega Function of Numeric Inputs
Compute the Wright omega function for these numbers. Because these numbers are not
symbolic objects, you get floating-point results:

wrightOmega(1/2)

ans =
 0.7662

wrightOmega(pi)

ans =
 2.3061wrightOmega(-1+i*pi)

ans =
 -1.0000 + 0.0000

 wrightOmega

4-1889

Compute Wright Omega Function of Symbolic Numbers
Compute the Wright omega function for the numbers converted to symbolic objects. For
most symbolic (exact) numbers, wrightOmega returns unresolved symbolic calls:

wrightOmega(sym(1/2))

ans =
wrightOmega(1/2)

wrightOmega(sym(pi))

ans =
wrightOmega(pi)

For some exact numbers, wrightOmega has special values:

wrightOmega(-1+i*sym(pi))

ans =
 -1

Compute Wright Omega Function of Symbolic Expression
Compute the Wright omega function for x and sin(x) + x*exp(x). For symbolic
variables and expressions, wrightOmega returns unresolved symbolic calls:

syms x
wrightOmega(x)
wrightOmega(sin(x) + x*exp(x))

ans =
wrightOmega(x)

ans =
wrightOmega(sin(x) + x*exp(x))

Compute Derivative of Wright Omega Function
Now compute the derivatives of these expressions:

diff(wrightOmega(x), x, 2)
diff(wrightOmega(sin(x) + x*exp(x)), x)

4 Functions — Alphabetical List

4-1890

ans =
wrightOmega(x)/(wrightOmega(x) + 1)^2 -...
wrightOmega(x)^2/(wrightOmega(x) + 1)^3

ans =
(wrightOmega(sin(x) + x*exp(x))*(cos(x) +...
exp(x) + x*exp(x)))/(wrightOmega(sin(x) + x*exp(x)) + 1)

Compute Wright Omega Function for Matrix Input
Compute the Wright omega function for elements of matrix M and vector V:

M = [0 pi; 1/3 -pi];
V = sym([0; -1+i*pi]);
wrightOmega(M)
wrightOmega(V)

ans =
 0.5671 2.3061
 0.6959 0.0415

ans =
 lambertw(0, 1)
 -1

Input Arguments
x — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Definitions

Wright omega Function
The Wright omega function is defined in terms of the Lambert W function:

 wrightOmega

4-1891

ω x = W Im x − π
2π

ex

The Wright omega function ω(x) is a solution of the equation Y + log(Y) = X.

References
[1] Corless, R. M. and D. J. Jeffrey. “The Wright omega Function.” Artificial Intelligence,

Automated Reasoning, and Symbolic Computation (J. Calmet, B. Benhamou, O.
Caprotti, L. Henocque, and V. Sorge, eds.). Berlin: Springer-Verlag, 2002, pp.
76-89.

See Also
lambertW | log

Introduced in R2011b

4 Functions — Alphabetical List

4-1892

writeAnimation
Save animation as video file

Syntax
writeAnimation(filename)
writeAnimation(fig,filename)
writeAnimation(___ ,Name,Value)

writeAnimation(vidObj)
writeAnimation(fig,vidObj)

Description
writeAnimation(filename) writes animation objects in the current figure to a GIF or
AVI video file. The animation objects must be created using the fanimator function. The
extension of filename sets the video format, and must be either '.gif' or '.avi'.

• If you do not specify the file extension, then writeAnimation chooses the '.avi'
extension by default.

• If you specify any other file extension, such as '.mp4' or '.mpg', then
writeAnimation returns an error message.

writeAnimation(fig,filename) writes animation objects in the figure fig to a GIF
or AVI video file.

writeAnimation(___ ,Name,Value) writes animation objects with the specified
Name,Value pair arguments. Use this option with any of the input argument
combinations in the previous syntaxes. You can set the name-value pair settings to specify
the properties of a GIF or AVI video file.

writeAnimation(vidObj) writes animation objects in the current figure to a
VideoWriter object. This syntax provides the option to save animation objects in
another video file format, such as 'MPEG-4' or 'Uncompressed AVI'.

 writeAnimation

4-1893

writeAnimation(fig,vidObj) writes animation objects in the figure fig to a
VideoWriter object.

If you save an animation as a VideoWriter object, then the properties of the output
video file follow the properties of the VideoWriter object.

Examples

Save Animation of Moving Circle as GIF File

Create a moving circle animation object and save it as a GIF file.

Create two symbolic variables, t and x. The variable t defines the time parameter of the
animation. Use t to set the center of the circle at (t,1) and x to parameterize the
perimeter of the circle within the range [-pi pi]. Create the circle animation object
using fanimator. Set the x-axis and y-axis to be equal length.

syms t x
fanimator(@fplot,cos(x)+t,sin(x)+1,[-pi pi])
axis equal

Enter the command playAnimation to play the animation. Save the animation as a GIF
video file named 'wheel.gif'.

writeAnimation('wheel.gif')

4 Functions — Alphabetical List

4-1894

Save Animation of Moving Circle as MPEG-4 File

Create a moving circle animation object and save it as an MPEG-4 file.

First, create two symbolic variables, t and x. The variable t defines the time parameter
of the animation. Use t to set the center of the circle at (t,1) and x to parameterize the
perimeter of the circle within the range [-pi pi]. Create the circle animation object
using fanimator. Set the x-axis and y-axis to be equal length.

syms t x
fanimator(@fplot,cos(x)+t,sin(x)+1,[-pi pi])
axis equal

 writeAnimation

4-1895

Enter the command playAnimation to play the animation.

Next, save the animation as an MPEG-4 file. Create a video object that saves to a file
named 'myFile' by using the VideoWriter function. Specify the video file format as
'MPEG-4'. Open the video file, use writeAnimation to save the circle animation object,
and close the video file.

vidObj = VideoWriter('myFile','MPEG-4');
open(vidObj)
writeAnimation(vidObj)
close(vidObj)

4 Functions — Alphabetical List

4-1896

Save Animation as Looping GIF File

Create a circle animation object and save it as a GIF file that plays a specified number of
loops.

First, create two symbolic variables, t and x. The variable t defines the time parameter
of the animation. Create a figure window for the animation.

syms t x
fig = figure;

Create the circle animation object using fanimator. Use t to set the center of the circle
at (t,1) and x to parameterize the perimeter of the circle within the range [-pi pi].
Set the x-axis and y-axis to be equal length.

syms t x
fanimator(@fplot,cos(x)+t,sin(x)+1,[-pi pi])
axis equal

Enter the command playAnimation to play the animation.

Next, save the animation in the figure fig as a GIF file named 'loop.gif' by using the
writeAnimation function. The writeAnimation function always plays the animation
once in a MATLAB figure window before saving the animation. When saving the animation
as a GIF file, the created GIF file plays the animation once and repeats the number of
loops as specified. For this example, set 'LoopCount' to 1. The GIF file plays the
animation twice.

writeAnimation(fig,'loop.gif','LoopCount',1)

 writeAnimation

4-1897

Note that to properly show the number of loops in a GIF video file, you must open the file
in an application with GIF decoder.

Input Arguments
filename — Video filename
string | character vector

Video filename, specified as a string scalar or character vector. The extension of filename
sets the video format, and must be either '.gif' or '.avi'. You must have permission
to write the file.

4 Functions — Alphabetical List

4-1898

• If you do not specify the file extension, then writeAnimation uses '.avi' by
default.

• If filename already exists, then writeAnimation overwrites the file.
• If filename does not include a full path, then the function saves the animation to the

current folder.

vidObj — Video object
VideoWriter object

Video object, specified as a VideoWriter object. The VideoWriter object provides the
option to control the output video format when you save animation objects. For more
information about VideoWriter object in MATLAB, see VideoWriter.

fig — Target figure
Figure object

Target figure, specified as a Figure object. For more information about Figure objects,
see figure.

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside quotes.
You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'FrameRate',15,'LoopCount',2

AnimationRange — Range of animation time parameter
[0 10] (default) | two-element row vector

Range of the animation time parameter, specified as a two-element row vector. The two
elements must be real values that are increasing.
Example: [-2 4.5]

FrameRate — Frame rate
10 (default) | positive value

Frame rate, specified as a positive value. The frame rate defines the number of frames
per unit time when you write animation objects to a video file.

 writeAnimation

4-1899

Example: 30

Backwards — Backward option
logical 0 (false) (default) | logical value

Backward option, specified as a logical value (boolean). If you specify true, then the
function saves the animation backwards or in reverse order.
Example: true

LoopCount — Animation loop count
0 (default) | nonnegative integer (from 0 to 65535) | Inf

Animation loop count, specified as a nonnegative integer (from 0 to 65535) or Inf. This
value sets the number of repeated animation loops in a GIF file. Setting this value has no
effect if you use a video file format other than GIF.

• If you use the default value of 0, then the GIF file plays the animation once.
• If you set 'LoopCount' to an integer n, then the GIF file plays the animation once

plus n repeats (a total of n+1 times).
• To repeat the animation infinitely, use the Inf value.

Example: 1

See Also
VideoWriter | animationToFrame | fanimator | playAnimation |
rewindAnimation

Introduced in R2019a

4 Functions — Alphabetical List

4-1900

xor
Logical XOR for symbolic expressions

Syntax
xor(A,B)

Description
xor(A,B) represents the logical exclusive disjunction. xor(A,B) is true when either A or
B are true. If both A and B are true or false, xor(A,B) is false.

Examples

Set and Evaluate Condition
Combine two symbolic inequalities into the logical expression using xor:

syms x
range = xor(x > -10, x < 10);

Replace variable x with these numeric values. If you replace x with 11, then inequality x
> -10 is valid and x < 10 is invalid. If you replace x with 0, both inequalities are valid.
Note that subs does not evaluate these inequalities to logical 1 or 0.

x1 = subs(range, x, 11)
x2 = subs(range, x, 0)

x1 =
-10 < 11 xor 11 < 10

x2 =
-10 < 0 xor 0 < 10

 xor

4-1901

To evaluate these inequalities to logical 1 or 0, use isAlways. If only one inequality is
valid, the expression with xor evaluates to logical 1. If both inequalities are valid, the
expression with xor evaluates to logical 0.

isAlways(x1)
isAlways(x2)

ans =
 logical
 1

ans =
 logical
 0

Note that simplify does not simplify these logical expressions to logical 1 or 0. Instead,
they return symbolic values TRUE or FALSE.

s1 = simplify(x1)
s2 = simplify(x2)

s1 =
TRUE

s2 =
FALSE

Convert symbolic TRUE or FALSE to logical values using isAlways:

isAlways(s1)
isAlways(s2)

ans =
 logical
 1

ans =
 logical
 0

4 Functions — Alphabetical List

4-1902

Input Arguments
A — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

B — Input
number | vector | matrix | array | symbolic number | symbolic variable | symbolic array |
symbolic function | symbolic expression

Input, specified as a number, vector, matrix, or array, or a symbolic number, variable,
array, function, or expression.

Tips
• If you call simplify for a logical expression containing symbolic subexpressions, you

can get symbolic values TRUE or FALSE. These values are not the same as logical 1
(true) and logical 0 (false). To convert symbolic TRUE or FALSE to logical values,
use isAlways.

• assume and assumeAlso do not accept assumptions that contain xor.

See Also
all | and | any | isAlways | not | or

Introduced in R2012a

 xor

4-1903

zeta
Riemann zeta function

Syntax
zeta(z)
zeta(n,z)

Description
zeta(z) evaluates the Riemann zeta function at the elements of z, where z is a numeric
or symbolic input.

zeta(n,z) returns the nth derivative of zeta(z).

Examples
Find Riemann Zeta Function for Numeric and Symbolic Inputs
Find the Riemann zeta function for numeric inputs.

zeta([0.7 i 4 11/3])

ans =
 -2.7784 + 0.0000i 0.0033 - 0.4182i 1.0823 + 0.0000i 1.1094 + 0.0000i

Find the Riemann zeta function symbolically by converting the inputs to symbolic objects
using sym. The zeta function returns exact results.

zeta(sym([0.7 i 4 11/3]))

ans =
[zeta(7/10), zeta(1i), pi^4/90, zeta(11/3)]

zeta returns unevaluated function calls for symbolic inputs that do not have results
implemented. The implemented results are listed in “Algorithms” on page 4-1907.

4 Functions — Alphabetical List

4-1904

Find the Riemann zeta function for a matrix of symbolic expressions.

syms x y
Z = zeta([x sin(x); 8*x/11 x + y])

Z =
[zeta(x), zeta(sin(x))]
[zeta((8*x)/11), zeta(x + y)]

Find Riemann Zeta Function for Large Inputs
For values of |z|>1000, zeta(z) might return an unevaluated function call. Use expand
to force zeta to evaluate the function call.

zeta(sym(1002))
expand(zeta(sym(1002)))

ans =
zeta(1002)
ans =
(1087503...312*pi^1002)/15156647...375

Differentiate Riemann Zeta Function
Find the third derivative of the Riemann zeta function at point x.

syms x
expr = zeta(3,x)

expr =
zeta(3, x)

Find the third derivative at x = 4 by substituting 4 for x using subs.

expr = subs(expr,x,4)

expr =
zeta(3, 4)

Evaluate expr using vpa.

expr = vpa(expr)

expr =
-0.07264084989132137196244616781177

 zeta

4-1905

Plot Zeros of Riemann Zeta Function
Zeros of the Riemann Zeta function zeta(x+i*y) are found along the line x = 1/2. Plot
the absolute value of the function along this line for 0<y<30 to view the first three zeros.
Prior to R2016a, use ezplot instead of fplot.

syms y
fplot(abs(zeta(1/2+1i*y)),[0 30])
grid on

4 Functions — Alphabetical List

4-1906

Input Arguments
z — Input
number | vector | matrix | multidimensional array | symbolic number | symbolic variable |
symbolic vector | symbolic matrix | symbolic multidimensional array | symbolic function |
symbolic expression

Input, specified as a number, vector, matrix or multidimensional array, or a symbolic
number, variable, vector, matrix, multidimensional array, function or expression.

n — Order of derivative
nonnegative integer

Order of derivative, specified as a nonnegative integer.

Definitions

Riemann Zeta Function
The Riemann zeta function is defined by

ζ(z) = ∑
k = 1

∞ 1
kz

The series converges only if the real part of z is greater than 1. The definition of the
function is extended to the entire complex plane, except for a simple pole z = 1, by
analytic continuation.

Tips
• Floating point evaluation is slow for large values of n.

Algorithms
The following exact values are implemented.

 zeta

4-1907

• ζ 0 = − 1
2

• ζ 1, 0 = − log π
2 − log 2

2
• ζ ∞ = 1
• If z < 0 and z is an even integer, ζ z = 0.
• If z < 0 and z is an odd integer

ζ z = − bernoulli 1− z
1− z

For z < − 1000, zeta(z) returns an unevaluated function call. To force evaluation,
use expand(zeta(z)).

• If z > 0 and z is an even integer

ζ z =
2π z bernoulli z

2z!

For z > 1000, zeta(z) returns an unevaluated function call. To force evaluation, use
expand(zeta(z)).

• If n > 0, ζ n,∞ = 0.
• If the argument does not evaluate to a listed special value, zeta returns the symbolic

function call.

See Also
bernoulli | gamma | hurwitzZeta | psi

Introduced before R2006a

4 Functions — Alphabetical List

4-1908

ztrans
Z-transform

Syntax
ztrans(f)
ztrans(f,transVar)
ztrans(f,var,transVar)

Description
ztrans(f) finds the “Z-Transform” on page 4-1913 of f. By default, the independent
variable is n and the transformation variable is z. If f does not contain n, ztrans uses
symvar.

ztrans(f,transVar) uses the transformation variable transVar instead of z.

ztrans(f,var,transVar) uses the independent variable var and transformation
variable transVar instead of n and z, respectively.

Examples

Z-Transform of Symbolic Expression

Compute the Z-transform of sin(n). By default, the transform is in terms of z.

syms n
f = sin(n);
ztrans(f)

ans =
(z*sin(1))/(z^2 - 2*cos(1)*z + 1)

 ztrans

4-1909

Specify Independent Variable and Transformation Variable

Compute the Z-transform of exp(m+n). By default, the independent variable is n and the
transformation variable is z.

syms m n
f = exp(m+n);
ztrans(f)

ans =
(z*exp(m))/(z - exp(1))

Specify the transformation variable as y. If you specify only one variable, that variable is
the transformation variable. The independent variable is still n.

syms y
ztrans(f,y)

ans =
(y*exp(m))/(y - exp(1))

Specify both the independent and transformation variables as m and y in the second and
third arguments, respectively.

ztrans(f,m,y)

ans =
(y*exp(n))/(y - exp(1))

Z-Transforms Involving Heaviside Function and Binomial Coefficient

Compute the Z-transform of the Heaviside function and the binomial coefficient.

syms n z
ztrans(heaviside(n-3),n,z)

ans =
(1/(z - 1) + 1/2)/z^3

ztrans(nchoosek(n,2))

4 Functions — Alphabetical List

4-1910

ans =
z/(z - 1)^3

Z-Transform of Array Inputs

Find the Z-transform of the matrix M. Specify the independent and transformation
variables for each matrix entry by using matrices of the same size. When the arguments
are nonscalars, ztrans acts on them element-wise.

syms a b c d w x y z
M = [exp(x) 1; sin(y) i*z];
vars = [w x; y z];
transVars = [a b; c d];
ztrans(M,vars,transVars)

ans =
[(a*exp(x))/(a - 1), b/(b - 1)]
[(c*sin(1))/(c^2 - 2*cos(1)*c + 1), (d*1i)/(d - 1)^2]

If ztrans is called with both scalar and nonscalar arguments, then it expands the scalars
to match the nonscalars by using scalar expansion. Nonscalar arguments must be the
same size.

syms w x y z a b c d
ztrans(x,vars,transVars)

ans =
[(a*x)/(a - 1), b/(b - 1)^2]
[(c*x)/(c - 1), (d*x)/(d - 1)]

Z-Transform of Symbolic Function

Compute the Z-transform of symbolic functions. When the first argument contains
symbolic functions, then the second argument must be a scalar.

syms f1(x) f2(x) a b
f1(x) = exp(x);
f2(x) = x;
ztrans([f1 f2],x,[a b])

 ztrans

4-1911

ans =
[a/(a - exp(1)), b/(b - 1)^2]

If Z-Transform Cannot Be Found

If ztrans cannot transform the input then it returns an unevaluated call.

syms f(n)
f(n) = 1/n;
F = ztrans(f,n,z)

F =
ztrans(1/n, n, z)

Return the original expression by using iztrans.

iztrans(F,z,n)

ans =
1/n

Input Arguments
f — Input
symbolic expression | symbolic function | symbolic vector | symbolic matrix

Input, specified as a symbolic expression, function, vector, or matrix.

var — Independent variable
n (default) | symbolic variable

Independent variable, specified as a symbolic variable. This variable is often called the
"discrete time variable". If you do not specify the variable, then ztrans uses n. If f does
not contain n, then ztrans uses the function symvar.

transVar — Transformation variable
z (default) | symbolic variable | symbolic expression | symbolic vector | symbolic matrix

Transformation variable, specified as a symbolic variable, expression, vector, or matrix.
This variable is often called the "complex frequency variable." By default, ztrans uses z.
If z is the independent variable of f, then ztrans uses w.

4 Functions — Alphabetical List

4-1912

Definitions

Z-Transform
The Z-transform F = F(z) of the expression f = f(n) with respect to the variable n at the
point z is

F z = ∑
n = 0

∞ f n
zn .

Tips
• If any argument is an array, then ztrans acts element-wise on all elements of the

array.
• If the first argument contains a symbolic function, then the second argument must be

a scalar.
• To compute the inverse Z-transform, use iztrans.

See Also
fourier | ifourier | ilaplace | iztrans | kroneckerDelta | laplace

Topics
“Solve Difference Equations Using Z-Transform” on page 2-243

Introduced before R2006a

 ztrans

4-1913

